

1. Affine Algebraic Varieties

1.1 Notation: Throughout these notes, \mathbf{F} always denotes a field and $\mathbf{F}[x_1, \dots, x_n]$ denotes the ring of polynomials in the variables x_1, \dots, x_n over \mathbf{F} .

1.2 Definition: Let $S \subseteq \mathbf{F}[x_1, \dots, x_n]$ be any set of polynomials. The **zero set** of S (or the **affine algebraic variety** cut out by S) in \mathbf{F}^n is the set

$$V(S) = \{x \in \mathbf{F}^n \mid f(x) = 0 \text{ for all } f \in S\}.$$

If S is finite with $S = \{f_1, \dots, f_l\}$ then we shall usually write $V(f_1, \dots, f_l)$ instead of $V(S)$. An **affine algebraic variety** (or simply an **affine variety**) in \mathbf{F}^n is a set of the form $V(S)$ for some $S \subseteq \mathbf{F}[x_1, \dots, x_n]$.

1.3 Remark: We use the word *affine* because we are considering \mathbf{F}^n as an affine space (as distinct from, say, a vector space), the word *variety* means the zero set of a collection of functions, and the word *algebraic* indicates that the functions in question are polynomials. When $\mathbf{F} = \mathbf{C}$, one can also study *analytic* varieties, which are the zero sets of collections of analytic functions.

1.4 Example: In \mathbf{R}^1 , $V(x - 1) = \{1\}$ and $V(x^2 - 3x + 2) = V((x - 1)(x - 2)) = \{1, 2\}$. More generally, if $f \in \mathbf{R}[x]$ then $V(f)$ is the set of roots of f in \mathbf{R} .

1.5 Example: In \mathbf{R}^2 , $V(x + y - 2)$ is the line $x + y = 2$, $V(y - x^2)$ is the parabola $y = x^2$, and $V(x^2 + y^2 - 1)$ is the circle $x^2 + y^2 = 1$. If $f \in \mathbf{R}[x]$ then $V(y - f(x))$ is the graph of $f(x)$. Also, $V(y - x^2, x + y - 2) = \{(-2, 4), (1, 1)\}$ is the set of points of intersection of the parabola $y = x^2$ with the line $x + y = 2$, while $V((y - x^2)(x + y - 2))$ is the union of the parabola $y = x^2$ with the line $x + y = 2$. For any point $(a, b) \in \mathbf{R}^2$ we have $V(x - a, y - b) = \{(a, b)\}$. Finally, $V(y - x^3 - x^2)$ is an alpha curve and $V(y^2 - x^3)$ is a curve with a cusp at $(0, 0)$.

1.6 Example: In \mathbf{R}^3 , $V(z - x^2 - y^2)$ is the paraboloid $z = x^2 + y^2$, $V(x^2 + y^2 + z^2 - 1)$ is the unit sphere, and $V(x^2 + y^2 - z^2)$ is a double cone. If $f \in \mathbf{R}[x, y]$ then $V(y - f(x, y))$ is the graph of $f(x, y)$. Also $V(xyz)$ is the union of the three coordinate planes, $V(xy, yz)$ is the union of the plane $y = 0$ with the x -axis, $V(y - x^2, z - x^3)$ is the twisted cubic, which is the curve given parametrically by $(x, y, z) = (t, t^2, t^3)$ and $V(x - 1, y - 2, z - 3) = \{(1, 2, 3)\}$.

1.7 Example: In \mathbf{R}^1 , $V(x^2 + 1) = \emptyset$, but in \mathbf{C}^1 , $V(x^2 + 1) = \{i, -i\}$. The fundamental theorem of algebra states that if $f \in \mathbf{C}[x] \setminus \mathbf{C}$ then $V(f) \neq \emptyset$.

1.8 Example: In \mathbf{R}^2 , we have $V(y - x^2, x - y^2) = \{(0, 0), (1, 1)\}$, which is the set of points of intersection of the two parabolas $y = x^2$ and $x = y^2$, but in \mathbf{C}^2 , we have $V(y - x^2, x - y^2) = \{(0, 0), (1, 1), (\alpha, \bar{\alpha}), (\bar{\alpha}, \alpha)\}$, where $\alpha = e^{i2\pi/3}$.

1.9 Example: In \mathbf{Q}^2 , there are infinitely many points in $V(x^2 + y^2 - 1)$ (indeed, for any $(u, v) \in \mathbf{Z}^2 \setminus \{(0, 0)\}$, if we let $x = \frac{u^2 - v^2}{u^2 + v^2}$ and $y = \frac{2uv}{u^2 + v^2}$ then we will have $x^2 + y^2 = 1$), but according to Fermat's Last Theorem, for $n > 2$ we have $V(x^n + y^n - 1) = \{(0, 1), (1, 0)\}$ if n is odd and $V(x^n + y^n - 1) = \{(0, 1), (0, -1), (1, 0), (-1, 0)\}$ if n is even.

1.10 Example: In \mathbf{Z}_p for p prime, Fermat's Little Theorem states that $V(x^p - x) = \mathbf{Z}_p$. More generally, if \mathbf{F} is a field with p^n elements then $V(x^{p^n} - x) = \mathbf{F}$ (proof: \mathbf{F}^* is a group with $p^n - 1$ elements, so for all $x \in \mathbf{F}^*$ we have $x^{p^n-1} = 1$, and hence for all $x \in \mathbf{F}$ we have $x^{p^n} = x$).

1.11 Example: In \mathbf{Z}_3^2 we have $V(x^2 + y^2 - 1) = \{(0, 1), (0, 2), (1, 0), (1, 2)\}$, while in \mathbf{Z}_7^2 we have $V(x^2 + y^2 - 1) = \{(0, 1), (0, 6), (1, 0), (2, 2), (2, 5), (5, 2), (5, 5), (6, 0)\}$.

1.12 Example: (The Classification of Varieties in \mathbf{F}^1) Show that the affine varieties in \mathbf{F} are the finite subsets of \mathbf{F} (including the empty set \emptyset) and \mathbf{F} itself.

Solution: \emptyset is a variety since $V(\mathbf{F}[x]) = V(1) = \emptyset$. Given any finite set $\{a_1, \dots, a_l\} \subseteq \mathbf{F}$, let $f = (x - a_1) \cdots (x - a_l)$ and then we have $V(f) = \{a_1, \dots, a_l\}$. Also, \mathbf{F} itself is a variety since $V(\emptyset) = V(0) = \mathbf{F}$.

Conversely, let X be any variety in \mathbf{F} , and say $X = V(S)$. If $S = \emptyset$ or if $S = \{0\}$ then $X = V(S) = \mathbf{F}$. Otherwise, S contains a non-zero polynomial, say f . Since $f \neq 0$, f has only finitely many roots (if any), so $V(f)$ is finite (or empty), and $X = V(S) \subseteq V(f)$, so X must be finite (or empty).

1.13 Example: (Affine Spaces are Varieties) Show that every affine space in \mathbf{F}^n is a variety.

Solution: Recall that an **affine space** in \mathbf{F}^n is a set of the form

$$p + V = \{p + v \mid v \in V\}$$

for some $p \in \mathbf{F}^n$ and some vector space $V \subseteq \mathbf{F}^n$. Let X be an affine space in \mathbf{F}^n , say $X = p + V$. Let $\{u_1, \dots, u_k\}$ be a basis for V and let A be the $n \times k$ matrix with columns u_1, \dots, u_k so that V is the column space of A . Then $x \in X$ if and only if $x = p + At$ for some $t \in \mathbf{F}^k$. Row reduce the augmented matrix $(A|x - p)$ to obtain $\left(\begin{array}{c|cc} I & y \\ 0 & Bx + c \end{array} \right)$ for some $y \in \mathbf{F}^k$, $c \in \mathbf{F}^{n-k}$ and some $(n - k) \times n$ matrix B . Then $x \in p + V$ if and only if $Bx + c = 0$. The matrix equation $Bx + c = 0$ is equivalent to a system of $n - k$ linear equations, and X is the variety cut out by these equations.

1.14 Definition: A **topology** on a set X is any collection \mathcal{U} of subsets of X such that

- 1) $\emptyset \in \mathcal{U}$ and $X \in \mathcal{U}$,
- 2) if $U \in \mathcal{U}$ and $V \in \mathcal{U}$ then $U \cap V \in \mathcal{U}$, and
- 3) if $U_\alpha \in \mathcal{U}$ for each $\alpha \in A$, where A is any set, then $\bigcup_{\alpha \in A} U_\alpha \in \mathcal{U}$.

The sets in \mathcal{U} are called the **open** sets of X , and the complements of the open sets are called the **closed** sets of X .

1.15 Example: \mathbf{Q}^n , \mathbf{R}^n and \mathbf{C}^n all have a standard metric topology.

1.16 Theorem: Let X be a variety in \mathbf{F}^n . Then The set of all subvarieties of X is the set of closed sets in a topology on X which is called the **Zarisky topology**. Indeed we have

- 1) $V(\mathbf{F}[x_1, \dots, x_n]) = V(\{0\}) = \mathbf{F}^n$ and $V(\emptyset) = V(\{1\}) = \emptyset$,
- 2) $V(S) \cup V(T) = V(R)$, where $R = \{fg \mid f \in S, g \in T\}$, and
- 3) $\bigcap_{\alpha \in A} V(S_\alpha) = V\left(\bigcup_{\alpha \in A} S_\alpha\right)$.

Proof: Parts (1) and (3) are easy. To prove part (2), first suppose that $x \in V(S) \cup V(T)$, say $x \in V(S)$. Then for $f \in S$ and $g \in T$ we have $f(x) = 0$ and so $(fg)(x) = 0$, and hence $x \in V(R)$. Now, suppose that $x \notin V(S) \cup V(T)$. Choose $f \in S$ and $g \in T$ such that $f(x) \neq 0$ and $g(x) \neq 0$. Then $fg \in R$ but $(fg)(x) \neq 0$, so $x \notin V(R)$.

1.17 Example: As particular cases of the above parts (2) and (3), in \mathbf{F}^n we have

$$V(fg) = V(f) \cup V(g) \quad \text{and} \quad V(f, g) = V(f) \cap V(g).$$

1.18 Example: By part (2) of the above theorem, every finite union of varieties in \mathbf{F}^n is a variety. In particular, since every one-point set is a variety, every finite set of points is a variety in \mathbf{F}^n . If \mathbf{F} is a finite field, then every subset of \mathbf{F}^n is a variety.

1.19 Example: As another particular case of part (2), in \mathbf{F}^2 we have

$$\begin{aligned} \{(a, b), (c, d)\} &= V(x - a, y - b) \cup V(x - c, y - d) \\ &= V((x - a)(x - c), (x - a)(y - d), (x - c)(y - b), (y - b)(y - d)) \end{aligned}$$

1.20 Example: An ordered triangle in \mathbf{R}^2 is an ordered triple (a_1, a_2, a_3) where the a_i are non-collinear points in \mathbf{R}^2 . If we write $a_1 = (x_1, x_2)$, $a_2 = (x_3, x_4)$ and $a_3 = (x_5, x_6)$, then we can consider an ordered triangle as an element of \mathbf{R}^6 . Show that the set of ordered triangles is open (in the Zariski topology) in \mathbf{R}^6 .

Solution: The three points a_i are collinear if and only if u and v are linearly independent, where $u = a_2 - a_1 = (x_3 - x_1, x_4 - x_2)$ and $v = a_3 - a_1 = (x_5 - x_1, x_6 - x_2)$. So if we let $f(x_1, \dots, x_6) = (x_3 - x_1)(x_6 - x_2) - (x_4 - x_2)(x_5 - x_1)$, which is the determinant of the matrix with columns u and v , then the set of ordered triangles in \mathbf{R}^6 is the complement of the variety $V(f)$.

1.21 Example: An $n \times n$ matrix with entries in \mathbf{F} can be considered as an element of \mathbf{F}^{n^2} . Show that the set $GL(n, \mathbf{F})$ of invertible $n \times n$ matrices over \mathbf{F} is open in \mathbf{F}^{n^2} .

Solution: Let $f(x_1, \dots, x_{n^2})$ be the determinant of the matrix with entries x_1, \dots, x_{n^2} . Then f is a polynomial of degree n , and $GL(n, \mathbf{F})$ is the complement of the variety $V(f)$.

1.22 Example: More generally, show that for $0 \leq k \leq n$, the set $M_{\leq k}(n, \mathbf{F})$ of $n \times n$ matrices of rank $\leq k$ is closed in \mathbf{F}^{n^2} , and the set $M_k(n, \mathbf{F})$ of matrices of rank k is open in $M_{\leq k}(n, \mathbf{F})$.

Solution: A matrix has rank $\leq k$ if and only if the determinant of every $(k+1) \times (k+1)$ submatrix is equal to zero, so $M_{\leq k}(n, \mathbf{F})$ is the variety in \mathbf{F}^{n^2} cut out by the determinants of all the $(k+1) \times (k+1)$ sub-matrices of the matrix with entries x_1, \dots, x_{n^2} . Thus $M_{\leq k}(n, \mathbf{F})$ is closed in \mathbf{F}^{n^2} . And $M_k(n, \mathbf{F})$ is the complement of $M_{\leq k-1}(n, \mathbf{F})$ in $M_{\leq k}(n, \mathbf{F})$.

1.23 Example: Show that if X is closed in the Zarisky topology in \mathbf{F}^n , where $\mathbf{F} = \mathbf{Q}$, \mathbf{R} or \mathbf{C} , then X is also closed in the standard metric topology.

Solution: If $f \in \mathbf{F}[x_1, \dots, x_n]$ then $f : \mathbf{F}^n \rightarrow \mathbf{F}$ is continuous in the standard metric topology (polynomials are continuous), and so $f^{-1}(C) = \{x \in \mathbf{F}^n | f(x) \in C\}$ is closed whenever C is closed, and in particular $V(f) = f^{-1}(0)$ is closed, in the standard metric topology. Now, let $X \subseteq \mathbf{F}^n$ be closed in the Zarisky topology, that is, let X be a variety. Say $X = V(S)$ where $S \subseteq \mathbf{F}[x_1, \dots, x_n]$. Then $X = V(S) = \bigcap_{f \in S} V(f) = \bigcap_{f \in S} f^{-1}(0)$, which is closed in the standard metric topology, since each $f^{-1}(0)$ is closed.