
6. Rational Maps and Birational Equivalence

6.1 Definition: Let X ⊆ Fn be an irreducible variety. Let p, q ∈ F[x1, · · · , xn] with
q /∈ I(X). Alternatively let p, q ∈ A(X) with q 6= 0. Then p/q defines a map p/q : Uq → F,
where Uq =

{
x ∈ X

∣∣q(x) 6= 0
}

. We consider two such maps p/q : Uq → F and r/s : Us → F

to be equivalent when
p(x)

q(x)
=
r(x)

s(x)
for all x ∈ Uq ∩Us. Notice that since X is irreducible,

we have Uq ∩ Us = X so p/q is equivalent to r/s ⇐⇒ p(x)s(x) = q(x)r(x) for all
x ∈ Uq ∩Us ⇐⇒ ps− qr ∈ I

(
Uq ∩Us

)
= I(X) ⇐⇒ ps− qr = 0 ∈ A(X). An equivalence

class f of such maps determines a map f : U ⊆ X → F, where U =
⋃

p/q∈f
Uq. Such a map

is called a rational map on X, and the set U is called the domain of f . We use the
notation f : X → F for a rational map on X (even when the domain of f is not all of X),
and we write p/q for the rational map determined by the equivalence class of p/q. The set
of rational maps, denoted by K(X), is a field, called the field of rational maps on X
(or the function field) of X, which we can identify with the quotient field of the integral
domain A(X).

K(X) =

{
p

q

∣∣∣∣p, q ∈ F[x1, · · · , xn], q /∈ I(X)

}
with

p

q
=
r

s
∈ K(X) ⇐⇒ ps− qr ∈ I(X)

=

{
p

q

∣∣∣∣p, q ∈ A(X), q 6= 0

}
with

p

q
=
r

s
∈ K(X) ⇐⇒ ps− qr = 0 ∈ A(X)

.

For a ∈ X we say that f is defined at a (or that f is regular at a) when a is in the
domain U =

⋃
p/q=f

Uq, that is when f can be written in the form f = p/q for some p, q

with q(a) 6= 0. Otherwise we say that f has a pole at a. Note that the pole set of f is the
closed set X \ U =

⋂
p/q=f

V (q) ∩X. We say that f has a zero at a when f is defined at

a and can be written in the form f = p/q for some p, q with q(a) 6= 0 and p(a) = 0. The
zero set of f is not always a subvariety of X, but it is a closed subset of the domain U .
On the other hand, note that if f can be written as f = p/q with p(a) 6= 0 and q(a) = 0,
then f must have a pole at a since if not, then we could write f = r/s where s(a) 6= 0,
and then since p/q = r/s ∈ K(X) we would have p(a)s(a) = r(a)q(a), but p(a)s(a) 6= 0
while r(a)q(a) = 0.

6.2 Example: If F is an infinite field, we have seen that A(Fn) = F[x1, · · · , xn], so
K(Fn) = F(x1, · · · , xn). At the other extreme, if a ∈ Fn then A({a}) = K({a}) = F.

6.3 Example: Let F be an infinite field. For each of the varieties V (y− x2), V (y2 − x3),
V (y2 − x3 − x2) and V (x2 + y2 − y), show that the variety is irreducible in F2, then find
the pole set of the rational map g(x, y) = y/x.

6.4 Example: Let X be the parabola X = V (y − x2) ⊆ F2. Then X is irreducible
since y − x2 is irreducible in F[x, y] and since X is infinite. The map g = y

x is defined at
all points (x, y) ∈ X with x 6= 0, that is everywhere except perhaps at (0, 0). But since
y = x2 ∈ K(X), we have g = y

x = yx
x2 = yx

y = x ∈ K(X), so g is also defined at (0, 0).
Indeed this shows that g is actually a polynomial map on X.

Now let X be the circle X = V (x2 + y2 − y). Note that for every t ∈ F we have(
t

1+t2 ,
t2

1+t2

)
∈ X and so X is infinite. Also x2 + y2 − y is irreducible in F[x, y], and so
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X is irreducible. The map g = y
x is defined at all points (x, y) ∈ X with x 6= 0, that is

everywhere except possibly at (0, 0) and at (0, 1). At the point (0, 1), we have y 6= 0 and
x = 0 so g must have a pole at (0, 1). On the other hand, since x2 = y − y2 ∈ K(Y ), we
have g = y

x = yx
x2 = yx

y−y2 = x
1−y ∈ K(Y ). Thus g is defined at (0, 0), indeed f(0, 0) = 0.

Next, let X be the cusp curve X = V (y2 − x3). Note that for every t ∈ F, we have
(t2, t3) ∈ X so X is infinite. Also, y2− x3 is irreducible in F[x, y], and so X is irreducible,
and I(X) = 〈y2 − x3〉. The map g = y/x is defined everywhere except perhaps when
x = 0, that is at the point (0, 0). We claim that g is not regular at (0, 0). Suppose, for
a contradiction, that g = p/q with q(0, 0) 6= 0. Then we would have y

x = p
q ∈ K(X) so

yq− xp ∈ I(X) = 〈y2 − x3〉, say y q(x, y)− x p(x, y) = (y2 − x3) k(x, y), where k ∈ F[x, y].
But notice that since q(0, 0) 6= 0, the coefficient of y in yq − xp is non-zero, but the
coefficient of y in (y2 − x3) k is zero.

Finally, let X be the alpha curve X = V (y2 − x3 − x2). For each t ∈ F, we have(
t2 − 1, t(t2 − 1)

)
∈ X, so X is infinite. Also, y2 − x3 − x2 is irreducible in F[x, y], so X

is irreducible and I(X) = 〈y2 − x3 − x2〉. The map g = y/x is defined everywhere except
perhaps at (0, 0). We claim that g is not regular at (0, 0). We could prove this as we
did for the cusp curve, but it is amusing to give a more geometric argument, even though
the argument only works in the case that char (F) 6= 2. Geometric intuition tells us that
g = y/x cannot be regular at (0, 0) because y/x is the slope of the vector (x, y) but the
alpha curve has two slopes at (0, 0). To express this idea precisely, we define f : F→ X by

f(t) =
(
t2 − 1, t(t2 − 1)

)
. Note that f(−1) = f(1) = (0, 0) and that g(f(t)) = t(t2−1)

t2−1 = t.
If g were defined at (0, 0), then we would have −1 = g(f(−1)) = g(0, 0) = g(f(1)) = 1.

6.5 Definition: Let X ⊆ Fn and Y ⊆ Fm be irreducible varieties. Let f = (f1, · · · , fm) ∈
K(X)m. Then f defines a map f : U → Fm whose domain U is the intersection of the
domains of the rational maps fi. If f(U) ⊆ Y , then we say that f is a rational map
from X to Y , and we write f : X → Y . Note that we can write each fi as fi = pi/q
(using a common denominator q) and so we can write f = p/q where p ∈ A(X)m and
0 6= q ∈ A(X). For a ∈ X we say that f is defined at a (or that f is regular at a) when
f can be written in the form f = p/q for some p, q with q(a) 6= 0. Otherwise we say that
f has a pole at a. The domain of f , that is the above set U , is the set of all points in
X at which f is defined; U is an open dense subset of X. The pole set of f , which is the
set of points in X at which f has a pole, is the proper subvariety X \ U . The set f(U) is
called the range (or image) of f .

6.6 Note: Let f : X → Y be a rational map of irreducible affine varieties with domain
U ⊆ X. Then for any subvariety Z ⊆ Y , the inverse image f−1(Z) = {x ∈ U |f(x) ∈ Z} is
closed in U . In other words, f is continuous.

Proof: Let Z be a subvariety of Y ⊆ Fm. Say Z = V (S) where S ⊆ F[y1, · · · , ym]. Then
for x ∈ U we have

x ∈ f−1(Z) ⇐⇒ p(x)/q(x) ∈ Z for all p, q with f = p/q and q(x) 6= 0

⇐⇒ g
(p(x)
q(x)

)
= 0 for all g ∈ S and all p, q with f = p/q, q(x) 6= 0

⇐⇒ g
(p(x)
q(x)

)
q(x)deg g for all g ∈ S and all p, q with f = p/q, q(x) 6= 0

.

Write hg,p,q(x) = g
(p(x)
q(x)

)
q(x)deg g ∈ F[x1, · · · , xn]. Notice that if f = p/q = r/s ∈ K(X)

where q(a) 6= 0 (and perhaps s(a) = 0) then hg,p,q(x) = hg,r,s(x) for all x ∈ Uq ∩ Us and
hence for all x ∈ X. So f−1(Z) = U ∩ V (T ) where T =

{
hg,p,q

∣∣g ∈ S and f = p/q
}

.

2



6.7 Definition: Given rational maps f : X → Y and g : Y → Z of irreducible varieties
with domains U and V respectively, it is not always possible to compose them, because the
range f(U) may be disjoint from the domain V of g. If f(U) is not disjoint from V , then we
define the composite g ◦ f : X → Z as follows. Choose any point a ∈ f−1(V ), and write
f = p/q with q(a) 6= 0 and write g = r/s with s(a) 6= 0. Then for all x ∈ Uq ∩ f−1(Vs),
which is open and dense in X (it is non-empty since it contains a and it is open by the
above note, so it is dense since X is irreducible), we have

g(f(x)) =
r
(p(x)
q(x)

)
s
(p(x)
q(x)

) =
r
(p(x)
q(x)

)
q(x)d

s
(p(x)
q(x)

)
q(x)d

=
u(x)

v(x)

where d = max{deg r, deg s}, u(x) = r
(p(x)
q(x)

)
q(x)d and v(x) = s

(p(x)
q(x)

)
q(x)d. We define

g ◦ f to be the rational map u/v.

6.8 Definition: Let X and Y be irreducible affine varieties. A rational isomorphism
(or a birational map) from X to Y is a rational map f : X → Y which has a rational
inverse, that is a rational map g : Y → X such that g◦f : X → X is the identity on X and
f ◦ g : Y → Y is the identity on Y . We say that X and Y are birationally isomorphic
(or simply birational), and we write X ∼ Y , if there exists a rational isomorphism from
X to Y .

6.9 Definition: A rational map f : X → Y of irreducible affine varieties is called domi-
nant if the range of f is dense in Y .

6.10 Note: Let f : X → Y be a rational map of irreducible affine varieties.
(1) If f is dominant then f can be composed with any rational map g : Y → Z.
(2) If f : X → Y is a rational isomorphism, then it must be dominant.

Proof: We leave the proof of (1) as an exercise and prove part (2). Suppose that f : X → Y
is a rational isomorphism with rational inverse g : Y → X. Let U be the domain of f and
let V be the domain of g. Since g is continuous and U is open, g−1(U) = {y ∈ V |g(y) ∈ U}
is open in V hence also in Y , and since the composite f ◦ g exists, g−1(U) is nonempty.
So, since Y is irreducible, g−1(U) is dense in Y . For y ∈ g−1(U) we have g(y) ∈ U so f is
defined at g(y) and y = f(g(y)) is in the range of f . Thus the range of f contains g−1(U),
which is dense in Y .

6.11 Note: Let f : X → Y be a rational map of irreducible varieties with domain U .
Then f(U) is irreducible.

Proof: Suppose, for a contradiction, that f(U) is reducible, say f(U) = Z ∪ W with

Z, W ⊂6= f(U) both closed. Note that f(U) ⊆ Z ∪ W , so U = f−1(Z) ∪ f−1(W ) and

hence X = U = f−1(Z) ∪ f−1(W ). Also, we have f(U) 6⊆ Z (otherwise we would have
f(U) ⊆ Z = Z), so f−1(Z) 6= U . Since f−1(Z) is closed in U , we have f−1(Z) ∩ U =

f−1(Z) ∩ U = f−1(Z) 6= U , and so f−1(Z) 6= X. Similarly f−1(W ) 6= X, so X is
reducible.
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6.12 Definition: Many useful rational maps can be obtained using the projection from
a point in Fn to a hyperplane in Fn (that is, to an affine space of dimension n− 1). The
projection in F2 from the origin to the line x = 1 is given by g(x, y) = (1, y/x). More
generally, the projection from 0 ∈ Fn to the hyperplane xk = 1 is given by

g(x1, · · · , xn) =
(x1
xk
, · · · , xk

xk
, · · · , xn

xk

)
.

6.13 Example: Let F be an infinite field. When X is any one of the varieties V (y− x2),
V (y2 − x3), V (y2 − x3 − x2) or V (y2 + x2 − x), the projection in F2 from the origin to
the line x = 1, given by g(x, y) = y

x , gives a birational map g : X → F. In each case, the
inverse f : F → X gives a familiar parametric equation for the curve. Verify that when
X = V (y − x2) we have f(t) = (t, t2), when X = V (y2 − x3) we have f(t) = (t2, t3), when
X = V (y2 − x3 − x2) we have f(t) =

(
t2 − 1, t(t2 − 1)

)
, and when X = V (y2 + x2 − x) we

have f(t) =
(

1
t2+1 ,

t
t2+1

)
.

6.14 Example: Let S2 be the unit sphere S2 = V (x2 + y2 + z2 − 1) ⊆ R2. Use the
stereographic projection from the north pole, that is the projection from the point
(0, 0, 1) to the plane z = 0, to show that S2 is irreducible and that S2 ∼ R2.

Solution: Given (x, y, z) ∈ R3 with z 6= 1, the line from (0, 0, 1) to (x, y, z) is given by
α(t) = (0, 0, 1) + (x, y, z − 1) t. The point of intersection with the plane z = 0 is given by
1 + (z − 1)t = 0, that is t = 1

1−z . Thus the projection g from (0, 0, 1) to the plane z = 0 is

given by g(x, y, z) =
(

x
1−z ,

y
1−z
)
.

On the other hand, given a point (u, v, 0) in the plane z = 0, the line from (0, 0, 1) to
(u, v, 0) is given by β(t) = (0, 0, 1)+(u, v,−1) t = (ut, vt, 1−t), and we have β(t) ∈ S2 ⇐⇒
(ut)2 + (vt)2 + (1− t)2 = 1 ⇐⇒ u2t2 + v2t2 + 1−2t+ t2 = 1 ⇐⇒ t (u2t+ v2t−2 + t) = 0
⇐⇒ t = 0 or t = 2

u2+v2+1 . We have β(0) = (0, 0, 1), so we define a rational map

f : R2 → R3 by f(u, v) = β
(

2
u2+v2+1

)
=
(

2u
u2+v2+1 ,

2v
u2+v2+1 ,

u2+v2−1
u2+v2+1

)
.

Since R2 is irreducible and since f(R2) = S2 \ {(0, 0, 1)}, which is dense in S2, the
variety S2 is irreducible. Furthermore, the rational maps f : R2 → S2 and g : S2 → R2

are rational inverses, so S2 ∼ R2.

6.15 Example: When F = R we can use the birational maps of the above two examples to
describe all the rational points on each of the varieties that were considered. For example,
the birational map f : R→ V (y2− x3− x2) ⊆ R3 given by f(t) =

(
t2− 1, t(t2− 1)

)
sends

the rational number a
b ∈ Q ⊆ R to the rational point f

(
a
b

)
=
(
a2−b2
b2 , a(a

2−b2)
b3

)
, so all the

rational points on the alpha curve y2 = x3 +x2 are of this form where a, b ∈ Z with b 6= 0.

Similarly, the birational map f : R→ V (x2+y2−1) ⊆ R2 given by f(t) =
(

2t
t2+1 ,

t2−1
t2+1

)
sends a

b ∈ Q to f
(
a
b

)
=
(

2ab
a2+b2 ,

a2−b2
a2+b2

)
, so all rational points on the unit circle x2 +y2 = 1,

except the point (0, 1), are of this form where a, b ∈ Z with b 6= 0.
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6.16 Example: When F is a finite field, we can use birational maps to help count the
number of points in a variety in Fn. For example, let us count the number of points in
X = V (y2 − x3 − x2) ⊆ F2 where F is the finite field with n = pk elements.

Solution: Let K be the algebraic closure of F. Then X = V (y2 − x3 − x2) ⊆ K2 is
irreducible, and the rational map f : K→ X given by f(t) =

(
t2− 1, t(t2− 1)

)
determines

a surjective map f : F → X ∩ F which is 1:1 except that f(1) = f(−1) = (0, 0) (when
p = 2, f is bijective). Thus when p = 2 there are n points in X ∩F2 and when p 6= 2 there
are n− 1 points in X ∩ F2.

6.17 Example: The graph of a rational map f : X → Y with domain U is defined
to be the closure in X × Y of the graph of the map f : U → Y , that is the closure of
{(x, f(x)|x ∈ U}. The natural lift l : X → graph (f) given by l(x) = (x, f(x)) and
the natural projection p : graph (f) → X given by p(x, y) = x are rational inverses, so
graph (f) ∼ X.

6.18 Definition: Let a ∈ Fn. A blow-up of Fn at a is the graph F̃n of a projection g

in Fn from the point a. The natural projection and lift p : F̃n → Fn and l : Fn → F̃n are

rational inverses, so F̃n ∼ Fn. If X ⊆ Fn is an irreducible variety with a ∈ X, then the
corresponding blow-up of X, denoted by X̃, is the graph of the restriction of g to X, or
equivalently, the closure of l

(
X \ {a}

)
in F̃n.

6.19 Example: Find the blow-up F̃2 and the natural projection and lift obtained from
the projection in F2 from the origin to the line x = 1. Then find the induced blow-up of
each of the two varieties V (y2 − x3) and V (y2 − x3 − x2).

Solution: The projection in F2 from (0, 0) to the line x = 1, which we identify with F, is the
rational map g : F2 → F given by g(x, y) = y

x , with domain U = {(x, y)|x 6= 0}. The graph
of g : U → F is the set {(x, y, z)|x 6= 0, z = y/x} = {(x, y, z)|x 6= 0, y − xz = 0}, and the

corresponding blow-up of F2 at the origin is the closure of this set, F̃n = V (y− xz) ⊆ F3.

The natural projection and lift p : F̃n → F2 and l : F2 → F̃n are given by p(x, y, z) = (x, y)
and l(x, y) =

(
x, y, yx

)
.

Let X = V (y2−x3), and let U = X \{(0, 0)}. The points on X are of the form (t2, t3),

so l(U) = {(t2, t3, t)|t 6= 0}, and X̃ = l(U) = {(t2, t3, t)|t ∈ F} = V (x − z2, y − z3) ⊆ F3.

Thus X̃ is the twisted cubic.
It is also worth considering the inverse image p−1(X) where p(x, y, z) = (x, y). Verify

that p−1(X) = V (y2 − x3, y − xz) = X̃ ∩ V (x, y).
Now, let X be the alpha curve X = V (y2 − x3 − x2), and let U = X \ {(0, 0)}. The

points on X are of the form
(
t2−1, t(t2−1)

)
, so we have l(U) =

{(
t2−1, t(t2−1), t

)∣∣t 6= 0
}

and X̃ = l(U) =
{(
t2 − 1, t(t2 − 1), t

)∣∣t ∈ F
}

= V (x− z2 + 1, y − z3 + z2).

6.20 Remark: Each of the two varieties X in the above example had a singularity at
(0, 0), but the blow-up X̃ was non-singular at (0, 0). It can be shown that by performing
repeated blow-ups on a curve X at singular points, one eventually obtains a non-singular
curve, called the desingularization of X, which is birational to X.
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6.21 Definition: Let X and Y be irreducible affine varieties. Given a dominant rational
map f : X → Y , we define the pullback of f to be the map f∗ : K(Y )→ K(X) given by
f∗(g) = g ◦ f . Note that the composite g ◦ f is defined for any g because f is dominant.
It is straightforward to check that f∗ : K(Y )→ K(X) is an F-algebra homomorphism.

6.22 Theorem: Let X and Y be irreducible affine varieties.
(1) The map f 7→ f∗ gives a bijective correspondence between the set of all dominant
rational maps f : X → Y and the set of all F-algebra homomorphisms φ : K(X)→ K(Y ).
(2) If f : X → X is the identity then f∗ : K(X)→ K(X) is the identity, and if f : X → Y
and g : Y → Z then (g ◦ f)∗ = f∗ ◦ g∗.
(3) X ∼ Y ⇐⇒ K(X) ∼= K(Y ).

Proof: Let φ : K(Y ) → K(X) be any F-algebra homomorphism. We wish to construct
a dominant rational map f such that f∗ = φ. If such a map f exists then we must have
f∗(h) = φ(h) for all h ∈ K(Y ), that is h ◦ f = φ(h) for all h ∈ K(Y ). In particular, if f
is given by f = (f1, · · · , fm) then we must have fi = yi ◦ f = φ(yi) for i = 1, · · · ,m. And

indeed, if we define f by f =
(
φ(y1), · · · , φ(yn)

)
then for any g = p

q =

∑
ai1,···,imy1

i1 ···ymim∑
bj1,···,jmy1

j1 ···ymjm

in K(Y ) we have f∗(g) = g ◦ f =

∑
ai1,···,imφ(y1)

i1 ···φ(ym)im∑
bj1,···,jmφ(y1)

j1 ···φ(ym)jm
= φ(g) so that f∗ = φ.

This determines f uniquely as a rational map f : X → Fm (and shows that f 7→ f∗

is 1:1). We must show that the range of f is contained in Y and is dense.
Let U be the domain of f . Let a ∈ U . Let g ∈ I(Y ). Then g = 0 ∈ K(Y ). Since

φ is an F-algebra homomorphism, so that φ(0) = 0, we have φ(g) = 0 ∈ K(X). Since
φ(g) = f∗(g) = g◦f , we have g◦f = 0 ∈ K(X), so g(f(x)) = 0 for all x ∈ U . In particular,
g(f(a)) = 0. Since g ∈ I(Y ) was arbitrary, we have g(f(a)) = 0 for all g ∈ I(Y ), that is
f(a) ∈ V (I(Y )) = Y . Since a ∈ U was arbitrary, the range of f is contained in Y .

It remains only to show that f(U) is dense in Y , that is f(U) = Y . We showed above
that f(U) ⊆ Y so we have f(U) ⊆ Y , and we need to show that Y ⊆ f(U) = V (I(f(U))).
Let b ∈ Y . Let g ∈ I(f(U)). Then g(y) = 0 for all y ∈ f(U), so g(f(x)) = 0 for all x ∈ U .
Writing f = p

q , where p ∈ F[x1, · · · , xn]m and q ∈ F[x1, · · · , xn] with q /∈ I(X), we have

0 = g
(
f(x)

)
= g
(p(x)
q(x)

)
q(x)deg g for all x ∈ U ∩ Uq. Thus (g ◦ f)qdeg g ∈ I(U ∩ Uq) = I(X),

and so (g ◦ f)qdeg g = 0 ∈ K(X), hence g ◦ f = 0 ∈ K(X). Since g ◦ f = f∗φ = φ(g)
we have φ(g) = 0 ∈ K(X). Since φ is a homomorphism of fields, it must be injective,
and so g = 0 ∈ K(Y ). This means that g(y) = 0 for all y in the domain of g, but g is
a polynomial, so g(y) = 0 for all y ∈ Y . In particular, g(b) = 0. Since g ∈ I(f(U)) was
arbitrary, we have g(b) = 0 for all g ∈ I(f(U)) and so b ∈ V (I(f(U))) = f(U). Since b ∈ Y
was arbitrary, we have Y ⊆ f(U) as required.

Part (2) of the theorem is easy, and part (3) follows from parts (1) and (2).
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