5. Polynomial Maps and Isomorphism

5.1 Definition: Let X be a variety in F". A polynomial f € F[zq,---,z,]| determines a
function f : X — F, and such a function is called a polynomial map from X to F. The set
of all polynomial maps from X to F, denoted by A(X), is an F-algebra (meaning that A(X)
is both a commutative ring and a vector space over F and ring multiplication commutes
with scalar multiplication) called the ring of polynomial maps on X, or simply the
coordinate ring of X. Notice that for f,g € Flz1,---,x,], we have f = g € A(X) if
and only if f(x) = g(x) for all z € X if and only if f — g € I(X), so we can make the
identification
AX)=Flz1, -, z,) [ I(X

5.2 Note: X is irreducible <= I(X) is prime <= A(X ) is an integral domain.

5.3 Note: Let X C F” be an irreducible variety so that A(X) is an integral domain.
Let ¢ : Flzy, -, x,] — A(X) be the natural map, and let u; = ¢(x;) € A(X). Then
A(X) = Flur, -, up).
5.4 Example: If F is infinite, then I(F") = {0} so we have A(F") = F[z1,---,x,], and
so we can identify polynomial maps on F™ with polynomials in F[xq, -, z,].

On the other hand, if F is finite, then there are only finitely many functions f : F* — F

(indeed if |F| = m then there are m™" such functions), so A(F™) is finite, but there are
infinitely many polynomials.

5.5 Example: Show that if F is finite then A(F™) is the set of all functions f : F* — F.

I (z —b)

%. Note that ga(ac) =0

for all z # a but g,(a) # 0. Define §, € F|x] by d,(z) = %ga( x). Then é,(x) = 0 for
all x # a and ,(a) = 1. Now, for each a = (a1,---,a,) € F" define 6, € Flz1,---,x,] by
da(z) = ][ da,(z;). Then again we have §,(z) = 0 for all z # a and J,(a) = 1. Finally,
i=1
) =

> fla)da(z), so f € A(F™),

acFn

Solution: For each a € F, define g, € Flz| by g.(x) =

given any_function f:F" = F we have f(z

5.6 Definition: Let X C F" and Y C F™ be varieties. An element f € Flzq,---,x,]™,
that is an m-tuple f = (f1, -, fmn) with each f; € F[zq, -, x,], determines a map
f:X — F" and if f(X) C Y so that we have f : X — Y, then we say that f is a
polynomial map from X to Y.



5.7 Note: If f: X — Y is a polynomial map of affine varieties and if Z C Y is closed,
then the inverse image f~1(Z) is closed in X. In other words, f is continuous. On the
other hand, the image f(X) need not be closed in Y.

Proof: Let us say X C F"” and Z = V(S) CY C F™ where S C Fly1,-- -,y and that
the map f: X — Y is determined by f € F[xy,---,z,]"™. Then we have

fHZ) ={z € X|f(z) € Z}
={z € X|g(f(z)) =0 for all g € S}
=XNV(T), where T ={go flg € S}.

This shows that f~!(Z) is a subvariety of X.

To show that f(X) need not be a subvariety of Y, let X = V(zy — 1) C C? and let
Y =Candlet f: X =Y be the map f(z,y) = 2. Then f(X) = {x € C|z # 0}, which is
not a variety.

5.8 Example: If f = (f1, -+, fm) € Flz1,---,2,]™ then f defines a polynomial map
f:F" = F™ and we have f~1(0) = V(f1, -, fm) C F™.

5.9 Definition: Let X and Y be affine varieties. An isomorphism from X to Y is a
bijective polynomial map f : X — Y the inverse of which is also a polynomial map. We
say that X and Y are isomorphic, and we write X = Y| if there exists an isomorphism
from X to Y.

5.10 Example: Let X = V(y — 2?) C F2. Show that X = F.

Solution: The polynomial maps f : F — X and g : X — F given by f(t) = (t,t?) and
g(z,y) = x are easily seen to be inverses.

5.11 Example: Let X be the twisted cubic X = V(y — 22,2z — 23) C F3. Show that
X=F.

Solution: The maps f : F — X and g : X — F given by f(¢) = (¢,t%,t3) and g(z,9,2) =z
are inverses.

5.12 Definition: Let X C F" be a variety and let f : X — F" be a polynomial map.
The graph of f is

graph (f) = {(z, f(z))|r € X} C X x F™ CF"™"™.
5.13 Note: The graph of a polynomial map f: X — F™ is a variety and graph (f) = X.

Proof: Say X = V(S) where S C F[zq,---,x,], and say f is given by f = (f1, -, fm) €
Flz1, -+, 2,]™. Then we have graph (f) = V(T) C F"™™ where T = SU{y — f(x)} =
SU {yl - fl(x)v"'7ym - fm(z)} - F[xla"'vxn7y17"'vym]7 S0 gra‘ph(f) is a VarietY'
And the maps g : X — graph(f) and h : graph(f) — X given by g(x) = (z, f(z)) and
h(z,y) = x are inverses, so X = graph (f).

5.14 Definition: Let X and Y be affine varieties, and let f : X — Y be a polynomial
map. Define the pullback of f to be the map f*: A(Y) — A(X) given by f*(g9) =go f.
Note that f* is an F-algebra homomorphism since f*(g+h) =(g+h)of=gof+hof
ond £°(gh) = (gh) o = (52 )0 J) and J*(eg) = (eg) o = clg ) for all . € AY)
and c € I.



5.15 Theorem: Let X and Y be affine varieties.

(1) The map f — f* gives a bijective correspondence between the set of polynomial maps
from X toY and the set of F-algebra homomorphisms from A(Y) to A(X).

(2) If f : X — X is the identity then f* : A(X) — A(X) is the identity, and if f : X =Y
and g:Y — Z then (go f)* = f*o g*.

(3) X =Y ifand only if A(Y) = A(X).

Proof: Say X CF” and Y C F™. Let ¢ : A(Y) — A(X) be an F-algebra homomorphism.
We must show that there exists a unique polynomial map f: X — Y with f* = ¢.

If such a polynomial map f exists, then we must have f*(h) = ¢(h) for all h € A(Y),
that is ho f = ¢(h) for all h € A(Y). In particular, we must have f; = y; o f = ¢(y;) for
each i = 1,---m, where y; € A(Y'). This shows that the map f, if it exists, is unique, and
must be given by £ = ($(y1), -+ $(ym)).

Now, choose polynomials f; € Flxy,---,z,] so that ¢(y;) = f; € A(X), and then set
f=1(, -, fm) € Flxy,---,2z,]™. Then f defines a polynomial map f : X — F™. We
shall show that f(X) C Y so that f: X — Y and that f* = ¢.

Since ¢ is an F-algebra homomorphism, for any g = chl o

Fly1,- -, Ym] we have ¢(g) = chl,---,km¢(yl)kl T L chl,---,kmflkl o flm =
go f = f*(g) € A(X), thus ¢ = [*.

It remains to show that we have f(X) C Y. Let x € X. Then for any g € I(Y)
we have g =0 € A(Y)sogo f = f*g = ¢(g9) = ¢(0) = 0 € A(X), and so g(f(x)) = 0.
Since g(f(x)) =0 for all g € I(Y'), we have f(x) € V(I(Y)) =Y. This shows that indeed
f(X)CYsof:X —Y, and completes the proof of part (1).

Part (2) is easy, and part (3) follows from parts (1) and (2).

kl P ymk"n in

5.16 Corollary: Let X and Y be affine varieties. If X =Y then X is irreducible if and
only if Y is irreducible.

Proof: If X 2 Y then we have A(X) = A(Y) so X is irreducible <= I(X) is prime <
A(X) is an integral domain <= A(Y) is an integral domain <= I(Y) is prime <=
Y is irreducible.

5.17 Example: Let F be infinite. Show that the twisted cubic X = V(y—2?, z—x3) C F?
is irreducible.

Solution: In example 5.11 we saw that X = F. Since F is infinite, F is irreducible, and so
X is irreducible, too.

5.18 Example: Let F be an infinite field. Find the irreducible components of the variety
X =V(2? —yz,22 — z) C F3.

Solution: Let (z,y,z) € X. We have xz —z =0soz(z2 —1) =0soxz=0o0r z =1. We
also have 22 = yz, so when 2 = 0 we have yz = 0 so that y = 0 or z = 0, and when z =1
we have 22 = y. Thus X = V(x,y) UV (x,2) UV (2 — 1,y — 2?), a union of two lines and a
parabola in F3. Since V(z,y) =F and V(z,2) =Fand V(2 — 1,y —2?%) = V(y—2?) C F?,
these three varieties are all irreducible, so they are the irreducible components of X.



5.19 Definition: Let X and Y be affine varieties and let f : X — Y be a polynomial
map. We say that f is dominant when f(X) is dense in Y, that is when f(X) =Y,
and we say that f has a left polynomial inverse when there exists a polynomial map
g € Fly1, -, ym]™ such that g(f(z)) = for all z € X.

5.20 Theorem: Let f: X — Y be a polynomial map between affine varieties, so we have
f*rA(YY) — A(X). Then

(1) f* is injective if and only if f is dominant, and

(2) f* is surjective if and only if f has a left polynomial inverse.

Proof: Suppose that f* is injective. Then for g € F|zy,---,2z,] we have g € I(f(X)) <=
g(f(x))=0forallz € X <= ¢(g) =0€ AX <= g=0€ AY) < geI(Y),so

1(f(X)) = I(Y) and hence F(X) = V(I(}(X))) = V(I(¥)) = V.
Conversely, suppose that f is dominant. Then for g € A(Y) given by g € Fly1,- -, Ym]
we have ¢(g) = 0 € A(X) <= g(f(z)) =0forall z € X <= g¢g(y) = 0 for all

ye f(X) &= geI(f(X)=1(f(X))=I1() < g=0¢€ A(Y), so ¢ is injective.
Now suppose that f* is surjective. For each ¢, choose g; € F[y1,- -, ym]| so that
f*(gi)) = x; € A(X), that is g;(f(x)) = x; for all x € X. Let ¢ = (g1,--,9n). Then
g(f(z)) = for all z € X, so g is a left polynomial inverse for f.
Suppose, conversely, that f has a left polynomial inverse, say g € Flyi, -, ym]"-
Given h € A(X), extend h to h € Flz1,---,z,] and set k =hog € Fly1, -, ym]™. Then
for k € A(Y), we have f*(k) = ko f=hogo f=he A(X). Thus f* is surjective.

5.21 Example: Let F be an infinite field. Let X = M<1(2,F) = V(2124 — za23) C F*
Show that X is irreducible.

Solution: Define f : F? — X by f(t1,to,t3) = (tt% tti ) We claim that f is dominant.
1tz lats
Let z = il ig € X. If x € f(F3) then of course z € f(F3), so suppose x ¢ f(F3).
3 T4

Notice that this implies that the first row of x is zero and the second row of x is non-
zero. Let g € I(f(F?)) so that g(f(tl,tg,tg)) = 0 for all ¢1,to,t3. Then in particular,

g(f(exg,eu, l)) =g (Ex?’ “T4) = 0 for all € # (0. Since F is infinite, this implies
€ T3 X4
that g (mS 6374) = 0 € F[¢] and in particular that g(x) = g( 00 > = 0. Since
Tr3 X4 T3 X4

g € I(f(F3)) was arbitrary, we have z € V(I(f(F3))) = f(F3). Thus f is dominant.

Since f is dominant, f* : A(X) — A(F?) is injective, and since A(F?) = F[t1, 12, 3]
is an integral domain, A(X) must also be an integral domain. So I(X) is prime, and X is
irreducible.

5.22 Example: Let F be infinite and let X = V(y? — 23) C F2. Prove that X #F.

Solution: The map f : F — X given by f(t) = (t2,3) is surjective and hence dominant,
so it induces an inclusion f* : A(X) — F[t] which is given by f*(g(z,y)) = g(t?,#3). Thus
A(X) = f(A(X)) = {g(t?,t%) € Flt]|g € F[z,y]}. Notice that the elements z,y € A(X)
are both irreducible since f*(x) = t* and f*(y) = ¢ are both irreducible in f*(A(X)).
But we have 23 = y? € A(X), so A(X) is not a unique factorization domain, and hence
we cannot have A(X) = F[t]. Thus X 2 F.



