11. Projective Varieties

11.1 Definition: Let W be a vector space over a field F. The projectivization of W is
the set of all 1-dimensional subspaces of W. For 0 # x € W, write [z] = Span_{z}. Then

P(W)={[z]|0 £z €V}

The projectivization of the vector space F"*! is called the projective n-space over F,
and denoted by P" or P"(F):

P"(F) = {[2]|0 # z € F*"*'}.

P(F) is called the projective line and P?(F) is called the projective plane over F. An
element of P™ (which is a line through the origin in F**!) is called a point in P™. If V is
a 2-dimensional subspace of W then the set P(V') C P(W) is called a line in P(W). More
generally, if V' is a (k + 1)-dimensional subspace of W, then P(V') is called a k-dimensional
projective space in P(W). For each k =1,2,--- ,n+ 1, let

U, = {[:cl,-~,xn+1] € P”|xk =+ O} )
We can identify U, with F” using the k" inclusion map ¢, : F* — U, C P" given by
¢k(l’1, X1, Thgl, Tpgl) = [51317 C Ly Tk—1, L, g, ,l’n+1]
<bk_1([x1,-~,:cn+1]) — (Qf_’t,...,wl;J;l,x;:l,...’f;:l)

and we can identify P™ \ Uy with P"~! using the bijection 1, : P™\ U, — P! given by

wk([wl,"',$k—1707$k+1,"‘7513n]) = [@1, T 1, Th1 -5 T -

For fixed k& we sometimes write P* = F” UP" !, where we have made the identifications
F" = U, C P" and P"~! = P"\ F¥, and we then refer to P"~! as the projective space
at infinity.

11.2 Example: There is only one 1-dimensional subspace of F, namely F itself, so P°(F)
consists of a single point. Also, fixing k¥ = 1 or 2, we can write P}(F) = F U {cc}, where
we have identified F = Uy, and {oo} = P? = P!\ U,.

11.3 Example: The real projective line P!(R) is the set of lines in R? through the origin.
U, is the set of all these lines except the y-axis, each of which intersects the line z = 1, and
indeed it is natural to identify U; with the line x = 1. Similarly it is natural to identify Us,
which is the set of all the lines through the origin except the z-axis, with the line y = 1.
Also, since each line through the origin intersects the unit circle S! = V(22 +y? —1) at two
antipodal points, we can think of P1(R) as a copy of S! with antipodal points identified.

11.4 Example: The real projective plane P?(R) is the set of lines through the origin in
R3. The set U;, which is the set of these lines which do not lie in the plane z = 0, can
be identified with the plane x = 1, U, can be identified with the plane y = 1, and U3 can
be identified with the plane z = 1. We can also visualize P? as a copy of the unit sphere
S? = V(2% + y? + 2% — 1) with antipodal points identified. The real projective plane is
an example of a non-orientable surface. It was first discovered and studied by artists who
were interested in perspective: if one’s eye is at the origin in R2, then all the points along
a given line through the origin will appear to be coincident and can be identified.
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11.5 Example: The complex projective line P1(C) can be thought of as P!(C) = C U
{o0}. Tt can also be identified with the unit sphere S?, and it is then referred to as
the Riemann sphere. Under this identification, the maps ¢; and ¢o correspond to the
stereographic projections from the north and south poles.

11.6 Example: Let F be the field with n = p* elements. There are n? — 1 non-zero
points in F?, each of these points spans a 1-dimensional vector space in F?, and each

1-dimensional vector space contains n — 1 non-zero points, so the number of 1-dimensional
n?—1
n—1

spaces in F? is equal to = n + 1. In other words, the projective line P1(F) consists

of n 4+ 1 points.

11.7 Definition: A set £ C F**! is called homogeneous if E = {0} or E is a union of
one-dimensional vector spaces in F"*!. Equivalently, E is homogeneous if for all z € E we
have tx € E for all t € F, or again equivalently, if for all 0 # = € E we have [x] C E. There
is a natural correspondence between homogeneous sets in F**! and sets in P™: given a
homogeneous set £ C F**!, the projectivization of F is the set

P(E)={[z]j0#£zc E} CP"

and given a set F' C P™, the affine cone of F' is the homogeneous set

AF)= ] [2].
[z]eF
This correspondence is bijective except that P({0}) = P(0) = 0, while A(}) = 0. We
define a projective algebraic variety in P", or simply a variety in P”  to be the
projectivization of a homogeneous variety in F**+1.

11.8 Definition: The Zariski topology on P" is the topology in which the closed sets
are the projective varieties. For a set E C P™ we write E for the closure of F, that is the
smallest closed set in P™ which contains E.

11.9 Definition: A projective variety X C P" is irreducible if X # () and X is not
equal to the union of any two proper subvarieties.

11.10 Note: If X C F**! is a homogeneous variety then the irreducible components
of X are also homogeneous. Consequently, if Y = P(X) C P” is the projectivization
of X, then Y is irreducible if and only if X is irreducible. Moreover, since X has a
unique decomposition into irreducible components, Y also has a unique decomposition into
irreducible components, and the irreducible components of Y are the projectivizations of
the irreducible components of X.

Proof: The proof is left as an exercise.

11.11 Definition: A polynomial f € Flz,---,z,11] of degree k is called homogeneous
if all the monomials x’' - - - z%» which occur in f (with non-zero coefficient) have the same
total degree k = iy + - - - + i,,. The zero polynomial is also considered to be homogeneous.
Note that every polynomial f € F[xy,- -+, 2,41] of degree d can be expressed uniquely in
the form f = fo+ f1+-- -+ fq where each f; is homogeneous of degree k. The polynomials

fi are called the homogeneous components of f.

11.12 Example: In Rz, 9], f(x,y) = 1+22—3y+22—2xy+5y? —x3+42%y is a polynomial
of degree 3, and we have f = fy + f1 + fo + f3 where fo(z,y) = 1, fi(z,y) = 2z — 3y,
fa(z,y) = 2% — 22y + 5y? and f3(z,y) = —23 + 42%y are the homogeneous components.
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11.13 Definition: Note that if f € F[xy,- -, z,41] is homogeneous of degree k then we
have f(tx) = tFf(x) for all t € F, z € F*"*! so for 0 # x € F"™! we have f(z) =0 <
f(tx) =0 for all t € F, and so it makes sense to define

f([z]) =0 < f(z) =0.
Let S C Flzq, -, x,41] be a collection of homogeneous polynomials. Notice that the affine
variety V(S) C F**! is homogeneous and that for 0 # x € F"™! we have z € V(S) C Ft!

< f(z)=0foral feS < f([z]) =0forall f € S. We define the projective
variety in P" cut out by S to be the set

V(S) = {[z] € P"|f([z]) =0 for all f € S} CP",

so the projective variety V(S) C P is the projectivization of the homogeneous affine
variety V(S) C FntL.

11.14 Example: Let f(z,y) = 22 — 22y — 3y?> = (z — 3y)(x + y) € Flz,y]. Note
that f is homogeneous of degree 2. Then the homogeneous affine variety cut out by f is
V(f)=V(x—3y)UV(x+y)=[3,1]U[-1,1] C F? and the projective variety cut out by
fis V() = {[3.1],[~1,1]} € P2,

11.15 Example: Let f, g € F[z,y, z] be the homogeneous polynomials f(z,y, z) = x+y+z

and g(z,y,2) = 22 + y? — 22. Then in F? we have several homogeneous affine varieties:
V(f) C F3, is a plane through the origin; if charF # 2 then V(g) C F? is a double
cone (if charF =2 then V(g) = V((z +y+2)?) = V(z +y + 2z) = V(f)); and we have
(r,9,2) € V(f,g) when 2 = —(x +y) and 0 = 2% + 3% — 22 = 22 +y? — (v +y)? = —22y s0
V(f,g) =V (x,z+y)UV(y, z+z) = [0, —1,1]JU[-1,0, 1] C F3. In P? we have corresponding
projective varieties: V(f) C P? is a projective line, and V(f, g) = {[0, -1,1],[-1,0, 1]}

11.16 Definition: Anideal A C F[xy,- -+, 2,41] is called homogeneous if it is generated
by some set of homogeneous polynomials. For a homogeneous ideal A C Flzq,- -+, xy11],
we define the projective variety of A in P” to be

V(A) = {[z] € P"|f([2]) = 0 for all homogeneous f € A} C P".

11.17 Theorem: Let F be an infinite field and let E C F**! be any homogeneous set.
Then I(E) C Flz1,- -, xn41] is a homogeneous ideal, which is generated by a finite set of
homogeneous polynomials.

Proof: Say I(E) = (f1,---, fi). For each i, write f; = fio + fi1 + -+ + fia, with each f;;
homogeneous of degree j. We claim that I(E) = ({fi;}). It is clear that I(E) C ({fi;})

since for each 4,f; = > fi; € ({fi;}), so we need to show that each f;; € I(E). Fix i and
let a € E. Since F is homogeneous we have ta € E for all t € F, so

fi(ta) =0 for all ¢
fio(ta) + fir(ta) + -+ + fia,(ta) =0 for all ¢
fiola) + fir(a)t + -+ fig, (@) t% =0 for all ¢.
Since F is infinite, this implies that f;; = 0 for all j. Thus f;; € I(E) for all j.

11.18 Example: If F is the finite field with n = p* elements, then F is a homogeneous
set but I(F) = (z™ — z) is not a homogeneous ideal.
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11.19 Definition: Given a homogeneous polynomial f € F[zy,- -, 2,4+1], we define the

k" dehomogenization of f to be the polynomial gi(f) € Flz1, -+, Tr_1, Tha1," > Tnpi)
given by
gk(f)(xla oy Tk—1, L1, 7xn+1) - f(xla o Tk—1, 17 Lhk41s"" " xn—l—l) .
Given g € Flz1, -+, %8_1,Ths1," -, Tni1] we define the k" homogenization of g to be
the homogeneous polynomial hi(g) € Flzy,- -+, x,41] given by
X1 Lp—1 Lk+1 Ln+1 de
h x,..-7x ...7 5 ,...’ x gg‘
k(9)(21 nt1) = g(xk or | T o ) k

11.20 Example: Let f(z,y,2) = 234+22%y—xyz € F[x,y, 2]. Note that f is homogeneous.
The dehomogenizations f; = gr(f) are given by

fily,2) = f(Ly,2) =142y —yz
folz, 2) = f(x,1,2) = 23 + 222 — 22
( y) = flz,y,1) = 2° + 22%y — xy.

A

The homogenizations hy = hi(fx) are given by
2 _

hi(y,z) = fl(% %) = (1+2% — L&)2? =22 + 22y — yz
ho(r,2) = fo(2,2)y? = (% + 2% — %)% = 27 + 2%y — xy
ha(z,y) = f3(2, )23 = (% + 2% — 2923 = 23 + 222y — zyz.

Notice that f = hy = hy = xh;.

11.21 Remark: Recall that by using the k' inclusion map ¢ : F* — U, C P", we
can consider F" to be a subset of P™. When we do this we can restrict a given projective
variety X C P" to an affine variety X, € F™ and, on the other hand, we can extend
a given affine variety X C F” to a projective variety X C P™. This is described more
formally in the following definition.

11.22 Definition: Let ¢, : F* — U, C P™ be the k" inclusion map. Given a projective
variety X C P", the k' affine variety in X is defined to be the set

Xp=¢r (XNU;) CF".

Note that X}, is in fact an affine variety; indeed if X = V(S) C P", where S is a collection
of homogeneous polynomials in F[z1,---,2,41], then for x € F" we have z € X}, <~
dop(z) € X < f(d(z)) =0foral feS < gu(f)(z) =0forall feS,and so
Xy, = V(T) CF" where T = {gx(f)|f € S}

Also, given an affine variety X C F”, we define the k" projective closure of X to
be the projective variety ¢x(X) C P™. Usually we fix k and write

X = ¢p(X) CP".




11.23 Theorem: Let F be algebraically closed. Let f € Flx,y| be irreducible and let
X =V(f) CF% Write U = Us = {[z,y,2] € P?|z # 0} and ¢ = ¢3 50 ¢ : F2 — U is
given by ¢(z,y) = [z,y,1], and write h = h3(f) = f(%, %)z, Let X = ¢(X) C P? be

the projective closure of X. Then X = V(h) C P2.

Proof: Note first that since f is irreducible, its homogenization h must also be irreducible,
since if h = kf then we would have f(z,y) = h(z,y,1) = k(z,y,1)¢(z,y,1). Since F
is algebraically closed, the homogeneous variety V(h) C F"! is irreducible, and so the
projective variety V (h) C P2 is also irreducible.

Now, for [z,y,1] € U we have [z,y,1] € V(h) C P? < h([z,y,1]) =0 <
h(z,y,1) =0 <= f(z,y) =0 <= (x,y) € X. This shows that V(h) N U = ¢(X).
Since ¢(X) C V(h) and V(h) is closed, we also have ¢(X) C V(h).

Also, since P2 = U U V/(z), we have V(h) = (V(h) NU) U (V(R)NV(z)) = ¢(X )
V(h,z) = (X)UV(h,z). Since V(h) ir irreducible, this implies that ¢(X) = V(h) o
V(h,z) = V(h). But we cannot have V(h,z) = V(h) since X = V(f) # 0 (since F is

algebraically closed), so ¢(X) # 0, so V(h) NU # 0. Thus V(h) = ¢(X).




