

11. Projective Varieties

11.1 Definition: Let W be a vector space over a field \mathbf{F} . The **projectivization** of W is the set of all 1-dimensional subspaces of W . For $0 \neq x \in W$, write $[x] = \text{Span}_{\mathbf{F}}\{x\}$. Then

$$\mathbf{P}(W) = \{[x] \mid 0 \neq x \in V\}$$

The projectivization of the vector space \mathbf{F}^{n+1} is called the **projective n -space** over \mathbf{F} , and denoted by \mathbf{P}^n or $\mathbf{P}^n(\mathbf{F})$:

$$\mathbf{P}^n(\mathbf{F}) = \{[x] \mid 0 \neq x \in \mathbf{F}^{n+1}\}.$$

$\mathbf{P}^1(\mathbf{F})$ is called the **projective line** and $\mathbf{P}^2(\mathbf{F})$ is called the **projective plane** over \mathbf{F} . An element of \mathbf{P}^n (which is a line through the origin in \mathbf{F}^{n+1}) is called a **point** in \mathbf{P}^n . If V is a 2-dimensional subspace of W then the set $\mathbf{P}(V) \subseteq \mathbf{P}(W)$ is called a **line** in $\mathbf{P}(W)$. More generally, if V is a $(k+1)$ -dimensional subspace of W , then $\mathbf{P}(V)$ is called a k -dimensional projective space in $\mathbf{P}(W)$. For each $k = 1, 2, \dots, n+1$, let

$$U_k = \{[x_1, \dots, x_{n+1}] \in \mathbf{P}^n \mid x_k \neq 0\}.$$

We can identify U_k with \mathbf{F}^n using the k^{th} **inclusion map** $\phi_k : \mathbf{F}^n \rightarrow U_k \subseteq \mathbf{P}^n$ given by

$$\begin{aligned} \phi_k(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{n+1}) &= [x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_{n+1}] \\ \phi_k^{-1}([x_1, \dots, x_{n+1}]) &= \left(\frac{x_1}{x_k}, \dots, \frac{x_{k-1}}{x_k}, \frac{x_{k+1}}{x_k}, \dots, \frac{x_{n+1}}{x_k}\right) \end{aligned}$$

and we can identify $\mathbf{P}^n \setminus U_k$ with \mathbf{P}^{n-1} using the bijection $\psi_k : \mathbf{P}^n \setminus U_k \rightarrow \mathbf{P}^{n-1}$ given by

$$\psi_k([x_1, \dots, x_{k-1}, 0, x_{k+1}, \dots, x_n]) = [x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n].$$

For fixed k we sometimes write $\mathbf{P}^n = \mathbf{F}^n \cup \mathbf{P}^{n-1}$, where we have made the identifications $\mathbf{F}^n = U_k \subseteq \mathbf{P}^n$ and $\mathbf{P}^{n-1} = \mathbf{P}^n \setminus \mathbf{F}^k$, and we then refer to \mathbf{P}^{n-1} as the **projective space at infinity**.

11.2 Example: There is only one 1-dimensional subspace of \mathbf{F} , namely \mathbf{F} itself, so $\mathbf{P}^0(\mathbf{F})$ consists of a single point. Also, fixing $k = 1$ or 2 , we can write $\mathbf{P}^1(\mathbf{F}) = \mathbf{F} \cup \{\infty\}$, where we have identified $\mathbf{F} = U_k$ and $\{\infty\} = \mathbf{P}^0 = \mathbf{P}^1 \setminus U_k$.

11.3 Example: The real projective line $\mathbf{P}^1(\mathbf{R})$ is the set of lines in \mathbf{R}^2 through the origin. U_1 is the set of all these lines except the y -axis, each of which intersects the line $x = 1$, and indeed it is natural to identify U_1 with the line $x = 1$. Similarly it is natural to identify U_2 , which is the set of all the lines through the origin except the x -axis, with the line $y = 1$. Also, since each line through the origin intersects the unit circle $\mathbf{S}^1 = V(x^2 + y^2 - 1)$ at two antipodal points, we can think of $\mathbf{P}^1(\mathbf{R})$ as a copy of \mathbf{S}^1 with antipodal points identified.

11.4 Example: The real projective plane $\mathbf{P}^2(\mathbf{R})$ is the set of lines through the origin in \mathbf{R}^3 . The set U_1 , which is the set of these lines which do not lie in the plane $x = 0$, can be identified with the plane $x = 1$, U_2 can be identified with the plane $y = 1$, and U_3 can be identified with the plane $z = 1$. We can also visualize \mathbf{P}^2 as a copy of the unit sphere $\mathbf{S}^2 = V(x^2 + y^2 + z^2 - 1)$ with antipodal points identified. The real projective plane is an example of a non-orientable surface. It was first discovered and studied by artists who were interested in perspective: if one's eye is at the origin in \mathbf{R}^3 , then all the points along a given line through the origin will appear to be coincident and can be identified.

11.5 Example: The complex projective line $\mathbf{P}^1(\mathbf{C})$ can be thought of as $\mathbf{P}^1(\mathbf{C}) = \mathbf{C} \cup \{\infty\}$. It can also be identified with the unit sphere \mathbf{S}^2 , and it is then referred to as the **Riemann sphere**. Under this identification, the maps ϕ_1 and ϕ_2 correspond to the stereographic projections from the north and south poles.

11.6 Example: Let \mathbf{F} be the field with $n = p^k$ elements. There are $n^2 - 1$ non-zero points in \mathbf{F}^2 , each of these points spans a 1-dimensional vector space in \mathbf{F}^2 , and each 1-dimensional vector space contains $n - 1$ non-zero points, so the number of 1-dimensional spaces in \mathbf{F}^2 is equal to $\frac{n^2 - 1}{n - 1} = n + 1$. In other words, the projective line $\mathbf{P}^1(\mathbf{F})$ consists of $n + 1$ points.

11.7 Definition: A set $E \subseteq \mathbf{F}^{n+1}$ is called **homogeneous** if $E = \{0\}$ or E is a union of one-dimensional vector spaces in \mathbf{F}^{n+1} . Equivalently, E is homogeneous if for all $x \in E$ we have $tx \in E$ for all $t \in \mathbf{F}$, or again equivalently, if for all $0 \neq x \in E$ we have $[x] \subseteq E$. There is a natural correspondence between homogeneous sets in \mathbf{F}^{n+1} and sets in \mathbf{P}^n : given a homogeneous set $E \subseteq \mathbf{F}^{n+1}$, the **projectivization** of E is the set

$$\mathbf{P}(E) = \{[x] \mid 0 \neq x \in E\} \subseteq \mathbf{P}^n$$

and given a set $F \subseteq \mathbf{P}^n$, the **affine cone** of F is the homogeneous set

$$\mathbf{A}(F) = \bigcup_{[x] \in F} [x].$$

This correspondence is bijective except that $\mathbf{P}(\{0\}) = \mathbf{P}(\emptyset) = \emptyset$, while $\mathbf{A}(\emptyset) = \emptyset$. We define a **projective algebraic variety in \mathbf{P}^n** , or simply a **variety in \mathbf{P}^n** , to be the projectivization of a homogeneous variety in \mathbf{F}^{n+1} .

11.8 Definition: The **Zariski topology** on \mathbf{P}^n is the topology in which the closed sets are the projective varieties. For a set $E \subseteq \mathbf{P}^n$ we write \overline{E} for the **closure** of E , that is the smallest closed set in \mathbf{P}^n which contains E .

11.9 Definition: A projective variety $X \subseteq \mathbf{P}^n$ is **irreducible** if $X \neq \emptyset$ and X is not equal to the union of any two proper subvarieties.

11.10 Note: If $X \subseteq \mathbf{F}^{n+1}$ is a homogeneous variety then the irreducible components of X are also homogeneous. Consequently, if $Y = \mathbf{P}(X) \subseteq \mathbf{P}^n$ is the projectivization of X , then Y is irreducible if and only if X is irreducible. Moreover, since X has a unique decomposition into irreducible components, Y also has a unique decomposition into irreducible components, and the irreducible components of Y are the projectivizations of the irreducible components of X .

Proof: The proof is left as an exercise.

11.11 Definition: A polynomial $f \in \mathbf{F}[x_1, \dots, x_{n+1}]$ of degree k is called **homogeneous** if all the monomials $x_1^{i_1} \cdots x_n^{i_n}$ which occur in f (with non-zero coefficient) have the same total degree $k = i_1 + \cdots + i_n$. The zero polynomial is also considered to be homogeneous. Note that every polynomial $f \in \mathbf{F}[x_1, \dots, x_{n+1}]$ of degree d can be expressed uniquely in the form $f = f_0 + f_1 + \cdots + f_d$ where each f_k is homogeneous of degree k . The polynomials f_k are called the **homogeneous components of f** .

11.12 Example: In $\mathbf{R}[x, y]$, $f(x, y) = 1 + 2x - 3y + x^2 - 2xy + 5y^2 - x^3 + 4x^2y$ is a polynomial of degree 3, and we have $f = f_0 + f_1 + f_2 + f_3$ where $f_0(x, y) = 1$, $f_1(x, y) = 2x - 3y$, $f_2(x, y) = x^2 - 2xy + 5y^2$ and $f_3(x, y) = -x^3 + 4x^2y$ are the homogeneous components.

11.13 Definition: Note that if $f \in \mathbf{F}[x_1, \dots, x_{n+1}]$ is homogeneous of degree k then we have $f(tx) = t^k f(x)$ for all $t \in \mathbf{F}$, $x \in \mathbf{F}^{n+1}$, so for $0 \neq x \in \mathbf{F}^{n+1}$ we have $f(x) = 0 \iff f(tx) = 0$ for all $t \in \mathbf{F}$, and so it makes sense to define

$$f([x]) = 0 \iff f(x) = 0.$$

Let $S \subseteq \mathbf{F}[x_1, \dots, x_{n+1}]$ be a collection of homogeneous polynomials. Notice that the affine variety $V(S) \subseteq \mathbf{F}^{n+1}$ is homogeneous and that for $0 \neq x \in \mathbf{F}^{n+1}$ we have $x \in V(S) \subseteq \mathbf{F}^{n+1} \iff f(x) = 0$ for all $f \in S \iff f([x]) = 0$ for all $f \in S$. We define the **projective variety in \mathbf{P}^n cut out by S** to be the set

$$V(S) = \{[x] \in \mathbf{P}^n \mid f([x]) = 0 \text{ for all } f \in S\} \subseteq \mathbf{P}^n,$$

so the projective variety $V(S) \subseteq \mathbf{P}^n$ is the projectivization of the homogeneous affine variety $V(S) \subseteq \mathbf{F}^{n+1}$.

11.14 Example: Let $f(x, y) = x^2 - 2xy - 3y^2 = (x - 3y)(x + y) \in \mathbf{F}[x, y]$. Note that f is homogeneous of degree 2. Then the homogeneous affine variety cut out by f is $V(f) = V(x - 3y) \cup V(x + y) = [3, 1] \cup [-1, 1] \subseteq \mathbf{F}^2$, and the projective variety cut out by f is $V(f) = \{[3, 1], [-1, 1]\} \subseteq \mathbf{P}^2$.

11.15 Example: Let $f, g \in \mathbf{F}[x, y, z]$ be the homogeneous polynomials $f(x, y, z) = x + y + z$ and $g(x, y, z) = x^2 + y^2 - z^2$. Then in \mathbf{F}^3 we have several homogeneous affine varieties: $V(f) \subseteq \mathbf{F}^3$, is a plane through the origin; if $\text{char } \mathbf{F} \neq 2$ then $V(g) \subseteq \mathbf{F}^3$ is a double cone (if $\text{char } \mathbf{F} = 2$ then $V(g) = V((x + y + z)^2) = V(x + y + z) = V(f)$); and we have $(x, y, z) \in V(f, g)$ when $z = -(x + y)$ and $0 = x^2 + y^2 - z^2 = x^2 + y^2 - (x + y)^2 = -2xy$ so $V(f, g) = V(x, z + y) \cup V(y, z + x) = [0, -1, 1] \cup [-1, 0, 1] \subseteq \mathbf{F}^3$. In \mathbf{P}^2 we have corresponding projective varieties: $V(f) \subseteq \mathbf{P}^2$ is a projective line, and $V(f, g) = \{[0, -1, 1], [-1, 0, 1]\}$.

11.16 Definition: An ideal $A \subseteq \mathbf{F}[x_1, \dots, x_{n+1}]$ is called **homogeneous** if it is generated by some set of homogeneous polynomials. For a homogeneous ideal $A \subseteq \mathbf{F}[x_1, \dots, x_{n+1}]$, we define the **projective variety of A in \mathbf{P}^n** to be

$$V(A) = \{[x] \in \mathbf{P}^n \mid f([x]) = 0 \text{ for all homogeneous } f \in A\} \subseteq \mathbf{P}^n.$$

11.17 Theorem: Let \mathbf{F} be an infinite field and let $E \subseteq \mathbf{F}^{n+1}$ be any homogeneous set. Then $I(E) \subseteq \mathbf{F}[x_1, \dots, x_{n+1}]$ is a homogeneous ideal, which is generated by a finite set of homogeneous polynomials.

Proof: Say $I(E) = \langle f_1, \dots, f_l \rangle$. For each i , write $f_i = f_{i0} + f_{i1} + \dots + f_{id_i}$ with each f_{ij} homogeneous of degree j . We claim that $I(E) = \langle \{f_{ij}\} \rangle$. It is clear that $I(E) \subseteq \langle \{f_{ij}\} \rangle$ since for each i , $f_i = \sum f_{ij} \in \langle \{f_{ij}\} \rangle$, so we need to show that each $f_{ij} \in I(E)$. Fix i and let $a \in E$. Since E is homogeneous we have $ta \in E$ for all $t \in \mathbf{F}$, so

$$\begin{aligned} f_i(ta) &= 0 \text{ for all } t \\ f_{i0}(ta) + f_{i1}(ta) + \dots + f_{id_i}(ta) &= 0 \text{ for all } t \\ f_{i0}(a) + f_{i1}(a)t + \dots + f_{id_i}(a)t^{d_i} &= 0 \text{ for all } t. \end{aligned}$$

Since \mathbf{F} is infinite, this implies that $f_{ij} = 0$ for all j . Thus $f_{ij} \in I(E)$ for all j .

11.18 Example: If \mathbf{F} is the finite field with $n = p^k$ elements, then \mathbf{F} is a homogeneous set but $I(\mathbf{F}) = \langle x^n - x \rangle$ is not a homogeneous ideal.

11.19 Definition: Given a homogeneous polynomial $f \in \mathbf{F}[x_1, \dots, x_{n+1}]$, we define the k^{th} **dehomogenization** of f to be the polynomial $g_k(f) \in \mathbf{F}[x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{n+1}]$ given by

$$g_k(f)(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{n+1}) = f(x_1, \dots, x_{k-1}, 1, x_{k+1}, \dots, x_{n+1}).$$

Given $g \in \mathbf{F}[x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{n+1}]$ we define the k^{th} **homogenization** of g to be the homogeneous polynomial $h_k(g) \in \mathbf{F}[x_1, \dots, x_{n+1}]$ given by

$$h_k(g)(x_1, \dots, x_{n+1}) = g\left(\frac{x_1}{x_k}, \dots, \frac{x_{k-1}}{x_k}, \frac{x_{k+1}}{x_k}, \dots, \frac{x_{n+1}}{x_k}\right) x_k^{\deg g}.$$

11.20 Example: Let $f(x, y, z) = x^3 + 2x^2y - xyz \in \mathbf{F}[x, y, z]$. Note that f is homogeneous. The dehomogenizations $f_k = g_k(f)$ are given by

$$\begin{aligned} f_1(y, z) &= f(1, y, z) = 1 + 2y - yz \\ f_2(x, z) &= f(x, 1, z) = x^3 + 2x^2 - xz \\ f_3(x, y) &= f(x, y, 1) = x^3 + 2x^2y - xy. \end{aligned}$$

The homogenizations $h_k = h_k(f_k)$ are given by

$$\begin{aligned} h_1(y, z) &= f_1\left(\frac{y}{x}, \frac{z}{x}\right)x^2 = (1 + 2\frac{y}{x} - \frac{yz}{x^2})x^2 = x^2 + 2xy - yz \\ h_2(x, z) &= f_2\left(\frac{x}{y}, \frac{z}{y}\right)y^3 = \left(\frac{x^3}{y^3} + 2\frac{x^2}{y^2} - \frac{xz}{y^2}\right)y^3 = x^3 + 2x^2y - xyz \\ h_3(x, y) &= f_3\left(\frac{x}{z}, \frac{y}{z}\right)z^3 = \left(\frac{x^3}{z^3} + 2\frac{x^2y}{z^3} - \frac{xy}{z^2}\right)z^3 = x^3 + 2x^2y - xyz. \end{aligned}$$

Notice that $f = h_2 = h_3 = xh_1$.

11.21 Remark: Recall that by using the k^{th} inclusion map $\phi_k : \mathbf{F}^n \rightarrow U_k \subseteq \mathbf{P}^n$, we can consider \mathbf{F}^n to be a subset of \mathbf{P}^n . When we do this we can restrict a given projective variety $X \subseteq \mathbf{P}^n$ to an affine variety $X_k \subseteq \mathbf{F}^n$ and, on the other hand, we can extend a given affine variety $X \subseteq \mathbf{F}^n$ to a projective variety $\overline{X} \subseteq \mathbf{P}^n$. This is described more formally in the following definition.

11.22 Definition: Let $\phi_k : \mathbf{F}^n \rightarrow U_k \subseteq \mathbf{P}^n$ be the k^{th} inclusion map. Given a projective variety $X \subseteq \mathbf{P}^n$, the k^{th} **affine variety in X** is defined to be the set

$$X_k = \phi_k^{-1}(X \cap U_k) \subseteq \mathbf{F}^n.$$

Note that X_k is in fact an affine variety; indeed if $X = V(S) \subseteq \mathbf{P}^n$, where S is a collection of homogeneous polynomials in $\mathbf{F}[x_1, \dots, x_{n+1}]$, then for $x \in \mathbf{F}^n$ we have $x \in X_k \iff \phi_k(x) \in X \iff f(\phi_k(x)) = 0$ for all $f \in S \iff g_k(f)(x) = 0$ for all $f \in S$, and so $X_k = V(T) \subseteq \mathbf{F}^n$ where $T = \{g_k(f) \mid f \in S\}$.

Also, given an affine variety $X \subseteq \mathbf{F}^n$, we define the k^{th} **projective closure of X** to be the projective variety $\overline{\phi_k(X)} \subseteq \mathbf{P}^n$. Usually we fix k and write

$$\overline{X} = \overline{\phi_k(X)} \subseteq \mathbf{P}^n.$$

11.23 Theorem: Let \mathbf{F} be algebraically closed. Let $f \in \mathbf{F}[x, y]$ be irreducible and let $X = V(f) \subseteq \mathbf{F}^2$. Write $U = U_3 = \{[x, y, z] \in \mathbf{P}^2 \mid z \neq 0\}$ and $\phi = \phi_3$ so $\phi : \mathbf{F}^2 \rightarrow U$ is given by $\phi(x, y) = [x, y, 1]$, and write $h = h_3(f) = f\left(\frac{x}{z}, \frac{y}{z}\right)z^{\deg f}$. Let $\overline{X} = \overline{\phi(X)} \subseteq \mathbf{P}^2$ be the projective closure of X . Then $\overline{X} = V(h) \subseteq \mathbf{P}^2$.

Proof: Note first that since f is irreducible, its homogenization h must also be irreducible, since if $h = k\ell$ then we would have $f(x, y) = h(x, y, 1) = k(x, y, 1)\ell(x, y, 1)$. Since \mathbf{F} is algebraically closed, the homogeneous variety $V(h) \subseteq \mathbf{F}^{n+1}$ is irreducible, and so the projective variety $V(h) \subseteq \mathbf{P}^2$ is also irreducible.

Now, for $[x, y, 1] \in U$ we have $[x, y, 1] \in V(h) \subseteq \mathbf{P}^2 \iff h([x, y, 1]) = 0 \iff h(x, y, 1) = 0 \iff f(x, y) = 0 \iff (x, y) \in X$. This shows that $V(h) \cap U = \phi(X)$. Since $\phi(X) \subseteq V(h)$ and $V(h)$ is closed, we also have $\overline{\phi(X)} \subseteq V(h)$.

Also, since $\mathbf{P}^2 = U \cup V(z)$, we have $V(h) = (V(h) \cap U) \cup (V(h) \cap V(z)) = \phi(X) \cup V(h, z) = \overline{\phi(X)} \cup V(h, z)$. Since $V(h)$ is irreducible, this implies that $\overline{\phi(X)} = V(h)$ or $V(h, z) = V(h)$. But we cannot have $V(h, z) = V(h)$ since $X = V(f) \neq \emptyset$ (since \mathbf{F} is algebraically closed), so $\phi(X) \neq \emptyset$, so $V(h) \cap U \neq \emptyset$. Thus $V(h) = \overline{\phi(X)}$.