6. Rational Maps and Birational Equivalence

6.1 Definition: Let X C F” be an irreducible variety. Let p,q € F[zy, -+, x,] with
q ¢ I(X). Alternatively let p,q € A(X) with ¢ # 0. Then p/q defines a map p/q: U, — F,
where U, = {x € X}q(az) + 0}. We consider two such maps p/q : U, - Fandr/s: Us - F

to be equivalent when M = r(z)

q(z)  s(x)

we have U,NUs; = X so p/q is equivalent to r/s <= p(x)s(z) = q(z)r(xz) for all

z€UNU; < ps—qreI(U,NU,;) =1(X) < ps—qr =0¢€ A(X). An equivalence

class f of such maps determines a map f:U C X — F, where U = |J U,. Such a map
p/acf

is called a rational map on X, and the set U is called the domain of f. We use the

notation f : X — F for a rational map on X (even when the domain of f is not all of X),
and we write p/q for the rational map determined by the equivalence class of p/q. The set
of rational maps, denoted by K(X), is a field, called the field of rational maps on X
(or the function field) of X, which we can identify with the quotient field of the integral
domain A(X).

for all z € U, NU,. Notice that since X is irreducible,

K(X) = {g'p,qu[xl,m,xn],q¢I(X)} withng € K(X) < ps—qreI(X)

s
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—{a'p,qu(X),q#O} with 5—;€K(X) <= ps—qr=0¢ A(X)

For a € X we say that f is defined at a (or that f is regular at a) when a is in the

domain U = |J Uy, that is when f can be written in the form f = p/q for some p, ¢
p/a=f

with g(a) # 0. Otherwise we say that f has a pole at a. Note that the pole set of f is the

closed set X \U = [ V(g) N X. We say that f has a zero at a when f is defined at

p/a=f

a and can be written in the form f = p/q for some p,q with ¢(a) # 0 and p(a) = 0. The

zero set of f is not always a subvariety of X, but it is a closed subset of the domain U.

On the other hand, note that if f can be written as f = p/q with p(a) # 0 and ¢(a) = 0,

then f must have a pole at a since if not, then we could write f = r/s where s(a) # 0,

and then since p/q = r/s € K(X) we would have p(a)s(a) = r(a)q(a), but p(a)s(a) # 0

while 7(a)q(a) = 0.

6.2 Example: If F is an infinite field, we have seen that A(F") = Flzq,-- ] so
K(F") =F(z1,---,x,). At the other extreme, if a € F” then A({a}) = ({a})

6.3 Example: Let F be an infinite field. For each of the varieties V (y — 2?), V (y? — 23),
V(y? — 2% — 2?) and V(22 + y? — y), show that the variety is irreducible in F2, then find
the pole set of the rational map g(x,y) = y/x.

6.4 Example: Let X be the parabola X = V(y — 2?) C F2. Then X is irreducible
since y — 22 is irreducible in F[z,y] and since X is infinite. The map g = ¥ is defined at
all points (z,y) € X with = # 0, that is everywhere except perhaps at (0,0). But since
y = a2 € K(X), we have g = P =5 = % =1z € K(X), so g is also defined at (0,0).

Indeed this shows that g is actually a polynomial map on X.

Now let X be the circle X = V(22 + y? — y). Note that for every t € F we have
(?ttz, 11%) € X and so X is infinite. Also 22 + y? — y is irreducible in F[z,y], and so

1



X is irreducible. The map g = £ is defined at all points (z,y) € X with 2 # 0, that is
everywhere except possibly at (0,0) and at (0,1). At the point (0,1), we have y # 0 and
x = 0 so g must have a pole at (0,1). On the other hand, since 22 = y — y? € K(Y), we
have g = & = 45 = ¥%; = == € K(Y). Thus g is defined at (0,0), indeed f(0,0) = 0.

Next, let X be the cusp Curve X = V(y* — 23). Note that for every t € F, we have
(t2,1%) € X so X is infinite. Also, y? — 22 is irreducible in F[z, 3], and so X is irreducible,
and I(X) = (y* — 23). The map g = y/x is defined everywhere except perhaps when
x = 0, that is at the point (0,0). We claim that g is not regular at (0,0). Suppose, for
a contradiction, that g = p/q with ¢(0,0) # 0. Then we would have ¥ = £ € K(X) so
yq —ap € I(X) = (y* —2°), say yq(z,y) — 2 p(z,y) = (y* —2°) k(z,y), where k € F[z,y].
But notice that since ¢(0,0) # 0, the coefficient of y in yg — xp is non-zero, but the
coefficient of y in (y? — 23) k is zero.

Finally, let X be the alpha curve X = V(y? — 23 — 2?). For each t € F, we have
(t2 —1,t(t? - 1)) € X, so X is infinite. Also, y? — 2% — 22 is irreducible in F[z,y], so X
is irreducible and I(X) = (y?> — 23 — 2?). The map g = y/x is defined everywhere except
perhaps at (0,0). We claim that ¢ is not regular at (0,0). We could prove this as we
did for the cusp curve, but it is amusing to give a more geometric argument, even though
the argument only works in the case that char (F) # 2. Geometric intuition tells us that
g = y/x cannot be regular at (0,0) because y/z is the slope of the vector (z,y) but the
alpha curve has two slopes at (0,0). To express this idea precisely, we define f : F — X by

F(t) = (2 — 1,1(2 — 1)). Note that f(—1) = f(1) = (0,0) and that g(f(t)) = {=1 = ¢,

If g were defined at (0,0), then we would have —1 = g(f(—1)) = ¢(0,0) = g(f(lt)) ~ 1.
6.5 Definition: Let X C F” and Y C F™ be irreducible varieties. Let f = (f1,---, fm) €
K(X)™. Then f defines a map f : U — F™ whose domain U is the intersection of the
domains of the rational maps f;. If f(U) C Y, then we say that f is a rational map
from X to Y, and we write f : X — Y. Note that we can write each f; as f; = p;/q
(using a common denominator q) and so we can write f = p/q where p € A(X)™ and
0+# q € A(X). For a € X we say that f is defined at a (or that f is regular at a) when
f can be written in the form f = p/q for some p, ¢ with g(a) # 0. Otherwise we say that
f has a pole at a. The domain of f, that is the above set U, is the set of all points in
X at which f is defined; U is an open dense subset of X. The pole set of f, which is the
set of points in X at which f has a pole, is the proper subvariety X \ U. The set f(U) is
called the range (or image) of f.

6.6 Note: Let f : X — Y be a rational map of irreducible affine varieties with domain
U C X. Then for any subvariety Z C Y, the inverse image f~1(Z) = {x € U|f(z) € Z} is
closed in U. In other words, f is continuous.

Proof: Let Z be a subvariety of Y C F™. Say Z = V(S) where S C Fy1,- -+, ¥ym]. Then
for x € U we have

xef‘l(Z)

\_/

/q(x) € Z for all p,q with f =p/q and q(x) #0
)—OforallgESandallp,qW1thf p/q, q(x) # 0

) ydee9 for all g € S and all p,q with f = p/q, q(z) #0

"ﬁ Q‘
L~ [~

p(z
9(5e
9(5e

—~

/4
Write hgpq(x) = (p(‘r)) (r)de9 € Flxy, -+, 1,]. Notice that if f = p/q=1/s € K(X)
where ¢(a) # 0 (and perhaps s(a) = 0) then hy p4(x) = hyrs(x) for all z € U, N Ug and
hence for all z € X. So f~1(Z) =UNV(T) where T = {hg 4|9 € S and f =p/q}.
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6.7 Definition: Given rational maps f: X — Y and g : Y — Z of irreducible varieties
with domains U and V respectively, it is not always possible to compose them, because the
range f(U) may be disjoint from the domain V of g. If f(U) is not disjoint from V', then we
define the composite go f : X — Z as follows. Choose any point a € f~1(V), and write
f = p/q with g(a) # 0 and write g = r/s with s(a) # 0. Then for all z € U, N f~1(Vj),
which is open and dense in X (it is non-empty since it contains a and it is open by the
above note, so it is dense since X is irreducible), we have

_ 7’(73—@) B T(%)Q(l’)d _ u(x)

s(2%) N s(%)q(x)d ()

where d = max{degr,degs}, u(z) = r(f;(—ig)q(x)d and v(z) = s(m)q(x)d. We define

g o f to be the rational map u/v.

6.8 Definition: Let X and Y be irreducible affine varieties. A rational isomorphism
(or a birational map) from X to Y is a rational map f : X — Y which has a rational
inverse, that is a rational map ¢g : Y — X such that go f : X — X is the identity on X and
fog:Y — Y is the identity on Y. We say that X and Y are birationally isomorphic

(or simply birational), and we write X ~ Y, if there exists a rational isomorphism from
XtoY.

6.9 Definition: A rational map f: X — Y of irreducible affine varieties is called domi-
nant if the range of f is dense in Y.

6.10 Note: Let f: X — Y be a rational map of irreducible affine varieties.
(1) If f is dominant then f can be composed with any rational map g : Y — Z.
(2) If f: X =Y is a rational isomorphism, then it must be dominant.

Proof: We leave the proof of (1) as an exercise and prove part (2). Suppose that f : X — Y
is a rational isomorphism with rational inverse g : Y — X. Let U be the domain of f and
let V be the domain of g. Since g is continuous and U is open, g~ (U) = {y € Vlg(y) € U}
is open in V hence also in Y, and since the composite f o g exists, g~ 1(U) is nonempty.
So, since Y is irreducible, g7 (U) is dense in Y. For y € g~}(U) we have g(y) € U so f is
defined at g(y) and y = f(g(y)) is in the range of f. Thus the range of f contains ¢~ (U),
which is dense in Y.

6.11 Note: Let f : X — Y be a rational map of irreducible varieties with domain U.
Then f(U) is irreducible.

Proof: Suppose, for a contradiction, that f(U) is reducible, say f(U) = Z U W with

zZ, W % f(U) both closed. Note that f(U) € ZUW, so U = f~YZ)U f~1(W) and
hence X = U = f~1(Z ) U f=1(W). Also, we have f(U) € Z (otherwise we would have
f(U) C 7 = Z),s0 f~1(Z) # U. Since f~1(Z) is closed in U, we have f~1(Z)NU =
fYUZ2)NU = f~%2Z) # U, and so f~1(Z) # X. Similarly f~1(W) # X, so X is
reducible.



6.12 Definition: Many useful rational maps can be obtained using the projection from
a point in F" to a hyperplane in F" (that is, to an affine space of dimension n — 1). The
projection in F? from the origin to the line z = 1 is given by g(z,y) = (1,y/z). More
generally, the projection from 0 € F” to the hyperplane x; = 1 is given by

g($1,'--,$n) =

Y

T T Ty,
(mk, . Em)

6.13 Example: Let F be an infinite field. When X is any one of the varieties V (y — 22),
V(y? —23), V(y? — 2% — 2?) or V(y? + 22 — 2), the projection in F? from the origin to
the line = 1, given by g(z,y) = £, gives a birational map g : X — F. In each case, the
inverse f : F — X gives a familiar parametric equation for the curve. Verify that when
X =V (y—2?) we have f(t) = (t,t?), when X = V(y? — 23) we have f(t) = (¢2,t3), when
X =V (y? — 2® — 2?) we have f(t) = (t* — 1,¢(t* — 1)), and when X = V(y? + 2% — z) we
have f(t) = (ﬁ, #)

6.14 Example: Let S? be the unit sphere S? = V(22 + y? + 22 — 1) C R2. Use the
stereographic projection from the north pole, that is the projection from the point
(0,0,1) to the plane z = 0, to show that S? is irreducible and that S ~ R2.

Solution: Given (z,y,2) € R? with 2z # 1, the line from (0,0,1) to (z,y,2) is given by
a(t) = (0,0,1) + (x,y,z — 1) t. The point of intersection with the plane z = 0 is given by
1+ (z—1)t=0, that is t = liz. Thus the projection g from (0,0, 1) to the plane z = 0 is
given by g(z,y,z) = (1fz, ﬁz).

On the other hand, given a point (u,v,0) in the plane z = 0, the line from (0,0, 1) to
(u,v,0) is given by 8(t) = (0,0, 1)+ (u,v, —1) t = (ut,vt,1—t), and we have 3(t) € S? —
(ut)* + (W)’ + (1-t)2 =1 <= 2+ 022 +1-2t+t* =1 < t (WPt +0%t—2+1) =0
< t=0o0rt = m We have 5(0) = (0,0,1), so we define a rational map
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f:R? = R® by f(u,v) = B(mriery) = (i wrorsT wzrorst)-

Since R? is irreducible and since f(R?) = S?\ {(0,0, 1)}, which is dense in S?, the
variety S? is irreducible. Furthermore, the rational maps f : R> — S? and ¢ : S2 — R?
are rational inverses, so 82 ~ R2.

6.15 Example: When F = R we can use the birational maps of the above two examples to
describe all the rational points on each of the varieties that were considered. For example,
the birational map f: R — V(y? — 2% — 2%) C R? given by f(t) = (t* — 1,¢(t* — 1)) sends

2 2
the rational number ¢ € Q C R to the rational point f(%) = (“26_2172, a(ab;b )), so all the

rational points on the alpha curve y? = 23 + 22 are of this form where a,b € Z with b # 0.

Similarly, the birational map f : R — V(z2+y?—1) C R? given by f(t) = (%, g—ﬁ)

sends 7 € Q to f(%) = (aQQ—jlrbbz, Zj—;g;), so all rational points on the unit circle 22 +y? = 1,

except the point (0, 1), are of this form where a,b € Z with b # 0.




6.16 Example: When F is a finite field, we can use birational maps to help count the
number of points in a variety in F”. For example, let us count the number of points in
X =V (y? — 2% — 22) C F? where F is the finite field with n = p* elements.

Solution: Let K be the algebraic closure of F. Then X = V(y? — 23 — 2%) C K? is
irreducible, and the rational map f : K — X given by f(¢) = (t2 —1,t(t? - 1)) determines
a surjective map f : F — X NF which is 1:1 except that f(1) = f(—1) = (0,0) (when
p = 2, f is bijective). Thus when p = 2 there are n points in X NF? and when p # 2 there
are n — 1 points in X N F2.

6.17 Example: The graph of a rational map f : X — Y with domain U is defined
to be the closure in X x Y of the graph of the map f : U — Y, that is the closure of
{(z, f(z)|lx € U}. The natural lift | : X — graph(f) given by I(z) = (z, f(z)) and
the natural projection p : graph (f) — X given by p(z,y) = z are rational inverses, so

graph (f) ~ X.

6.18 Definition: Let a € F”. A blow-up of F" at a is the graph F" of a projection g
in F” from the point a. The natural projection and lift p : F* — F" and [ : F* — F" are
rational inverses, so Fr ~ F. If X C F" is an irreducible variety with a € X, then the
corresponding blow-up of X, denoted by X , is the graph of the restriction of g to X, or
equivalently, the closure of [(X \ {a}) in F".

6.19 Example: Find the blow-up F2 and the natural projection and lift obtained from
the projection in F? from the origin to the line x = 1. Then find the induced blow-up of
each of the two varieties V (y? — 23) and V (y? — 23 — 2?).

Solution: The projection in F? from (0, 0) to the line = 1, which we identify with F, is the
rational map g : F? — F given by g(z,y) = ¥, with domain U = {(z, y)|z # 0}. The graph
of g: U — F is the set {(x,y,2)|x # 0,2z = y/z} = {(z,y,2)|z # 0,y — xz = 0}, and the
corresponding blow-up of F? at the origin is the closure of this set, Fr = V(y—xz) C F3.
The natural projection and lift p : F" - F2andl: F2 — F" are given by p(z,y,2) = (x,y)
and [(x,y) = (:U,y, m)

Let X =V (y>—23), and let U = X\{(0,0)}. The points on X are of the form (t2,13),
so l(U) = {(t2, 83, t)|t £ 0}, and X = 1(U) = {(t2,83,0)|t € F} = V(z — 22,y — 23) C F3.
Thus X is the twisted cubic.

It is also worth considering the inverse image p~1(X) where p(x,y, z) = (z,y). Verify
that p~H(X) = V(y2 — 23,y —22) = X NV (x, ).

Now, let X be the alpha curve X = V(y? — 23 — 2?), and let U = X \ {( 0)}. The
points on X are of the form (t*—1,¢(t*—1)), so we have [(U) = { (£*—1,t(t*—1),t)|t # 0}

and X = 1(U) = {(2 — L,t(t2 — 1), 1)t € F} = V(x — 22 + L,y — 23 + 2?).

6.20 Remark: Each of the two varieties X in the above example had a singularity at
(0,0), but the blow-up X was non-singular at (0,0). It can be shown that by performing
repeated blow-ups on a curve X at singular points, one eventually obtains a non-singular
curve, called the desingularization of X, which is birational to X.



6.21 Definition: Let X and Y be irreducible affine varieties. Given a dominant rational
map f: X — Y, we define the pullback of f to be the map f*: K(Y) — K(X) given by
f*(g) = go f. Note that the composite g o f is defined for any g because f is dominant.
It is straightforward to check that f*: K(Y) — K(X) is an F-algebra homomorphism.

6.22 Theorem: Let X and Y be irreducible affine varieties.

(1) The map f — f* gives a bijective correspondence between the set of all dominant
rational maps f : X — Y and the set of all F-algebra homomorphisms ¢ : K(X) — K(Y').
(2) If f : X — X is the identity then f* : K(X) — K(X) is the identity, and if f : X =Y
and g:Y — Z then (go f)* = f* o g*.

(3) X ~Y <— K(X)ZK().

Proof: Let ¢ : K(Y) — K(X) be any F-algebra homomorphism. We wish to construct
a dominant rational map f such that f* = ¢. If such a map f exists then we must have
f*(h) = ¢(h) for all h € K(Y), that is ho f = ¢(h) for all h € K(Y). In particular if f
is given by f = (f1,--, fim) then we must have f; = y; o f = ¢(y;) for i = 1,- ,m. And

indeed, if we define f by f = (¢(y1), -, ¢(y,)) then for any g = p = %Z” i YL Y T

1 ]myljl mem
. * @iy ,eyim @ (Y1) P (ym ) '™ %
in K(Y) we have f*(g) =go f %b jm¢(zi)jl--~¢(im)jm = ¢(g) so that f* = ¢.

This determines f uniquely as a ratlonal map f: X — F™ (and shows that f — f*
is 1:1). We must show that the range of f is contained in Y and is dense.

Let U be the domain of f. Let a € U. Let g € I(Y). Then ¢ = 0 € K(Y). Since
¢ is an F-algebra homomorphism, so that ¢(0) = 0, we have ¢(g) = 0 € K(X). Since
o(g) = f*(g9) =gof,wehavegof =0¢€ K(X),s0g(f(z)) =0forall z € U. In particular,
g(f(a)) = 0. Since g € I(Y) was arbitrary, we have g(f(a)) = 0 for all g € I(Y), that is
fla) e V(I(Y)) =Y. Since a € U was arbitrary, the range of f is contained in Y.

It remains only to show that f(U) is dense in Y, that is f(U) = Y. We showed above
that f(U) CY so we have f(U) CY, and we need to show that Y C f(U) = V(I(f(U))).
Let be Y. Let g € I(f(U)). Then g(y) =0 for all y € f(U), so g(f(z)) =0 for all z € U.
Writing f = ]—9, where p € Flxy,---,2,]" and ¢ € F[zq, -, x,] with ¢ ¢ I(X), we have

0=yg(f(z)) = g(ggig) (w)de89 for all x € U NU,. Thus (go f)q®89 € I(UNU,) = I(X),
and so (go f)q9®9 = 0 € K(X), hence go f = 0 € K(X). Since go f = f*¢ = ¢(g)
we have ¢(g) = 0 € K(X). Since ¢ is a homomorphism of fields, it must be injective,
and so ¢ = 0 € K(Y). This means that g(y) = 0 for all y in the domain of g, but g is
a polynomial, so g(y) = 0 for all y € Y. In particular, g(b) = 0. Since g € I(f(U)) was
arbitrary, we have g(b) = 0 for all g € I(f(U)) andso b € V(I(f(U))) = f(U). Sinceb € Y’
was arbitrary, we have Y C f(U) as required.
Part (2) of the theorem is easy, and part (3) follows from parts (1) and (2).




