10. Local Dimension and Singularity

10.1 Definition: Let X C F” be a variety and let a € X. Choose a finite set of generators
fi,-o, fm for I(X), and let f = (f1, -, fin). We define the (Zarisky) tangent space of
X at a to be
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and we define the (local) dimension of X at a to be
dim, X =dim7T,X .

Note that 0 < dim, X < n.
We need to verify that our definition of 7,X does not depend on the choice of
generators. Suppose that I(X) = (f1,- -, fx) = (g1, -,9¢). For each index j, since

€ (fi,---, fm) we can choose polynomials p;; € Flxy,---,z,] such that g; = > p;.fi.
i=1
For all a € X we have f;(a) = 0 for all i so, by the Product Rule, we have
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g (@) = ;(aﬂk() i(a) +pji(a) git(a) = Epgz()agfk()
and so Dg(a) = P(a)Df(a) where P(a) is the matrix with entries p;,(a). It follows that
ker Df (a) C ker Dg(a). A similar argument, reversing the roles of f and g, shows that
ker Dg(a) C ker Df (a).

10.2 Example: Let F be an infinite field. Find dim, X for each ¢ € X when X is any one
of the varieties X = V(y?—2?) e F2, X = V(y?—2®—2?) CF%, X = V(2)UV (z,y) C F3.

10.3 Note: For 0 < d < n note that dim, X < d <= rank Df(a) > r where r = n —d,
and we have rank Df(a) > r when at least one of the r x r submatrices of Df(a) has non-
zero determinant. If follows that the set {a eX | dim, X > d} is the subvariety of X which
is cut out by the determinants of the r x r submatrices of Df (z) (which are all polynomials
in x). If we let m = min{dim, X|a € X} and X, = {a € X}dimaX > d} form<d<n
then we have a chain of subvarieties ) C X,, € X,, 1 C--- C X,,41 % X,, = X. We shall
prove below that when F is algebraically closed and X is irreducible we have

dim(X) = m = min { dim, X |a € X }.

10.4 Definition: Let X C F™ be a variety of pure dimension (meaning that every
irreducible component of X has the same dimension). and let m = min { dim, X |a e X }
For a € X, we say that a is a non-singular point of X (or that X is non-singular at a)
when dim, X = m and we say that a is a singular point of X (or that X is singular at
a) when dim, X > m. We denote the set of singular points of X by Sing (X). Note that
Sing (X)) is a proper subvariety of X. We say that X is non-singular when Sing (X) = 0.



10.5 Theorem: Let X C F" and Y C F™ be varieties, let a € X, and let w € T, X.

(1) If f : X = Y is a polynomial map then Df(a)u € Ty)Y .

(2) If X and Y are irreducible and f : X — Y is a rational map which is regular at a € X,
then Df(a)u € Tyq)Y .

Proof: Suppose that either f is a polynomial map or that X and Y are irreducible and f
is a rational map which is regular at a. If f is a polynomial map then let p = f, ¢ =1 and
U, = X, and if X and Y are irreducible and f is a rational map, then let f = § where
p € Flzy,---,2,]™, and ¢ € Flzy, -+, z,] with ¢(a) # 0, and let U, = {a: € X|q(:z:) + 0}.
Let I(X) = (g1, -+, g¢) so that T,X = ker Dg(a), and let I(Y) = (hy,---,hg) so that
T¢(a)Y = ker Dh(f(a)). For all z € U, we have f(z) € Y hence 0 = h;(f(z)) = h](ﬁgig)
for all indices j. Let d be the maximum of the degrees of hq,-- -, hy then, for each index j,
let rj(x) = q(:v)dhj(%) € Flx1,---,x,]. For all j we have rj(z) = 0 for all z € U, and

‘
sor; € I(Uy) =1(X) = (g1, -, 9¢). Write r; = ;sj,igi with each s;; € Flzq, -, x,].

¢
For z € U; we have q(z)?h; (f(z)) = r;j(z) = 3 s;,:(z)gi(z). Take the derivative with
=1

respect to x, using the Product and Chain Rulesz_to get
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Since g;(z) = 0 and h; (f(sc)) = 0, this simplifies to
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so we have
q(z)*Dh(f(x)) Df () = s(z)Dg(x)

where s(x) is the matrix with entries s, ;(z). In particular, we obtain

q(a)?Dh(f(a)) Df (a) = s(a)Dg(a).
Since ¢(a) # 0 and u € T, X = ker Dg(a), we have Df(a)u € ker Dh(f(a)) =Tt@a)Y.

10.6 Definition: Let X and Y be affine varieties and let a € X. If f: X — Y is a
polynomial map, or if X and Y are irreducible and f : X — Y is a rational map which
is regular at a, then the map f, : ToX — Ty,)Y given by f.(u) = Df(a)u is called the
push-forward of f. The push-forward f, is sometimes denoted by df or by Df.

10.7 Corollary: Let X and Y be affine varieties and let a € X.

(1) If f : X — Y is a polynomial isomorphism then f, : T,X — Tj)Y Is a vector space
isomorphism, and so dim, X = dimy,) Y.

(2) If X and Y are irreducible, and f : X — Y is a birational equivalence, and f is regualar
at a and the inverse of f is regular at f(a), then the pullback f. : T,X — Tj)Y is a
vector space isomorphism, and so dim, X = dimy,) Y.

Proof: This follows from the above theorem together with the observation that when
f: X —=>Yand g:Y — Z with f regular at a € X and g regular at f(a) € Y, we have
(g o f)« = g« o f«, along with the observation that the push-forward of the identity map
on X is the identity map on T, X.



10.8 Theorem: (Generic Dimension of a Hypersurface) Let F be algebraically closed and
let X C F™ be a hypersurface. Then min { dim, X‘a € X} =n—1.

Proof: Since X € F" is a hypersurface and F is algebraically closed, we can choose a non-
constant polynomial f € F[xy,---,x,] such that X = V(f) C F™. Say f = p1Fipo~2 ... pyh

where the p; are non-associate irreducible polynomials. Then I(X) = /(f) = (g) where
g =pip2---pe. For a € X we have Dg(a) = (%(a), e aaTg(a)). The rank of Dg(a) is

equal to 0 or to 1, and it is equal to 0 if and only if Dg(a) = 0, and so dim,, X is equal to n or
ton—1, and it is equal to n if and only if Dg(a) = 0. It follows that min { dim,, X‘a € X}
is equal to n or to n — 1, and it is equal to n if and only if Dg(a) = 0 for every a € X.
Suppose, for a contradiction, that Dg(a) = 0 for every a € X. Then for each index k we
have ;Tgk( ) =0 for all @ € X, so that aa_:fk € I(X) = (g). Since deg, ag < deg,, g, and
ﬁ € (g) it follows that 89 =0 € F[zy,--,z,], as a polynomial. When char (F) = 0,
the fact that ag =0¢€ F[xl, .-+, x,] for all indices k implies that g is constant, but in fact

g is not constant. Suppose that char (F) = p. Then the fact that agk = 0 for all k£ implies
that all the exponents of all the variables x; in g are multiples of p, so g is of the form

g(z) = X cpwPFragPkz ... g, PEn where K is a finite set of multi-indices k = (ky,- -, ky).
kEK
But then g = h? where h(z) = Y agpz* --- 2,5 with ax € F chosen so that ai? = ¢y
keK

(such elements a; € F exist since F is algebraically closed). This is again not possible,
since g = p1ps - - - p¢ Where the p; are non-associate irreducible polynomials.

10.9 Theorem: (The Separating Transcendence Basis Theorem) Let F C K be fields
with trans K = r. Suppose F is algebraically closed and K is finitely generated over F.
Let S C K be a finite set of generators for K over F. Then there exist a transcendence
basis {uy,---,u,} C S for K over F such that K is separable over F(uy,- -, u,).

Proof: We sketch a proof. If char (F) = 0 there is nothing to prove. Suppose that
char (F) = p. Say S = {v1,---,v,} is a finite set of generators for K over F. Reorder
the elements v;, if necessary, so that {vq,---,v,} is a transcendence basis for K over F.
If K is separable over F(vy, - -, v,.) then we are done. Suppose that K is not separable over
F(v1,---,v,). Then one of the elements v;, with ¢ > r, is not separable over F(vy,---,v,).
Reorder, if necessary, so that v,.11 is not separable over F(vy, - - -, v,.). Multiply the minimal
polynomial of v,.,1 over F(vy,---,v,) by the least common denominator to obtain an
irreducible polynomial f € F|xy,---,z,41] with f(vy, -+, 0., v,41) = 0. Since v,41 is not
separable over F(vy,---,v,) it follows that x,;1 occurs in f with exponents which are all
multiples of p. One of the variables z1,---,z, must occur in f with an exponent which
is not a multiple of p otherwise, since F' is algebraically closed, f would be equal to the

b power of another polynomial, but f is irreducible. Reorder, if necessary, so that z;
occurs in f with an exponent which is not a multiple of p. Note that since {vo, -+, v,41}
is algebraically independent, f(¢,vs, -, vy41) is irreducible in Flvg, - - -, v,41][t], and v is
a root of this irreducible polynomial. Since ¢ occurs in this polynomial with an exponent
which is not a multiple of p, it follows that v, is separable over F(vg, -+, v,41). If K is not
separable over F(vq, - - -, v,.41) we repeat the above procedure, reordering again if necessary,
obtaining a transcendence basis {vs, - -, vT+2} for K over F such that v, and vy are both
separable over F(vs, -, v.42). Eventually, this process will produce a transcendence basis
{ug, -, up} = {14k, -, vp1x} with K separable over F(uq,---,u,), as required.



10.10 Theorem: (The Primitive Element Theorem) Let F C K be fields. Suppose that
K is separable and finite dimensional over F. Then there exists u € K such that K = F[u].

Proof: If F is finite then so is K, so the group of units K* = K\ {0} is a cyclic group,
and so K = F[u] where u is a generator of K*. Suppose that F is infinite. Since K is
finite dimensional over F it is finitely generated and algebraic. Let L be the splitting field
over F' of the minimal polynomials of a finite set of generators for K over F. Then we
have F C K C L and L is a finite dimensional Galois extension field of F. It follows,
from Galois Theory, that Aut gL is a finite group and hence that there exist only finitely
many intermediate fields between F and L. Thus there are only finitely many intermediate
fields between F and K. Choose u € K such that the index [F[u] : F] is maximal. We

claim that F[u] = K. Suppose, for a contradiction, that F[u] % K. Choose v € K with

v ¢ F[u]. Since F is infinite and there are only finitely many intermediate fields between
F and K we can choose two distinct elements a,b € F such that Flu + av] = Flu + bv].
Then we have (a — b)v = (u + av) — (u + bv) € Flu + av]. Since a — b # 0 this implies
that v € F[u + av] and hence u = (u + av) — av € Flu + av]. Since u € F[u + av] we have
F[w] C F[u + av] € K. By our choice of u, it follows that Flu] = Flu + av]. But then we
have v € F[u + av] = F[u] giving the desired contradiction.

10.11 Theorem: Every irreducible variety of dimension d is birationally equivalent to a
hypersurface in F¢t1,

Proof: Let X C F™ be an irreducible variety with dim(X) = d. We have K(X) =
F(z1,---,z,) where each z, € A(X) C K(X). By the Separating Transcendence Basis
Theorem, we can reorder the elements xy, if necessary, so that {zy,---, x4} is a transcen-
dence basis for K(X) over F and K(X) is separable over F(z1,---,x4). By the primitive
Element Theorem, we can choose u € K(X) such that K(X) = K(x1,---,xq)[u]. Multiply
the minimal polynomial of u over F(z1, -, z4) by a common denominator of the coeffi-
cients to obtain an irreducible polynomial p € Flz1,---,x4,t] with p(z1, -, zq,u) = 0.
Let Y = V(p) € F4tL. Then A(Y) & Flzy, -, 2a,t]/{f) 2 Flxy, -+, 24,u] C K(X), and
K(Y)2F(ry, - ,24,u) = K(X). Thus X ~Y = V(p) C Fi+!,

10.12 Theorem: (Generic Dimension) Let F be algebraically closed and let X C F™ be
a variety of pure dimension. Then dim(X) = min { dim, X|a € X}

Proof: This follows from Theorem 10.11 together with Corollary 10.7 and Theorem 10.8.



