

4. Affine Maps and Affine Equivalence

4.1 Definition: Recall again that an **affine space** in \mathbf{F}^n is a set of the form

$$p + V = \{p + v \mid v \in V\}$$

for some $p \in \mathbf{F}^n$ and some vector space V in \mathbf{F}^n . Verify that for any points $p, q \in \mathbf{F}^n$ and for any vector space $V, W \subseteq \mathbf{F}^n$, we have $p + V = q + W \iff (q \in p + V \text{ and } V = W)$. In particular, the vector space V is uniquely determined by the affine space $p + V$, so it makes sense to call V the **associated vector space** of the affine space $p + V$, and to define the **dimension** of the affine space $X = p + V$, denoted by $\dim(X)$, to be the dimension of the vector space V over the field \mathbf{F} . An affine space of dimension 0 is called a **point**, an affine space of dimension 1 is a **line**, and an affine space of dimension 2 is a **plane**.

4.2 Definition: An **affine map** from \mathbf{F}^n to \mathbf{F}^m is a function $f : \mathbf{F}^n \rightarrow \mathbf{F}^m$ of the form

$$f(x) = Ax + b$$

for some $m \times n$ matrix A with entries in \mathbf{F} and some vector $b \in \mathbf{F}^m$. Notice that the matrix A and the vector b are uniquely determined from f ; indeed $b = f(0)$ and A is determined by $Ax = f(x) - f(0)$ for all x (so A is the matrix with columns $f(e_i) - f(0)$, where the e_i are the standard basis vectors in \mathbf{F}^n). We call the matrix A the **associated matrix** of the affine map f , and we define the **rank** of f to be the rank of the matrix A . Notice that an affine map $f : \mathbf{F}^n \rightarrow \mathbf{F}^m$ is bijective if and only if $n = m$ and its associated matrix is invertible. An affine equivalence $f : \mathbf{F}^n \rightarrow \mathbf{F}^n$ is called an **affine change of coordinates**.

4.3 Definition: Let $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^m$ be varieties. If $f : \mathbf{F}^n \rightarrow \mathbf{F}^m$ is an affine map and if $f(X) \subseteq Y$ then f restricts to a map $f : X \rightarrow Y$, and such a map is called an **affine map** from X to Y . An **affine equivalence** from X to Y is a bijective affine map $f : X \rightarrow Y$ whose inverse $g : Y \rightarrow X$ is also affine. We say that X and Y are **(affinely) equivalent** and we write $X \equiv Y$, if there exists an affine equivalence from X to Y .

4.4 Example: Let $X \subseteq \mathbf{F}^n$ and $Y \subseteq \mathbf{F}^m$ be affine spaces. Show that $X \equiv Y \iff \dim(X) = \dim(Y)$.

Solution: Suppose that $X \equiv Y$. Let $f : \mathbf{F}^n \rightarrow \mathbf{F}^m$ be an affine map inducing an equivalence $f : X \rightarrow Y$, and say $f(x) = Ax + b$. Let V and W be the vector spaces associated to X and Y respectively. Define $g : \mathbf{F}^n \rightarrow \mathbf{F}^m$ by $g(x) = Ax$. Verify that the restriction of g to V gives a vector space isomorphism $g : V \rightarrow W$. Since V and W are isomorphic, they must have the same dimension. Thus $\dim(X) = \dim(Y)$.

Conversely, say $X = p + V \subseteq \mathbf{F}^n$ and $Y = q + W \subseteq \mathbf{F}^m$ and suppose that $\dim(V) = \dim(W) = r$. Choose an (ordered) basis $\{v_1, \dots, v_r\}$ for V and extend it to a basis $\{v_1, \dots, v_n\}$ for \mathbf{F}^n . Choose a basis $\{w_1, \dots, w_r\}$ for W and extend it to a basis $\{w_1, \dots, w_m\}$ for \mathbf{F}^m . Let A be any $m \times n$ matrix such that $Av_i = w_i$ for $i = 1, \dots, r$ (if P is the $n \times n$ matrix with columns v_i and if Q is any $m \times n$ matrix whose first r columns are the vectors w_i , then $A = QP^{-1}$ will work), and let B be any $n \times m$ matrix such that $Bw_i = v_i$ for $i = 1, \dots, r$. Define $h : \mathbf{F}^n \rightarrow \mathbf{F}^m$ and $k : \mathbf{F}^m \rightarrow \mathbf{F}^n$ by $h(x) = Ax$ and $k(y) = By$. Then $h : V \rightarrow W$ is a vector space isomorphism with inverse $k : W \rightarrow V$. Define $f : \mathbf{F}^n \rightarrow \mathbf{F}^m$ and $g : \mathbf{F}^m \rightarrow \mathbf{F}^n$ by $f(x) = A(x - p) + q$ and $g(y) = B(y - q) + p$. Verify that $f : X \rightarrow Y$ is bijective with inverse $g : Y \rightarrow X$.

4.5 Example: By the diagonalizability of symmetric bilinear forms and by Sylvester's Law of Inertia, it can be shown that for any polynomial $f \in \mathbf{R}[x, y]$ of degree 2, the variety $V(f) \subseteq \mathbf{R}^2$ is equivalent to one of the following varieties: the circle $V(x^2 + y^2 - 1)$, the hyperbola $V(x^2 - y^2 - 1)$, the parabola $V(y - x^2)$, the pair of intersecting lines $V(x^2 - y^2)$, the pair of parallel lines $V(y^2 - 1)$, the single line $V(y^2) = V(y)$, the single point $V(x^2 + y^2) = \{(0, 0)\}$ or the empty set $V(x^2 + y^2 + 1) = V(y^2 + 1) = \emptyset$.

4.6 Example: Let $X = V(y - x^2) \subseteq \mathbf{R}^2$ and let $Y = V(u^2 + v^2 + 2uv - 2u - 3v + 1) \subseteq \mathbf{R}^2$. Find an affine equivalence $f : X \rightarrow Y$.

Solution: Note that $u^2 + v^2 + 2uv - 2u - 3v + 1 = (u + v - 1)^2 - v$, and we have $(x, y) = (u + v - 1, v)$ if and only if $(u, v) = (x - y + 1, y)$, so the affine maps $f : X \rightarrow Y$ and $g : Y \rightarrow X$ given by $f(x, y) = (x - y + 1, y)$ and $g(u, v) = (u + v - 1, v)$ are inverses.

4.7 Example: It can be shown, again by the diagonalizability of symmetric bilinear forms, that for any $f \in \mathbf{C}[x, y]$ of degree 2 the variety $V(f) \subseteq \mathbf{C}^2$ is equivalent to one of the following varieties: the circle $V(x^2 + y^2 - 1)$, the parabola $V(y - x^2)$, the pair of intersecting lines $V(x^2 - y^2)$ and the single line $V(y^2) = V(y)$.

4.8 Example: Let $X = V(x^2 + y^2 - 1) \subseteq \mathbf{C}^2$ and let $Y = V(u^2 - v^2 + 1) \subseteq \mathbf{C}^2$. Find an affine equivalence $f : X \rightarrow Y$.

Solution: Note that $Y = V(-u^2 + v^2 - 1)$ and $-u^2 + v^2 - 1 = (iu)^2 + v^2 - 1$, so we can define affine equivalence $f : X \rightarrow Y$ and its inverse $g : Y \rightarrow X$ by $f(x, y) = (ix, y)$ and $g(u, v) = (iu, v)$.