
10. Local Dimension and Singularity

10.1 Definition: Let X ⊆ Fn be a variety and let a ∈ X. Choose a finite set of generators
f1, · · · , fm for I(X), and let f = (f1, · · · , fm). We define the (Zarisky) tangent space of
X at a to be

TaX = kerDf(a) ⊆ Fn whereDf(a) =


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)

...
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)


and we define the (local) dimension of X at a to be

dima X = dimTaX .

Note that 0 ≤ dima X ≤ n.
We need to verify that our definition of TaX does not depend on the choice of

generators. Suppose that I(X) = 〈f1, · · · , fk〉 = 〈g1, · · · , g`〉. For each index j, since

gj ∈ 〈f1, · · · , fm〉 we can choose polynomials pj,i ∈ F[x1, · · · , xn] such that gj =
m∑
i=1

pj,ifi.

For all a ∈ X we have fi(a) = 0 for all i so, by the Product Rule, we have

∂gj
∂xk

(a) =
n∑

i=1

(∂pj,i

∂xk
(a)fi(a) + pj,i(a) ∂fi

∂xk
(a)
)

=
n∑

i=1

pj,i(a) ∂fi
∂xk

(a)

and so Dg(a) = P (a)Df(a) where P (a) is the matrix with entries pj,i(a). It follows that
kerDf(a) ⊆ kerDg(a). A similar argument, reversing the roles of f and g, shows that
kerDg(a) ⊆ kerDf(a).

10.2 Example: Let F be an infinite field. Find dima X for each a ∈ X when X is any one
of the varieties X = V (y2−x3) ∈ F2, X = V (y2−x3−x2) ⊆ F2, X = V (z)∪V (x, y) ⊆ F3.

10.3 Note: For 0 ≤ d ≤ n note that dima X ≤ d ⇐⇒ rankDf(a) ≥ r where r = n− d,
and we have rankDf(a) ≥ r when at least one of the r× r submatrices of Df(a) has non-
zero determinant. If follows that the set

{
a ∈ X

∣∣dima X > d
}

is the subvariety of X which
is cut out by the determinants of the r×r submatrices of Df(x) (which are all polynomials
in x). If we let m = min{dima X|a ∈ X} and Xd =

{
a ∈ X

∣∣dima X ≥ d
}

for m ≤ d ≤ n

then we have a chain of subvarieties ∅ ⊆ Xn ⊆ Xn−1 ⊆ · · · ⊆ Xm+1
⊂6= Xm = X. We shall

prove below that when F is algebraically closed and X is irreducible we have

dim(X) = m = min
{

dima X
∣∣a ∈ X

}
.

10.4 Definition: Let X ⊆ Fn be a variety of pure dimension (meaning that every
irreducible component of X has the same dimension). and let m = min

{
dima X

∣∣a ∈ X
}

.
For a ∈ X, we say that a is a non-singular point of X (or that X is non-singular at a)
when dima X = m and we say that a is a singular point of X (or that X is singular at
a) when dima X > m. We denote the set of singular points of X by Sing (X). Note that
Sing (X) is a proper subvariety of X. We say that X is non-singular when Sing (X) = ∅.
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10.5 Theorem: Let X ⊆ Fn and Y ⊆ Fm be varieties, let a ∈ X, and let u ∈ TaX.

(1) If f : X → Y is a polynomial map then Df(a)u ∈ Tf(a)Y .
(2) If X and Y are irreducible and f : X → Y is a rational map which is regular at a ∈ X,
then Df(a)u ∈ Tf(a)Y .

Proof: Suppose that either f is a polynomial map or that X and Y are irreducible and f
is a rational map which is regular at a. If f is a polynomial map then let p = f , q = 1 and
Uq = X, and if X and Y are irreducible and f is a rational map, then let f = p

q where

p ∈ F[x1, · · · , xn]m, and q ∈ F[x1, · · · , xn] with q(a) 6= 0, and let Uq =
{
x ∈ X

∣∣q(x) 6= 0
}

.
Let I(X) = 〈g1, · · · , g`〉 so that TaX = kerDg(a), and let I(Y ) = 〈h1, · · · , hk〉 so that

Tf(a)Y = kerDh(f(a)). For all x ∈ Uq we have f(x) ∈ Y hence 0 = hj

(
f(x)

)
= hj

(p(x)
q(x)

)
for all indices j. Let d be the maximum of the degrees of h1, · · · , hk then, for each index j,

let rj(x) = q(x)dhj

(p(x)
q(x)

)
∈ F[x1, · · · , xn]. For all j we have rj(x) = 0 for all x ∈ Uq and

so rj ∈ I(Uq) = I(X) = 〈g1, · · · , g`〉. Write rj =
∑̀
i=1

sj,igi with each sj,i ∈ F[x1, · · · , xn].

For x ∈ Uj we have q(x)dhj

(
f(x)

)
= rj(x) =

∑̀
i=1

sj,i(x)gi(x). Take the derivative with

respect to xk, using the Product and Chain Rules to get

dq(x)d−1 ∂q
∂xk

(x)hj

(
f(x)

)
+ q(x)d

m∑
i=1

∂hj

∂yi

(
f(x)

)
∂f
∂xk

(x) =
∑̀
i=1

(∂sj,i
∂xk

(x)gi(x) +sj,i(x) ∂gi
∂xk

(x)
)
.

Since gi(x) = 0 and hj

(
f(x)

)
= 0, this simplifies to

q(x)d
m∑
i=1

∂hj

∂yi

(
f(x)

)
∂f
∂xk

(x) =
∑̀
i=1

sj,i(x) ∂g
∂xk

(x),

so we have
q(x)dDh

(
f(x)

)
Df(x) = s(x)Dg(x)

where s(x) is the matrix with entries sj,i(x). In particular, we obtain

q(a)dDh
(
f(a)

)
Df(a) = s(a)Dg(a).

Since q(a) 6= 0 and u ∈ TaX = kerDg(a), we have Df(a)u ∈ kerDh
(
f(a)

)
= Tf(a)Y .

10.6 Definition: Let X and Y be affine varieties and let a ∈ X. If f : X → Y is a
polynomial map, or if X and Y are irreducible and f : X → Y is a rational map which
is regular at a, then the map f∗ : TaX → Tf(a)Y given by f∗(u) = Df(a)u is called the
push-forward of f . The push-forward f∗ is sometimes denoted by df or by Df .

10.7 Corollary: Let X and Y be affine varieties and let a ∈ X.
(1) If f : X → Y is a polynomial isomorphism then f∗ : TaX → Tf(a)Y is a vector space
isomorphism, and so dima X = dimf(a) Y .
(2) If X and Y are irreducible, and f : X → Y is a birational equivalence, and f is regualar
at a and the inverse of f is regular at f(a), then the pullback f∗ : TaX → Tf(a)Y is a
vector space isomorphism, and so dima X = dimf(a) Y .

Proof: This follows from the above theorem together with the observation that when
f : X → Y and g : Y → Z with f regular at a ∈ X and g regular at f(a) ∈ Y , we have
(g ◦ f)∗ = g∗ ◦ f∗, along with the observation that the push-forward of the identity map
on X is the identity map on TaX.
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10.8 Theorem: (Generic Dimension of a Hypersurface) Let F be algebraically closed and
let X ⊆ Fn be a hypersurface. Then min

{
dima X

∣∣a ∈ X
}

= n− 1.

Proof: Since X ∈ Fn is a hypersurface and F is algebraically closed, we can choose a non-
constant polynomial f ∈ F[x1, · · · , xn] such that X = V (f) ⊆ Fn. Say f = p1

k1p2
k2 · · · p`k`

where the pi are non-associate irreducible polynomials. Then I(X) =
√
〈f〉 = 〈g〉 where

g = p1p2 · · · p`. For a ∈ X we have Dg(a) =
(

∂g
∂x1

(a), · · · , ∂g
∂xn

(a)
)
. The rank of Dg(a) is

equal to 0 or to 1, and it is equal to 0 if and only if Dg(a) = 0, and so dima X is equal to n or
to n−1, and it is equal to n if and only if Dg(a) = 0. It follows that min

{
dima X

∣∣a ∈ X
}

is equal to n or to n − 1, and it is equal to n if and only if Dg(a) = 0 for every a ∈ X.
Suppose, for a contradiction, that Dg(a) = 0 for every a ∈ X. Then for each index k we
have ∂g

∂xk
(a) = 0 for all a ∈ X, so that ∂g

∂xk
∈ I(X) = 〈g〉. Since degxk

∂g
∂xk

< degxk
g, and

∂g
∂xk
∈ 〈g〉 it follows that ∂g

∂xk
= 0 ∈ F[x1, · · · , xn], as a polynomial. When char (F) = 0,

the fact that ∂g
∂xk

= 0 ∈ F[x1, · · · , xn] for all indices k implies that g is constant, but in fact

g is not constant. Suppose that char (F) = p. Then the fact that ∂g
∂xk

= 0 for all k implies
that all the exponents of all the variables xk in g are multiples of p, so g is of the form
g(x) =

∑
k∈K

ckx1
pk1x2

pk2 · · ·xn
pkn where K is a finite set of multi-indices k = (k1, · · · , kn).

But then g = hp where h(x) =
∑
k∈K

akx1
k1 · · ·xn

kn with ak ∈ F chosen so that ak
p = ck

(such elements ak ∈ F exist since F is algebraically closed). This is again not possible,
since g = p1p2 · · · p` where the pi are non-associate irreducible polynomials.

10.9 Theorem: (The Separating Transcendence Basis Theorem) Let F ⊆ K be fields
with trans

F
K = r. Suppose F is algebraically closed and K is finitely generated over F.

Let S ⊆ K be a finite set of generators for K over F. Then there exist a transcendence
basis {u1, · · · , ur} ⊆ S for K over F such that K is separable over F(u1, · · · , ur).

Proof: We sketch a proof. If char (F) = 0 there is nothing to prove. Suppose that
char (F) = p. Say S = {v1, · · · , vn} is a finite set of generators for K over F. Reorder
the elements vi, if necessary, so that {v1, · · · , vr} is a transcendence basis for K over F.
If K is separable over F(v1, · · · , vr) then we are done. Suppose that K is not separable over
F(v1, · · · , vr). Then one of the elements vi, with i > r, is not separable over F(v1, · · · , vr).
Reorder, if necessary, so that vr+1 is not separable over F(v1, · · · , vr). Multiply the minimal
polynomial of vr+1 over F(v1, · · · , vr) by the least common denominator to obtain an
irreducible polynomial f ∈ F[x1, · · · , xr+1] with f(v1, · · · , vr, vr+1) = 0. Since vr+1 is not
separable over F(v1, · · · , vr) it follows that xr+1 occurs in f with exponents which are all
multiples of p. One of the variables x1, · · · , xr must occur in f with an exponent which
is not a multiple of p otherwise, since F is algebraically closed, f would be equal to the
pth power of another polynomial, but f is irreducible. Reorder, if necessary, so that x1

occurs in f with an exponent which is not a multiple of p. Note that since {v2, · · · , vr+1}
is algebraically independent, f(t, v2, · · · , vr+1) is irreducible in F[v2, · · · , vr+1][t], and v1 is
a root of this irreducible polynomial. Since t occurs in this polynomial with an exponent
which is not a multiple of p, it follows that v1 is separable over F(v2, · · · , vr+1). If K is not
separable over F(v2, · · · , vr+1) we repeat the above procedure, reordering again if necessary,
obtaining a transcendence basis {v3, · · · , vr+2

}
for K over F such that v1 and v2 are both

separable over F(v3, · · · , vr+2). Eventually, this process will produce a transcendence basis
{u1, · · · , ur} = {v1+k, · · · , vr+k} with K separable over F(u1, · · · , ur), as required.
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10.10 Theorem: (The Primitive Element Theorem) Let F ⊆ K be fields. Suppose that
K is separable and finite dimensional over F. Then there exists u ∈ K such that K = F[u].

Proof: If F is finite then so is K, so the group of units K∗ = K \ {0} is a cyclic group,
and so K = F[u] where u is a generator of K∗. Suppose that F is infinite. Since K is
finite dimensional over F it is finitely generated and algebraic. Let L be the splitting field
over F of the minimal polynomials of a finite set of generators for K over F. Then we
have F ⊆ K ⊆ L and L is a finite dimensional Galois extension field of F. It follows,
from Galois Theory, that Aut FL is a finite group and hence that there exist only finitely
many intermediate fields between F and L. Thus there are only finitely many intermediate
fields between F and K. Choose u ∈ K such that the index

[
F[u] : F

]
is maximal. We

claim that F[u] = K. Suppose, for a contradiction, that F[u] ⊂6= K. Choose v ∈ K with

v /∈ F[u]. Since F is infinite and there are only finitely many intermediate fields between
F and K we can choose two distinct elements a, b ∈ F such that F[u + av] = F[u + bv].
Then we have (a − b)v = (u + av) − (u + bv) ∈ F[u + av]. Since a − b 6= 0 this implies
that v ∈ F[u + av] and hence u = (u + av)− av ∈ F[u + av]. Since u ∈ F[u + av] we have
F[w] ⊆ F[u + av] ⊆ K. By our choice of u, it follows that F[u] = F[u + av]. But then we
have v ∈ F[u + av] = F[u] giving the desired contradiction.

10.11 Theorem: Every irreducible variety of dimension d is birationally equivalent to a
hypersurface in Fd+1.

Proof: Let X ⊆ Fn be an irreducible variety with dim(X) = d. We have K(X) =
F(x1, · · · , xn) where each xk ∈ A(X) ⊆ K(X). By the Separating Transcendence Basis
Theorem, we can reorder the elements xk, if necessary, so that {x1, · · · , xd} is a transcen-
dence basis for K(X) over F and K(X) is separable over F(x1, · · · , xd). By the primitive
Element Theorem, we can choose u ∈ K(X) such that K(X) = K(x1, · · · , xd)[u]. Multiply
the minimal polynomial of u over F(x1, · · · , xd) by a common denominator of the coeffi-
cients to obtain an irreducible polynomial p ∈ F[x1, · · · , xd, t] with p(x1, · · · , xd, u) = 0.
Let Y = V (p) ∈ Fd+1. Then A(Y ) ∼= F[x1, · · · , xd, t]/〈f〉 ∼= F[x1, · · · , xd, u] ⊆ K(X), and
K(Y ) ∼= F(x1, · · · , xd, u) = K(X). Thus X ∼ Y = V (p) ⊆ Fd+1.

10.12 Theorem: (Generic Dimension) Let F be algebraically closed and let X ⊆ Fn be
a variety of pure dimension. Then dim(X) = min

{
dima X

∣∣a ∈ X
}
.

Proof: This follows from Theorem 10.11 together with Corollary 10.7 and Theorem 10.8.
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