
4. Affine Maps and Affine Equivalence

4.1 Definition: Recall again that an affine space in Fn is a set of the form

p + V =
{
p + v

∣∣v ∈ V
}

for some p ∈ Fn and some vector space V in Fn. Verify that for any points p, q ∈ Fn and
for any vector space V,W ⊆ Fn, we have p+V = q+W ⇐⇒

(
q ∈ p+V and V = W

)
. In

particular, the vector space V is uniquely determined by the affine space p+V , so it makes
sense to call V the associated vector space of the affine space p + V , and to define the
dimension of the affine space X = p+V , denoted by dim(X), to be the dimension of the
vector space V over the field F. An affine space of dimension 0 is called a point, an affine
space of dimension 1 is a line, and an affine space of dimension 2 is a plane.

4.2 Definition: An affine map from Fn to Fm is a function f : Fn → Fm of the form

f(x) = Ax + b

for some m×n matrix A with entries in F and some vector b ∈ Fm. Notice that the matrix
A and the vector b are uniquely determined from f ; indeed b = f(0) and A is determined
by Ax = f(x) − f(0) for all x

(
so A is the matrix with columns f(ei) − f(0), where the

ei are the standard basis vectors in Fn
)
. We call the matrix A the associated matrix of

the affine map f , and we define the rank of f to be the rank of the matrix A. Notice that
an affine map f : Fn → Fm is bijective if and only if n = m and its associated matrix is
invertible. An affine equivalence f : Fn → Fn is called an affine change of coordinates.

4.3 Definition: Let X ⊆ Fn and Y ⊆ Fm be varieties. If f : Fn → Fm is an affine
map and if f(X) ⊆ Y then f restricts to a map f : X → Y , and such a map is called an
affine map from X to Y . An affine equivalence from X to Y is a bijective affine map
f : X → Y whose inverse g : Y → X is also affine. We say that X and Y are (affinely)
equivalent and we write X ≡ Y , if there exists an affine equivalence from X to Y .

4.4 Example: Let X ⊆ Fn and Y ⊆ Fm be affine spaces. Show that X ≡ Y ⇐⇒
dim(X) = dim(Y ).

Solution: Suppose that X ≡ Y . Let f : Fn → Fm be an affine map inducing an equivalence
f : X → Y , and say f(x) = Ax + b. Let V and W be the vector spaces associated to X
and Y respectively. Define g : Fn → Fm by g(x) = Ax. Verify that the restriction of g
to V gives a vector space isomorphism g : V → W . Since V and W are isomorphic, they
must have the same dimension. Thus dim(X) = dim(Y ).

Conversely, say X = p + V ⊆ Fn and Y = q + W ⊆ Fm and suppose that dim(V ) =
dim(W ) = r. Choose an (ordered) basis {v1, · · · , vr} for V and extend it to a ba-
sis {v1, · · · , vn} for Fn. Choose a basis {w1, · · · , wr} for W and extend it to a basis
{w1, · · · , wm} for Fm. Let A be any m× n matrix such that Avi = wi for i = 1, · · · , r

(
if

P is the n×n matrix with columns vi and if Q is any m×n matrix whose first r columns
are the vectors wi, then A = QP−1 will work

)
, and let B be any n×m matrix such that

Bwi = vi for i = 1, · · · , r. Define h : Fn → Fm and k : Fm → Fn by h(x) = Ax and
k(y) = By. Then h : V → W is a vector space isomorphism with inverse k : W → V .
Define f : Fn → Fm and g : Fm → Fn by f(x) = A(x − p) + q and g(y) = B(y − q) + p.
Verify that f : X → Y is bijective with inverse g : Y → X.
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4.5 Example: By the diagonalizability of symmetric bilinear forms and by Sylvester’s
Law of Inertia, it can be shown that for any polynomial f ∈ R[x, y] of degree 2, the variety
V (f) ⊆ R2 is equivalent to one of the following varieties: the circle V (x2 + y2 − 1), the
hyperbola V (x2−y2−1), the parabola V (y−x2), the pair of intersecting lines V (x2−y2), the
pair of parallel lines V (y2−1), the single line V (y2) = V (y), the single point V (x2 +y2) =
{(0, 0)} or the empty set V (x2 + y2 + 1) = V (y2 + 1) = ∅.

4.6 Example: Let X = V (y−x2) ⊆ R2 and let Y = V (u2 +v2 +2uv−2u−3v+1) ⊆ R2.
Find an affine equivalence f : X → Y .

Solution: Note that u2 + v2 + 2uv − 2u− 3v + 1 = (u + v − 1)2 − v, and we have (x, y) =
(u + v − 1, v) if and only if (u, v) = (x − y + 1, y), so the affine maps f : X → Y and
g : Y → X given by f(x, y) = (x− y + 1, y) and g(u, v) = (u + v − 1, v) are inverses.

4.7 Example: It can be shown, again by by the diagonalizability of symmetrc bilinear
forms, that for any f ∈ C[x, y] of degree 2 the variety V (f) ⊆ C2 is equivalent to one
of the following varieties: the circle V (x2 + y2 − 1), the parabola V (y − x2), the pair of
intersecting lines V (x2 − y2) and the single line V (y2) = V (y).

4.8 Example: Let X = V (x2 + y2 − 1) ⊆ C2 and let Y = V (u2 − v2 + 1) ⊆ C2. Find an
affine equivalence f : X → Y .

Solution: Note that Y = V (−u2 + v2 − 1) and −u2 + v2 − 1 = (iu)2 + v2 − 1, so we can
define affine equivalence f : X → Y and its inverse g : Y → X by f(x, y) = (ix, y) and
g(u, v) = (iu, v).
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