
5. Polynomial Maps and Isomorphism

5.1 Definition: Let X be a variety in Fn. A polynomial f ∈ F[x1, · · · , xn] determines a
function f : X → F, and such a function is called a polynomial map fromX to F. The set
of all polynomial maps from X to F, denoted by A(X), is an F-algebra (meaning that A(X)
is both a commutative ring and a vector space over F and ring multiplication commutes
with scalar multiplication) called the ring of polynomial maps on X, or simply the
coordinate ring of X. Notice that for f, g ∈ F[x1, · · · , xn], we have f = g ∈ A(X) if
and only if f(x) = g(x) for all x ∈ X if and only if f − g ∈ I(X), so we can make the
identification

A(X) = F[x1, · · · , xn]
/
I(X) .

5.2 Note: X is irreducible ⇐⇒ I(X) is prime ⇐⇒ A(X) is an integral domain.

5.3 Note: Let X ⊆ Fn be an irreducible variety so that A(X) is an integral domain.
Let φ : F[x1, · · · , xn] → A(X) be the natural map, and let ui = φ(xi) ∈ A(X). Then
A(X) = F[u1, · · · , un].

5.4 Example: If F is infinite, then I(Fn) = {0} so we have A(Fn) = F[x1, · · · , xn], and
so we can identify polynomial maps on Fn with polynomials in F[x1, · · · , xn].

On the other hand, if F is finite, then there are only finitely many functions f : Fn → F
(indeed if |F| = m then there are mmn

such functions), so A(Fn) is finite, but there are
infinitely many polynomials.

5.5 Example: Show that if F is finite then A(Fn) is the set of all functions f : Fn → F.

Solution: For each a ∈ F, define ga ∈ F[x] by ga(x) =

∏
b∈F

(x− b)

(x− a)
. Note that ga(x) = 0

for all x 6= a but ga(a) 6= 0. Define δa ∈ F[x] by δa(x) = 1
ga(a)

ga(x). Then δa(x) = 0 for

all x 6= a and δa(a) = 1. Now, for each a = (a1, · · · , an) ∈ Fn define δa ∈ F[x1, · · · , xn] by

δa(x) =
n∏
i=1

δai(xi). Then again we have δa(x) = 0 for all x 6= a and δa(a) = 1. Finally,

given any function f : Fn → F we have f(x) =
∑
a∈Fn

f(a)δa(x), so f ∈ A(Fn).

5.6 Definition: Let X ⊆ Fn and Y ⊆ Fm be varieties. An element f ∈ F[x1, · · · , xn]m,
that is an m-tuple f = (f1, · · · , fm) with each fi ∈ F[x1, · · · , xn], determines a map
f : X → Fm, and if f(X) ⊆ Y so that we have f : X → Y , then we say that f is a
polynomial map from X to Y .
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5.7 Note: If f : X → Y is a polynomial map of affine varieties and if Z ⊆ Y is closed,
then the inverse image f−1(Z) is closed in X. In other words, f is continuous. On the
other hand, the image f(X) need not be closed in Y .

Proof: Let us say X ⊆ Fn and Z = V (S) ⊆ Y ⊆ Fm where S ⊆ F[y1, · · · , ym] and that
the map f : X → Y is determined by f ∈ F[x1, · · · , xn]m. Then we have

f−1(Z) = {x ∈ X|f(x) ∈ Z}
= {x ∈ X|g(f(x)) = 0 for all g ∈ S}
= X ∩ V (T ) , where T = {g ◦ f |g ∈ S} .

This shows that f−1(Z) is a subvariety of X.
To show that f(X) need not be a subvariety of Y , let X = V (xy − 1) ⊆ C2 and let

Y = C and let f : X → Y be the map f(x, y) = x. Then f(X) = {x ∈ C|x 6= 0}, which is
not a variety.

5.8 Example: If f = (f1, · · · , fm) ∈ F[x1, · · · , xn]m then f defines a polynomial map
f : Fn → Fm and we have f−1(0) = V (f1, · · · , fm) ⊆ Fn.

5.9 Definition: Let X and Y be affine varieties. An isomorphism from X to Y is a
bijective polynomial map f : X → Y the inverse of which is also a polynomial map. We
say that X and Y are isomorphic, and we write X ∼= Y , if there exists an isomorphism
from X to Y .

5.10 Example: Let X = V (y − x2) ⊆ F2. Show that X ∼= F.

Solution: The polynomial maps f : F → X and g : X → F given by f(t) = (t, t2) and
g(x, y) = x are easily seen to be inverses.

5.11 Example: Let X be the twisted cubic X = V (y − x2, z − x3) ⊆ F3. Show that
X ∼= F.

Solution: The maps f : F→ X and g : X → F given by f(t) = (t, t2, t3) and g(x, y, z) = x
are inverses.

5.12 Definition: Let X ⊆ Fn be a variety and let f : X → Fm be a polynomial map.
The graph of f is

graph (f) =
{

(x, f(x))
∣∣x ∈ X} ⊆ X × Fm ⊆ Fn+m .

5.13 Note: The graph of a polynomial map f : X → Fn is a variety and graph (f) ∼= X.

Proof: Say X = V (S) where S ⊆ F[x1, · · · , xn], and say f is given by f = (f1, · · · , fm) ∈
F[x1, · · · , xn]m. Then we have graph (f) = V (T ) ⊆ Fn+m where T = S ∪ {y − f(x)} =
S ∪ {y1 − f1(x), · · · , ym − fm(x)} ⊆ F[x1, · · · , xn, y1, · · · , ym], so graph (f) is a variety.
And the maps g : X → graph (f) and h : graph (f) → X given by g(x) = (x, f(x)) and
h(x, y) = x are inverses, so X ∼= graph (f).

5.14 Definition: Let X and Y be affine varieties, and let f : X → Y be a polynomial
map. Define the pullback of f to be the map f∗ : A(Y )→ A(X) given by f∗(g) = g ◦ f .
Note that f∗ is an F-algebra homomorphism since f∗(g + h) = (g + h) ◦ f = g ◦ f + h ◦ f
and f∗(gh) = (gh) ◦ f = (g ◦ f)(h ◦ f) and f∗(cg) = (cg) ◦ f = c(g ◦ f) for all g, h ∈ A(Y )
and c ∈ F.
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5.15 Theorem: Let X and Y be affine varieties.
(1) The map f 7→ f∗ gives a bijective correspondence between the set of polynomial maps
from X to Y and the set of F-algebra homomorphisms from A(Y ) to A(X).
(2) If f : X → X is the identity then f∗ : A(X)→ A(X) is the identity, and if f : X → Y
and g : Y → Z then (g ◦ f)∗ = f∗◦ g∗.
(3) X ∼= Y if and only if A(Y ) ∼= A(X).

Proof: Say X ⊆ Fn and Y ⊆ Fm. Let φ : A(Y )→ A(X) be an F-algebra homomorphism.
We must show that there exists a unique polynomial map f : X → Y with f∗ = φ.

If such a polynomial map f exists, then we must have f∗(h) = φ(h) for all h ∈ A(Y ),
that is h ◦ f = φ(h) for all h ∈ A(Y ). In particular, we must have fi = yi ◦ f = φ(yi) for
each i = 1, · · ·m, where yi ∈ A(Y ). This shows that the map f , if it exists, is unique, and
must be given by f =

(
φ(y1), · · · , φ(ym)

)
.

Now, choose polynomials fi ∈ F[x1, · · · , xn] so that φ(yi) = fi ∈ A(X), and then set
f = (f1, · · · , fm) ∈ F[x1, · · · , xn]m. Then f defines a polynomial map f : X → Fm. We
shall show that f(X) ⊆ Y so that f : X → Y and that f∗ = φ.

Since φ is an F-algebra homomorphism, for any g =
∑
c
k1,···,km

y1
k1 · · · ymkm in

F[y1, · · · , ym] we have φ(g) =
∑
c
k1,···,km

φ(y1)k1 · · ·φ(ym)km =
∑
c
k1,···,km

f1
k1 · · · fmkm =

g ◦ f = f∗(g) ∈ A(X), thus φ = f∗.
It remains to show that we have f(X) ⊆ Y . Let x ∈ X. Then for any g ∈ I(Y )

we have g = 0 ∈ A(Y ) so g ◦ f = f∗g = φ(g) = φ(0) = 0 ∈ A(X), and so g(f(x)) = 0.
Since g(f(x)) = 0 for all g ∈ I(Y ), we have f(x) ∈ V (I(Y )) = Y . This shows that indeed
f(X) ⊆ Y so f : X → Y , and completes the proof of part (1).

Part (2) is easy, and part (3) follows from parts (1) and (2).

5.16 Corollary: Let X and Y be affine varieties. If X ∼= Y then X is irreducible if and
only if Y is irreducible.

Proof: If X ∼= Y then we have A(X) ∼= A(Y ) so X is irreducible ⇐⇒ I(X) is prime ⇐⇒
A(X) is an integral domain ⇐⇒ A(Y ) is an integral domain ⇐⇒ I(Y ) is prime ⇐⇒
Y is irreducible.

5.17 Example: Let F be infinite. Show that the twisted cubic X = V (y−x2, z−x3) ⊆ F2

is irreducible.

Solution: In example 5.11 we saw that X ∼= F. Since F is infinite, F is irreducible, and so
X is irreducible, too.

5.18 Example: Let F be an infinite field. Find the irreducible components of the variety
X = V (x2 − yz, xz − x) ⊆ F3.

Solution: Let (x, y, z) ∈ X. We have xz − x = 0 so x(z − 1) = 0 so x = 0 or z = 1. We
also have x2 = yz, so when x = 0 we have yz = 0 so that y = 0 or z = 0, and when z = 1
we have x2 = y. Thus X = V (x, y)∪ V (x, z)∪ V (z− 1, y− x2), a union of two lines and a
parabola in F3. Since V (x, y) ≡ F and V (x, z) ≡ F and V (z−1, y−x2) ≡ V (y−x2) ⊆ F2,
these three varieties are all irreducible, so they are the irreducible components of X.
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5.19 Definition: Let X and Y be affine varieties and let f : X → Y be a polynomial
map. We say that f is dominant when f(X) is dense in Y , that is when f(X) = Y ,
and we say that f has a left polynomial inverse when there exists a polynomial map
g ∈ F[y1, · · · , ym]n such that g

(
f(x)

)
= x for all x ∈ X.

5.20 Theorem: Let f : X → Y be a polynomial map between affine varieties, so we have
f∗ : A(Y )→ A(X). Then

(1) f∗ is injective if and only if f is dominant, and
(2) f∗ is surjective if and only if f has a left polynomial inverse.

Proof: Suppose that f∗ is injective. Then for g ∈ F[x1, · · · , xn] we have g ∈ I(f(X)) ⇐⇒
g(f(x)) = 0 for all x ∈ X ⇐⇒ φ(g) = 0 ∈ AX ⇐⇒ g = 0 ∈ A(Y ) ⇐⇒ g ∈ I(Y ), so

I(f(X)) = I(Y ) and hence f(X) = V (I(f(X))) = V (I(Y )) = Y .
Conversely, suppose that f is dominant. Then for g ∈ A(Y ) given by g ∈ F[y1, · · · , ym]

we have φ(g) = 0 ∈ A(X) ⇐⇒ g(f(x)) = 0 for all x ∈ X ⇐⇒ g(y) = 0 for all

y ∈ f(X) ⇐⇒ g ∈ I(f(X)) = I
(
f(X)

)
= I(Y ) ⇐⇒ g = 0 ∈ A(Y ), so φ is injective.

Now suppose that f∗ is surjective. For each i, choose gi ∈ F[y1, · · · , ym] so that
f∗(gi) = xi ∈ A(X), that is gi(f(x)) = xi for all x ∈ X. Let g = (g1, · · · , gn). Then
g(f(x)) = x for all x ∈ X, so g is a left polynomial inverse for f .

Suppose, conversely, that f has a left polynomial inverse, say g ∈ F[y1, · · · , ym]n.
Given h ∈ A(X), extend h to h ∈ F[x1, · · · , xn] and set k = h ◦ g ∈ F[y1, · · · , ym]n. Then
for k ∈ A(Y ), we have f∗(k) = k ◦ f = h ◦ g ◦ f = h ∈ A(X). Thus f∗ is surjective.

5.21 Example: Let F be an infinite field. Let X = M≤1(2,F) = V (x1x4 − x2x3) ⊆ F4.
Show that X is irreducible.

Solution: Define f : F3 → X by f(t1, t2, t3) =

(
t1 t2
t1t3 t2t3

)
. We claim that f is dominant.

Let x =

(
x1 x2
x3 x4

)
∈ X. If x ∈ f(F3) then of course x ∈ f(F3), so suppose x /∈ f(F3).

Notice that this implies that the first row of x is zero and the second row of x is non-
zero. Let g ∈ I(f(F3)) so that g

(
f(t1, t2, t3)

)
= 0 for all t1, t2, t3. Then in particular,

g
(
f
(
ε x3, ε x4,

1
ε

))
= g

(
εx3 εx4
x3 x4

)
= 0 for all ε 6= 0. Since F is infinite, this implies

that g

(
εx3 εx4
x3 x4

)
= 0 ∈ F[ε] and in particular that g(x) = g

(
0 0
x3 x4

)
= 0. Since

g ∈ I(f(F3)) was arbitrary, we have x ∈ V (I(f(F3))) = f(F3). Thus f is dominant.
Since f is dominant, f∗ : A(X) → A(F3) is injective, and since A(F3) = F[t1, t2, t3]

is an integral domain, A(X) must also be an integral domain. So I(X) is prime, and X is
irreducible.

5.22 Example: Let F be infinite and let X = V (y2 − x3) ⊆ F2. Prove that X 6∼= F.

Solution: The map f : F → X given by f(t) = (t2, t3) is surjective and hence dominant,
so it induces an inclusion f∗ : A(X)→ F[t] which is given by f∗(g(x, y)) = g(t2, t3). Thus
A(X) ∼= f∗(A(X)) =

{
g(t2, t3) ∈ F[t]

∣∣g ∈ F[x, y]
}

. Notice that the elements x, y ∈ A(X)
are both irreducible since f∗(x) = t2 and f∗(y) = t3 are both irreducible in f∗(A(X)).
But we have x3 = y2 ∈ A(X), so A(X) is not a unique factorization domain, and hence
we cannot have A(X) ∼= F[t]. Thus X 6∼= F.
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