
1. Affine Algebraic Varieties

1.1 Notation: Throughout these notes, F always denotes a field and F[x1, · · · , xn] denotes
the ring of polynomials in the variables x1, · · · , xn over F.

1.2 Definition: Let S ⊆ F[x1, · · · , xn] be any set of polynomials. The zero set of S (or
the affine algebraic variety cut out by S) in Fn is the set

V (S) =
{
x ∈ Fn

∣∣f(x) = 0 for all f ∈ S
}
.

If S is finite with S = {f1, · · · , fl} then we shall usually write V (f1, · · · , fl) instead of V (S).
An affine algebraic variety (or simply an affine variety) in Fn is a set of the form
V (S) for some S ⊆ F[x1, · · · , xn].

1.3 Remark: We use the word affine because we are considering Fn as an affine space (as
distinct from, say, a vector space), the word variety means the zero set of a collection of
functions, and the word algebraic indicates that the functions in question are polynomials.
When F = C, one can also study analytic varieties, which are the zero sets of collections
of analytic functions.

1.4 Example: In R1, V (x− 1) = {1} and V (x2 − 3x+ 2) = V
(
(x− 1)(x− 2)

)
= {1, 2}.

More generally, if f ∈ R[x] then V (f) is the set of roots of f in R.

1.5 Example: In R2, V (x + y − 2) is the line x + y = 2, V (y − x2) is the parabola
y = x2, and V (x2 + y2 − 1) is the circle x2 + y2 = 1. If f ∈ R[x] then V

(
y − f(x)

)
is

the graph of f(x). Also, V (y − x2, x + y − 2) = {(−2, 4), (1, 1)} is the set of points of
intersection of the parabola y = x2 with the line x+ y = 2, while V

(
(y − x2)(x+ y − 2)

)
is the union of the parabola y = x2 with the line x+ y = 2. For any point (a, b) ∈ R2 we
have V (x− a, y − b) = {(a, b)}. Finally, V (y − x3 − x2) is an alpha curve and V (y2 − x3)
is a curve with a cusp at (0, 0).

1.6 Example: In R3, V (z−x2− y2) is the paraboloid z = x2 + y2, V (x2 + y2 + z2− 1) is
the unit sphere, and V (x2 + y2− z2) is a double cone. If f ∈ R[x, y] then V (y− f(x, y)) is
the graph of f(x, y). Also V (xyz) is the union of the three coordinate planes, V (xy, yz) is
the union of the plane y = 0 with the x-axis, V (y−x2, z−x3) is the twisted cubic, which is
the curve given parametrically by (x, y, z) = (t, t2, t3) and V (x−1, y−2, z−3) = {(1, 2, 3)}.

1.7 Example: In R1, V (x2 + 1) = ∅, but in C1, V (x2 + 1) = {i,−i}. The fundamental
theorem of algebra states that if f ∈ C[x] \C then V (f) 6= ∅.

1.8 Example: In R2, we have V (y − x2, x − y2) = {(0, 0), (1, 1)}, which is the set of
points of intersection of the two parabolas y = x2 and x = y2, but in C2, we have
V (y − x2, x− y2) =

{
(0, 0), (1, 1), (α, ᾱ), (ᾱ, α)

}
, where α = ei 2π/3.

1.9 Example: In Q2, there are infinitely many points in V (x2 + y2 − 1)
(
indeed, for any

(u, v) ∈ Z2 \{(0, 0)}, if we let x = u2−v2
u2+v2 and y = 2uv

u2+v2 then we will have x2+y2 = 1
)
, but

according to Fermat’s Last Theorem, for n > 2 we have V (xn + yn − 1) = {(0, 1), (1, 0)}
if n is odd and V (xn + yn − 1) = {(0, 1), (0,−1), (1, 0), (−1, 0)} if n is even.

1.10 Example: In Zp for p prime, Fermat’s Little Theorem states that V (xp − x) = Zp.
More generally, if F is a field with pn elements then V

(
xp

n −x
)

= F (proof: F∗ is a group

with pn−1 elements, so for all x ∈ F∗ we have xp
n−1 = 1, and hence for all x ∈ F we have

xp
n

= x).

1



1.11 Example: In Z3
2 we have V (x2 + y2− 1) = {(0, 1), (0, 2), (1, 0), (1, 2)}, while in Z7

2

we have V (x2 + y2 − 1) = {(0, 1), (0, 6), (1, 0), (2, 2), (2, 5), (5, 2), (5, 5), (6, 0)}.

1.12 Example: (The Classification of Varieties in F1) Show that the affine varieties in F
are the finite subsets of F (including the empty set ∅) and F itself.

Solution: ∅ is a variety since V (F[x]) = V (1) = ∅. Given any finite set {a1, · · · , al} ⊆ F,
let f = (x−a1) · · · (x−al) and then we have V (f) = {a1, · · · , al}. Also, F itself is a variety
since V (∅) = V (0) = F.

Conversely, let X be any variety in F, and say X = V (S). If S = ∅ or if S = {0} then
X = V (S) = F. Otherwise, S contains a non-zero polynomial, say f . Since f 6= 0, f has
only finitely many roots (if any), so V (f) is finite (or empty), and X = V (S) ⊆ V (f), so
X must be finite (or empty).

1.13 Example: (Affine Spaces are Varieties) Show that every affine space in Fn is a
variety.

Solution: Recall that an affine space in Fn is a set of the form

p+ V =
{
p+ v

∣∣v ∈ V }
for some p ∈ Fn and some vector space V ⊆ Fn. Let X be an affine space in Fn, say
X = p+ V . Let {u1, · · · , uk} be a basis for V and let A be the n× k matrix with columns
u1, · · · , uk so that V is the column space of A. Then x ∈ X if and only if x = p + At for

some t ∈ Fk. Row reduce the augmented matrix (A|x − p) to obtain

(
I
0

∣∣∣∣ y
Bx+ c

)
for

some y ∈ Fk, c ∈ Fn−k and some (n − k) × n matrix B. Then x ∈ p + V if and only if
Bx + c = 0. The matrix equation Bx + c = 0 is equivalent to a system of n − k linear
equations, and X is the variety cut out by these equations.

1.14 Definition: A topology on a set X is any collection U of subsets of X such that

1) ∅ ∈ U and X ∈ U ,

2) if U ∈ U and V ∈ U then U ∩ V ∈ U , and

3) if Uα ∈ U for each α ∈ A, where A is any set, then
⋃
α∈A

Uα ∈ U .

The sets in U are called the open sets of X, and the complements of the open sets are
called the closed sets of X.

1.15 Example: Qn, Rn and Cn all have a standard metric topology.

1.16 Theorem: Let X be a variety in Fn. Then The set of all subvarieties of X is the set
of closed sets in a topology on X which is called the Zarisky topology. Indeed we have

1) V (F[x1, · · · , xn]) = V ({0}) = Fn and V (∅) = V ({1}) = ∅,
2) V (S) ∪ V (T ) = V (R), where R =

{
fg
∣∣f ∈ S, g ∈ T}, and

3)
⋂
α∈A

V (Sα) = V
( ⋃
α∈A

Sα
)
.

Proof: Parts (1) and (3) are easy. To prove part (2), first suppose that x ∈ V (S) ∪ V (T ),
say x ∈ V (S). Then for f ∈ S and g ∈ T we have f(x) = 0 and so (fg)(x) = 0, and
hence x ∈ V (R). Now, suppose that x /∈ V (S)∪ V (T ). Choose f ∈ S and g ∈ T such that
f(x) 6= 0 and g(x) 6= 0. Then fg ∈ R but (fg)(x) 6= 0, so x /∈ V (R).
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1.17 Example: As particular cases of the above parts (2) and (3), in Fn we have

V (fg) = V (f) ∪ V (g) and V (f, g) = V (f) ∩ V (g) .

1.18 Example: By part (2) of the above theorem, every finite union of varieties in Fn is
a variety. In particular, since every one-point set is a variety, every finite set of points is a
variety in Fn. If F is a finite field, then every subset of Fn is a variety.

1.19 Example: As another particular case of part (2), in F2 we have{
(a, b), (c, d)

}
= V (x− a, y − b) ∪ V (x− c, y − d)

= V
(
(x− a)(x− c), (x− a)(y − d), (x− c)(y − b), (y − b)(y − d)

)
1.20 Example: An ordered triangle in R2 is an ordered triple (a1, a2, a3) where the ai
are non-collinear points in R2. If we write a1 = (x1, x2), a2 = (x3, x4) and a3 = (x5, x6),
then we can consider an ordered triangle as an element of R6. Show that the set of ordered
triangles is open (in the Zariski topology) in R6.

Solution: The three points ai are collinear if and only if u and v are linearly independent,
where u = a2 − a1 = (x3 − x1, x4 − x2) and v = a3 − a1 = (x5 − x1, x6 − x2). So if we let
f(x1, · · · , x6) = (x3 − x1)(x6 − x2) − (x4 − x2)(x5 − x1), which is the determinant of the
matrix with columns u and v, then the set of ordered triangles in R6 is the complement
of the variety V (f).

1.21 Example: An n × n matrix with entries in F can be considered as an element of
Fn

2

. Show that the set GL(n,F) of invertible n× n matrices over F is open in Fn
2

.

Solution: Let f(x1, · · · , xn2) be the determinant of the matrix with entries x1, · · · , xn2 .
Then f is a polynomial of degree n, and GL(n,F) is the complement of the variety V (f).

1.22 Example: More generally, show that for 0 ≤ k ≤ n, the set M≤k(n,F) of n × n
matrices of rank ≤ k is closed in Fn

2

, and the set Mk(n,F) of matrices of rank k is open
in M≤k(n,F).

Solution: A matrix has rank ≤ k if and only if the determinant of every (k+1)×(k+1) sub-

matrix is equal to zero, so M≤k(n,F) is the variety in Fn
2

cut out by the determinants of
all the (k+1)×(k+1) sub-matrices of the matrix with entries x1, · · · , xn2 . Thus M≤k(n,F)

is closed in Fn
2

. And Mk(n,F) is the complement of M≤k−1(n,F) in M≤k(n,F).

1.23 Example: Show that if X is closed in the Zarisky topology in Fn, where F = Q, R
or C, then X is also closed in the standard metric topology.

Solution: If f ∈ F[x1, · · · , xn] then f : Fn → F is continuous in the standard metric
topology (polynomials are continuous), and so f−1(C) = {x ∈ Fn|f(x) ∈ C} is closed
whenever C is closed, and in particular V (f) = f−1(0) is closed, in the standard metric
topology. Now, let X ⊆ Fn be closed in the Zarisky topology, that is, let X be a variety.
Say X = V (S) where S ⊆ F[x1, · · · , xn]. Then X = V (S) =

⋂
f∈S

V (f) =
⋂
f∈S

f−1(0), which

is closed in the standard metric topology, since each f−1(0) is closed.
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