3. Points and Irreducible Varieties

3.1 Definition: Let R be a commutative ring. An ideal P in R is called prime if P # R
and for all a,b € R, if ab € P then a € P or b € P. An ideal M in R is called maximal
if M # R and there is no ideal A with M % A % R. Recall that every maximal ideal

in R is prime. Also recall that for any ideal A % R, A is prime if and only if R/A is an

integral domain, and A is maximal if and only if R/A is a field. Recall also that in a
unique factorization domain such as Flzq,---,z,], an element f is irreducible if and only
if the principal ideal (f) is prime.

3.2 Theorem: (The Correspondence Between Points and Maximal Ideals) Let X be a
variety in F". Then X consists of a single point if and only if I(X) is maximal. Indeed,
ifa = (a1, --,a,) € F" and M = (@1 — a1, -+, 2, — a,) so that {a} = V(M), then
I({a}) = M and M is maximal.

Proof: Note that if I(X) is maximal then by the correspondence between varieties and
closed ideals, X must be minimal, which means that X must consist of a single point.
Conversely, let X = {a} and let M = (z1—ay, -,z —ay) so that X = {a} = V(M).
We claim that I(X) = M. We have I(X) = I(V(M)) and we know that M C I(V(M)).
We need to show that I(V(M)) C M. Suppose that f € I(V(M)) = I({a}) so f(a) = 0.
Write f in the form f =) Cor o, (z1—a1)** - (zn—a,)" (this can be done by replacing

each occurence of z; in f by ((; — a;) + a;) and expanding). Then since f(a) = 0, we

have o0 =0 so that f € <ac1 —al,--‘,xn—an> = M. Thus I(X) = M, as claimed.

It remains to show that M is a maximal ideal. Define ¢ : F[zy, -+, z,]/M — F by
o(f+ M) = f(a). Verify that ¢ is a well-defined bijective ring homomorphism, so we have
Flzq,--- ,mn]/M >~ F, which is a field, and so M is maximal.

3.3 Definition: Let X be a non-empty variety in F”. X is called irreducible if it
cannot be decomposed into a union X = Y UZ of two proper subvarieties Y’ % X, Z % X.

Otherwise, X is called reducible

3.4 Example: In R?, the varieties V (zy), V((y—2?)(z+y—2)) and V (y—2%, 2+y—2) are
all reducible since they can be decomposed into proper subvarieties as V (zy) = V (x)UV (y),
V((y—2?)(z+y—2)) = V(y—a®)UV(z+y—2) and V(y—2? z+y—2) = {(-2,4)}u{(1, 1)}
=V(+2,y—4)UV(x—1y—1).

3.5 Example: If F is a finite field, then the irreducible varieties in F" are precisely the
one-point sets.

3.6 Theorem: (The Correspondence Between Irreducible Varieties and Prime Ideals) Let
X be a variety in F". Then X is irreducible if and only if I(X) is prime.

Proof: Suppose that X is irreducible. Note that X # () implies that I(X) # F[zq,- -, 2]
Suppose that f ¢ I(X) and g ¢ I(X). Choose a € X so that f(a) # 0 and choose b € X
so that g(b) #0. Let Y = XNV (f) and let Z = XNV (g). Then Y % X (sincea € X \Y)
and Z % X (since b € X \ Z) so, since X is irreducible, we must have Y U Z % X. Choose

ce X\ (YUZ). Since c ¢ Y we have f(c) # 0, and since ¢ ¢ Z we have g(c) # 0, and so
(fg)(c) # 0. Thus fg ¢ I(X). This shows that [(X) is prime.
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Conversely, suppose that I(X) is prime. Note that I(X) # F[z1,-- -, x,] implies that
X # (. Suppose, for a contradiction, that X is reducible, say X = Y U Z where Y
and Z are proper subvarieties of X. Since Y % X and Z % X we have I(X) % I(Y) and

I(X) % I1(Z), so we can choose f € I(Y)\ I(X) and g € I(Z) \ I(X). Since f € I(Y)
and g € I(Z) we have fg € I(Y UZ) = I(X). Since I(X) is prime we have f € I(X) or
g € I1(X), which contradicts our choice of f and g. Thus X is irreducible.

3.7 Example: Recall that if F is an infinite field and X = V(y — f(z)) C F? is the
graph of f € F|z], then I(X) = (y — f(z)). Since y — f(x) is irreducible in F|z,y| (since
it is monic and linear in y), the ideal I(X) = (y — f(x)) is prime. Thus X is irreducible.
Similarly, varieties of the form Y = V(x — f(y)) are irreducible.

3.8 Example: Verify (using an inductive argument) that if F is an infinite field then
I(F™) = {0}. Since {0} is a prime ideal, it follows that F™ is irreducible. On the other
hand, if F is finite then F™ is a finite set of points, which is reducible.

3.9 Theorem: (The Decomposition of a Variety into Irreducible Components) Every
nonempty affine variety X can be decomposed as a finite union X = X; U--- U X; of
irreducible varieties, with no X; being a subset of any X; when ¢ # j. This decomposition
is unique up to order, and the varieties X; are called the irreducible components of X.

Proof: First we claim that for any reducible variety X, we can find varieties Y’ % X and
A % X with Z irreducible such that X = Y U Z. Let X be a reducible variety, and say
X = Y, U Z; where Y} % X and 7, % X. If Z; is irreducible then we are done (with
Y =Y) and Z = Z;). Otherwise say Z; = Yo U Z3 with Y5 % 7y and Zs % Z5. Then
X =Y1UYyU Zs. If Zs is irreducible we are done (with Y = Y, UY; and Z = Z3).

Otherwise say Z3 = Y3 U Z4, and so on. Eventually this process must end, since otherwise
we would obtain an infinite chain 2, % Zo % -« - of varieties, and hence an infinite chain

I(Zy) % I1(Zs) % -+ of ideals, which is impossible by the Hilbert basis theorem.

Now suppose that X is any nonempty affine variety. We shall show the existence
of the required decomposition. If X is irreducible then we are done (with X; = X).
Otherwise, by the claim proven above, we can say X = X;UY5 with X ; X, Y % X and

X irreducible. If Y5 is irreducible then we are done (with Xo = Y3). Otherwise we can
say Yo = X5 UY3 with X5 % Y5, Y3 % Y, and X5 irreducible. If Y3 is irreducible then we
are done (with X3 = Y3). Otherwise we continue the procedure. As above, the procedure
must end, so we obtain X = X; U X5 U- - X for some irreducible X;. By discarding some
of the varieties X; if necessary, we can assume that no X; is a subset of any other Xj;.

Finally we show the uniqueness of this kind of decomposition. Suppose that X admits
two such decompositions, say X = X;U---UX; =Y, U---UY,,. Fix an index i. We have
X;i=XnX; =W u---uY,)nX,=Y1nX;)U---U(Y,, NX;). Since X is irreducible
we must have Y; N X; = X; for some j, and so Y; C X;. By a similar argument, we also
have X} C Y; for some k. Then X; C X; which implies that £ = 7. But then we have
X = X; CY; C X; which implies that Y; = X;. Thus each X; is equal to some Y; and
similarly each Yj is equal to some X;.

3.10 Example: Since, for infinite fields, varieties of the form V(y— f(z)) and V(z— f(y))
are irreducible, and since points are irreducible varieties, the decompositions of example
3.4 were in fact decompositions into irreducible components.
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3.11 Theorem: (The Classification of Irreducible Varieties in the Affine Plane) Let F be
an infinite field. Let f, g € F|x,y|. Then

(1) If f and g have no common factors then V (f) NV (g) is finite.

(2) If f is irreducible and X = V(f) is an infinite set then X is irreducible with I(X) = (f).
(3) The irreducible varieties in F? are the one-point sets, the infinite sets of the form V (f)
with f irreducible, and F? itself.

Proof: Before beginning the proof, we recall that if R is a unique factorization domain
with quotient field @, then if a polynomial f € R[z] factors over @ as f = hk, where
h,k € Qlx], then f factors over R as f = uhk, where u is a greatest common divisor of the
coefficients of f in R and where h € R[z] is obtamed from h € Q[z] by first multiplying h
by the least common multiple of the denominators of its coefficients, and then by dividing
the resulting polynomial by the greatest common divisor of its coefficients. In particular,
for f,g € R[z], if f and g have a common factor h € Q[z], then they also have a common
factor h € R|x].

To prove part 1, suppose that f and g have no common factors in F[z|[y]. Then
f and g have no common factors in F(x)[y]. Using the Euclidean Algorithm we can
find s,t € F(z)[y] such that f(x,y)s(z,y) + g(z,y)t(z,y) = 1 € F(x)[y]. Multiply this
by a common multiple r(z) of the denominators of all the coefficients of s and t to get
f(z,y)p(z,y) + 9(z,y)q(z,y) = r(z) € Flz,y]. Then for every (z,y) € V(f) NV(g) we
have f(z,y) = 0 and g(x,y) = 0 so that r(z) = 0. Since r can only have finitely many
roots, there are only finitely many values of x for which (z,y) € V(f) NV (g) for some y.
Similarly, there are finitely many values of y for which (x,y) € V(f) NV (g) for some x.

To prove part 2, let f be irreducible and suppose that X = V(f) is infinite. We
have (f) C I(V((f))) = I(X). Let g € I(X). Then V(f) = X = V(I(X)) C V(g) so
V(f)NV(g) = V(f), which is infinite. By part 1, f and ¢g must have a common factor.
Since f is irreducible, this implies that f is a factor of g, so g € (f). This shows that
I(X) = (f). Since f is irreducible, (f) is prime, and since I(X) = (f) is prime, X is
irreducible.

Finally, we prove part 3. Let X C F? be an irreducible variety. If X is finite, then
since X is irreducible, X can only be a one-point set. Suppose that X is infinite. If
I(X) = {0} then X = F2. Suppose that I(X) # {0}. Choose 0 # h € I(X). Note that
h is not constant, since otherwise we would have X = (). Since X is irreducible, I(X) is
prime, and so some irreducible factor, say f, of h must also lie in I(X). We claim that
I(X) = (f). Indeed, for g € I(X), we have X C V(g) and we have X C V(f), so that
X CV(f)nV(g), and hence V(f) NV (g) is infinite and so, as in the proof of part 2, we
must have g € (f).

3.12 Example: In R?, the varieties V(22 +y?—1), V(2?2 —y?—1) and V (y? — 23 +2?) are
irreducible, since they are all infinite sets and since the polynomials z? +y? — 1, 22 —y? — 1
and y? — 2 + 2% are all irreducible in F[z, y].

3.13 Example: Let f(z,y) = (z* — y*)(2%y? + 23y — 2y + 2?) € R[z,y]. Find the
irreducible components of V(f) C R2.

Solution: We can factor f as f(z,y) = (2% + y*)(z + y)(z — y)(2*)(y® + 2%y — vy + x), so
the irreducible components of V(f) are V(z +y), V(x —y), V(x) and V (y3 + 2% — 2y + z).



