1. Affine Algebraic Varieties

1.1 Notation: Throughout these notes, F always denotes a field and F[x1, - - -, z,,] denotes
the ring of polynomials in the variables x1,-- -, x, over F.

1.2 Definition: Let S C Flzq,---,z,]| be any set of polynomials. The zero set of S (or
the affine algebraic variety cut out by S) in F” is the set

V(S)={z e F"|f(z)=0forall feS}.

If S is finite with S = {f1,-- -, fi} then we shall usually write V(f1,- -, f1) instead of V'(5).
An affine algebraic variety (or simply an affine variety) in F" is a set of the form
V(S) for some S C Fxq, -+, x,].

1.3 Remark: We use the word affine because we are considering F™ as an affine space (as
distinct from, say, a vector space), the word variety means the zero set of a collection of
functions, and the word algebraic indicates that the functions in question are polynomials.
When F = C, one can also study analytic varieties, which are the zero sets of collections
of analytic functions.

1.4 Example: In R, V(z — 1) = {1} and V(2% = 3z +2) = V((z — 1)(z — 2)) = {1,2}.
More generally, if f € R[z] then V(f) is the set of roots of f in R.

1.5 Example: In R?, V(z +y — 2) is the line z +y = 2, V(y — 2?) is the parabola
y = 2%, and V(22 + y? — 1) is the circle 22 + y?> = 1. If f € R[z] then V(y — f(:v)) is
the graph of f(x). Also, V(y — 2%,z +y —2) = {(—2,4),(1,1)} is the set of points of
intersection of the parabola y = 22 with the line z + y = 2, while V((y — 2?)(z + y — 2))
is the union of the parabola y = x? with the line = + y = 2. For any point (a,b) € R? we
have V(z — a,y — b) = {(a,b)}. Finally, V(y — 23 — 2?) is an alpha curve and V (y? — z3)
is a curve with a cusp at (0,0).

1.6 Example: In R3, V(z — 22 — y?) is the paraboloid z = 22 +¢2, V(22 +y2 + 22 — 1) is
the unit sphere, and V(22 + y? — 2?) is a double cone. If f € R[z,y] then V(y — f(z,y)) is
the graph of f(z,y). Also V(xyz) is the union of the three coordinate planes, V(zy,yz) is
the union of the plane y = 0 with the z-axis, V(y — 22, z—2?) is the twisted cubic, which is
the curve given parametrically by (z,y,2) = (¢,t%,t3) and V(z—1,y—2,2—3) = {(1,2,3)}.

1.7 Example: In R, V(22 + 1) = (), but in C!, V(22 + 1) = {i, —i}. The fundamental
theorem of algebra states that if f € Clz]\ C then V' (f) # 0.

1.8 Example: In R?, we have V(y — 22,2 — y?) = {(0,0),(1,1)}, which is the set of
points of intersection of the two parabolas y = 22 and = = %2, but in C2, we have
V(y— 22 —y*) = {(0,0), (1,1), (0, @), (@, @)}, where a = " *7/3,

1.9 Example: In Q?, there are infinitely many points in V(22 +y? — 1) (indeed, for any
(u,v) € Z2\{(0,0)}, if we let & = 57 and y = ;2“2 then we will have 2% +32 = 1), but
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according to Fermat’s Last Theorem, for n > 2 we have V(2" +y™ — 1) = {(0,1),(1,0)}
if n is odd and V(2™ +y™ — 1) = {(0,1),(0,—1),(1,0),(—1,0)} if n is even.

1.10 Example: In Z, for p prime, Fermat’s Little Theorem states that V(2P — x) = Z,,.
More generally, if F' is a field with p™ elements then V(xpn — a:) = F (proof: F* is a group

with p" — 1 elements, so for all z € F* we have 2" ~! = 1, and hence for all z € F we have
P = 1).




1.11 Example: In Z3? we have V(22 +y% —1) = {(0,1), (0,2), (1,0), (1,2)}, while in Z>
we have V(2 +y* — 1) = {(0,1), (0,6), (1,0),(2,2), (2,5), (5,2), (5,5), (6,0)}.

1.12 Example: (The Classification of Varieties in F1) Show that the affine varieties in F
are the finite subsets of F (including the empty set () and F itself.

Solution: () is a variety since V(F[z]) = V(1) = (). Given any finite set {aj,---,a;} C F,
let f=(r—a1)- - (x—a;) and then we have V(f) = {a1,---,a;}. Also, F itself is a variety
since V(0) =V (0) =F.

Conversely, let X be any variety in F, and say X = V(S). If S = or if S = {0} then
X =V(S) =F. Otherwise, S contains a non-zero polynomial, say f. Since f # 0, f has
only finitely many roots (if any), so V' (f) is finite (or empty), and X = V(S5) C V(f), so
X must be finite (or empty).

1.13 Example: (Affine Spaces are Varieties) Show that every affine space in F" is a
variety.

Solution: Recall that an affine space in F" is a set of the form
p+V={p+ojveV}

for some p € F™ and some vector space V' C F™. Let X be an affine space in F", sa
X =p+V. Let {uy, -, ur} be a basis for V and let A be the n x k matrix with columns
Uy, -, ur so that V is the column space of A. Then x € X if and only if z = p + At for
1
k . . . Yy
some t € F*. Row reduce the augmented matrix (A|z — p) to obtain < ol Br+ c) for

some y € F¥, ¢ € F"~% and some (n — k) x n matrix B. Then = € p + V if and only if
Bx + ¢ = 0. The matrix equation Bx + ¢ = 0 is equivalent to a system of n — k linear
equations, and X is the variety cut out by these equations.

1.14 Definition: A topology on a set X is any collection U of subsets of X such that
1)Peld and X €U,
2)ifUelU and V eld then UNV €U, and

3) if U, € U for each o € A, where A is any set, then |J U, € U.
acA
The sets in U are called the open sets of X, and the complements of the open sets are

called the closed sets of X.
1.15 Example: Q", R™ and C" all have a standard metric topology.

1.16 Theorem: Let X be a variety in F". Then The set of all subvarieties of X is the set
of closed sets in a topology on X which is called the Zarisky topology. Indeed we have
1) V(Flz1, -, za]) = V{0}) = F" and V(0) = V({1}) =0,
2)V(S)U ( ) V(R ),WhereR:{fg}fES,gET},and
3) ﬂ V(Sa) =V ( U Sa)-

Proof: Parts (1) and (3) are easy. To prove part (2), first suppose that x € V(S) U V(T),
say x € V(S). Then for f € S and g € T we have f(z) = 0 and so (fg)(z) = 0, and
hence z € V(R). Now, suppose that ¢ V(S)UV(T). Choose f € S and g € T such that

f(z) # 0 and g(z) # 0. Then fg € R but (fg)(x) # 0, so x ¢ V(R).
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1.17 Example: As particular cases of the above parts (2) and (3), in F” we have
V(fg) =V(f)UV(g) and V(f,g)=V(f)NV(g).

1.18 Example: By part (2) of the above theorem, every finite union of varieties in F™ is
a variety. In particular, since every one-point set is a variety, every finite set of points is a
variety in F™. If F is a finite field, then every subset of F" is a variety.

1.19 Example: As another particular case of part (2), in F2 we have
{(a,b), (c,d)} =V(xz—-—a,y—0) U V(z—cy—d)
=V((z—a)(x—c),(z—a)ly —d),(x - )y —b),(y - b)(y — d))

1.20 Example: An ordered triangle in R? is an ordered triple (ay, as, az) where the a;
are non-collinear points in R2. If we write a; = (z1,72), as = (x3,74) and a3 = (5, 76),
then we can consider an ordered triangle as an element of R6. Show that the set of ordered
triangles is open (in the Zariski topology) in RS.

Solution: The three points a; are collinear if and only if v and v are linearly independent,
where u = a3 — a1 = (3 — 1,24 — x2) and v = a3 — a1 = (v5 — x1, 26 — x2). So if we let
f(zy, -, 26) = (v3 — x1)(x6 — x2) — (4 — x2) (x5 — x1), which is the determinant of the
matrix with columns v and v, then the set of ordered triangles in R® is the complement
of the variety V(f).

1.21 Example: An n x n matrix with entries in F can be considered as an element of
2 2
F™ . Show that the set GL(n,F) of invertible n x n matrices over F is open in F™ .

Solution: Let f(zq,---,z,2) be the determinant of the matrix with entries zq,- -, z,2.
Then f is a polynomial of degree n, and GL(n, F) is the complement of the variety V(f).

1.22 Example: More generally, show that for 0 < k < n, the set M<y(n,F) of n x n

matrices of rank < k is closed in F”Q, and the set My (n,F) of matrices of rank k is open
in Mgk(n, F)

Solution: A matrix has rank < k if and only if the determinant of every (k+1) x (k+1) sub-
matrix is equal to zero, so M<y(n,F) is the variety in F™ cut out by the determinants of
all the (k+1) x (k+1) sub-matrices of the matrix with entries 1, - - -, x,,2. Thus M<y(n,F)
is closed in F**. And Mj,(n, F) is the complement of M<p—1(n,F) in M<y(n,F).

1.23 Example: Show that if X is closed in the Zarisky topology in F", where F = Q, R
or C, then X is also closed in the standard metric topology.

Solution: If f € F[xy,---,x,] then f : F* — F is continuous in the standard metric

topology (polynomials are continuous), and so f~1(C) = {x € F"|f(x) € C} is closed

whenever C is closed, and in particular V(f) = f71(0) is closed, in the standard metric

topology. Now, let X C F™ be closed in the Zarisky topology, that is, let X be a variety.

Say X = V(S) where S C Fz1,--,2,]. Then X =V(S) = N V(f) = N f~1(0), which
fes fes

is closed in the standard metric topology, since each f~1(0) is closed.



