
3. Points and Irreducible Varieties

3.1 Definition: Let R be a commutative ring. An ideal P in R is called prime if P 6= R
and for all a, b ∈ R, if ab ∈ P then a ∈ P or b ∈ P . An ideal M in R is called maximal
if M 6= R and there is no ideal A with M ⊂6= A ⊂6= R. Recall that every maximal ideal

in R is prime. Also recall that for any ideal A ⊂6= R, A is prime if and only if R/A is an

integral domain, and A is maximal if and only if R/A is a field. Recall also that in a
unique factorization domain such as F[x1, · · · , xn], an element f is irreducible if and only
if the principal ideal 〈f〉 is prime.

3.2 Theorem: (The Correspondence Between Points and Maximal Ideals) Let X be a
variety in Fn. Then X consists of a single point if and only if I(X) is maximal. Indeed,
if a = (a1, · · · , an) ∈ Fn and M =

〈
x1 − a1, · · · , xn − an

〉
so that {a} = V (M), then

I({a}) = M and M is maximal.

Proof: Note that if I(X) is maximal then by the correspondence between varieties and
closed ideals, X must be minimal, which means that X must consist of a single point.

Conversely, let X = {a} and let M =
〈
x1−a1, · · · , xn−an

〉
so that X = {a} = V (M).

We claim that I(X) = M . We have I(X) = I(V (M)) and we know that M ⊆ I(V (M)).
We need to show that I(V (M)) ⊆ M . Suppose that f ∈ I(V (M)) = I({a}) so f(a) = 0.
Write f in the form f =

∑
c
k1,···,kn

(x1−a1)k1 · · · (xn−an)kn
(
this can be done by replacing

each occurence of xi in f by ((xi − ai) + ai) and expanding
)
. Then since f(a) = 0, we

have c
0,···,0 = 0 so that f ∈

〈
x1 − a1, · · · , xn − an

〉
= M . Thus I(X) = M , as claimed.

It remains to show that M is a maximal ideal. Define φ : F[x1, · · · , xn]
/
M → F by

φ(f +M) = f(a). Verify that φ is a well-defined bijective ring homomorphism, so we have
F[x1, · · · , xn]

/
M ∼= F, which is a field, and so M is maximal.

3.3 Definition: Let X be a non-empty variety in Fn. X is called irreducible if it
cannot be decomposed into a union X = Y ∪Z of two proper subvarieties Y ⊂6= X, Z ⊂6= X.

Otherwise, X is called reducible

3.4 Example: In R2, the varieties V (xy), V ((y−x2)(x+y−2)) and V (y−x2, x+y−2) are
all reducible since they can be decomposed into proper subvarieties as V (xy) = V (x)∪V (y),
V ((y−x2)(x+y−2)) = V (y−x2)∪V (x+y−2) and V (y−x2, x+y−2) = {(−2, 4)}∪{(1, 1)}
= V (x+ 2, y − 4) ∪ V (x− 1, y − 1).

3.5 Example: If F is a finite field, then the irreducible varieties in Fn are precisely the
one-point sets.

3.6 Theorem: (The Correspondence Between Irreducible Varieties and Prime Ideals) Let
X be a variety in Fn. Then X is irreducible if and only if I(X) is prime.

Proof: Suppose that X is irreducible. Note that X 6= ∅ implies that I(X) 6= F[x1, · · · , xn].
Suppose that f /∈ I(X) and g /∈ I(X). Choose a ∈ X so that f(a) 6= 0 and choose b ∈ X
so that g(b) 6= 0. Let Y = X ∩V (f) and let Z = X ∩V (g). Then Y ⊂6= X (since a ∈ X \Y )

and Z ⊂6= X (since b ∈ X \Z) so, since X is irreducible, we must have Y ∪Z ⊂6= X. Choose

c ∈ X \ (Y ∪ Z). Since c /∈ Y we have f(c) 6= 0, and since c /∈ Z we have g(c) 6= 0, and so
(fg)(c) 6= 0. Thus fg /∈ I(X). This shows that I(X) is prime.
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Conversely, suppose that I(X) is prime. Note that I(X) 6= F[x1, · · · , xn] implies that
X 6= ∅. Suppose, for a contradiction, that X is reducible, say X = Y ∪ Z where Y
and Z are proper subvarieties of X. Since Y ⊂6= X and Z ⊂6= X we have I(X) ⊂6= I(Y ) and

I(X) ⊂6= I(Z), so we can choose f ∈ I(Y ) \ I(X) and g ∈ I(Z) \ I(X). Since f ∈ I(Y )

and g ∈ I(Z) we have fg ∈ I(Y ∪ Z) = I(X). Since I(X) is prime we have f ∈ I(X) or
g ∈ I(X), which contradicts our choice of f and g. Thus X is irreducible.

3.7 Example: Recall that if F is an infinite field and X = V (y − f(x)) ⊂ F2 is the
graph of f ∈ F[x], then I(X) = 〈y − f(x)〉. Since y − f(x) is irreducible in F[x, y] (since
it is monic and linear in y), the ideal I(X) = 〈y − f(x)〉 is prime. Thus X is irreducible.
Similarly, varieties of the form Y = V (x− f(y)) are irreducible.

3.8 Example: Verify (using an inductive argument) that if F is an infinite field then
I(Fn) = {0}. Since {0} is a prime ideal, it follows that Fn is irreducible. On the other
hand, if F is finite then Fn is a finite set of points, which is reducible.

3.9 Theorem: (The Decomposition of a Variety into Irreducible Components) Every
nonempty affine variety X can be decomposed as a finite union X = X1 ∪ · · · ∪ Xl of
irreducible varieties, with no Xi being a subset of any Xj when i 6= j. This decomposition
is unique up to order, and the varieties Xi are called the irreducible components of X.

Proof: First we claim that for any reducible variety X, we can find varieties Y ⊂6= X and

Z ⊂6= X with Z irreducible such that X = Y ∪ Z. Let X be a reducible variety, and say

X = Y1 ∪ Z1 where Y1 ⊂6= X and Z1
⊂6= X. If Z1 is irreducible then we are done (with

Y = Y1 and Z = Z1). Otherwise say Z1 = Y2 ∪ Z3 with Y2 ⊂6= Z1 and Z2
⊂6= Z2. Then

X = Y1 ∪ Y2 ∪ Z3. If Z3 is irreducible we are done (with Y = Y1 ∪ Y2 and Z = Z3).
Otherwise say Z3 = Y3 ∪Z4, and so on. Eventually this process must end, since otherwise
we would obtain an infinite chain Z1

⊃6= Z2
⊃6= · · · of varieties, and hence an infinite chain

I(Z1) ⊂6= I(Z2) ⊂6= · · · of ideals, which is impossible by the Hilbert basis theorem.

Now suppose that X is any nonempty affine variety. We shall show the existence
of the required decomposition. If X is irreducible then we are done (with X1 = X).
Otherwise, by the claim proven above, we can say X = X1∪Y2 with X1

⊂6= X, Y2 ⊂6= X and

X1 irreducible. If Y2 is irreducible then we are done (with X2 = Y2). Otherwise we can
say Y2 = X2 ∪ Y3 with X2

⊂6= Y2, Y3 ⊂6= Y2 and X2 irreducible. If Y3 is irreducible then we

are done (with X3 = Y3). Otherwise we continue the procedure. As above, the procedure
must end, so we obtain X = X1 ∪X2 ∪ · · ·Xl for some irreducible Xi. By discarding some
of the varieties Xi if necessary, we can assume that no Xi is a subset of any other Xj .

Finally we show the uniqueness of this kind of decomposition. Suppose that X admits
two such decompositions, say X = X1 ∪ · · · ∪Xl = Y1 ∪ · · · ∪ Ym. Fix an index i. We have
Xi = X ∩Xi = (Y1 ∪ · · · ∪ Ym) ∩Xi = (Y1 ∩Xi) ∪ · · · ∪ (Ym ∩Xi). Since Xi is irreducible
we must have Yj ∩Xi = Xi for some j, and so Yj ⊆ Xi. By a similar argument, we also
have Xk ⊆ Yj for some k. Then Xk ⊆ Xi which implies that k = i. But then we have
Xk = Xi ⊆ Yj ⊆ Xi which implies that Yj = Xi. Thus each Xi is equal to some Yj and
similarly each Yj is equal to some Xi.

3.10 Example: Since, for infinite fields, varieties of the form V (y−f(x)) and V (x−f(y))
are irreducible, and since points are irreducible varieties, the decompositions of example
3.4 were in fact decompositions into irreducible components.
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3.11 Theorem: (The Classification of Irreducible Varieties in the Affine Plane) Let F be
an infinite field. Let f, g ∈ F[x, y]. Then

(1) If f and g have no common factors then V (f) ∩ V (g) is finite.
(2) If f is irreducible and X = V (f) is an infinite set then X is irreducible with I(X) = 〈f〉.
(3) The irreducible varieties in F2 are the one-point sets, the infinite sets of the form V (f)
with f irreducible, and F2 itself.

Proof: Before beginning the proof, we recall that if R is a unique factorization domain
with quotient field Q, then if a polynomial f ∈ R[x] factors over Q as f = hk, where
h, k ∈ Q[x], then f factors over R as f = uh̄k̄, where u is a greatest common divisor of the
coefficients of f in R and where h̄ ∈ R[x] is obtained from h ∈ Q[x] by first multiplying h
by the least common multiple of the denominators of its coefficients, and then by dividing
the resulting polynomial by the greatest common divisor of its coefficients. In particular,
for f, g ∈ R[x], if f and g have a common factor h ∈ Q[x], then they also have a common
factor h̄ ∈ R[x].

To prove part 1, suppose that f and g have no common factors in F[x][y]. Then
f and g have no common factors in F(x)[y]. Using the Euclidean Algorithm we can
find s, t ∈ F(x)[y] such that f(x, y)s(x, y) + g(x, y)t(x, y) = 1 ∈ F(x)[y]. Multiply this
by a common multiple r(x) of the denominators of all the coefficients of s and t to get
f(x, y)p(x, y) + g(x, y)q(x, y) = r(x) ∈ F[x, y]. Then for every (x, y) ∈ V (f) ∩ V (g) we
have f(x, y) = 0 and g(x, y) = 0 so that r(x) = 0. Since r can only have finitely many
roots, there are only finitely many values of x for which (x, y) ∈ V (f) ∩ V (g) for some y.
Similarly, there are finitely many values of y for which (x, y) ∈ V (f) ∩ V (g) for some x.

To prove part 2, let f be irreducible and suppose that X = V (f) is infinite. We
have 〈f〉 ⊆ I(V (〈f〉)) = I(X). Let g ∈ I(X). Then V (f) = X = V (I(X)) ⊆ V (g) so
V (f) ∩ V (g) = V (f), which is infinite. By part 1, f and g must have a common factor.
Since f is irreducible, this implies that f is a factor of g, so g ∈ 〈f〉. This shows that
I(X) = 〈f〉. Since f is irreducible, 〈f〉 is prime, and since I(X) = 〈f〉 is prime, X is
irreducible.

Finally, we prove part 3. Let X ⊂ F2 be an irreducible variety. If X is finite, then
since X is irreducible, X can only be a one-point set. Suppose that X is infinite. If
I(X) = {0} then X = F2. Suppose that I(X) 6= {0}. Choose 0 6= h ∈ I(X). Note that
h is not constant, since otherwise we would have X = ∅. Since X is irreducible, I(X) is
prime, and so some irreducible factor, say f , of h must also lie in I(X). We claim that
I(X) = 〈f〉. Indeed, for g ∈ I(X), we have X ⊆ V (g) and we have X ⊆ V (f), so that
X ⊆ V (f) ∩ V (g), and hence V (f) ∩ V (g) is infinite and so, as in the proof of part 2, we
must have g ∈ 〈f〉.

3.12 Example: In R2, the varieties V (x2+y2−1), V (x2−y2−1) and V (y2−x3+x2) are
irreducible, since they are all infinite sets and since the polynomials x2 +y2−1, x2−y2−1
and y2 − x3 + x2 are all irreducible in F[x, y].

3.13 Example: Let f(x, y) = (x4 − y4)(x5y2 + x3y3 − x4y + x4) ∈ R[x, y]. Find the
irreducible components of V (f) ⊂ R2.

Solution: We can factor f as f(x, y) = (x2 + y2)(x+ y)(x− y)(x3)(y3 + x2y − xy + x), so
the irreducible components of V (f) are V (x+ y), V (x− y), V (x) and V (y3 +x2−xy+x).
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