

6. Rational Maps and Birational Equivalence

6.1 Definition: Let $X \subseteq \mathbf{F}^n$ be an irreducible variety. Let $p, q \in \mathbf{F}[x_1, \dots, x_n]$ with $q \notin I(X)$. Alternatively let $p, q \in A(X)$ with $q \neq 0$. Then p/q defines a map $p/q : U_q \rightarrow \mathbf{F}$, where $U_q = \{x \in X \mid q(x) \neq 0\}$. We consider two such maps $p/q : U_q \rightarrow \mathbf{F}$ and $r/s : U_s \rightarrow \mathbf{F}$ to be equivalent when $\frac{p(x)}{q(x)} = \frac{r(x)}{s(x)}$ for all $x \in U_q \cap U_s$. Notice that since X is irreducible, we have $\overline{U_q \cap U_s} = X$ so p/q is equivalent to $r/s \iff p(x)s(x) = q(x)r(x)$ for all $x \in U_q \cap U_s \iff ps - qr \in I(U_q \cap U_s) = I(X) \iff ps - qr = 0 \in A(X)$. An equivalence class f of such maps determines a map $f : U \subseteq X \rightarrow \mathbf{F}$, where $U = \bigcup_{p/q \in f} U_q$. Such a map

is called a **rational map** on X , and the set U is called the **domain** of f . We use the notation $f : X \rightarrow \mathbf{F}$ for a rational map on X (even when the domain of f is not all of X), and we write p/q for the rational map determined by the equivalence class of p/q . The set of rational maps, denoted by $K(X)$, is a field, called the **field of rational maps** on X (or the **function field**) of X , which we can identify with the quotient field of the integral domain $A(X)$.

$$\begin{aligned} K(X) &= \left\{ \frac{p}{q} \mid p, q \in \mathbf{F}[x_1, \dots, x_n], q \notin I(X) \right\} \text{ with } \frac{p}{q} = \frac{r}{s} \in K(X) \iff ps - qr \in I(X) \\ &= \left\{ \frac{p}{q} \mid p, q \in A(X), q \neq 0 \right\} \text{ with } \frac{p}{q} = \frac{r}{s} \in K(X) \iff ps - qr = 0 \in A(X) \end{aligned}.$$

For $a \in X$ we say that f is **defined** at a (or that f is **regular** at a) when a is in the domain $U = \bigcup_{p/q=f} U_q$, that is when f can be written in the form $f = p/q$ for some p, q

with $q(a) \neq 0$. Otherwise we say that f has a **pole** at a . Note that the pole set of f is the closed set $X \setminus U = \bigcap_{p/q=f} V(q) \cap X$. We say that f has a **zero** at a when f is defined at

a and can be written in the form $f = p/q$ for some p, q with $q(a) \neq 0$ and $p(a) = 0$. The zero set of f is not always a subvariety of X , but it is a closed subset of the domain U . On the other hand, note that if f can be written as $f = p/q$ with $p(a) \neq 0$ and $q(a) = 0$, then f must have a pole at a since if not, then we could write $f = r/s$ where $s(a) \neq 0$, and then since $p/q = r/s \in K(X)$ we would have $p(a)s(a) = r(a)q(a)$, but $p(a)s(a) \neq 0$ while $r(a)q(a) = 0$.

6.2 Example: If \mathbf{F} is an infinite field, we have seen that $A(\mathbf{F}^n) = \mathbf{F}[x_1, \dots, x_n]$, so $K(\mathbf{F}^n) = \mathbf{F}(x_1, \dots, x_n)$. At the other extreme, if $a \in \mathbf{F}^n$ then $A(\{a\}) = K(\{a\}) = \mathbf{F}$.

6.3 Example: Let \mathbf{F} be an infinite field. For each of the varieties $V(y - x^2)$, $V(y^2 - x^3)$, $V(y^2 - x^3 - x^2)$ and $V(x^2 + y^2 - y)$, show that the variety is irreducible in \mathbf{F}^2 , then find the pole set of the rational map $g(x, y) = y/x$.

6.4 Example: Let X be the parabola $X = V(y - x^2) \subseteq \mathbf{F}^2$. Then X is irreducible since $y - x^2$ is irreducible in $\mathbf{F}[x, y]$ and since X is infinite. The map $g = \frac{y}{x}$ is defined at all points $(x, y) \in X$ with $x \neq 0$, that is everywhere except perhaps at $(0, 0)$. But since $y = x^2 \in K(X)$, we have $g = \frac{y}{x} = \frac{yx}{x^2} = \frac{yx}{y} = x \in K(X)$, so g is also defined at $(0, 0)$. Indeed this shows that g is actually a polynomial map on X .

Now let X be the circle $X = V(x^2 + y^2 - y)$. Note that for every $t \in \mathbf{F}$ we have $(\frac{t}{1+t^2}, \frac{t^2}{1+t^2}) \in X$ and so X is infinite. Also $x^2 + y^2 - y$ is irreducible in $\mathbf{F}[x, y]$, and so

X is irreducible. The map $g = \frac{y}{x}$ is defined at all points $(x, y) \in X$ with $x \neq 0$, that is everywhere except possibly at $(0, 0)$ and at $(0, 1)$. At the point $(0, 1)$, we have $y \neq 0$ and $x = 0$ so g must have a pole at $(0, 1)$. On the other hand, since $x^2 = y - y^2 \in K(Y)$, we have $g = \frac{y}{x} = \frac{yx}{x^2} = \frac{yx}{y-y^2} = \frac{x}{1-y} \in K(Y)$. Thus g is defined at $(0, 0)$, indeed $f(0, 0) = 0$.

Next, let X be the cusp curve $X = V(y^2 - x^3)$. Note that for every $t \in \mathbf{F}$, we have $(t^2, t^3) \in X$ so X is infinite. Also, $y^2 - x^3$ is irreducible in $\mathbf{F}[x, y]$, and so X is irreducible, and $I(X) = \langle y^2 - x^3 \rangle$. The map $g = y/x$ is defined everywhere except perhaps when $x = 0$, that is at the point $(0, 0)$. We claim that g is not regular at $(0, 0)$. Suppose, for a contradiction, that $g = p/q$ with $q(0, 0) \neq 0$. Then we would have $\frac{y}{x} = \frac{p}{q} \in K(X)$ so $yq - xp \in I(X) = \langle y^2 - x^3 \rangle$, say $yq(x, y) - xp(x, y) = (y^2 - x^3)k(x, y)$, where $k \in \mathbf{F}[x, y]$. But notice that since $q(0, 0) \neq 0$, the coefficient of y in $yq - xp$ is non-zero, but the coefficient of y in $(y^2 - x^3)k$ is zero.

Finally, let X be the alpha curve $X = V(y^2 - x^3 - x^2)$. For each $t \in \mathbf{F}$, we have $(t^2 - 1, t(t^2 - 1)) \in X$, so X is infinite. Also, $y^2 - x^3 - x^2$ is irreducible in $\mathbf{F}[x, y]$, so X is irreducible and $I(X) = \langle y^2 - x^3 - x^2 \rangle$. The map $g = y/x$ is defined everywhere except perhaps at $(0, 0)$. We claim that g is not regular at $(0, 0)$. We could prove this as we did for the cusp curve, but it is amusing to give a more geometric argument, even though the argument only works in the case that $\text{char}(\mathbf{F}) \neq 2$. Geometric intuition tells us that $g = y/x$ cannot be regular at $(0, 0)$ because y/x is the slope of the vector (x, y) but the alpha curve has two slopes at $(0, 0)$. To express this idea precisely, we define $f : \mathbf{F} \rightarrow X$ by $f(t) = (t^2 - 1, t(t^2 - 1))$. Note that $f(-1) = f(1) = (0, 0)$ and that $g(f(t)) = \frac{t(t^2-1)}{t^2-1} = t$. If g were defined at $(0, 0)$, then we would have $-1 = g(f(-1)) = g(0, 0) = g(f(1)) = 1$.

6.5 Definition: Let $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^m$ be irreducible varieties. Let $f = (f_1, \dots, f_m) \in K(X)^m$. Then f defines a map $f : U \rightarrow \mathbf{F}^m$ whose domain U is the intersection of the domains of the rational maps f_i . If $f(U) \subseteq Y$, then we say that f is a **rational map from X to Y** , and we write $f : X \rightarrow Y$. Note that we can write each f_i as $f_i = p_i/q$ (using a common denominator q) and so we can write $f = p/q$ where $p \in A(X)^m$ and $0 \neq q \in A(X)$. For $a \in X$ we say that f is **defined** at a (or that f is **regular** at a) when f can be written in the form $f = p/q$ for some p, q with $q(a) \neq 0$. Otherwise we say that f has a **pole** at a . The **domain** of f , that is the above set U , is the set of all points in X at which f is defined; U is an open dense subset of X . The **pole set** of f , which is the set of points in X at which f has a pole, is the proper subvariety $X \setminus U$. The set $f(U)$ is called the **range** (or **image**) of f .

6.6 Note: Let $f : X \rightarrow Y$ be a rational map of irreducible affine varieties with domain $U \subseteq X$. Then for any subvariety $Z \subseteq Y$, the inverse image $f^{-1}(Z) = \{x \in U | f(x) \in Z\}$ is closed in U . In other words, f is continuous.

Proof: Let Z be a subvariety of $Y \subseteq \mathbf{F}^m$. Say $Z = V(S)$ where $S \subseteq \mathbf{F}[y_1, \dots, y_m]$. Then for $x \in U$ we have

$$\begin{aligned} x \in f^{-1}(Z) &\iff p(x)/q(x) \in Z \text{ for all } p, q \text{ with } f = p/q \text{ and } q(x) \neq 0 \\ &\iff g\left(\frac{p(x)}{q(x)}\right) = 0 \text{ for all } g \in S \text{ and all } p, q \text{ with } f = p/q, q(x) \neq 0 \\ &\iff g\left(\frac{p(x)}{q(x)}\right)q(x)^{\deg g} \text{ for all } g \in S \text{ and all } p, q \text{ with } f = p/q, q(x) \neq 0 \end{aligned}.$$

Write $h_{g,p,q}(x) = g\left(\frac{p(x)}{q(x)}\right)q(x)^{\deg g} \in \mathbf{F}[x_1, \dots, x_n]$. Notice that if $f = p/q = r/s \in K(X)$ where $q(a) \neq 0$ (and perhaps $s(a) = 0$) then $h_{g,p,q}(x) = h_{g,r,s}(x)$ for all $x \in U_q \cap U_s$ and hence for all $x \in X$. So $f^{-1}(Z) = U \cap V(T)$ where $T = \{h_{g,p,q} | g \in S \text{ and } f = p/q\}$.

6.7 Definition: Given rational maps $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ of irreducible varieties with domains U and V respectively, it is not always possible to compose them, because the range $f(U)$ may be disjoint from the domain V of g . If $f(U)$ is not disjoint from V , then we define the **composite** $g \circ f : X \rightarrow Z$ as follows. Choose any point $a \in f^{-1}(V)$, and write $f = p/q$ with $q(a) \neq 0$ and write $g = r/s$ with $s(a) \neq 0$. Then for all $x \in U_q \cap f^{-1}(V_s)$, which is open and dense in X (it is non-empty since it contains a and it is open by the above note, so it is dense since X is irreducible), we have

$$g(f(x)) = \frac{r\left(\frac{p(x)}{q(x)}\right)}{s\left(\frac{p(x)}{q(x)}\right)} = \frac{r\left(\frac{p(x)}{q(x)}\right)q(x)^d}{s\left(\frac{p(x)}{q(x)}\right)q(x)^d} = \frac{u(x)}{v(x)}$$

where $d = \max\{\deg r, \deg s\}$, $u(x) = r\left(\frac{p(x)}{q(x)}\right)q(x)^d$ and $v(x) = s\left(\frac{p(x)}{q(x)}\right)q(x)^d$. We define $g \circ f$ to be the rational map u/v .

6.8 Definition: Let X and Y be irreducible affine varieties. A **rational isomorphism** (or a **birational map**) from X to Y is a rational map $f : X \rightarrow Y$ which has a rational inverse, that is a rational map $g : Y \rightarrow X$ such that $g \circ f : X \rightarrow X$ is the identity on X and $f \circ g : Y \rightarrow Y$ is the identity on Y . We say that X and Y are **birationally isomorphic** (or simply **birational**), and we write $X \sim Y$, if there exists a rational isomorphism from X to Y .

6.9 Definition: A rational map $f : X \rightarrow Y$ of irreducible affine varieties is called **dominant** if the range of f is dense in Y .

6.10 Note: Let $f : X \rightarrow Y$ be a rational map of irreducible affine varieties.

- (1) If f is dominant then f can be composed with any rational map $g : Y \rightarrow Z$.
- (2) If $f : X \rightarrow Y$ is a rational isomorphism, then it must be dominant.

Proof: We leave the proof of (1) as an exercise and prove part (2). Suppose that $f : X \rightarrow Y$ is a rational isomorphism with rational inverse $g : Y \rightarrow X$. Let U be the domain of f and let V be the domain of g . Since g is continuous and U is open, $g^{-1}(U) = \{y \in V | g(y) \in U\}$ is open in V hence also in Y , and since the composite $f \circ g$ exists, $g^{-1}(U)$ is nonempty. So, since Y is irreducible, $g^{-1}(U)$ is dense in Y . For $y \in g^{-1}(U)$ we have $g(y) \in U$ so f is defined at $g(y)$ and $y = f(g(y))$ is in the range of f . Thus the range of f contains $g^{-1}(U)$, which is dense in Y .

6.11 Note: Let $f : X \rightarrow Y$ be a rational map of irreducible varieties with domain U . Then $\overline{f(U)}$ is irreducible.

Proof: Suppose, for a contradiction, that $\overline{f(U)}$ is reducible, say $\overline{f(U)} = Z \cup W$ with $Z, W \subsetneq \overline{f(U)}$ both closed. Note that $f(U) \subseteq Z \cup W$, so $U = f^{-1}(Z) \cup f^{-1}(W)$ and hence $X = \overline{U} = \overline{f^{-1}(Z)} \cup \overline{f^{-1}(W)}$. Also, we have $f(U) \not\subseteq Z$ (otherwise we would have $f(U) \subseteq \overline{Z} = Z$), so $f^{-1}(Z) \neq U$. Since $f^{-1}(Z)$ is closed in U , we have $\overline{f^{-1}(Z)} \cap U = f^{-1}(Z) \cap U = f^{-1}(Z) \neq U$, and so $\overline{f^{-1}(Z)} \neq X$. Similarly $\overline{f^{-1}(W)} \neq X$, so X is reducible.

6.12 Definition: Many useful rational maps can be obtained using the **projection from a point** in \mathbf{F}^n to a hyperplane in \mathbf{F}^n (that is, to an affine space of dimension $n - 1$). The projection in \mathbf{F}^2 from the origin to the line $x = 1$ is given by $g(x, y) = (1, y/x)$. More generally, the projection from $0 \in \mathbf{F}^n$ to the hyperplane $x_k = 1$ is given by

$$g(x_1, \dots, x_n) = \left(\frac{x_1}{x_k}, \dots, \frac{x_k}{x_k}, \dots, \frac{x_n}{x_k} \right).$$

6.13 Example: Let \mathbf{F} be an infinite field. When X is any one of the varieties $V(y - x^2)$, $V(y^2 - x^3)$, $V(y^2 - x^3 - x^2)$ or $V(y^2 + x^2 - x)$, the projection in \mathbf{F}^2 from the origin to the line $x = 1$, given by $g(x, y) = \frac{y}{x}$, gives a birational map $g : X \rightarrow \mathbf{F}$. In each case, the inverse $f : \mathbf{F} \rightarrow X$ gives a familiar parametric equation for the curve. Verify that when $X = V(y - x^2)$ we have $f(t) = (t, t^2)$, when $X = V(y^2 - x^3)$ we have $f(t) = (t^2, t^3)$, when $X = V(y^2 - x^3 - x^2)$ we have $f(t) = (t^2 - 1, t(t^2 - 1))$, and when $X = V(y^2 + x^2 - x)$ we have $f(t) = (\frac{1}{t^2+1}, \frac{t}{t^2+1})$.

6.14 Example: Let \mathbf{S}^2 be the unit sphere $\mathbf{S}^2 = V(x^2 + y^2 + z^2 - 1) \subseteq \mathbf{R}^3$. Use the **stereographic projection** from the north pole, that is the projection from the point $(0, 0, 1)$ to the plane $z = 0$, to show that \mathbf{S}^2 is irreducible and that $\mathbf{S}^2 \sim \mathbf{R}^2$.

Solution: Given $(x, y, z) \in \mathbf{R}^3$ with $z \neq 1$, the line from $(0, 0, 1)$ to (x, y, z) is given by $\alpha(t) = (0, 0, 1) + (x, y, z - 1)t$. The point of intersection with the plane $z = 0$ is given by $1 + (z - 1)t = 0$, that is $t = \frac{1}{1-z}$. Thus the projection g from $(0, 0, 1)$ to the plane $z = 0$ is given by $g(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$.

On the other hand, given a point $(u, v, 0)$ in the plane $z = 0$, the line from $(0, 0, 1)$ to $(u, v, 0)$ is given by $\beta(t) = (0, 0, 1) + (u, v, -1)t = (ut, vt, 1-t)$, and we have $\beta(t) \in \mathbf{S}^2 \iff (ut)^2 + (vt)^2 + (1-t)^2 = 1 \iff u^2t^2 + v^2t^2 + 1 - 2t + t^2 = 1 \iff t(u^2t + v^2t - 2 + t) = 0 \iff t = 0 \text{ or } t = \frac{2}{u^2+v^2+1}$. We have $\beta(0) = (0, 0, 1)$, so we define a rational map $f : \mathbf{R}^2 \rightarrow \mathbf{R}^3$ by $f(u, v) = \beta(\frac{2}{u^2+v^2+1}) = (\frac{2u}{u^2+v^2+1}, \frac{2v}{u^2+v^2+1}, \frac{u^2+v^2-1}{u^2+v^2+1})$.

Since \mathbf{R}^2 is irreducible and since $f(\mathbf{R}^2) = \mathbf{S}^2 \setminus \{(0, 0, 1)\}$, which is dense in \mathbf{S}^2 , the variety \mathbf{S}^2 is irreducible. Furthermore, the rational maps $f : \mathbf{R}^2 \rightarrow \mathbf{S}^2$ and $g : \mathbf{S}^2 \rightarrow \mathbf{R}^2$ are rational inverses, so $\mathbf{S}^2 \sim \mathbf{R}^2$.

6.15 Example: When $\mathbf{F} = \mathbf{R}$ we can use the birational maps of the above two examples to describe all the rational points on each of the varieties that were considered. For example, the birational map $f : \mathbf{R} \rightarrow V(y^2 - x^3 - x^2) \subseteq \mathbf{R}^3$ given by $f(t) = (t^2 - 1, t(t^2 - 1))$ sends the rational number $\frac{a}{b} \in \mathbf{Q} \subseteq \mathbf{R}$ to the rational point $f\left(\frac{a}{b}\right) = \left(\frac{a^2-b^2}{b^2}, \frac{a(a^2-b^2)}{b^3}\right)$, so all the rational points on the alpha curve $y^2 = x^3 + x^2$ are of this form where $a, b \in \mathbf{Z}$ with $b \neq 0$.

Similarly, the birational map $f : \mathbf{R} \rightarrow V(x^2 + y^2 - 1) \subseteq \mathbf{R}^2$ given by $f(t) = (\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1})$ sends $\frac{a}{b} \in \mathbf{Q}$ to $f\left(\frac{a}{b}\right) = \left(\frac{2ab}{a^2+b^2}, \frac{a^2-b^2}{a^2+b^2}\right)$, so all rational points on the unit circle $x^2 + y^2 = 1$, except the point $(0, 1)$, are of this form where $a, b \in \mathbf{Z}$ with $b \neq 0$.

6.16 Example: When \mathbf{F} is a finite field, we can use birational maps to help count the number of points in a variety in \mathbf{F}^n . For example, let us count the number of points in $X = V(y^2 - x^3 - x^2) \subseteq \mathbf{F}^2$ where \mathbf{F} is the finite field with $n = p^k$ elements.

Solution: Let \mathbf{K} be the algebraic closure of \mathbf{F} . Then $X = V(y^2 - x^3 - x^2) \subseteq \mathbf{K}^2$ is irreducible, and the rational map $f : \mathbf{K} \rightarrow X$ given by $f(t) = (t^2 - 1, t(t^2 - 1))$ determines a surjective map $f : \mathbf{F} \rightarrow X \cap \mathbf{F}$ which is 1:1 except that $f(1) = f(-1) = (0, 0)$ (when $p = 2$, f is bijective). Thus when $p = 2$ there are n points in $X \cap \mathbf{F}^2$ and when $p \neq 2$ there are $n - 1$ points in $X \cap \mathbf{F}^2$.

6.17 Example: The **graph of a rational map** $f : X \rightarrow Y$ with domain U is defined to be the closure in $X \times Y$ of the graph of the map $f : U \rightarrow Y$, that is the closure of $\{(x, f(x)) | x \in U\}$. The natural **lift** $l : X \rightarrow \text{graph}(f)$ given by $l(x) = (x, f(x))$ and the natural **projection** $p : \text{graph}(f) \rightarrow X$ given by $p(x, y) = x$ are rational inverses, so $\text{graph}(f) \sim X$.

6.18 Definition: Let $a \in \mathbf{F}^n$. A **blow-up** of \mathbf{F}^n at a is the graph $\widetilde{\mathbf{F}^n}$ of a projection g in \mathbf{F}^n from the point a . The natural projection and lift $p : \widetilde{\mathbf{F}^n} \rightarrow \mathbf{F}^n$ and $l : \mathbf{F}^n \rightarrow \widetilde{\mathbf{F}^n}$ are rational inverses, so $\widetilde{\mathbf{F}^n} \sim \mathbf{F}^n$. If $X \subseteq \mathbf{F}^n$ is an irreducible variety with $a \in X$, then the corresponding **blow-up** of X , denoted by \widetilde{X} , is the graph of the restriction of g to X , or equivalently, the closure of $l(X \setminus \{a\})$ in $\widetilde{\mathbf{F}^n}$.

6.19 Example: Find the blow-up $\widetilde{\mathbf{F}^2}$ and the natural projection and lift obtained from the projection in \mathbf{F}^2 from the origin to the line $x = 1$. Then find the induced blow-up of each of the two varieties $V(y^2 - x^3)$ and $V(y^2 - x^3 - x^2)$.

Solution: The projection in \mathbf{F}^2 from $(0, 0)$ to the line $x = 1$, which we identify with \mathbf{F} , is the rational map $g : \mathbf{F}^2 \rightarrow \mathbf{F}$ given by $g(x, y) = \frac{y}{x}$, with domain $U = \{(x, y) | x \neq 0\}$. The graph of $g : U \rightarrow \mathbf{F}$ is the set $\{(x, y, z) | x \neq 0, z = y/x\} = \{(x, y, z) | x \neq 0, y - xz = 0\}$, and the corresponding blow-up of \mathbf{F}^2 at the origin is the closure of this set, $\widetilde{\mathbf{F}^2} = V(y - xz) \subseteq \mathbf{F}^3$. The natural projection and lift $p : \widetilde{\mathbf{F}^2} \rightarrow \mathbf{F}^2$ and $l : \mathbf{F}^2 \rightarrow \widetilde{\mathbf{F}^2}$ are given by $p(x, y, z) = (x, y)$ and $l(x, y) = (x, y, \frac{y}{x})$.

Let $X = V(y^2 - x^3)$, and let $U = X \setminus \{(0, 0)\}$. The points on X are of the form (t^2, t^3) , so $l(U) = \{(t^2, t^3, t) | t \neq 0\}$, and $\widetilde{X} = \overline{l(U)} = \{(t^2, t^3, t) | t \in \mathbf{F}\} = V(x - z^2, y - z^3) \subseteq \mathbf{F}^3$. Thus \widetilde{X} is the twisted cubic.

It is also worth considering the inverse image $p^{-1}(X)$ where $p(x, y, z) = (x, y)$. Verify that $p^{-1}(X) = V(y^2 - x^3, y - xz) = \widetilde{X} \cap V(x, y)$.

Now, let X be the alpha curve $X = V(y^2 - x^3 - x^2)$, and let $U = X \setminus \{(0, 0)\}$. The points on X are of the form $(t^2 - 1, t(t^2 - 1))$, so we have $l(U) = \{(t^2 - 1, t(t^2 - 1), t) | t \neq 0\}$ and $\widetilde{X} = \overline{l(U)} = \{(t^2 - 1, t(t^2 - 1), t) | t \in \mathbf{F}\} = V(x - z^2 + 1, y - z^3 + z^2)$.

6.20 Remark: Each of the two varieties X in the above example had a singularity at $(0, 0)$, but the blow-up \widetilde{X} was non-singular at $(0, 0)$. It can be shown that by performing repeated blow-ups on a curve X at singular points, one eventually obtains a non-singular curve, called the **desingularization** of X , which is birational to X .

6.21 Definition: Let X and Y be irreducible affine varieties. Given a dominant rational map $f : X \rightarrow Y$, we define the **pullback** of f to be the map $f^* : K(Y) \rightarrow K(X)$ given by $f^*(g) = g \circ f$. Note that the composite $g \circ f$ is defined for any g because f is dominant. It is straightforward to check that $f^* : K(Y) \rightarrow K(X)$ is an \mathbf{F} -algebra homomorphism.

6.22 Theorem: Let X and Y be irreducible affine varieties.

- (1) The map $f \mapsto f^*$ gives a bijective correspondence between the set of all dominant rational maps $f : X \rightarrow Y$ and the set of all \mathbf{F} -algebra homomorphisms $\phi : K(X) \rightarrow K(Y)$.
- (2) If $f : X \rightarrow X$ is the identity then $f^* : K(X) \rightarrow K(X)$ is the identity, and if $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ then $(g \circ f)^* = f^* \circ g^*$.
- (3) $X \sim Y \iff K(X) \cong K(Y)$.

Proof: Let $\phi : K(Y) \rightarrow K(X)$ be any \mathbf{F} -algebra homomorphism. We wish to construct a dominant rational map f such that $f^* = \phi$. If such a map f exists then we must have $f^*(h) = \phi(h)$ for all $h \in K(Y)$, that is $h \circ f = \phi(h)$ for all $h \in K(Y)$. In particular, if f is given by $f = (f_1, \dots, f_m)$ then we must have $f_i = y_i \circ f = \phi(y_i)$ for $i = 1, \dots, m$. And indeed, if we define f by $f = (\phi(y_1), \dots, \phi(y_n))$ then for any $g = \frac{p}{q} = \frac{\sum a_{i_1, \dots, i_m} y_1^{i_1} \dots y_m^{i_m}}{\sum b_{j_1, \dots, j_m} y_1^{j_1} \dots y_m^{j_m}}$ in $K(Y)$ we have $f^*(g) = g \circ f = \frac{\sum a_{i_1, \dots, i_m} \phi(y_1)^{i_1} \dots \phi(y_m)^{i_m}}{\sum b_{j_1, \dots, j_m} \phi(y_1)^{j_1} \dots \phi(y_m)^{j_m}} = \phi(g)$ so that $f^* = \phi$.

This determines f uniquely as a rational map $f : X \rightarrow \mathbf{F}^m$ (and shows that $f \mapsto f^*$ is 1:1). We must show that the range of f is contained in Y and is dense.

Let U be the domain of f . Let $a \in U$. Let $g \in I(Y)$. Then $g = 0 \in K(Y)$. Since ϕ is an \mathbf{F} -algebra homomorphism, so that $\phi(0) = 0$, we have $\phi(g) = 0 \in K(X)$. Since $\phi(g) = f^*(g) = g \circ f$, we have $g \circ f = 0 \in K(X)$, so $g(f(x)) = 0$ for all $x \in U$. In particular, $g(f(a)) = 0$. Since $g \in I(Y)$ was arbitrary, we have $g(f(a)) = 0$ for all $g \in I(Y)$, that is $f(a) \in V(I(Y)) = Y$. Since $a \in U$ was arbitrary, the range of f is contained in Y .

It remains only to show that $f(U)$ is dense in Y , that is $\overline{f(U)} = Y$. We showed above that $f(U) \subseteq Y$ so we have $\overline{f(U)} \subseteq Y$, and we need to show that $Y \subseteq \overline{f(U)} = V(I(f(U)))$. Let $b \in Y$. Let $g \in I(f(U))$. Then $g(y) = 0$ for all $y \in f(U)$, so $g(f(x)) = 0$ for all $x \in U$. Writing $f = \frac{p}{q}$, where $p \in \mathbf{F}[x_1, \dots, x_n]^m$ and $q \in \mathbf{F}[x_1, \dots, x_n]$ with $q \notin I(X)$, we have $0 = g(f(x)) = g\left(\frac{p(x)}{q(x)}\right)q(x)^{\deg g}$ for all $x \in U \cap U_q$. Thus $(g \circ f)q^{\deg g} \in I(U \cap U_q) = I(X)$, and so $(g \circ f)q^{\deg g} = 0 \in K(X)$, hence $g \circ f = 0 \in K(X)$. Since $g \circ f = f^*\phi = \phi(g)$ we have $\phi(g) = 0 \in K(X)$. Since ϕ is a homomorphism of fields, it must be injective, and so $g = 0 \in K(Y)$. This means that $g(y) = 0$ for all y in the domain of g , but g is a polynomial, so $g(y) = 0$ for all $y \in Y$. In particular, $g(b) = 0$. Since $g \in I(f(U))$ was arbitrary, we have $g(b) = 0$ for all $g \in I(f(U))$ and so $b \in V(I(f(U))) = \overline{f(U)}$. Since $b \in Y$ was arbitrary, we have $Y \subseteq \overline{f(U)}$ as required.

Part (2) of the theorem is easy, and part (3) follows from parts (1) and (2).