
11. Projective Varieties

11.1 Definition: Let W be a vector space over a field F. The projectivization of W is
the set of all 1-dimensional subspaces of W . For 0 6= x ∈W , write [x] = Span

F
{x}. Then

P(W ) =
{

[x]
∣∣0 6= x ∈ V

}
The projectivization of the vector space Fn+1 is called the projective n-space over F,
and denoted by Pn or Pn(F):

Pn(F) =
{

[x]
∣∣0 6= x ∈ Fn+1

}
.

P1(F) is called the projective line and P2(F) is called the projective plane over F. An
element of Pn (which is a line through the origin in Fn+1) is called a point in Pn. If V is
a 2-dimensional subspace of W then the set P(V ) ⊆ P(W ) is called a line in P(W ). More
generally, if V is a (k+1)-dimensional subspace of W , then P(V ) is called a k-dimensional
projective space in P(W ). For each k = 1, 2, · · · , n+ 1, let

Uk =
{

[x1, · · · , xn+1] ∈ Pn
∣∣xk 6= 0

}
.

We can identify Uk with Fn using the kth inclusion map φk : Fn → Uk ⊆ Pn given by

φk(x1, · · · , xk−1, xk+1, · · · , xn+1) = [x1, · · · , xk−1, 1, xk+1, · · · , xn+1]

φk
−1([x1, · · · , xn+1]

)
=
(
x1

xk
, · · · , xk−1

xk
, xk+1

xk
, · · · , xn+1

xk

)
and we can identify Pn \Uk with Pn−1 using the bijection ψk : Pn \Uk → Pn−1 given by

ψk

(
[x1, · · · , xk−1, 0, xk+1, · · · , xn]

)
= [x1, · · · , xk−1, xk+1 · · · , xn] .

For fixed k we sometimes write Pn = Fn ∪Pn−1, where we have made the identifications
Fn = Uk ⊆ Pn and Pn−1 = Pn \Fk, and we then refer to Pn−1 as the projective space
at infinity.

11.2 Example: There is only one 1-dimensional subspace of F, namely F itself, so P0(F)
consists of a single point. Also, fixing k = 1 or 2, we can write P1(F) = F ∪ {∞}, where
we have identified F = Uk and {∞} = P0 = P1 \ Uk.

11.3 Example: The real projective line P1(R) is the set of lines in R2 through the origin.
U1 is the set of all these lines except the y-axis, each of which intersects the line x = 1, and
indeed it is natural to identify U1 with the line x = 1. Similarly it is natural to identify U2,
which is the set of all the lines through the origin except the x-axis, with the line y = 1.
Also, since each line through the origin intersects the unit circle S1 = V (x2+y2−1) at two
antipodal points, we can think of P1(R) as a copy of S1 with antipodal points identified.

11.4 Example: The real projective plane P2(R) is the set of lines through the origin in
R3. The set U1, which is the set of these lines which do not lie in the plane x = 0, can
be identified with the plane x = 1, U2 can be identified with the plane y = 1, and U3 can
be identified with the plane z = 1. We can also visualize P2 as a copy of the unit sphere
S2 = V (x2 + y2 + z2 − 1) with antipodal points identified. The real projective plane is
an example of a non-orientable surface. It was first discovered and studied by artists who
were interested in perspective: if one’s eye is at the origin in R3, then all the points along
a given line through the origin will appear to be coincident and can be identified.
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11.5 Example: The complex projective line P1(C) can be thought of as P1(C) = C ∪
{∞}. It can also be identified with the unit sphere S2, and it is then referred to as
the Riemann sphere. Under this identification, the maps φ1 and φ2 correspond to the
stereographic projections from the north and south poles.

11.6 Example: Let F be the field with n = pk elements. There are n2 − 1 non-zero
points in F2, each of these points spans a 1-dimensional vector space in F2, and each
1-dimensional vector space contains n− 1 non-zero points, so the number of 1-dimensional

spaces in F2 is equal to n2−1
n−1 = n + 1. In other words, the projective line P1(F) consists

of n+ 1 points.

11.7 Definition: A set E ⊆ Fn+1 is called homogeneous if E = {0} or E is a union of
one-dimensional vector spaces in Fn+1. Equivalently, E is homogeneous if for all x ∈ E we
have tx ∈ E for all t ∈ F, or again equivalently, if for all 0 6= x ∈ E we have [x] ⊆ E. There
is a natural correspondence between homogeneous sets in Fn+1 and sets in Pn: given a
homogeneous set E ⊆ Fn+1, the projectivization of E is the set

P(E) =
{

[x]
∣∣0 6= x ∈ E

}
⊆ Pn

and given a set F ⊆ Pn, the affine cone of F is the homogeneous set

A(F ) =
⋃

[x]∈F

[x] .

This correspondence is bijective except that P({0}) = P(∅) = ∅, while A(∅) = ∅. We
define a projective algebraic variety in Pn, or simply a variety in Pn, to be the
projectivization of a homogeneous variety in Fn+1.

11.8 Definition: The Zariski topology on Pn is the topology in which the closed sets
are the projective varieties. For a set E ⊆ Pn we write E for the closure of E, that is the
smallest closed set in Pn which contains E.

11.9 Definition: A projective variety X ⊆ Pn is irreducible if X 6= ∅ and X is not
equal to the union of any two proper subvarieties.

11.10 Note: If X ⊆ Fn+1 is a homogeneous variety then the irreducible components
of X are also homogeneous. Consequently, if Y = P(X) ⊆ Pn is the projectivization
of X, then Y is irreducible if and only if X is irreducible. Moreover, since X has a
unique decomposition into irreducible components, Y also has a unique decomposition into
irreducible components, and the irreducible components of Y are the projectivizations of
the irreducible components of X.

Proof: The proof is left as an exercise.

11.11 Definition: A polynomial f ∈ F[x1, · · · , xn+1] of degree k is called homogeneous
if all the monomials xi11 · · ·xinn which occur in f (with non-zero coefficient) have the same
total degree k = i1 + · · ·+ in. The zero polynomial is also considered to be homogeneous.
Note that every polynomial f ∈ F[x1, · · · , xn+1] of degree d can be expressed uniquely in
the form f = f0 +f1 + · · ·+fd where each fk is homogeneous of degree k. The polynomials
fk are called the homogeneous components of f .

11.12 Example: In R[x, y], f(x, y) = 1+2x−3y+x2−2xy+5y2−x3+4x2y is a polynomial
of degree 3, and we have f = f0 + f1 + f2 + f3 where f0(x, y) = 1, f1(x, y) = 2x − 3y,
f2(x, y) = x2 − 2xy + 5y2 and f3(x, y) = −x3 + 4x2y are the homogeneous components.
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11.13 Definition: Note that if f ∈ F[x1, · · · , xn+1] is homogeneous of degree k then we
have f(tx) = tkf(x) for all t ∈ F, x ∈ Fn+1, so for 0 6= x ∈ Fn+1 we have f(x) = 0 ⇐⇒
f(tx) = 0 for all t ∈ F, and so it makes sense to define

f
(
[x]
)

= 0 ⇐⇒ f(x) = 0 .

Let S ⊆ F[x1, · · · , xn+1] be a collection of homogeneous polynomials. Notice that the affine
variety V (S) ⊆ Fn+1 is homogeneous and that for 0 6= x ∈ Fn+1 we have x ∈ V (S) ⊆ Fn+1

⇐⇒ f(x) = 0 for all f ∈ S ⇐⇒ f
(
[x]
)

= 0 for all f ∈ S. We define the projective
variety in Pn cut out by S to be the set

V (S) =
{

[x] ∈ Pn
∣∣f([x]

)
= 0 for all f ∈ S

}
⊆ Pn ,

so the projective variety V (S) ⊆ Pn is the projectivization of the homogeneous affine
variety V (S) ⊆ Fn+1.

11.14 Example: Let f(x, y) = x2 − 2xy − 3y2 = (x − 3y)(x + y) ∈ F[x, y]. Note
that f is homogeneous of degree 2. Then the homogeneous affine variety cut out by f is
V (f) = V (x− 3y)∪ V (x+ y) = [3, 1]∪ [−1, 1] ⊆ F2, and the projective variety cut out by
f is V (f) =

{
[3, 1], [−1, 1]

}
⊆ P2.

11.15 Example: Let f, g ∈ F[x, y, z] be the homogeneous polynomials f(x, y, z) = x+y+z
and g(x, y, z) = x2 + y2 − z2. Then in F3 we have several homogeneous affine varieties:
V (f) ⊆ F3, is a plane through the origin; if char F 6= 2 then V (g) ⊆ F3 is a double
cone

(
if char F = 2 then V (g) = V

(
(x + y + z)2

)
= V (x + y + z) = V (f)

)
; and we have

(x, y, z) ∈ V (f, g) when z = −(x+ y) and 0 = x2 + y2− z2 = x2 + y2− (x+ y)2 = −2xy so
V (f, g) = V (x, z+y)∪V (y, z+x) = [0,−1, 1]∪[−1, 0, 1] ⊆ F3. In P2 we have corresponding
projective varieties: V (f) ⊆ P2 is a projective line, and V (f, g) =

{
[0,−1, 1], [−1, 0, 1]

}
.

11.16 Definition: An ideal A ⊆ F[x1, · · · , xn+1] is called homogeneous if it is generated
by some set of homogeneous polynomials. For a homogeneous ideal A ⊆ F[x1, · · · , xn+1],
we define the projective variety of A in Pn to be

V (A) =
{

[x] ∈ Pn
∣∣f([x]

)
= 0 for all homogeneous f ∈ A

}
⊆ Pn .

11.17 Theorem: Let F be an infinite field and let E ⊆ Fn+1 be any homogeneous set.
Then I(E) ⊆ F[x1, · · · , xn+1] is a homogeneous ideal, which is generated by a finite set of
homogeneous polynomials.

Proof: Say I(E) = 〈f1, · · · , fl〉. For each i, write fi = fi0 + fi1 + · · · + fldi with each fij
homogeneous of degree j. We claim that I(E) =

〈
{fij}

〉
. It is clear that I(E) ⊆

〈
{fij}

〉
since for each i,fi =

∑
fij ∈

〈
{fij}

〉
, so we need to show that each fij ∈ I(E). Fix i and

let a ∈ E. Since E is homogeneous we have ta ∈ E for all t ∈ F, so

fi(ta) = 0 for all t

fi0(ta) + fi1(ta) + · · ·+ fidi(ta) = 0 for all t

fi0(a) + fi1(a) t+ · · ·+ fidi
(a) tdi = 0 for all t .

Since F is infinite, this implies that fij = 0 for all j. Thus fij ∈ I(E) for all j.

11.18 Example: If F is the finite field with n = pk elements, then F is a homogeneous
set but I(F) = 〈xn − x〉 is not a homogeneous ideal.
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11.19 Definition: Given a homogeneous polynomial f ∈ F[x1, · · · , xn+1], we define the
kth dehomogenization of f to be the polynomial gk(f) ∈ F[x1, · · · , xk−1, xk+1, · · · , xn+1]
given by

gk(f)(x1, · · · , xk−1, xx+1, · · · , xn+1) = f(x1, · · · , xk−1, 1, xk+1, · · · , xn+1) .

Given g ∈ F[x1, · · · , xk−1, xk+1, · · · , xn+1] we define the kth homogenization of g to be
the homogeneous polynomial hk(g) ∈ F[x1, · · · , xn+1] given by

hk(g)(x1, · · · , xn+1) = g

(
x1
xk
, · · · , xk−1

xk
,
xk+1

xk
, · · · , xn+1

xk

)
xk

deg g .

11.20 Example: Let f(x, y, z) = x3+2x2y−xyz ∈ F[x, y, z]. Note that f is homogeneous.
The dehomogenizations fk = gk(f) are given by

f1(y, z) = f(1, y, z) = 1 + 2y − yz
f2(x, z) = f(x, 1, z) = x3 + 2x2 − xz
f3(x, y) = f(x, y, 1) = x3 + 2x2y − xy .

The homogenizations hk = hk(fk) are given by

h1(y, z) = f1
(
y
x ,

z
x

)
x2 =

(
1 + 2 y

x −
yz
x2

)
x2 = x2 + 2xy − yz

h2(x, z) = f2
(
x
y ,

z
y

)
y3 =

(
x3

y3 + 2x2

y2 − xz
y2

)
y3 = x3 + 2x2y − xyz

h3(x, y) = f3
(
x
z ,

y
z

)
z3 =

(
x3

z3 + 2x2y
z3 − xy

z2

)
z3 = x3 + 2x2y − xyz .

Notice that f = h2 = h3 = xh1.

11.21 Remark: Recall that by using the kth inclusion map φk : Fn → Uk ⊆ Pn, we
can consider Fn to be a subset of Pn. When we do this we can restrict a given projective
variety X ⊆ Pn to an affine variety Xk ⊆ Fn and, on the other hand, we can extend
a given affine variety X ⊆ Fn to a projective variety X ⊆ Pn. This is described more
formally in the following definition.

11.22 Definition: Let φk : Fn → Uk ⊆ Pn be the kth inclusion map. Given a projective
variety X ⊆ Pn, the kth affine variety in X is defined to be the set

Xk = φk
−1(X ∩ Uk

)
⊆ Fn .

Note that Xk is in fact an affine variety; indeed if X = V (S) ⊆ Pn, where S is a collection
of homogeneous polynomials in F[x1, · · · , xn+1], then for x ∈ Fn we have x ∈ Xk ⇐⇒
φk(x) ∈ X ⇐⇒ f

(
φk(x)

)
= 0 for all f ∈ S ⇐⇒ gk(f)(x) = 0 for all f ∈ S, and so

Xk = V (T ) ⊆ Fn where T =
{
gk(f)

∣∣f ∈ S}.
Also, given an affine variety X ⊆ Fn, we define the kth projective closure of X to

be the projective variety φk(X) ⊆ Pn. Usually we fix k and write

X = φk(X) ⊆ Pn .
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11.23 Theorem: Let F be algebraically closed. Let f ∈ F[x, y] be irreducible and let
X = V (f) ⊆ F2. Write U = U3 =

{
[x, y, z] ∈ P2

∣∣z 6= 0
}

and φ = φ3 so φ : F2 → U is

given by φ(x, y) = [x, y, 1], and write h = h3(f) = f
(
x
z ,

y
z

)
zdeg f . Let X = φ(X) ⊆ P2 be

the projective closure of X. Then X = V (h) ⊆ P2.

Proof: Note first that since f is irreducible, its homogenization h must also be irreducible,
since if h = k` then we would have f(x, y) = h(x, y, 1) = k(x, y, 1)`(x, y, 1). Since F
is algebraically closed, the homogeneous variety V (h) ⊆ Fn+1 is irreducible, and so the
projective variety V (h) ⊆ P2 is also irreducible.

Now, for [x, y, 1] ∈ U we have [x, y, 1] ∈ V (h) ⊆ P2 ⇐⇒ h
(
[x, y, 1]

)
= 0 ⇐⇒

h(x, y, 1) = 0 ⇐⇒ f(x, y) = 0 ⇐⇒ (x, y) ∈ X. This shows that V (h) ∩ U = φ(X).
Since φ(X) ⊆ V (h) and V (h) is closed, we also have φ(X) ⊆ V (h).

Also, since P2 = U ∪ V (z), we have V (h) =
(
V (h) ∩ U

)
∪
(
V (h) ∩ V (z)

)
= φ(X) ∪

V (h, z) = φ(X) ∪ V (h, z). Since V (h) ir irreducible, this implies that φ(X) = V (h) or
V (h, z) = V (h). But we cannot have V (h, z) = V (h) since X = V (f) 6= ∅ (since F is
algebraically closed), so φ(X) 6= ∅, so V (h) ∩ U 6= ∅. Thus V (h) = φ(X).
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