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Chapter 1. Lebesgue Measure

1.1 Definition: When [ is equal to any one of the bounded intervals (a,b), [a,b), (a,b]
or [a,b], where a,b € R with a < b, we define |I| = b — a. When [ is equal to any of the
unbounded intervals (—o0, a), (—00, a], (a, o), [a,o0) or (—o0, 00), where a € R, we define
|I| = oc.

1.2 Definition: For a bounded set A C R, the Jordan outer content of A is

c*(A) = inf{ S || ‘n € Z™, each I} is a bounded open interval and A C | Ik}.
k=1 k=1

1.3 Theorem: (Properties of Jordan Outer Content) Let A, B C R be bounded.

(1) (Translation) If a € R and 0 # r € R then ¢*(a + A) = ¢*(A).
(2) (Scaling) If 0 # r € R then c¢*(rA) = |r| c*(A).

(3) (Inclusion) If A C B then c¢*(A) < ¢*(B).

(4) If A is finite then c¢*(A) = 0.

(5) If I is a bounded interval then c¢*(I) = |I|.

(6) (Subadditivity) We have ¢*(AU B) < ¢*(A) + ¢*(B).

(7) We have c*(A) = c*(A).

Proof: The proof is left as an exercise.

1.4 Exercise: Show that when A C R and I and J are bounded intervals with A C I C J
we have [I| —c*(I\ A) = |J| —c*(J\ A).

1.5 Definition: For a bounded set A C R, we say that A has (a well-defined) Jordan
content when

c"(A) = [I[ =" (I\ 4)

where [ is any interval which contains A and, in this case, we define the Jordan content
of A to be c(A) = c*(A).

1.6 Exercise: Show that QN [0, 1] does not have a well-defined Jordan content.

1.7 Theorem: (Properties of Content) Let A, B C R be bounded.
(1)(Translation) If a € R then a + A has Jordan content if and only if A does.
(2) (Scaling) If 0 # r € R then rA has Jordan content if and only if A does.
(3) If ¢*(A) = 0 then A has Jordan content.

(4) If A and B have Jordan content then so do AU B, AN B and A\ B.

(5) Every bounded interval has Jordan content.

(6) The set A has Jordan content if and only if ¢*(A\ A°) = 0.

Proof: The proof is left as an exercise.



1.8 Definition: For a set A C R, the (Lebesgue) outer measure of A is

A*(A) = inf{ each I,, is a bounded open interval and A C | In}.
n=1

n=1

1.9 Theorem: (Properties of Outer Measure) Let A, B C R and let Ay C R for k € Z.

(1) (Translation) If a € R then \*(a + A) = A*(A).
(2) (Scaling) If 0 # r € R then \*(rA) = |r|\*(A).
(3) (Inclusion) If A C B then \*(A) < A*(B).

(4) If A is finite or countable then \*(A) = 0.

(5) If I is an interval then \*(I) = |I|

(6) (Subadditivity) We have A*( U 4 ) < XN (A).

n=

Proof: We leave the proofs of parts (1), (2) and (3) as an exercise. We prove Part (4)
in the case that A is countable. Let A = {al,ag,ag, -}. Let € > 0. For each n € Z™T,

let I,, = (an — 5=,an + 5=). Then A C U I,, so we have A\*(A4) < > |I,| = 2¢. Since
n=1

0 < A*(A) < 2¢ for every € > 0, it follows that A*(A) =0.

Let us prove Part (5). When [ is a degenerate interval (so I is empty or has only
one point) we know, from Part (4), that A*(I) = 0. Suppose that I is a nondegenerate
bounded interval, say I is equal to one of the intervals (a,b), [a,b), (a,b] or [a,b] where
a<b. Lete>0,let I; = (a—e,b+e)and let I,, = () for n > 2. Then I C |J I, so we have

n=1
A(I) < > |I,| =b—a+ 2. Since € > 0 was arbitrary, it follows that \*(I) < b —a. It
n=1
remains to show that A\*(I) > b — a. Let I, I, Is,- - - be any bounded open intervals such
that 7 C (J I,. Let 0 < € < 252 and consider the compact interval K = [a+¢,b—¢] C I.

n=1
Note that U = {11, I, I3,---} is an open cover of K. Choose a finite subset ¥V C U so that

K C |J J. Choose J; = (a1,b1) € V so that a; < a —e < by. If by < b — € then choose
Jey

Jo = (az,b2) € V so that as < by < bg. If by < b — € then choose J3 = (a3, b3) € V so
that as < by < bs. Continue this procedure until we have chosen J; = (ag,by) € V with
by > b — €, and note that K C JyUJoU---UJp and {J1,J2, -+, Ji} TV CU. We have

g;lu\ ol = (b1 = an) 4 (b = a2) - (b — )

(V2
A 3
M(\

—(a+¢€)+(ag—a2)+ (as—az)+ -+ (ag—ar— 1)+ ((b—€) — ar)
b—a—2e.

Since € was arbitrarily small it follows that > |I,,| > b—a. Since this is true for all bounded
n=1
open intervals I3, I, I5, - - - which cover I, it follows that \*(I) > b — a, as required.
When [ is an unbounded interval, we must have A\*(I) = oo because for every R > 0

we can choose a bounded interval J C I with |J| > R and then we have A*(1) > A\*(J) > R.



To prove Part (6), let Ay, A, As,--- C R. Let € > 0. For each n € Z™*, choose open
bounded intervals I, 1, Iy 2,In3,- - so that A, C |J Lyx and ) [Ink| < A (An) + 57
k=1 k=1

Then we have |J A, C I, so that
n=1 n,k=1
N (U An) < X sl £ 3 (N (An) +52) = 3 X" (An) +e.
n=1 n,k=1 n=1 n=1

Since € > 0 was arbitrary, we have A*( U Ak> < > A*(A,), as required.
n=1 n=1
1.10 Definition: For A C R, we say that A is (Lebesgue) measurable when for every
set X C R we have
A(X)=XA(XNA+XN(X\A).

When A is measurable, we define the (Lebesgue) measure of A to be A(4) = A\*(A). We
let M denote the set of all measurable subsets of R.

1.11 Note: For any sets A, X C R, we have X = (XNA)U(X\A) and so (by subadditivity)
A(X) < A(XNA)+ A (X \A). Thus a set A C R is measurable if and only if for every
set X C R we have

(X)) > A(XNA) +A(X N\ A).

1.12 Theorem: (Properties of Measure) Let A, B, A, C R for k € Z™T.

(1) If a € R then A is measurable if and only if a + A is measurable.
(2) If 0 # r € R then A is measurable if and only if rA is measurable.
(3) 0 and R are measurable.

(4) If \*(A) = 0 then A is measurable.

(5) If A is measurable then so is A° =R\ A.

(6) If A and B are measurable then so are AUB , AN B and A\ B.
(7) Every interval is measurable.

(8) If Ay, As, Ag, - -+ are measurable then so are | ) Ay and () Ag.
k=1 k=1

(9) If Ay, Ag, As, - - - are measurable and disjoint then )\< U Ak> = > AMAg).
k=1 k=1

Proof: We leave the proofs of Parts (1) and (2) as an exercise. To prove Part (3), note
that ) and R are measurable because for every set X C R we have

A (X N0) 4+ A (X \0) = A*(0) + A*(X) = A*(X), and
M(XNR)+ M (X \R) = M (X) + A (0) = A (X).

To prove Part (4), let A C R and suppose that \*(4) = 0. Let X C R. Since
XNACAand X\ ACX we have

A (X N A)+ A (X A) <A (A) + N (X) = A (X).

Part (5) holds because if A C R is measurable and X C R then, since XNA® = X\ A4
and X \ A°= X N A, we have

A (X NAS) + A (X | A%) = A*(X\ A) + A" (X N A) = \*(X).
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To prove Part (6), suppose that A and B are measurable and let X C R. Then

A(X)=A"(XNA)+ X (X \A), since A is measurable

=N (X NA)+ X (X \A)NB)+ A ((X\ A)\ B) , since B is measurable
=M (XNA)+X((X\A)NB)+ A (X\(AUB))

> A (X N(AUB)) 4+ X (X \ (AU B)) , by subadditivity

since (X NA)U ((X\ A)NB) = X N(AUB). This shows that AU B is measurable. Using
Part (5), it follows that A N B is measurable because AN B = (A° U B¢)¢ and hence that
A\ B is measurable because A\ B = AN B€.

Let us prove Part (7) in the case of a nonempty bounded open interval. Let I = (a,b)
where a < b. Let X C R. Let € > 0. Choose open bounded intervals I, I, I3, - - - so that
X C U I, and Z |I,| < A*(X) +e. ForneZ* let J, =1,N(a,b), K, =1, N(—00,a)

n=1

and L, = I, N (b,oc). Then X NI C J J, so that A*(X NI) < > |J,|and X \ I C

nl nl

(a—€a+e)U(b—eb+e)U U K, U U L, so that \X*(X \ I) < 4e+ Z | K| + Z | Ly,

n=1
and so we have

M(X NI+ X (XN\T) <de+ Y (L] + | Jn| + |Knl) =4e+ X L] < M (X) + 5e.
n=1 n=1

Since € > 0 was arbitrary, we have \*(X N 1I) + A*(X \ I) < A*(X), Since X C R was
arbitrary, we se that I is measurable.

Before proving Parts (8) and (9) we remark that for A, B C R, if A is measurable and
AN B = () then for all X C R we have

M(XNAUB) =X ((XN(AUB)NA)+ X (X N(AUB)\ 4)
= A (X NA)+ A\ (XNB)

It follows, inductively, that if Ay, Ay, -+, A,, € R are measurable and disjoint then for all
X C R we have

k=1 k=1

Now let A, Ay, A3, --- C R be measurable and disjoint and let X C R. Foralln € ZT
we have

n

SA(XNAR) =X (XN U Ax) , by the above remark,

k=1 k=1
S)\*(XQUA]C) ,sinceXﬂUAngﬂUAk,
k=1 k=1 k=1
= )\*( U (XﬂAk)) ,since X N Y Ar = U (X N Ag),
=1 k=1 k=1

< > A(X NAg) |, by subadditivity.
k=1



Taking the limit as n tends to infinity gives

M(X N U Ar) = X (XN Ay).
k=1 k=1
The special case X = R gives the formula \*( |J Ax) = > A*(Ay) for Part (9). For all
k=1 k=1

n € ZT we have
n n

A(X) =X (XN Y Ap) +X(X\ U Ar)
k=1 k=1

(X0 AR+ 3 (X U 4p)

|
NE

k=1 k=1
> SA(X DA+ (X U Ap)
k=1 k=1

Taking the limit as n tends to infinity gives

%
>
v
gk

N (X A Ag) + A (X kf_jl Ar)

=
I
-

A(X N U Ag) + X (X \ U Ap)
k=1 k=1

oo

so that (J Aj is measurable, proving Part (8) in the case that the sets Ay are disjoint.
k=1

To complete the proof of Part (8) in the case that A;, Ag, As,--- C R are measurable (but

not necessarily disjoint) simply note that

U Ag = Ay U (As\ A1) U (Ag \ (A1 U Ag)) U (A \ (A; U Ay U Ag)) U ---
k=1

which is a countable union of disjoint measurable sets.

Finally, we recall that we only proved Part (7) in the case of a bounded open interval.
We note that every interval can be obtained from bounded open intervals by performing
complements and countable unions or intersections, and so every interval is measurable.

1.13 Corollary: Let Ay, Ay, As,--- C R be measurable sets.
(1) If Ay C Ay C A3 C --- then A( U An> — lim A(A,).
n=1

n—oo

(2)If Ay D Ay D A3 D --- and A,, is finite for some m € Z* then )\( N An> = lim A(4,).
n=1

n—oo
Proof: To prove Part (1), suppose that A1 C As C A3 C ---. Let By = A; and By =
A\ Ag_1 for k > 2, Then the sets By, are measurable and disjoint and we have A,, = |J Bk
k=1

for all n € Z* and also |J A, = |J B,. Thus

n=1 n=1

A @1An) = X( E:len) = Y A\(B,) = lim i A(By) = lim X( CJ Byi) = lim A(4,).

M8

This proves Part (1), and Part (2) follows from Part (1) by taking complements in A,,.



1.14 Theorem: All open and closed sets in R are measurable.

Proof: Recall that every set in R™ (or any metric or topological space) is equal to the
disjoint union of its connected components, and recall that the connected components of an
open set are all open. Note that the set of connected components of an open set in R is at
most countable because we can choose an element of Q" inside each of the open connected
components. Also recall that the connected sets in R are the intervals in R. It follows
that every nonempty open set in R is equal to the finite or countable disjoint union of its
connected components, each of which is a nonempty open interval. Thus every open set in
R is measurable. We also remark that when the connected components of the nonempty

open set U C R are the disjoint open intervals Iy, I, I3,--- we have A\(U) = > |Ix|.
k>1
Closed sets are also measurable because every closed set is the complement of an open set.
1.15 Corollary: For A C R we have
A*(A) =inf {\U) |U C R is open with A C U}.

1.16 Example: The (standard) Cantor set is the set C' C [0, 1] constructed as follows.
Let Cy = [0,1]. Let I; be the open middle third of Cy, that is let I; = (%, %)7 and let
Cy = Ap\Uy = [O, %] U [%, 1} . Let I and I3 be the open middle thirds of the two component
intervals of C', that is let Iy = (%, %) and I3 = (%, %), and let Cy = C1 \ (I2 U I3). Having
constructed the set C},, which is the disjoint union of 2* closed intervals each of length SL’“’
let Iok, ok, , Ior+1_q be the open middle thirds of these 2* component intervals and
let Ck+1 = Ck \ (]Qk,12k+1, ce ,12k+1_1). Finally, we let

C=( Ch

k=1
Since Cyp O C; D Cy D ---, and since each C}, is the disjoint union of 2* closed intervals
each of size 5r so that A(Cy) = (%)k, we have

A(C) = lim A(Cr) =0.

Note that Cj, is the set of all numbers = € [0, 1] which can be written in base 3 such that
the the first k& digits of = are not equal to 1, and so C is the set of all numbers = € [0, 1]
which can be written in base 3 with none of the digits of x equal to 1, and it follows that
the cardinality of C' is |C| = 2.

1.17 Example: We can construct a (generalized) Cantor set C' C [0,1], having any
desired value for the measure A\(C) < 1 as follows. Let 0 < m < 1. Choose a sequence

o]
of positive real numbers aj,as,--- with > ar = 1 —m. Let Cy = [0,1] and note that
k=1
A(Cp) = 1. Choose an open interval I; C Cy with A(I1) = a; such that Cy\ I7 is the disjoint
union of two nondegenerate closed intervals each of measure less than % Let Cy = Co\ I
and note that A\(Cy;) = 1 — a;. Having constructed the set Cj, which is the disjoint
union of 2* nondegenerate closed intervals each of measure less than 2% and having total
measure A(Cy) = 1—(a;+ag+---+ay), we choose 2¥ open intervals Iox, Iok 1, -+, Ioet1_q
which are contained in each of the 2¥ component intervals of C} so that the set Cry1 =
Ci \ (I U- - -Ulyk41_1) is the disjoint union of 281 non-degenerate closed intervals each of
measure less than 5z and having total measure A(Cj41) = 1— (a3 + -+ + ap41). Finally,

we let C'= () Cf and note that A(C') = lim AC) =1— > ar = m.
k=1 k—oco k=1
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1.18 Theorem: Let M be the set of all measurable subsets of R. Then |M| = 22"°

Proof: Let C be the standard Cantor set. Because A(C) = 0 it follows that every subset
of C is measurable. Because |C| = 2% we have

22" = [{AJA CR}| > |M| > [{AJA C C}| = 27",

1.19 Theorem: There exists a nonmeasurable set in R.

Proof: Define an equivalence relation on the set [0, 1] by defining  ~ y when y — z € Q.
Let C' denote the set of equivalence classes. For each ¢ € C, choose an element x. € ¢
and let A = {z.|]c € C} C [0,1]. We shall prove that the set A is not measurable. Let
QNJ0,2] = {a1,as,as, - - -}, with the ay distinct. For each k € Z7, let Ay, = ap+A C [0, 3].
We claim that the sets Ay are disjoint. Let k, ¢ € Z™ and suppose that AyNA; # (). Choose
y € AN Ay, say y = ar + x. = ap + x4 where ¢,d € C. Since x. —xg = ay — ar € Q we
have z. ~ x4 and hence ¢ = d (since we only chose one element from each class). Since
¢ = d we have x. = x4, hence ar = ay, and hence k = £. Thus the sets A, are disjoint, as
oo
claimed. Next, we claim that [1,2] C |J Ak. Let y € [1,2]. Since y — 1 € [0, 1] we have

k=1
y— 1 € c for some ¢ € C. Since y — 1 € ¢ we have y — 1 — z. € Q hence also y — x. € Q.

Since y € [1,2] and z. € [0,1] we have y — z. € [0,2]. Since y — z. € QN [0,2] we have
y — . = ay for some k € Z™ so that y € Ay. This proves that [1,2] C |J As.

k=1
Suppose, for a contradiction, that the set A is measurable. By translation, each of

the sets Ax = ar + A is measurable with A(Ax) = A(A). Since the sets Ay are disjoint and
measurable, additivity gives

00 0,
A
<kU 0.

=1 ) = k§1 M) = kil AA) = { 0, if A(4)

oo , if A(4) >

But since [0,1] € |J Ax C [0,3] we also have 1 < A( |J Ax) < 3, giving the desired
k=1 k=1
contradiction.

1.20 Notation: Let X be a set. For any set C of subsets of X we write
C, = { U Ak‘ each Ay, ec} and C5 = { N Ak‘ cach Ay, ec}.
k=1 k=1

Note that C,, = C, and Css = Cs.

1.21 Definition: Let X be a set. A g-algebra in X is a set C of subsets of X such that

(1) e,
(2)if A € C then A°= X\ A€, and
(3) if Al,AQ,Ag,"' € C then U Ak eC.
k=1
Note that when C is a o-algebra in X we have C, = C and Cs = C.

1.22 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that G, =G
and F5 = F.



1.23 Example: For any set X, the set {(Z),X} and the set P(X) of all subsets of X are
o-algebras in X, The set M = M(R) of all measurable sets in R is a o-algebra in R.

1.24 Note: Note that given any set C of subsets of a set X there exists a unique smallest
o-algebra in X which contains C, namely the intersection of all o-algebras in X which
contain C.

1.25 Definition: In a metric space (or topological space) X, the Borel o-algebra B is
the smallest o-algebra in X which contains G (hence also F). The elements of B are called
Borel sets. Note that B contains all of the sets G,Gs,Gs0, G060, -+ and all of the sets
I7F07F057~F060>"'

1.26 Exercise: Show that F C Gs or, equivalently, that G C F,,
1.27 Theorem: All Borel sets in R are measurable.

Proof: The set M of all measurable subsets of R is a o-algebra which contains G, and
the Borel o-algebra B is the intersection of all o-algebra in which contain G, so we have

B C M.

1.28 Remark: It can be shown, using transfinite induction, that in R we have |B| = 2¥o.
Since |B| < |M], it follows that there exist measurable functions which are not Borel.

1.29 Theorem: For every set A C R there exists a set B € G5 with A C B such that
A(B) = A*(A).

Proof: Let A C R. For each n € ZT, choose bounded open intervals Ina,In2,1n3, -

such that A C | L, and > |[In x| < A*(A) + %, then let U, = |J I,. Note that for
k=1 k=1 k=1

each n € ZT the set U, is open with A C U,,, and we have A(Uy,) < 3 |Ln x| < A*(4) + 1.
k=1

Let B = () U, and note that B € Gs. Since A C U, for all n € Z*, we have A C [ U,,

n=1 n=1
that is A C B, and hence \*(A) < A\(B). For every n € Z* we have B C U, so that
AB) < AUy,) < X (A)+ 1, and it follows that A\(B) < A*(A). Thus A(B) = A\*(A), as
required.

1.30 Theorem: Let A C R. Then the following statements are equivalent.

(1) A is measurable.

(2) For every € > 0 there exists an open set U with A C U C R such that A(U \ A) < e.
(3) There exists a set B € G5 with A C B C R such that A\(B '\ A) = 0.

(4) For every € > 0 there exists a closed set K C A such that A(A\ K) < e.

(5) There exists a set C' € F, with C C A such that A\(A\ C) = 0.

Proof: We prove that (1) is equivalent to (3) and leave proofs of other equivalences as an
exercise. To show that (3) implies (1), suppose that there exists a set B € G5 with A C B
such that A*(B\ A) = 0. Since \*(B \ A) = 0 we know that B\ A is measurable, and
hence the set A = B\ (B \ A) is also measurable.



Suppose, conversely, that A is measurable. If A(A) < oo then, by Theorem 1.28, we
can choose B € Gs with A C B such that A(B) = A(A), and then we have A\(B\ A) =
A(B) — A(A) = 0, as required. If \(A) = oo then more care is needed. For each n € Z™,
let A,, = AN[—n,n], note that A,, is measurable, and choose B,, € G5 with A, C B,, such

that A\(B,) = A(A,), and note that A\(B,, \ A,) = A(By,) — A(4,) = 0. Let B= |J B.

n=1

Then we have A = UA C UB = B and we have B\ A = UB \AC UBn\A

n=1

so that A(B\ A) < Z ANBp,\4,)=0

1.31 Theorem: Let A, B C R. Suppose that A C B and B is measurable with A\(B) < oc.
Then A is measurable if and only if A\(B) = A\*(A) + A*(B\ A).

Proof: If A is measurable then for all X C R we have \*(X) = A*(X NA) + A*(X \ 4) so
that in particular (taking X = B) we have \*(B) = A\*(A) + A* (B \ A).

Suppose that \*(B) = A\*(A) + \*(B \ A), and let X C R. By Theorem 1.28, we can
choose E € Gs with X N B C E such that A(F) = A*(X N B). Let C = EN B and note
that C' is measurable with X N B C C' C B. Since X N B C C we have A*(X N B) < A\(C)
and since C' C E we have A\(C) < A(E) = A*(X N B), and so A(C') = \*(X N B). Since C
is measurable, and since (B\ A)NC =C\ Aand (A\C)U((B\A)\C)=B\C and
(CNA)U(C\A)=Cand C =BnNC, we have

A (B) =X (A)+ X" (B\ 4)
:()\*(AHC)—I—)\*(A\C) ()\* (B\A)NC)+ X ((B\A)\C’))
=A(ANC)+ N (A\C)+ X (C\A) + X ((B\A)\C)
= (A(CNA)+X(C\A)+ (A (A\NC)+ X ((B\A)\ ()
> (A(CNA)+ X (C\A)+X(B\C)
>A(CO)+ A (B\C)=X(BNC)+ A (B\C)
= \(B)
Since the first and last terms above are equal, it follows that all terms must be equal, so
in particular we have \*(C N A) + A*(C \ A) + \*(B\ C) = X*(C) + X*(B \ C) hence
A(C)=A(CNA)+ X (C\ A). Thus
A(XNB)=X(C)=X"(CNA)+X(C\A)
>N ((XNB)NA)+ X ((XNB)\A),since XNBCC,
=NXNA)+N(XNB)\A),since (XNB)NA=XnNA.

hence

A(X) =X (XNB)+ A (X \ B), since B is measurable,
=NXNA)+N(XNnB)\A) + X (X \ B)
> A*(X N A)+ A (X \ A), since (XNB)\ A)U(X\B) =X\ A

Thus A is measurable, as required.



1.32 Definition: Let X be a metric space and let A C X. We say A is dense (in X)
when for every nonempty open ball B C X we have BN A # (0, or equivalently when
A = X. We say A is nowhere dense (in X) when for every nonempty open ball B C R

there exists a nonempty open ball C C B with C' N A = (), or equivalently when A°= 0.
1.33 Example: The generalized Cantor sets are nowhere dense in R.

1.34 Note: When A C B C X, note that if A is dense in X then so is B and, on the
other hand, if B is nowhere dense in X then so is A.

1.35 Note: When A, B C X with B = A° = X \ A, note that A is nowhere dense <=
A°= 09 «— BO= X < the interior of B is dense.

1.36 Definition: Let A C X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when A€ is first category.

1.37 Example: Every countable set in R is first category since if A = {a1,a2,as, -}

then we have A = [J {ax}. In particular Q is first category and Q° = R\ Q is residual.
k=1

1.38 Note: If A C X is first category then so is every subset of A.

oo
1.39 Note: If A, Ay, Az, -+ C X are are all first category then so is |J Ag.
k=1

1.40 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.

(2) Every residual set in X is dense.

(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

Let A C X be first category, say A = |J C,, where each C,, is nowhere dense. Suppose,

n=1
for a contradiction, that A has nonempty interior, and choose an open ball By = B (ag,70)
with 0 < rg < 1 such that By € A . Since each C,, is nowhere dense, ‘we can chose a
nested sequence of open balls B,, = B(ay,,r,) with 0 < r,, < 2% such that B,, C B,,_1 and
B, NC, = 0. Because r,, — 0, it folows that the sequence {a,} is Cauchy. Because X

is complete, it follows that {a,} converges in X, say a = nl;ngo a,. Note that a € B,, for

all n since a € B, for all k > n. Since a € By and By C A we have a € A. But since

a € Byforaln > 1, and B, NC, =0, we have a ¢ C,, for allm > 1 hence a ¢ |J C,, that
n=1

isa ¢ A.

1.41 Example: Recall that Q is first category and Q¢ is residual. The Baire Category

Theorem shows that Q¢ cannot be first category because if Q and Q¢ were both first

category then R = Q U Q¢ would also be first category, but this is not possible since R
does not have empty interior.
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1.42 Exercise: For each n € ZT, let f, : R — R be continuous. Suppose that for all
z € R there exists n € ZT such that f,,(z) € Q. Prove that there exists n € Z* such that
fn is constant in some nondegenerate interval.

1.43 Exercise: Show that F, # Gs and show that G5 # Gs, .
1.44 Remark: Each of the following sets C of subsets of R

C= {A - R} A is finite or countable}
C={ACR|NA) =0}
C= {A C R} A is first category}

has the following properties:
(1) if AC B and B € C then A €C,

(2) if Ay, Ay, As,--- € C then |J A €C, and
k=1
(3) if A € C then A° = 0.

Because of this, it seems reasonable to consider the sets in C to be, in some sense, “small”.
The following theorem, then, states that every set in R is the union of two small sets.

1.45 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1,as,as,---}. For k, 0 € ZT, let I, = (ag — ﬁ, ap + ﬁ) and for
keZ", let U, = U I Note that Uy D Uy D Us D --- and for each k € Z* we have
=1

Q g Uk and /\(Uk) S Z |Ik,g| = Q,C%l and we have U1 D) U2 2 U3 2 ---. Let B = ﬂ Uk
=1 k=1
Note that B is residual (it is a countable intersection of dense open sets) and we have
AB) = klim AMUy) = 0 since A\(Uy) < 5 for all k € ZT. Finally note that any set A is
—00
equal to the disjoint union A = (AN B)U (AN B°), and we have A(AN B) = 0 and the set
AN B¢ is first category.
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Chapter 2. Lebesque Integration

2.1 Definition: For £ C A C R, the characteristic function for £ on A is the function

X : A — {0, 1} given by _
(2) = 1,ifxekF,
BT 0 e g B,
2.2 Definition: Let a,b € R with a < b. A step function on [a,b] is a function
s : [a,b] — R of the form

n

S = Z CkXIk

k=1

n
where n € Z™T, each ¢, € R, and the sets I are disjoint intervals with (J I = A. The
k=1
numbers ¢, and the intervals I are uniquely determined from s if we require that I, is

to the left of I}, and c_1 # cx for 1 < k < n, and then we have I, = s~ !(cz).

n

2.3 Definition: For the step function on [a,b] given by s = kX, , We define the
k=1

Riemann integral of s on [a,b] to be

/ 8—/ d.T— Ck|Ik|
=1

For a bounded function f : [a,b] — R we define the upper Riemann integral and the
lower Riemann integral of f on [a,b] to be

U(f):inf{/abs
L(f)zsup{/abs

We say that f is Riemann integrable on [a,b] when U(f) = L(f), and in this case we
define the Riemann integral of f on [a,b] to be

/abf - /abf@ de =U(f) = L(f).

2.4 Theorem: (Properties of the Riemann Integral) Let a < b and let f, g : [a,b] — R be
bounded.

(1) If f and g are Riemann integrable on [a,b] and f < g then / f< /

(2) If f and g are Riemann integrable on [a,b] and ¢ € R then the functions c¢f and f + g
are Riemann integrable on [a,b] and /b(cf = c/ f and / (f+g9) = / f -I-/

(3) If ¢ € (a,b) then f is Riemann integrable on [a, ] if and on]y if f is Riemann integrable
both on [a,c| and on [c,b] and, in this case, / f= / f +/ f-

(4) If f(x) = g(x) for all but finitely many x e [a, b] then f is Riemann intebgrable on [a, b]

s is a step function on [a, b] with s > f},

s is a step function on [a, b] with s < f}

if and only if g is Riemann integrable on [a,b] and, in this case, / f= / g

Proof: The proof is left as an exercise.
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2.5 Theorem: Let a < b and let f : [a,b] — R be bounded.

(1) If f is continuous then f is Riemann integrable.
(2) If f is monotonic then f is Riemann integrable.

Proof: We omit the proof.

2.6 Theorem: (Lebesgue) Let a < b and let f : [a,b] — R. Then f is Riemann
integrable on [a, b] if and only if f is bounded and the set of all points in [a,b] at which f
is discontinuous has measure zero.

Proof: We omit the proof.

2.7 Theorem: (The Fundamental Theorem of Calculus) Let f,g : [a,b] — R. Suppose
that g is differentiable with ¢’ = f in [a,b] and that f is Riemann integrable on [a,b]. Then

/ f(x) dz = g(b) - gla).

Proof: We omit the proof.

2.8 Example: The function f : [0,1] — [0,1] defined by f(z) = 1 when z € Q and
f(z) = 0 when x ¢ Q is discontinuous everywhere in [0, 1], and is not Riemann integrable.

2.9 Example: The function f : [0,1] — [0,1] given by f(%) = % when a,b € Z with
0 <a <band ged(a,b) =1, and f(z) = 0 when = ¢ Q, is discontinuous at all rational
points, and is Riemann integrable.

2.10 Example: Define s : R — [0,1] by s(z) = 0 for x < 0 and s(z) = 1 for z > 0. Let
QnNJ0,1] = {ai,az,as, -} and define f : [0,1] — [0,1] by f(z) = > 5’(952_—;”“) Then f is

k=1
increasing with jump discontinuities at all rational points, and f is Riemann integrable.

2.11 Example: Given a Cantor set C' = [0, 1]\ U, where U = |J I} with the sets Ij; being
k=1

the disjoint open intervals from Example 1.17, we can construct a corresponding Cantor
function f : [0,1] — [0,1] with f(z) = § on Iy, f(z) = } on Lo, f(z) = 3 on I3, f(z) = &

on Iy, f(z) = % on Iy, f(z) = g on Ig, f(z) = % on I7 and so on, and then extending f to
make it continuous on all of [0, 1]. Then f is continuous and nondecreasing with f/(z) =0

forall x € U.

2.12 Example: When C = [0,1] \ U is a Cantor set and f : [0,1] — [0, 1] is the corre-
sponding Cantor function (as in the previous example), the function g : [0, 1] — [0, 2] given
by g(z) = x + f(x) is a homeomorphism. Note that g sends each component interval of U
to an interval of the same size, so that we have A(g(U)) = A(U).

In the case that C is the standard Cantor set we have A(g(U)) = A(U) = 1. It follows
that )\(g(C')) =2—-A(U) =1, so g sends a set of measure zero to a set of measure 1. Also
note that if we choose a nonmeasurable set B C g(C) and let A = g~*(B), then A C C

so that A is a measurable set with measure zero, but g sends A to the nonmeasurable set
9(A) = B.
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2.13 Example: Given a Cantor set C' = [0, 1]\U where U is the disjoint union U = |J I,
k=1

choose intervals J, & I so that Jy has the same centre as I, with |Ji| = %\Ik], then cﬂoose
continuous functions fi : [0,1] — [0, 1] such that f(x) = 0 outside J and f(z) = 1 at

the midpoint of Ji and then let f(z) = >  fi(x) for all z € [0,1]. Then f is continuous
k=1
in U and discontinuous in C. When A(C) > 0, f is not Riemann integrable. If we define
g(x) = > / fr(t) dt then g is differentiable with ¢’ = f in [a, b].
k=1.J0

2.14 Example: Let QN[0,1] = {a1,as2,---}. Define f : [0,1] - R by f(z) = > ("E_g—ﬁ)m
k=1

Then f is increasing with f/(z) = (x_g’“# when z ¢ Q and f'(x) = oo when z € Q.
k=1

Verify that f/(z) > & for all z. The map f sends the interval [0, 1] homeomorphically to
an interval [a,b] and the inverse map ¢ : [a,b] — [0, 1] is increasing and differentiabe with

g'(x) =0 for all x € Q and ¢'(z) < 3 for all x. Note that g’ cannot be Riemann integrable
b

because if it was then we would have / g = g(b) — g(a) = 1 but, because ¢'(z) = 0 for
all z € Q, all of the lower Riemann sums are zero.

2.15 Definition: We shall find it useful on occasion to allow our functions to take the
values £00 so we shall use the set of extended real numbers [—oc0, c0] = RU {—00, 00}.
In [—o00, 00|, the open balls are the open intervals B(—oo,7) = (—oo, %), B(oco,r) = (%, oo)
and B(a,r) = (a — r,a + r) with a € R. For A C [—00, 0], we say that A is open in
[—00, 00] when for every a € A there exists r > 0 such that B(a,r) C A. Verify that every
open set in [—00, 0] is a finite or countable union of disjoint open intervals, where each
open inerval is of one of the forms ), (a,b), (—00,a), (a,0), (—00,0), [—00,a), (a, <]
or [—oo,00] where a,b € R. We also use (partially-defined) addition and multiplication
operations on [—o00, 0], as usual, leaving certain sums and products undefined. We do not
define the expressions co + (—00), —00 4 00, 0 - (£00) and (£o0) - 0.

2.16 Definition: For f: A C R — B C [—o0, 0], we say that f is measurable (in A)
when f~1(U) is measurable for every open set U in [—o0, 0] (or equivalently for every
open set U in B). Note that in particular, in order for f to be measurable, the set A must
be measurable because A = f~*([—00, 00]).

2.17 Note: If f : AC R — B C [—00, 00| is measurable and ¢ : B C [—00, 00] = [—00, 00|
is continuous, then the composite p o f : A C R — [—o0, o0] is measurable because, for
every open set U in [—o0,00], ¢~ }(U) is open in B since ¢ is continuous, and hence the
set (po f)~HU) = f~'(¢ *(U)) is measurable since the function f is measurable.

2.18 Theorem: Let A C R be measurable and let f : A — [—00, 00|, Then

f is measurable <= f

is measurable for all a € R

(a, 0 ) is measurable for all a € R
*([a, oc])

—00, a)) is measurable for all a € R
—00

,a]) is measurable for all a € R
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Proof: We shall prove the first equivalence. If f is measurable then f~1(U) is measurable
for every open set U C [—o00,00] so, in particular, f_l((a, oo]) is measurable for every
a € R. Suppose, conversely, that f _1((a, oo]) is measurable for every a € R. Then for
every a,b € R, each of the following sets is measurable.

f_l([—oo,a]) =R\ f_l((a, oo]),
f_1<[_007 a)) = n@1 f_l([_oov a— %])a
f~Ha,b) = f7H([—00,b)) N f~*((a, 00]).

Since every open U set in [—00, o] is a finite or countable union of sets Uy, each of which

is of one of the forms [—o0,a), (a,b), (a,00], and because f~*( U Ux) = U [~ (Us), it
k=1 k=1

follows that f~1(U) is measurable for every open set U in [—oo, c0].

2.19 Theorem: Let E C A C R with A measurable, and let f : A — [—00,0].

(1) The function X, is measurable if and only if the set E is measurable.
(2) If f is continuous then f is measurable.
(3) If f is monotonic then f is measurable.

Proof: To prove Part (1), note that if E is not measurable then neither is X, because
XE_l ((0,00]) = E, and if E is measurable then so is X, because for all sets U in [—o0, oo],
the set f~1(U) is equal to one of the measurable sets (), E, A\ E or A.

To prove Part (2), suppose that f is continuous and let U be any open set in [—o0, oo].
Since f is continuous and U is open, the set f~!(U) is open in A. Since f~1(U) is open
in A, we can choose an open set V in R such that f~1(U) = V N A, which is measurable.

To prove Part (c), suppose that f is monotonic, say f is increasing. Let a € R. For
all z,y € A, if 2 € f~'((a,00]) and y > z then f(y) > f(z) > a so that y € f~*((a, x]).
It follows that the set f~!((a,o0]) must a set of one of the forms @), AN (b, 0], AN [b, 0]
or A, and so f~! ((a, oo]) is measurable.

2.20 Definition: Given a function f: A C R — [—o00, 00|, we define T : A — [—o0, o0]
and f~ : A — [—00, 00| by

[ f@ . itf@ =0, 0 ,if f2) >0,
f*(x)—{ 0 it <0 f(w>—{_f( o <0

2.21 Theorem: (Operations on Measurable Functions) Let f,g: A C R — [—o0, 0] be
measurable functions, and let ¢ € R. Then each of the following fuctions are measurable

cf s f+g, fa, lfl, FH. f

provided they are well-defined.

Proof: The function cf is well-defined unless ¢ = 0 and f(z) = +o0o for some x € A. When
¢ =0 and f(x) # +oo, the function ¢f is the zero function, which is measurable. When
¢ # 0 the function ¢ : [—00,00] = [—00, 0] given by ¢(x) = cx is continuous and so the
the function c¢f = ¢ o f is measurable by Note 2.17.

15



The function f + g is measurable because for all a € R we have
(f +9)"((a,00]) = {z € Al f(2) + g(z) > a}

= U {f(z) >rand g(z) >a—r}
reQ
= U (f_l (Tv OO]) N g_l(a - OO])7
reQ
which is measurable.

The function ¢ : [—00,00] — [0,00] given by ¢(x) = x* is continuous so, by Note
2.17, for every measurable function h : A — [—o00, 0], the function h? = @ o h is also
measurable. It follows that the function fg = 1 ((f + 9)? — (f — 9)?) is measurable.

The function ¢ : [—00,00] — [0,00] given by ¢(x) = |z| is continuous so, by Note
2.17, the function |f| = ¢ o f is measurable, hence so are the functions f* = %(|f| + f)
and f~ = 3(|f] - f).

2.22 Theorem: Let f, : A C R — [—00, 0] be measurable for each n € Z"™. Then each
of the following functions are well-defined and measurable:

sup{fu|n € Z}, inf{fn|n € Z*}, limsup{f,}, liniinf{fn}.
n—00 n—0o0

Proof: Let g = sup{fa|n € Z*}. For z € A and a € R we have

2

x € g_l((a, oo]) < g(r) >a < sup{fuln €Z7} >a

< fu(z) >aforsomencZ" < x¢ Ej fn_l((a, 0]).

n=1

Thus for all @ € R we have g7 *((a,o0]) = U f~"((a,0]), which is measurable. Simi-
n=1

larly, when h = inf{ f,|n € Z*} and a € R we have h ™! ([a,0]) = N fn_l([a, o0]), which
n=1

is measurable. Also, we have

lim sup f,, = inf { supq{ fn|n > 1}, sup{ fn|n > 2}, sup{fnjn > 3},--- } and

n— oo
lim inf f,, = sup { inf{f,|n > 1},inf{ f,|n > 2},inf{f,|n > 3}, - }
n—oo

It follows that limsup f,, and liminf f,, are measurable.
n—00 n—oo

2.23 Definition: Let A C R be measurable. We say that a property or statement holds
for almost every (written a.e.) x € A, or almost everywhere (written a.e.) in A, when
the property or statement holds for every € A\ E for some set E C A with A\(E) = 0.
For example, for functions f,g: A — [—o0, 0], we say that f(z) = g(z) for a.e. z € A (or
f =g ae. in A) when f(z) = g(x) for every x € A\ E for some set £ C A with A\(F) = 0.

2.24 Theorem: Let A C R be measurable and let f,g: A — [—00, 00].

(1) If \(A) = 0 then f is measurable.

(2) If A= BUC where B and C' are disjoint and measurable then f is measurable (in A)
if and only if the restrictions of f to B and to C' are both measurable (in B and in C').
(3) If f =g a.e. in A then f is measurable if and only if g is measurable.

Proof: The proof is left as an exercise.
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2.25 Definition: Let A C R. A simple function on A is a function s : A — R of the

form
n

s= Y. ckX
k=1 A

n

where n € Z*1, each ¢, € R, and the sets Ay, are disjoint measurable sets with | Ay = A.
k=1

The numbers ¢, and sets Ay are uniquely determined from the function s if we require

that ¢; < ¢y < -+ < ¢,, and then we have Ay = s_l(ck).
2.26 Definition: For the nonnegative simple function s : A C R — [0,00) given by
s= Y. kX, , the (Lebesgue) integral of s on A is defined to be

k=1

/Af(x)dx:/As:/Asd)\:kzzck)\(Ak).

Note that the value of the integral does not depend on whether or not the numbers ¢, are
distinct because if ¢, = ¢; then cxA(Ag) + A (A;) = ¢k ()\(Ak) + )\(Al)) = cpA\(Ax U 4)).

2.27 Theorem: (Properties of Integration) Let r,s : A C R — [0,00) be nonnegative
simple functions, and let ¢ € R.

(l)Ifrgsthen/rg/s.
A A

(2) Wehave/A(cs):c/Asand/A(T—i-s):/Ar-l—/As.

(3) If A= BUC, where B and C' are disjoint and measurable, then / s = / S +/ s.
A B c

(4) If B C A is measurable then / s = / CED
B A

(5) If \(A) =0 then [ s=0.
A

(6) If r = s a.e. jnAthen/r:/s,andﬂ”/rzOthenran.e. in A.
A A A

Proof: We shall prove Parts (1) and (2) and leave the proofs of the remaining parts as

n

m
an exercise. Let r = > arX , and s = ) leBz and let C; = A N B;. Note that the
=1

k=1
sets Ck,l are disjoint with U C]%l = U (Ak N Bl) = ( U Ak) NB, =ANB; = B; and it
k=1 k=1 k=1
follows that Xeo, = Xg, and that > A(Ck,;) = A(B;). Similary, we have |J Ci; = A,
k=1 * k=1 =1

I; Xew, = Xa, and 121 AMCri) = MAg).

To prove Part (1)_, suppose that r < s. For all pairs (k,) with Cj; # 0, we can choose
x € Ck; and then we have ay, = r(z) < s(s) = b;. It follows that

n

/Ar _ kilak)\(Ak) — Y gjl MCh) =X aACr) = Y axA(Cr)

k=1 k,l k01> Cy 1#0
< X BAC) = SAC) = 3 b 3 AC) = S B = [ s
kol S Cr 1 #0 k1 I=1 k=1 =1 A
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The first formula in Part (2) is clear. Let us prove the second formula. We have

n m

rts= kz_:l akXAk + l; leBz - Z Z: Chk,1 Z bl kz_jl XCk,z - kz;(ak + bZ)XC’

k=1 =1 kil

and so
/ (7“ + 8) = (ak + bl))\(Ck’l) = ZakA(Ck,l) + Z blA(Ck,l)
A k,l k,l k.l

m n

g AMCri) + 2 b >0 MCry)

é k=1
Zij AA k)+l§jlbl>\(Bl /r+/

2.28 Note: Given any nonnegative measurable function f : A C R — [0, 00|, we can
construct an increasing sequence {s,} of nonnegative simple functions s, : A — [0, 00)
with s,, — f pointwise in A as follows. For n € Z™", we let

k— fk
sn<x>={ !

~

[y

(z) < 2 with k € {1,2,--,n2"},
n ,lff( )_

n2n

that is s,, = Z k;nl X4,
—1

We remark that if f is bounded the s,, — f uniformly in A.

where A}, = f~1 [k{n , Qn) for 1 <k <n2"and A,2n = f~1[n, 0.

2.29 Definition: For a nonnegative measurable function f : A C R — [0, o0], we define
the (Lebesgue) integral of f on A to be

/Af(a:)dx:/Afz/Afd)\:sup{/As

We say that f: A — [0,00] is (Lebesgue) integrable (on A) when / f < oo.
A

s is a simple function on A with 0 < s < f}.

2.30 Theorem: (Properties of Integration) Let f,g : A C R — [0,00] be non-negative
measurable functions and let ¢ € R. Then

(l)Iff<gonAthen/f</

(2)Wehave/cf —c/fand/f+g /f—l—/

(3) If A= BUC, where B and C are disjoint and measurable, then /A f= /B F+ /C f
(4) If B C A is measurable then/Bf:/Af-XB.

(5) If)\(A):Othen/fzo.

(6)If f = g a.e. jnAtben/Af:/Ag,andjf/Af:Othenf:Oa.e. in A.

Proof: All parts follow fairly easily from the analogous parts of Theorem 2.27 except for
the second formula in Part (2). We shall return to the proof of this formula later.
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2.31 Theorem: (Fatou’s Lemma) Let f,, : A C R — [0,00] be nonnegative measurable
functions for n € Z*. Then

/ liminf f,, <liminf / fn-
A n—oo n—oo A
Proof: By the definition of the integral on the left, it suffices to prove that for every

nonnegative simple function s on A with s < liminf f,, we have / s < liminf [ f,. Let
A A

n—oo n—oo
m
s be any nonnegative simple function on A with s < liminf f,,. Write s = > agpXx 4, - For
n—oo k=1 k

all x € Ay we have ax = s(z) < liminf f,(z), and it follows that for all 0 < r < 1 there
n—oo

exists n € Z™ such that for all [ > n we have fi;(z) > rag. Let 0 < r < 1. For k,n € Z*,
let
By, = {:1: € Ak’fl(x) > ray, for all [ > n} = fl_l[mk,oo].

I>n

[e.e]
Note that each set By, is measurable with By 1 C By o C Bi 3 C --- and |J Bin = Ak.
n=1

It follows that A(Ax) = lim A(By,). For all z € By, we have fj(z) > ray for all [ > n
n— 00

m
so that, in particular, f,,(z) > ray. It follows that f,, > > ragX B hence
k=1 o

/ fn > i ragA(Bg ).
A k=1

Taking the liminf on both sides gives

liminf/ fn > lim Z ragA(Bg,n) = Z rag\(Ax) = 7’/ S.
A

Since 0 < r < 1 was arbitrary, it follows that lim inf / fn > / s, as required.

n—oo

2.32 Corollary: Let f, : A C R — [0,00] be nonnegative measurable functions for
n € Z*. Suppose that the pointwise limit lim f,(z) exists with f,(z) < lim f,(z) for
n—oo n— oo

all x € A. Then
/ lim f, = lim fn .
A n—oo n—oo

Proof: For all n € Z™, since f,, < lim f,, we have / fn < / lim f,,. Taking the limsup
n—oo A

A n—oo

limsup/ Jn < / lim f, .
By Fatou’s Lemma, we also have
/ lim f, = / liminf f,, < liminf/ fn-
2.33 Corollary: (Lebesgue’s Monotone Convergence Theorem) Let f, : A C R — [0, 00]
be nonnegative measurable functions such that { f,(x)} is increasing for every x € A. Then

/ lim f, = lim fn.
A

n— oo n—oo

gives

Proof: This is a special case of the previous corollary.
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2.34 Note: We now return to the proof of the second formula in Part (2) of Theorem
2.30. We suppose that f,g: A C R — [0, 00| are nonnegative measurable functions, and

we need to prove that
/U+w=/f+/g
A A A

Proof: Using the construction described in Note 2.28, choose increasing sequences {r, } and

{sn} of nonnegative simple functions on A such that lim r, = f and hm $n = ¢g. Then
n—oo

the sequence {r,, + s,} is also increasing with lim (r, + s,) = f + g. By the Monotone
n— oo

Convergence Theorem, along with Part (2) of Theorem 2.27, we have

/(f_|_g):/ lim (r, + s,) = lim (rn+sn )= lim (/Tn /Sn)
A A Moo n—00 n—00
= lim rn—l—hm/sn_/hmrn /liman/f+/g

2.35 Corollary: Let A C R be measurable and let {f,} be a sequence of nonnegative
measurable functions f, : A — [0,00]. Then

%fn: i fn-
An—1 n=1JA

Proof: This follows by applying Lebesgue’s Monotone Convergence Theorem to the se-

quence of partial sums S, (z) = > fi(x).
k=1

2.36 Corollary: Let A = |J Ay where the sets A,, are measurable and disjoint, and let
k=1
f:A—0,00] be nonnegative and measurable. Then

/fo

Proof: This follows from the above corollary using f, = f - X 1

2.37 Remark: For a o-algebra C, a measure on C is a function p : C — [0, 00| such that
(1) u(0) = 0, and
(2) if Ay, As, As,- -+ € C are disjoint then u( U Ak) — 3 u(Ap).

k=1 k=1

When M is the o-algebra of Lebesgue measurable sets in R, and f : R — [0, 00] is any
nonnegative measurable function on R, the above corollary shows that we can define a

/
A
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2.38 Definition: For a measurable function f : A C R — [—00, 0], we say that f is
(Lebesgue) integrable (on A) when the functions f* and f~ are both Lebesgue integrable
on A and, in this case, we define the (Lebesgue) integral of f on A to be

Jee=[g= g m= [ o
In the case that A = [a, b] we also write /Af(x) dx as /a f(x)dx

2.39 Note: For f: A C R — [—o0,00|, f is integrable if and only if |f| is integrable.
2.40 Theorem: Let f,g: A C R — [—00, 0] be integrable and let ¢ € R.

[ 1< [

(2)Iff§gthen/f<

(3) Wehave/(f)—c/fand/ f+g) = /f+/

(4) If A= BUC where B and C' are disjoint and measurable then / f= / f +/ f.
A B c

(1) We have

(5) If B C A is measurable then / f= / fx,-
B A B
(6) If \(A) = 0 then / f=o0.

(7) If f =g a.e. onAthen/f:/g,andif/|f|:Othenf:0a.e. in A.
A A A

Proof: The proof is left as an exercise.

2.41 Theorem: (Lebesgue’s Dominated Convergence Theorem) Let A C R be a mea-

surable set and let f, : A — [—00,00] be measurable functions for n € Z*. Suppose the

pointwise limit lim f,(z) exists for all x € A. Suppose there exists an integrable function
n—oo

g: A —|0,00] such that |f,(z)| < g(x) for alln € Z*, x € A. Then

/ lim f, = lim fn-

A n— oo n—oo A

Proof: Let f = lim f,. Note that since —g < f, < g for all n we gave —g < f < g so
n—oo

that f is integrable. By Fatou’s Lemma, applied to the function g + f,,, we have

/g+/ lim fn:/1iminf(g+fn)§liminf/(g+fn):/g+liminffn.
A A A Moo n—oo [ 4 A n—00

n—oo

It follows, since [, g < oo, that

liminf/ fnZ/ lim f,.

By Fatou’s Lemma, applied to the function g — f,,, we have

/ /A Jim f, = / liminf(g — f,) < lim inf / (9—1fn) = / g — lim sup / -

It follows, since [, g < oo, that
1imsup/ Jn < / lim f,.
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2.42 Theorem: Let a,b € R with a < b and let f : [a,b] — R be bounded and Riemann
integral. Then f is also measurable and Lebesgue integrable, and the two kinds of integral
are equal.

Proof: T may include a proof later.

2.43 Remark: I may include a discussion of complex-valued functions f: A C R — C
later.
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Chapter 3. The Lp Spaces

3.1 Definition: Let FF = R or C. Let W be a vector space over F. An inner product
over I is a function (, ) : W x W — W (meaning that if u,v € W then (u,v) € W) such
that for all u,v,w € W and all t € F we have

(1) (Sesquilinearity) (u + v, w) = (u, w) + (v,w) , (tu,v)
(u,v +w) = (u,w) + (v,w) , (u,tv)

(2) (Conjugate Symmetry) (u,v) = (v, u), and

(3) (Positive Definiteness) (u,u) > 0 with (u,u) =0 <= u =0.

For u,v € W, (u,v) is called the inner product of u with v. An inner product space

over F'is a vector space over F' equipped with an inner product. Given two inner product

spaces U and V over F, a linear map L : U — V is called a homomorphism of inner

product spaces (or we say that L preserves inner product) when (L(z), L(y)) = (z,y)
for all z,y € U.

(u, v)

t :
t (u,v),

3.2 Theorem: Let W be an inner product space over F' = R or C and let u,v € W.
Then if (z,u) = (x,v) for all x € U, or if (u,x) = (v,x) for all x € U then u = v.

Proof: Suppose that (z,u) = (z,v) for all x € U. Then (x,u —v) = (x,u) — (x,v) = 0 for
all x € U. In particular, taking x = u — v we have (u — v,u —v) =0, so u — v = 0 hence
u=v. Similarly, if (u,z) = (v, x) for all z € U then u = v.

3.3 Definition: Let F' = R or C. Let W be a vector space over F'. A norm on W is a
map || || : W — R such that for all u,v € W and all t € F' we have

(1) (Scaling) |[#wl] = [¢] |[u]],

(2) (Positive Definiteness) ||u|| > 0 with ||u|| =0 <= u =0, and

(3) (Triangle Inequality) ||u + v|| < [|ul| + ||v]|.

For u € W the real number ||u|| is called the norm (or length) of u, and we say that
u is a unit vector when ||u|| = 1. A normed linear space over F is a vector space
over F' equipped with a norm. Given two normed linear spaces U and V over F, a linear
map L : U — V is called a homomorphism of normed linear spaces (or we say that L
preserves norm) when ||L(z)|| = ||z|| for all z € U.

3.4 Theorem: Let F' = R or C. Let W be an inner product space over F. For u € W

define ||u|| = y/{u,u). Then

(1) (Scaling) ||tu|| = |¢][|u]l,

(2) (Positive Definiteness) [|u|| > 0 with |[u]| =0 <= u =0,

(3) llu+ vl|* = [|ul|* + 2 Re(u, v) + [Jv]%,

(4) (Pythagoras’ Theorem) if (u,v) = 0 then ||u + v||* = ||u|? + ||v||?,

(5) (Parallelogram Law) ||u + v||? + ||u — v||? = 2||u||* + 2]||v||?,

(6) (Polarization Identity) if F = R then (u,v) = 1 (||u+v|| — ||u —v]|) and
if F = C then (u,v) = X (||u+v[|*> + ilju+iv]|? = |Ju—v||* — i||u — iv]|]?),

(7) (The Cauchy-Schwarz Inequality) |(u,v)| < |u||v| with |(u,v)| = ||u||||v|| if and only if
{u,v} is linearly dependent, and

(8) (The Triangle Inequality) |[|ul| — |[v]|| < [[u + || < [[ul| + [|v]].

In particular, || || is a norm on W.
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Proof: We only prove Part (7) and part of Part (8). To prove Cauchy’s Inequality, suppose
first that {u, v} is linearly dependent. Then one of x and y is a multiple of the other, say
v=tuwitht € F. Then [(u,v)| = [(u, tu)| = [T (u, u)| = [¢|[[ul[* = [Jul] |[tu]] = [Ju][|]v]].

Next we suppose that {u, v} is linearly independent. Then 1-v+¢-u # 0 for all t € F,
so in particular v — <|U 2 U # 0. Thus we have

(v,u) (v
\ H < Tall2 %> V'~ T2 “>
= (v, v> fr;Hz (v, u) — £ (u,v) + S L ()

2 L) ?
= [loll* = e

0<H

so that 'Wﬁ; < ||v|[* and hence |(u,v)| < ||u||||v||. This proves Part (7).

Using Parts (3) and (7), and the inequality |Re(z)| < |z| for z € C (which follows
from Pythagoras’ Theorem in R?), we have

[lw+ ol|* = [|ul]® + 2Re(u, v) + [[o]|* < [Jull* + 2|(u, v)] + [Jv]?
2
< [lll* + 21ful [[o]] + [[v]]* = (lull + [[v]])".

Taking the square root on both sides gives ||u + v|| < ||ul| + ||v]].

3.5 Definition: A metric on a set X is a function d : X x X — R such that, for all
x,y,z € X we have

(1) (Positive Definiteness) d(x,y) > 0 with d(z,y) =0 < z =y,
(2) (Symmetry) d(z,y) = d(y, x) and
(3) (Triangle Inequality) d(z, z) < d(x,y) + d(y, 2).

A set with a metric is called a metric space.

3.6 Definition: A topology on a set X is a set 7 of subsets of X such that

(H)PeT and X €T,
(2)ifUeTandV €T thenUNV €T, and

(3) if K is a set and U, € T for each k € K then |J Uy €T.
keK

For a subset A C X, we say that A is open (in X) when A € T and we say that A is
closed (in X) when X \ A € T. A set with a topology is called a topological space.

3.7 Note: Given an inner product on a vector space V over F' = R or C, Theorem 3.4
shows that we can define an associated norm on V' by letting ||z|| = /(z,z) for z € V.
Given a norm on a vector space V', verify that we can define an associated metric on
any subset X C V by letting d(x,y) = ||z — y|| for z,y € X.
Given a metric on a set X, verify that we can define an associated topology on X by
stipulating that a subset A C X is open when it has the property that for all a € A there
exists r > 0 such that B(a,r) C A, where B(a,r) = {z € X|d(z,a) < r}.
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3.8 Definition: Let {z,},>1 be a sequence in a metric space X. We say that the sequence

{z,} converges in X when there exists a € X such that lim z,, = a, that is when
n—oo

JaceX Ve>03IneZ" VkeZ" (k>n= d(z,,a) <e).
We say that {z,} is Cauchy when
Ve>03IneZ " Vi, lecZ" (k,l >n = d(xg,x;) < e).

3.9 Note: Verify that, in a metric space, if a sequence converges then it is Cauchy.

3.10 Definition: A metric space X is called complete when, in X, every Cauchy se-
quence converges. A complete normed linear space is called a Banach space and a
complete inner-product space is called a Hilbert space.

3.11 Theorem: (The Completeness of R™) The metric space R™ is complete.
Proof: We omit the proof.

3.12 Definition: Let R“ denote the set of all sequences = = {z1,x2,x3, -} with each
zr € R. For z € R¥ and for 1 < p < oo let

lllp = (32 lawl?)"" , and

|2]]oc = sup {|ax| |k € ZT}.

Let
t, = {z € R¥|||z||, < o0} , and

loo = {z € RY|||z||oc < o0}

3.13 Definition: Let A C R be measurable. Let M(A) denote the set of all measurable
functions f : A — [—o00,00]. For f € M(A) and for 1 < p < o0, let

1/p
1l = ( / \frp) and

1£lloe = inf {a > 0|A(|#1 7 (a,5¢]) = 0}
where |f|7!(a, 0] = {x € A[|f(z)] > a}. Let
Ly(A) = {f e MA)|IIflly < 00} [~ and
Loo(4) = {1 € M(A)IIflloe < 00} / ~

where ~ is the equivalence relation given by f ~ g <= f =g a.e. in A.

3.14 Remark: The reason that we quotient by the equivalence relation in the above
definition is that we want ||f||, to define a norm on L,(A) and the quotient is necessary
to ensure that || f||, is positive definite (see Part 6 of Theorem 2.30).

25



3.15 Lemma: Let f: A C R — [—00,00] be measurable. Then {z € A||f(z)| > ||f||o}
has measure zero.

Proof: We claim that for all y > || f||oc we have A(|f]~*(y, 00]) = 0. Let y > || f||c. By the
definition of || f||s we can choose @ with || f|| < a < y such that A(|f|~*(a,c0]) = 0. Since
a < y we have (y,o0] C (a,00], so |f|7(y,00] C |f|~!(a, 0], hence A(|f|~!(y,o0]) = 0, as
claimed.

Let B = {z € Al|f(z)| > ||f|l«} and let B, = {z € Al|f(z)| > |||l + 2} for

n € Z*. Then each B, is measurable with B; C By C B3 C ---, and we have |J B, = B.
1

By the above claim, we have A\(B,,) = 0 for all n € ZT and so A(B) = lim )( _n) = 0.
n—oo

3.16 Definition: For p,q € [1,00] we say that p and ¢ are conjugate when % + % =1
where we use the convention that é = 0 so that 1 and oo are conjugate.

3.17 Lemma: Let p,q € (1,00) with %—l—% = 1. Then for all a,b > 0 we have ab < %4—%.

Proof: Note that for p,q € (1,00) we have

tiol = i1l = gp-1)=p < plg—1) =g¢

For x,y > 0 we have

—1

y = aP — yl= 24— y? = 2P — yp(q—l) = P = yq—l —

so the functions f(x) = 2P~! and g(y) = y?9~! are inverses of each other. By considering
the area under y = f(x) with 0 < 2 < a and the area to the left of y = f(z) with0 <y <b
we see that

b p

a b a
ab < 2P Ldx / =1 gy = [l :Cp] + [l q] =a 4
B /:E:O i y=0 y S U PR s PR T

3.18 Theorem: (Hdlder’s Inequality) Let p,q € [1,00] with % + % =1 and let ACR be
measurable.

(1) For all z,y € R* we have ||zy||1 < ||z]|||y]lq-
(2) For all f,g € M(A) we have ||fgl[1 < |[fllpllglls-

Proof: To prove Part (1) in the case that p,q € (1,00), let z,y € R¥. If z = 0 or y = 0 the
equality holds, so suppose that x,y # 0. For each index k, apply the above lemma using

=zl _ ywl
a =y, and b= - to get

|k Y| |z [P y|?
zllpllylle — pllzllp  allylld

Sum over k to get
Iy, lwlld

plizllp  allylld

lzylh < +

D =
Q=
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To prove Part (2) in the case that p,q € (1,00), let f,g € M(R). If f =0 or g = 0 then
the equality holds, so suppose that f,g # 0. For each x € A, apply the above lemma using
|f ()] and b = lg ()] to get

=1, gl
[f@)g(@)] _ |f(=)]” |g(:c)|q‘
fllpllglle = plfll,  dllgllg

Integrate over A to get

[¥alls
pllfIp

To prove Part (1) in the case that p =1 and ¢ = oo, let z,y € R¥. Note that |yx| < [|y]]co
for all indices k£ and so

lglly
dlloll}

I Fgllr < +

_|_

S
Q|
—_

[oe) o
|yl = kZ_II |zrllyk| < ;;1 k] [ylloo = [l][1][l]oo-

Finally, to prove Part (2) in the case that p = 1 and ¢ = oo, let f,g € M(A). Let
B = {z € Al|g(z)| < |g||l~} and let C = {z € A|g(z)| > ||g||=}. Note that B and C are
disjoint and measurable with A = B U C and that A(C') = 0 by Lemma 3.15. Thus

||fg||1=A|f||9|=[9|fllg|S/Blflllgllooz/Alflllglloo=||f||1||g||oo-

3.19 Theorem: (Minkowski’s Inequality) Let p € [1,00] and let A C R be measurable.

(1) For all z,y € R* we have ||z + y||, < ||z||, + ||yl],-
(2) For all f,g € M(A) for which f + g is defined, we have ||f + g||, < ||fllp + 9]lp-

Proof: To Prove Part (1) in the case that p = 1, note that when z,y € R¥ we have

|z +yll = >0 |ze +uel < 30 el + lyel = X0 foel + 220 lyel = [zl + lyll1-
k=1 k=1 k=1 k=1

To prove Part (2) in the case that p = 1, note that when f, g, f + g € M(A) we have

||f+g||1=/A|f+g|§/A|f|+|g|=/A|f|+/4!9|=||f!|1+!|g|!1-

To prove Part (1) in the case that p € (1,00), let x,y € R and let ¢ be the conjugate of

p so that % =1- % = pp%l. For each index k£ we have

e + ykl? = |ze + el o + velP™ < (Jok] + Jyel) loe + el
= |zk| ok + yel”™" + |yl lor + yeP1
Sum over k then apply Holder’s Inequality to get

o+ yll2 < [|lal 12+ w17~ + ol 2+ w1~ < il
= (I1ally + 191l

0 (r=1)/p »
= (llelly +llla) ( X Iz +917) ™ = (llally + llylly )l + 9115~

o977 | + ol

\x+y!”‘1H
q

o) 1/q
e+ ]| = (lells +Ilylly) ( 2l -+ 917070)
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To prove Part (2) in the case that p € (1,00), let f,g,f + g € M(A) and let ¢ be the

conjugate of p so that % =1- % = %. For each x € A we have

[f(2) +9(@)" = f(2) +g(@)|1f(2) + g(@)P" < (If (@)] + lg(@)]) | f(x) + g(x) P~
= f @) If (@) + g@)IP~" + lg(@)] 1 f (z) + g(z) P~

Integrate over A then apply Holder’s Inequality to get

f+gPt

17+ gllz < [|LA117 + 91 72|| + (19117 + 9172, < 071
= (171 + gl 17 + =] = (sl + lh) [ 16+ gpr-0) ™
= (071l Nigll ) ([ 15 +7) ™ = (171 + gl 115 + ol

1+ g7 + Dl
q q

To prove Part (1) in the case that p = oo, note that if x,y € £ then we have

|z + ylloo = sup [ox + yx| < sup (|zx] + |yel) < suplzx| +sup [ye| = [l2]loc + [[y]lo-
k>1 k>1 k>1 k>1

To prove Part (2) in the case that p = oo, let f,g € M(A). For all x € A, note that if

|f(@) + g(@)| > || flloc + [l9lloc then |f(2)] +[g(z)| = [f(2) + g(z)| > ||flloc + llg]l and
hence either |f(z)| > ||f||oo Or |g(2)| > [|g||oco- This shows that

{zeAl|f(2)+g@)] > [[fllo +lgllc} € {z€A[lf(2)] > |Iflloc } U{z € Allg(x)] > llgll }-

By Lemma 3.15, the two sets on the right both have measure zero, and so the set on the left
has measure zero. By the definition of ||f + g||oo it follows that ||f+ g||oo < [|f|oo +|9]|co-

3.20 Corollary: Let p € [1,00| and let A C R be measurable. Then ¢, and L,(A) are
normed linear spaces using their p-norms.

Proof: We prove that L,(A) is a normed linear space when p € [1,00). For f,g € M(A)

1/p
and ¢ € R, we have ||f||, = (/ ]f\p) > 0 and, by Part 6 of Theorem 2.30,
A

Ifl|=0 < /If!”:o — |fIP=0ae. in 4,
A

1/p 1/p
and we have ||cf]|, = (/ \cf\p) = |c\(/ ]f\p) = |c|||fl|p, and by Minkowski’s
A A
Inequality we have ||f + gl|, < |Ifllp + |lg]lp. This shows that ||f]|, satisfies the three

properties which define a norm. We also need to verify that L,(A) is a vector space. Let
V ={f e M(A)|||f|l, < oo}. Then V is a vector space because if f,g € V and c € R
then we have cf € V because ||cf||, = |c|||f|lp < oo and we have f + g € V because
Nf+gllp <IIfllp+lgllp < co by Minkowski’s Inequality. Note that L,(A) is the quotient

space of the vector space V by the subspace W = {f € V|f =0 a.e. in A}.
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3.21 Theorem: Let p € [1,00]| and let A C R be measurable. Then the normed linear
spaces ¢, and L,(A) are complete.

Proof: We leave the proof that ¢, is complete as an exercise. To prove that L,(A) is
complete in the case that p < oo, let {f,,} be a Cauchy sequence in L,(A). This means
that for all e > 0 there exists m € Z™ such that k,l > m = ||fx — fil|, < e. Choose a
subsequence {f,,} with the property that ||f,, , — fnka < 3¢ for all k > 1. For each

(e Z™, let
£
= Z ’fnk+1 _fnk}
k=1

and let g = elim ge (note that the limit exists because {g;(x)} is increasing for all x € A).
—00

By Minkowski’s Inequality, for all £ € Z™ we have

4 4
lgelly < 22 W fnws = fuullp = 2 3 <

By Fatou’s Lemma,
lolty = [ ol = [ im lge? < int [ ool = Haint g} < 1

so that g € L,(A). Because ||g||, is finite, it follows that ¢ is finite a.e. in A, so the sum

> ‘fnk“ — fnk| converges a.e. in A, hence the sum Y (fn,,, — fn,) converges a.e. in A4,
-1

and hence the sequence {f,,} converges a.e. in A because fr, = fn, + > (frpps — frr)-
k=1

We define f: A — R by

lim f,,(x) , if the limit exists in R, and
f(m) — ) £L—o0

0 , otherwise.

We claim that f € L,(A) and that lim f, = f in L,(A). Let ¢ > 0. Choose m € Z" so
n—00

that for all k,I > m we have ||f; — fi||, < e. Then for all k£ such that ny > m we have
| fre — fimllp < €. By Fatou’s Lemma,

1f = fullp = [ 18 =l = [ i 1 = £l
< hmmf/ | fre — fml? hmmf [ frw = fllh < €°

so that ||f — fm|lp < €. This shows that for all € > 0 there exists m € Z* such that for all
n > m we have ||f — f,||, < €. It will follow that lim f,, = f in L,(A) once we show that
n—oo

f € L,(A). Taking e = 1 and choosing m as above so that ||f — f,|| < 1, Minkowski’s
Inequality gives [[f|l, < [[f = fmllp + [fmllp < 14 |[fmllp < oo so that f € Ly(A), as
required.
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Now let us prove that Lo (A) is complete. Let {f,} be a Cauchy sequence in L. (A).
Let B, = {x € A||fn(m) > ||fn||oo} and let Cy; = {x € Aka(x) — fil@)| > ||fx — fl||oo}.
By Lemma 3.15, the sets B,, and C},; all have measure zero. Let E be the union of all the
sets By, and Cy ;. Since E is a countable union of sets of measure zero, we have A\(E) = 0.
Given € > 0, since {f,} is Cauchy in L, (A) we can choose m € Z™ so that for all k,1 > m
we have ||fx — fillco < €. Then for all k,1 > m we have |fi(z) — fi(x)| < ||fk — filloo < €

for all x € A\ E. Tt follows, by the Cauchy criterion for uniform convergence, that the
sequence { f,,} converges uniformly in A\ E. Define f : A — R by

lim f,(z),ifzec A\ FE

o= {5
0 ,ifx e F.

We claim that f € Lo (A) and that lim f,, = f in Lo (A). Given € > 0, since {f,}
n— oo

converges uniformly to f in A\ E, we can choose m € ZT so that for all n > m we have
|fn(x) — f(z)] < eforall x € A\ E hence ||f, — f||co < € since A\(E) = 0. This shows that
for all € > 0 there exists m € Z" such that for all n > m we have ||f — fu||co < €. Taking
e = 1 and choosing m as above, we have ||f,, — f|lcoc < 1 so by Minkowski’s Inequality

[ flloe < Lf = fnlloo + [ fimlloo £ 1+ |[fmlloc and so f € Loo(A).

3.22 Theorem: Let 1 <p < q < oo and let A C R be measurable. Then

(1) ¢, C ¢y, and

(2) if A\(A) < oo then Ly(A) C L,(A).

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that

A(A) < oo. Consider first the case that ¢ < oco. Let f € Ly(A). Then by Holder’s
Inequality, for any u,v > 1 with % + % =1 we have

1/u
— pu 1/v
1= (fe) acare

Choose u = % and, toget £ =1 -1 =1—-2 =292 choose v = —L-. Then
p v U q q q—p

< |17
1

1Az = [ 18 = i

u

p/q
IIfIIE < (/A \p\q) )\(A)(q—p)/q =[£I )\(A)(q—p)/q

so that 1]l < [1fllg ACA)? . Thus ||, < o0 50 f € Ly(A).
Now consider the case that ¢ = co. Let f € Log(A). Let B = {z € A||f(z)| < ||f]l}
and C = {z € A||f(z)| > ||f|| }- By Lemma 3.15 we have A(C) = 0, so

||f||;;=/A|f|p:/B|f|ps/Bwa;o=||f||f;oA<B>=||f||f;oA<A>

so that || f]lp < [|flloc A(A)/7. Thus ||, < 00 s0 f € Ly(A).
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3.23 Theorem: Let 1 <p < q<r <oo and let A C R be measurable. Then

(1) b,Nt,. Cly Ty, + 4, and

(2) Ly(A) N Le(A) C Ly(A) € Ly(A) + Ly (A).

Proof: Part (1) follows as an immediate corollary of Theorem 3.23. Let us prove Part (2).
First we claim that Ly(A) € L,(A) + L,(A). Let f € Ly(A). Let B = {z € A||f(z)| > 1}
and let C = {z € A“f(.%‘)| <1}. Let g = f-Xgand h = f-X_ sothat f =g+ h. Note
that g € L,(A) because

Hgllﬁz/A!glpz/B!f\ps/B!f\qS/AlflqzHf\|3<oo,

note that h € Lo (A) because |f(x)] < 1 for all z € A so that ||h||cc < 1, and note that
when r < oo we have h € L,.(A) because

= [ = [ < 1< [ =it < o

Thus we have L,(A) C L,(A) + L,(A) as claimed.

Next we claim that L,(A) N L,(A) C L,(A). Let f € L,(A) N L,(A). Suppose first
that » < co. Note that for any 0 < k,l € R with £k + [ = ¢ and for any 1 < u,v € R with
% + % = 1, Holder’s Inequality gives

1Ay = [ 1o < s, = (/A\f|’““>1/u</A|f!l“)

We solve the equations k + [ = ¢, % + % =1, ku =p and [v =r to get

1/v

and v = I=2
r—q a—p

L — pr—a) = r(g—p) =12
r—p r—p

and note that since 1 < p < ¢ <7 < oo we have k,l >0 and 1 < u,v < oo. Thus

1/u 1/v k/p l/r
||f||gs(/A|f|’W) (/Am“f) :(/A|f|p> (/A|f|7"> B < o

When 7 = oo, we let B = {z € A||f(z)| > ||fl|o} and C = {z € A||f(z)| < ||f||s}, and
then by Lemma 3.15 we have A\(B) = 0, and so

HfHZ=[4\f|q=L!f\q=L|f!p|flq‘pSHfHZ.?p/CIf\pSHfHZHin;p<OO-

This proves that L,(A) N L,(A) C L,(A) as claimed.
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3.24 Definition: A metrix space is called separable when it contains a countable dense
subset.

3.25 Theorem: Let 1 < p < oo and let a < b.

(1) ¢, is separable but {, is not.
(2) L,([a,b]) is separable but Ly ([a,b]) is not.

Proof: We leave the proof of Part (1) as an exercise. We sketch a proof of Part (2) leaving
the details as an exercise. To show that L,[a,b] is separable, we shall show that Q[z]
is dense in L,[a,b] by showing that a given function f € L,[a,b] can be approximated,
arbitrarily closely in the p-norm, by a polynomial in Q[z]. Since f = f* — f~ it suffices
to consider the case that f is nonnegative. By Note 2.28, together with the Monotone
Convergence Theorem, we can approximate a given nonnegative function f € L,a,b],
arbitrarily closely in the p-norm, using a nonnegative simple function since we can construct
an increasing sequence of simple functions s,, : [a,b] — [0,00) with s,, — f pointwise
on [a,b]. We can approximate a given nonnegative simple function s : [a,b] — [0, 00),
arbitrarily closely in the p-norm, using a nonnegative step function r : [a,b] — [0, 00)
because we can cover a measurable set A C [a, b] by a disjoint union of intervals J C [a, b]
so that x A is approximated by > x o We can then approximate a given step function

r: [a,b] — [0,00), arbitrarily closely in the p-norm, using a continuous function because
for any interval J, the step function X , can be approximated arbitrarily closely in the
p-norm by a piecewise linear function. This shows that the set of continuous functions
Cla, b] is dense in L,[a, b], using the p-norm. On the other hand, using the co-norm (which
agrees with the supremum norm for continuous functions), Q[z| is dense in R[z], and
we know from the Stone-Weirstrass Theorem that R[z] is dense in Cfa,b]. Since Q[z]
is dense in Cla,b] using the oco-norm, it is also dense using the p-norm by the formula
11l < (b—a)'/P|| f||c Which is obtained in the proof of Theorem 3.22.

We claim that Lo[a,b] is not separable. Let S be any dense subget of Lyla,b].

—a

We must show that S is uncountable. For each ¥k € N let z, = b — Sn- so that we

have a = 29 < 71 < x93 < --- < b. Let {0,1}* denote the set of binary sequences
a = (a1, s, ) where each oy, € {0,1}. For each a € {0,1}¥, let s, = > UX iy oy

k=1 —LTk
and note that when « # [ we have ||sq — sg||cc = 1. Since S is dense in L |a, b], for each
o € {0,1}* we can choose fo € S such that ||sq — fal|lcc < 3. Define F': {0,1}* — S by
F(a) = fo. Note that F' is injective because when « #  we have

L= sa = 5pllec < I5a = falloo + [1fa = flloc + [1f5 = s8lloc < 5+ [Ifa = folloo + 3

so that ||fa — falleo > 0. Since F is injective we have |S| > [{0,1}*| = 2%, and so S is
uncountable, as required.

3.26 Remark: I may include a discussion of the complex-valued L, spaces L,(A, C) later.
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Chapter 4. Banach and Hilbert Spaces

4.1 Definition: Let W be an inner product space over F' = R or C. For a subset A C W,
we say that A is orthogonal when (u,v) = 0 for all u,v € A with u # v, and we say that
A is orthonormal when A is orthogonal with ||u|| = 1 for every u € A.

4.2 Theorem: Let W be an inner product space over FF =R or C. Let AC W.

n
(1) If A is an orthogonal set of nonzero vectors then for x € SpanA with say © = > cpug
k=1
where ¢, € F and uy, € A, we have ¢, = (x,uy)/||ux||? for all indices k, and in particular,
A is linearly independent.

n

(2) If A is orthonormal then for x € SpanA with say x = > cyuy where ¢, € F and
k=1

ug € A, we have ¢, = (x,uy) for all k, and in particular, A is linearly independent.

Proof: To prove Part (1), suppose that A is an orthogonal set of nonzero vectors and let
n

x = ) cju; with each ¢; € F' and each u; € A. Then for all indices &, since (u;,uy) =0
j=1

n n
whenever j # k we have (z,ux) = < > ciuj, uk> = Z (ug, u) = o (ug, ug) = ol jugl|?

j=1
and so ¢ = fﬁ:@, as required. In particular, When x = 0 we find that ¢, = 0 for all k&,

and this shows that A is linearly independent. This proves Part (1), and Part (2) follows
immediately from Part (1).

4.3 Theorem: (The Gram-Schmidt Procedure) Let W be a finite or countable dimensional
inner product space over F' = R or C. Let A = {uy,us,---} be an ordered basis for W.

n—-l <Un,Uk>
Let v1 = uy and for n > 2 let v,, = u, — », ~———= vi. Then the set B = {vy,v9,--}

=1 lokl]?
is an orthogonal basis for W with the property that for every index n > 1 we have

Span{vy,---,v,} = Span{uy, -, up}.

Proof: We prove, by induction on n, that {vi,ve,---,v,} is an orthogonal basis for

Span{uy,us,---,u,}. When n = 1 this is clear since v1 = uy. Let n > 2 and sup-

pose, inductively, that {vq,---,v,_1} is an orthogonal basis for Span{uy,---,u,_1}. Since
= U, — ZZ 11 <|7|L;”k1|’|’; vk, we see that u,, is equal to v,, plus a linear combination of the

Vectors V1, -+, Up—1, and so we have Span{vy,- -, v,_1,v,} = Span{vy, -, vp_1,u,}. By

the induction hypothesis, we have Span{vy,---,v,-1} = Span{uy,---,u,—1} so we have

Span{vi, -+, vp_1,0n} = Span{vy, -+, Up—1,Un} = Span{uy, -, Up—1,Up}.

It remains to show that the set {vy,vs, -+, v,} is an orthogonal set. By the induction
hypothesis, we have (v;,v;) = 0 for all 1 < j, k < n, so it suffices to show that (v,,v;) =0
for all indices 1 < k < n and indeed, for 1 < k < n we have

n—1 —
(oms ) = Qun = 3 i vy o v ) = Gum, o) = z i (v, ve)
J: :
Uy, U
= (Up, Vg) — (tn, k) (vg, v) = 0.

[|or |2
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4.4 Corollary: Every finite or countable dimensional inner product space W over F' = R
or C has an orthonormal basis.

Proof: The proof is left as an exercise.

4.5 Remark: It is not the case that every uncountable dimensional inner product space
has an orthonormal basis. For example, we shall see below that an infinite dimensional
separable Hilbert space does not have an orthonormal basis.

4.6 Corollary: Let W be a finite or countable dimensional inner product space over
F =R orC. Let U CW be a finite dimensional subspace. Then every orthogonal (or
orthonormal) basis A for U extends to an orthogonal (or orthonormal) basis for W.

Proof: The proof is left as an exercise.

4.7 Remark: The above corollary does not hold in general in the case that the subspace
U is countable dimensional, as we shall soon see in Example 4.18.

4.8 Corollary: Let F = R or C and let U and V' be finite or countable dimensional inner
product spaces over F'. Then U and V are isomorphic (as inner product spaces) if and
only if dim(U) = dim(V'). In particular, if dim(U) = n then U is isomorphic to F™ and if
dim(U) = Wy then U is isomorphic to F**°.

Proof: The proof is left as an exercise.

4.9 Definition: Let W be an inner product space over FF = R or C. For a subspace
U C W, we define the orthogonal complement of U in W to be the set

t={z e Wl|(z,u) =0for allu € U}.

4.10 Theorem: Let W be an inner product space over FF = R or C. Let U C W be a
subspace. Then

(1) U+ is a subspace of W,

(2) if A is a basis for U then U+ = {& € W|(z,u) =0 for allu € U},

(3) UNU+ = {0}, and

(4) U C(UH)*.

If U is finite dimensional, then we also have

(5) U@ Ut =W, and

(6)U=(UH)".

Proof: We leave the proofs of Parts (1) to (4) as an exercise. To prove Parts (5) and (6),
suppose that U is finite-dimensional. Let A = {uj,us,---,u,} be an orthonormal basis
for A. To prove Part (5), we need to show that for every x € W there exist unique vectors
w,v € W with u € U, v € U+ and u + v = z. First we prove uniqueness. Let z € W, and
suppose that v € U, v € UL and v + v = z. Note that for all indices k we have

(x,up) = (u+v,ug) = (u,ug) + (v, up) = (u, ug).

and so, by Theorem 4.2, we have

an (u, ug)up = kzz(a:,uk)uk.

k=1
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n
This proves uniqueness, since given x € W, the vector u must be given by u = > (x, ug)ug
k=1
and then the vector v must be given by v = x — u.
n

To prove existence, let € W and choose u and v to be the vectors u = > (z, ug)ug
k=1
and v =  — u. Then we have u € U and u + v = z, so it suffices to show that v € U~L.
For all indices k£ we have

(v, ug) = (& — u,ug) = (z,ug) — (u,ug) = (x,u) — <é:1<.r,uj>uj, uk>

= () = 3 (o) g ) = (o) = 32 () = (o) = (o) = 0.

Since (v,u;) = 0 for all 1 < k < n, from Part (2) we have v € UL. This proves Part (5).
Let us prove Part (6). From Part (4), we have U C (U*)+. Conversely, let z € (U+)*.
Using Part (5), we can choose u,v € W withu € U, v € V and u+v = z. Since z € (U+)~+
and v € UL, we have (x,v) = 0, and so 0 = (z,v) = (u + v,v) = (u,v) + (v,v) = (v,v).
Since (v,v) =0 we have v =0 and so * = u +v =u € U. Thus (U+)+ C U, as required.

4.11 Remark: Parts (5) and (6) of the above theorem do not always hold when U is
infinite dimensional, as the following example shows.

4.12 Example: Let F=Ror C. Let W = F>® and let U = {a € FOO} > ai =0}. Note
k=1

that W is a countable-dimensional inner product space with standard basis {e1, ez, €3, -}
and U is a countable-dimensional proper subspace of W with basis A = {uy,us,us,---}
where u = e —ex41 = (1,0,---,0,—1,0,---). We have

Ut ={zeW|[(z,u) =0 forall k} = {z € W|(z,e1 — exy1) = 0 for all k}
= {xGW‘xl = x4 for all k:} = {xEW’xl = o :x3:-~-} = {0}
because for x € F'*° we have x,, = 0 for all but finitely many indices n. Notice that in

this example we have U ; UT = W and we do not have U @ U+ = W. Also notice

that, although we could apply the Gram-Schmidt Procedure to the basis A to obtain an
orthogonal basis B = {vy,ve, -} for U, the basis B cannot be extended to an orthogonal
basis for W because there is no nonzero vector 0 # x € W with (z,vy) for all k.

4.13 Definition: Let W be an inner product space over F' = R or C. Let U C W be
a subspace such that W = U @ U+. For z € W, we define the orthogonal projection
of & onto U, denoted by Proj; (), as follows. Since W = U @ U+, we can choose unique
vectors u,v € W with u € U, v € V and v + v = z. We then define

Projy (z) = u.
Since U = (U+)+, for u and v as above we have Proj;.(z) = v. When y € W and
U = Span{y}, we also write Proj, (z) = Proj;(z).

4.14 Note: Let W be an inner product space over F' = R or C. Let U be a finite
dimensional subspace of W. Let A = {uy,us,--,u,} be an orthogonal basis for U. Then
for z € W, as in the proof of Part (5) of Theorem 4.15, we see that

<.r,u1>
Uk
|2

Proj;(z) = >
=1
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4.15 Example: As an exercise, show that for A € M, +,»,(C) and U = Col(A), given
x € C" there exists y € C™ such that A*Ay = A*x and that for any such y we have

Proj;(z) = Ay. In particular, when rank(A) = m show that A*A is invertible so that
Proj (x) = A(A*A)" 1 A*x.

4.16 Theorem: Let W be an inner product space over FF' = R or C. Let U C W be a
subspace of W such that W = U @ U+. Let x € W. Then Proj(z) is the unique point in
U which is nearest to x.

Proof: Let u,v € W be the vectors with u € U, v € V and u 4+ v = x, so that we have
Projy(z) = u. Let w € U with w # w. Since (w—u,x—u) = (w—u,v) = (w,v)—(u,v) =0,
Pythagoras’ Theorem gives

e —wl =|(z —u) — (w—w)|]* = [l — ul[* +[Jw —ul[* > ||z — ul

and so ||z — w|| > ||z — u]|.

4.17 Definition: Let W be a vector space over F' = R or C. For a subset S C W, we
say that S is convex when for all a,b € S we have a +t(b—a) € S forall 0 <t < 1.

4.18 Theorem: Let H be a Hilbert space over ' = R or C. Let S C H be nonempty,
closed and convex. Then for every a € H there exists a unique point b € S which is nearest
to a, that is such that ||a — b|| < ||la — z|| for all z € S.

Proof: Let a € H. Let d = dist(a, S) = inf {||z — a|| |z € S}. Choose a sequence {z,} in
S so that ||x,, — a|| — d, hence ||z,, — a||* — d?. Let ¢ > 0 and choose m € Z* so that for
all n > m we have ||z, —al|* < d? + %. Let k,I > m. By the Parallelogram Law we have

@i —a) + (@ = )" + [|@e — a) = (&2 = @)|” = 2| — a]|” + 2]}z — a]

Since S is convex, we have “TJFJ” € S, hence ’|“TJF3” — aH > d, and so

low = 2] = [|(2x — @) = (ax = 0)||”
= 2||zx — a||” + 2]}es = o) = || 2k — @) + (2x — 0)||”
= 2|2k — a||” + 2]jes — o] - 4|22 — a||”
<P+ G)+2(d+9) —4d? = .

so that ||z — ;|| < e. This shows that the sequence {z,} is Cauchy. Since H is complete,
{z,} converges in H, and since S is closed in H, the limit lies in S. Let b = lim z, € S.

n— o0
Since b € S we have ||d — a|| > d, and we have ||b — a|| < ||b — z,|| + ||z, — a]| for all
n € Z" so that [[b—al| < lim (||b— ||+ ||z, —a|]) = d, and so ||b—al| = d. This shows
n—oo

that ||d — a|| > ||x — a|| for all z € S. Finally, we note that the point b is unique because

given ¢ € S with ||c — a|| = d, since S is convex we have £¢ € S so that H% —all > d,

2
and so the Parallelogram Law gives

o= el = [[(b—a) = (= a)||* = 2/lb— al > + 2]l - all* = [| (6 — @) + (c — a)|
= 4d? — 4|25 — || <42 —4d2 =0

so that ||b — ¢|| = 0 hence b = c.
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4.19 Theorem: Let H be a Hilbert space over FF' = R or C. Let U C H be a closed
subspace. Then we have H = U @ UL. This means that for all x € H there exist unique
points u € U and v € UL such that u+v = z. In this case, the point u is the unique point
in U nearest to x.

Proof: Let x € H. Since U is a vector space it is convex, so by the previous theorem
there is a unique point © € U which is nearest to x. Let u be this nearest point and
let v = — u so that u +v = 2. We claim that v € UL. Suppose, for a contradiction,
that v ¢ U+. Choose u; € U with (v,u1) # 0. Write (v,u;) = re?® with » > 0 and
¢ R (when F = R we have e = 1) and let us = e¢u;. Note that uy € U and
(v,u9) = (v,euy) = e (v, u1) = e re? =r > 0. For all t € R we have

2
[ = (u+ tua) || = |l — tuz||* = [Jo]|* — 2t Re(v, uz) + t*[Juz|[* = ||v||* — 27t + [Juz|[**.

It follows that for small ¢ > 0 we have ||z — (u + tuz)H2 < |[v||* = ||z — u||? which is not
possible, since u is the point in U which is nearest to x.

It remains to show that the points v € U and v € U+ with v + v = x, which we
found in the previous paragraph, are the only such points. Let x € H. Suppose that
u €U, v €Ut and u+ v = 2. We claim that u must be equal to the (unique) point in
U which is nearest to z. Let v/ € U with v # u. Since v € U+ and v/ — u € U we have
(x —u,u/ —u) = (v,u/ —u) =0 and so

Hx—u’H2 = [[(z —u) - (u'—u)H2 = ||z —u||* — 2Re(x — u, v/ —u > +||u’ — u||?

=l —ull +[Ju" = ul| > ||z — ul?

so that ||z — u'|| > ||z — u||. Thus w is the point in U which is nearest to x, as required.
4.20 Theorem: Every inner product space contains a maximal orthonormal set.

Proof: Let W be an inner product space. Let S be the set of all orthonormal sets in W,
ordered by inclusion. If C' is a chain in S (that is a totally ordered subset of S) then |JC
is an upper bound for C' in S. Since every chain in S has an upper bound, it follows from
Zorn’s Lemma that S has a maximal element.

4.21 Theorem: Let H be a Hilbert space over F = R or C. Let A be an orthonormal
set in H and let U = Span A. Then A is maximal if and only if U is dense in H.

Proof: If A is not maximal then we can choose v € U+ with ||v|| = 1 (so that AU {v} is
orthonormal) and then for all u € U, since (v,u) = 0, we have ||u — v||> = ||u||* + ||[v]|* >
||v]|> = 1. Thus U is not dense in H, indeed there is no u € U with |ju — v|| < 3.
Suppose, conversely, that U is not dense in H, that is U # H. Note that U is a vector
space, indeed given a,b € U we can choose {z,} and {y,} with z, — a and y,, — b in
H and then (z,, + y,) — (a +b) so that a +b € U, and for ¢ € F we have cz,, — ca so
that ca € U. By the above theorem, we have H = U @ UL. Since H # U we must have

T # {0}. Choose v € U with |[v]| = 1. Since (v,u) = 0 for all u € U we certainly have
(v,u) = 0 for all uw € U, so the set AU {v} is orthonormal. And we cannot have v € U
since U N U+ = {0}, and so A % AU {v} so that A is not maximal.
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4.22 Theorem: Let H be a Hilbert space over F = R or C. Let A be a maximal
orthonormal set in H. Then H is separable if and only if A is at most countable.

Proof: Suppose that A is uncountable. Let S be any dense subset of H. For each u € A
choose s, € S with ||s, —ul| < \/Ti. For u,v € A with u # v we have ||u|| =1 and ||v|| =1
and (u,v) = 0 so that ||u —v||?> = ||u]|* + ||v||*> = 2 and so

l15u—s0] = || (su—1u)+(u—v)+(v—5,)|| > [Ju—v]||=(||s0—u||+||s0—2]]) = V2—L2—¥2 >0

so that s, # s,. Thus A is uncountable.

Suppose, conversely, that A = {uq,ug,---} is finite or countable. By the above theo-
rem, U = Span,, A is dense in H. Note that SpanQ.A is dense in Spang.A and Spaan.A
is dense in Spans.A. Indeed given ci, ¢z, -+, ¢, € F' (where F' = R or C) we can choose
r1,72, ",y € R (where R = Q or Qi]) such that |ry —cx| < £ and then

n n
> (re = eoui| < 32
k=1 k=1
n n
= 3 fri = eul fluall = 3
k=1 k=1

S rpug — D) CkukH = ‘ | (rie = cx)ua|
k=1 k=1

|7 — ci| < e.

4.23 Theorem: Let H be a separable Hilbert space over F = R or C, let A = {uy,us,- -}
be a countable orthonormal set in H, and let U = Span, A. Then the following are
equivalent.

(1) A is maximal.
(2) U is dense in H.

(3) For every x € H we have x = Y, (x,uj)uy, in H.
k=1

(4) For every x € H we have ||z||? = |<x,uk>|2 in R.
k=1

o0

(5) For all z,y € H we have (z,y) = > (x, ur)(y, ug).
k=1

Proof: The equivalence of Parts (1) and (2) follows from Theorem 4.26. Let us prove
that (2) implies (3). Suppose that U is dense in H. Let x € H. For each n € Z*, let

n
U, = Span{ui, uz,---,u,} and let w,, = Projy; (z) = > (x,ux)ux. Let € > 0. Since U is
k=1
m
dense in H we can choose v € U with ||u —z|| < e. Say u = > cpug. For all n > m, since
k=1
u € U, and w, is the point in U, nearest to x we have ||lw, — z|| < [|lu — z|| < e. Thus
o.@]
lim w, =« in H. This means that x = > (z, ug)ug in H.

Let us prove that (3) implies (4). Supg)ose that for every x € H we have z = lim w,
n—oo
n

where w,, = > (z, ug)ui. Note that
k=1

leal® = {35 G, é:l(a:,ue)ue> = 33 () @ g = 32 | )|

k=1 k=1¢

I
—_
e
I
MR

38



Let ¢ > 0. Choose m € Z™ such that for all n > m we have ||w, — z|| < e. By the

Triangle Inequality, for all n > m we have )HwnH — ||:v||’ < ||lwy, — z|| < €. This shows that
o0
: : : 2,
lim ||Jwy|| = ||z|| in R, hence ||z||?> = lim ||w,||* = > ‘(az,ukﬂ in R.

Next we prove that (4) implies (5). Suppose that (4) holds. Let z,y € H. Let

n

Tp = Y. {(x,up)ur and y, = >_ (y, ur)ur. Note that
k=1 k=1

s = (30 (e, 3 G udun) = 32 3 (@ wn) (g udbne = 3 o, ue) (s )

k=1 =1 k=1/¢=1 k=1

and note that for ¢ € C we have x,, + cy, = >_ (x + cy, up)uy. Since (4) holds, we have
k=1

1 = llyll*, and lim [[zy + cynll® = ||z + cyl[*. By the
n—oo

lim [z, |* = [l]|*, lim [jy,
n— oo n—oo

Polarization Identity,

() = 3 (Il + I +illo+ iyl = Nl — Il =il — iy||?)

= 1im 4 (1fzn + yul > + i o + iynll® = 20 = yal 2 = i |20 — iynl )

n— 00
= lim (zn,yn) = O (2, u)(y, uk).
n—oo k=1

Note that (4) follows immediately from (5) by taking y = z. We finish the proof by

oo

proving that (4) implies (2). Suppose that for all x € H we have ||z||> = Y |(a:,uk>|2
k=1

As above, let wy, = Proj; = > (@, ux)ug so that [|w,[> = Y |<x,uk>|2 Then we have

k=1 k=1
lim ||w,|[* = ||z||*. Given € > 0, choose n € Z* so that ||z[|> — |Jw,||> < €. Since
n—oo

w, = Projy (x) we have w, € U, and z — w, € U, so that (x — wp,wy,) = 0. By
Pythagoras’ Theorem, ||z — wy,||? = ||z||*> — ||wn||* < €2, hence ||z = w,|| < €. Since € >0
was arbitrary and w,, € U, this shows that U is dense in H.

4.24 Definition: A maximal orthonormal set in a Hilbert space H (over R or C) is called
a Hilbert basis for H (over R or C).

4.25 Theorem: Let H be an infinite dimensional separable Hilbert space over F', where
F =R or C, and let A = {u1,us,us, -} be a countable Hilbert basis for H.

(1) For allz € H, ifx = ) aguy and x = >, byug then ap = by, = (z,uy).
k=1 k=1

o0 o0
(2) For all c;, € F, 5" cpuy converges in H if and only if Y |ck|* converges in R.
k=1 k=1

(3) The map ¢ : H — {5(F) given by ¢(z) = ({x,u1), (x,us),--) is an inner product
space isomorphism.

Proof: The proof is left as an exercise.
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4.26 Definition: When X and Y are normed linear spaces over F' = R or C, a linear
map L : X — Y is also called a linear operator, and a linear map L : X — F' is also
called a linear functional on X.

4.27 Definition: Let X and Y be normed linear spaces and let L : X — Y be a linear
operator. The operator norm of L is given by

IL|| :sup{||Lx|| ‘x € X with ||z]| < 1}

and we say that L is bounded when ||L| < co. Since Lz = ||z|| L(ﬁ) forall 0 # 2 € X,
it follows that
[|Lz|] < ||L||||x|| for all z € X.

4.28 Theorem: Let X and Y be normed linear spaces and let L : X — Y be a linear
operator. Then the following are equivalent.

(1) L is continuous at 0.
(2) L is bounded.
(3) L is uniformly continuous in X.

Proof: Suppose that L is continuous at 0. Choose § > 0 so that ||z|| < § = ||Lz||
Then |l < 1 = ||0z|| < 6 = [|L(d2)]| < 1 = ||L(z)|| = 5 ||L(02)|| < 5 so [|L]| <
Now suppose that L is bounded. Fz,y € X we have

<1
1
5

Lz — Lyl = |2 = ) = | L (2= ) 2 = wll < 11L1 1y = a1

Thus given € > 0 we can choose § = ﬁ and then ||z —y|| < d = ||Lx — Ly|| < e.
Finally, we note that if L is uniformly continuous in X then L is continuous at 0.

4.29 Theorem: (The Uniform Boundedness Principle) Let X be a Banach space and
let Y be a normed linear space. Let S be a set of bounded linear operators L : X — Y.
Suppose that for every x € X there exists m, > 0 such that ||Lz|| < m, for all L € S.
Then there exists m > 0 such that ||L|| < m for all L € S.

Proof: For each n € Z*, let A, = {z€X ‘ ||Lz||<n for all Le S}. Note that A, is closed
because the sets {x € X | ||Lz|| < n} are closed for each L € S, and A, is the intersection
of these sets. By the hypothesis of the theorem, we have X = (J -, A,. By the Baire
Category Theorem (since X is complete), the sets A,, cannot all be nowhere dense. Choose
n € ZT so that A,, is not nowhere dense. Chose a € A,, and » > 0 so that F(a, r) C A,.
For all x € X, if z € B(a,r) then x € A,, so we have ||L(z)|| <n forall L€ S. If ||z]| < r
then x + a € B(a,r) and a € B(a,r) and so

IL(@)]| = ||L(z + a) — La)|| < |[L(z + a)|| + [|L(a)|| < 2n for all L € S.

For all L € S and z € X, if ||z|| < 1 then ||rz|| < r and so ||L(z)|| = ||L(rz)|| < 22
Thus we have ||L|| < 22 for all L € S.
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4.30 Theorem: (Condensation of Singularities) Let X be a Banach space and let Y be a
normed linear space. For each m,n € Z™, let L., ,, : X — Y be a bounded linear operator.
Suppose that for each m € Z™T there exists x,, € X such that limsup || L, (zm)|| = .

n— oo

Then the set E = {:1; e X

limsup || Ly (z)|| = 0o for all m € Z+} is a dense Gs set.

n—oo

Proof: Fixm € ZT. Foreach ¢ € ZT,let Ay = {zx € X |||Lpm(z)|| < ¢ for all n € ZT} and

note that each set Ay is closed. As in the proof of the Uniform Boundedness Principle, if one

of the sets A, was not nowhere dense then we could choose m > 0 such that ||L, || < m

for all n € Z*. But then for all x € X we would have ||L, (z)|| < m]|z|| for all n so

that imsup || Ly, (2)|| < m||z||, contradicting the hypothesis of the theorem. Thus all of
n—oo

the sets A; must be nowhere dense. Let B, U Ay = {.I'GX‘ hm sup | Linn(2)]] < 00}

and let C' = U Bm—{xeX’ hmsupHLmn( )|| < oo for some m € Z* }, and note that

E=X\C. Then Cisa countable union of closed nowhere dense sets, so £ is a countable
intersection of open dense sets. By the Baire Category Theorem, FE is dense.
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Chapter 5. Fourier Series

5.1 Remark: We shall begin with an informal discussion of Fourier series and how they
can be used in physics and engineering.

5.2 Definition: A real trigonometric series is a series of the form

(o) o0
agp+ Y. apcosnz+ Y bysinnx

where a,,,b, € R and x € R. If the series converges, we say it is the real Fourier series
of its sum

o0 o

f(xz) =ag+ > apcosnx+ > b,sinnz,

n=1 n=1
which is a periodic function of the real variable x with period 2z, and the numbers a,,, b,
are called the Fourier coefficients of f(x). If we are justified in integrating term by term
then, using the formulas

T T ™ ™ ™
/ 1=27m, / cosnx dac:():/ sinnx dx | / cos’® nx dx:ﬁ:/ sin’ nx dx
—Tr —Tr —T —T —T

e

T ™
/cosnwcosmxdt:O:/ sinnmsinmxdt,and/ cosnx sinmx dt =0

—T —T —T

where n,n € Z* with n # m, we find that the Fourier coefficients are given by

1 T 1 [7 1 [7
ap = — flz)dx , a, = — f(x)cosnx dx , and b, = — f(x)sinnx dx.
2 J_ . T J)_. T J)_.
5.3 Remark: For the moment, we shall blithely assume that, given a 27-periodic function
f : R — R, the Fourier series with coefficients a,, and b,, given by the above formulas

converges to the given function f(x).

5.4 Example: Find the Fourier coefficients of the 2w-periodic function f : R — R with

T t+zxfor —m<z<0,
flz) =12
5 —xfor 0 <z <

Solution: Since f(z) is even, we have a,, = 0 for all n € Z™, and we have

us

1 T 2 T 9 7r7r ]

1" 2 (" 2 ["
0= [ f@yeosn o =2 [ flaycosna do =2 [ (5~ o) cosna do
™ Jo ™ Jo

™ —T

" 2 (7 1 T o1 1 T
= cosne dr — = x cosnx dr = [E sin na;} —2 [ﬁx sinna + - cos nx]
0 7 Jo 0 0

0 if n is even,

—0- 2wy -

Thus, assuming that the Fourier series of f(x) converges to f(x), we have

—4_if n is odd.
™n

f(z) = 4(1%cosx+3%c083x+5%cos5x+...)

T
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5.5 Remark: Assuming convergence, putting x = 0 into the above function f(z) gives
5 = %(1% + 3% + 5% +) so we obtain the formula

2
s

o 1

k§1 (2k+1)2 8
5.6 Example: (Forced Damped Oscillations) Suppose an object of mass m is attached to a
spring of spring-constant k and vibrates in a fluid of damping-constant ¢ and let x = z(t)
be the displacement of the object from its equilibrium position at time ¢. Suppose, in
addition, that the object is acted on by an external force f(t). The total force F(t) acting
on the object consists of the force exerted by the spring, which is equal to —kz(t), the
resistive force exerted by the fluid, which is equal to —cz’(t), and the external driving
force, which is equal to f(¢). By Newton’s Second Law of motion we have F(t) = maz" (t)
and so x(t) satisfies the differential equation (the DE)

ma” (t) + cx'(t) + kx(t) = f(t).

5.7 Example: Use Fourier series to solve the above DE with m = 1, ¢ = 2 and k£ = 5,
where f(t) is the function from Example 5.4,

Solution: We need to solve the DE
z"(t) + 22/ (t) + bx(t) = f(¢t).

To solve the associated homogeneous DE z” + 22’ + 52 = 0, we look for a solution of the
form z = x(t) = €. Putting x = €™, 2’ = re™ and z” = r2e™ into the homogeneous DE
gives (r2+2r+5)e™ = 0 hence r = —1=£2i. This gives us the two complex-valued solutions
z(t) = (7120t — ¢=t(cos 2t + isin2t). By taking suitable linear combinations of these
two complex-valued solutions we obtain the two real-valued solutions z1(t) = e~* cos 2t

and x5 (t) = e 'sin 2t. The general solution to the DE z” + 22’ + 5x = 0 is given by
x(t) = Ae "cos2t + Be 'sin2t , where A, B € R.

For each n € Z™, to find a particular solution to the DE z” + 22’ + 5z = cos nt, we look for
a solution of the form =z = z(t) = A,, cosnt + B,, sinnt. Putting x = A,, cosnt + B,, sinnt,
2’ = —nA, sinnz + nB,, cosnt and "’ = —n2A,, cosnt — n?B,, sinnt into " + 22’ + 5 =
cosnt gives ( —n2A, +2nB,, + 5An) cosnt + ( —n?B, —2nA, + 5B,)sinnt = cosnt for

all t € R and so we must have (5 — n?)A, +2nB, =1 and (5 — n?)B, —2nA, = 0. We

: _ 5—n2 _ 2n .
solve these two equations to get A, = P S cont BT and B,, = T onT T35 and so one solution

to the DE z” + 22’ + 5 = cosnt is given by

: _TL2 n
ZL‘(t) = An cosnt + Bn sinx , where An = m and Bn = m
Since f(t) = > # cos nt, one particular solution, called the steady state solution,
n odd
to the original DE x” + 22’ + 52 = f(t) is given by
4 .
x(t) = z;d g (A, cosnt + B, sinnt)
n o

and the general solution is

4
x(t) = Ae ' cos 2t + Be 'sin 2t + g — (An cosnt + B, sinnt) , where A, B € R.
™m
n odd
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5.8 Example: (The One-Dimensional Wave Equation) An elastic string is stretched to
length 7 and is fixed at its two endpoints along the x-axis at * = 0 and x = 7. The string
is displaced so that it follows the curve u = f(z) with f(0) = 0 and f(7) = 0, then at
time ¢t = 0 the string is released and allowed to vibrate. The problem is to determine the
strings shape u = u(z,t) at all points 0 < z < 7 and all times ¢ > 0.

To formulate a differential equation (or DE) which models the situation, we consider
a segment of string, at time ¢, between the points p; = (z1,u(z1,t)) and py = (z2, u(z2,t))
where the difference dx = xo — x; is small. The slope of the curve u = g(z) = u(x,t) at p;
is 6—(:171, t) and the angle ¢, from the horizontal is given by tanf; = %(:1:1, t). Similarly,
the angle 65 at po is given by tanfy = (:1:2, t), and we have

tanfy — tan 6y = 8‘9;‘ (r1,t) — gg (zo,t) = % dz.

Let T} be the magnitude of the force exerted on p; by the portion of the string which
lies to the left of p;, and let T; be the magnitude of the force exerted on ps by the
portion of the string which lies to the right of ps. Assuming that the segment of string
moves only vertically (so the total horizontal component of the force is zero) we have
TicosB; = T5cosby. Let

T =17 cosbty = T5 cos b5

and note that T is a constant which we call the tension of the string. The total vertical
component of the force is F' = T5 sin 0, — T} sin #; and by Newton’s Second Law of motion,
we have

Ty sinfy — Thsinf; = mZL 8t2 = pdx atQ

where p is the linear density of the string, that is its mass per unit length. From the
2

equations tan 6y —tanf; = 271; dx, Ty cos 1 = T5 cos 5 and T5 sin @y — T sin 0y = pda: 87&2

we obtain the one-dimentional wave equation

%u 29%u

Fu 2_ T
52 = C G2, Where ¢® = -

. . . . . 2
5.9 Example: Use Fourier series to solve the one-dimensional wave equation % Gz = c? gxg

subject to the boundary conditions u(0,¢) = 0 and w(0,7) = 0 for all ¢ > 0 and to the
initial conditions u(z,0) = f(z) and 2%(z,0) = g(z) for all 0 < z < 7.

Solution: We use a method known as separation of variables. We look for a solution
to the DE of the form u(z,t) = y(x)s(t) which satisfies the given boundary conditions
0 = u(0,t) = y(0)s(t) and 0 = wu(m,t) = y(m)s(t). If we had y(x) = 0 for all x or
s(t) = 0 for all ¢ then we would obtain the trivial solution u(x,t) = 0 for all z,t, so
let us assume this is not the case, so the boundary conditions become y(0) = y(m) = 0.

When u(x,t) = y(x)s(t), the DE becomes y(z)s”(t) = c¢*y”(x)s(t) which we can write as

y@;/(g) = C% % Since the function on the left is a function of z (and is constant in ¢) and

the function on the right is a function of ¢ (and is constant in z), in order for these two
functions to be equal for all z,¢ they must both be constant, say

where k is constant.
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First we solve the DE y;(%) = k subject to the boundary conditions y(0) = y(m) = 0.
If £ = 0 then the DE becomes 3" = 0, which has solution y = Cx + D, and the boundary
conditions give C' = D = 0, so we obtain the trivial solution. If £ > 0, say k = n? where
n > 0, then the DE becomes y”" — n?y = 0, which has solution y = Ce™ + De~"* and the
boundary conditions give C'+ D = 0 and Ce"™ + De™"" = 0 which imply that C' =D =0,
so again we obtain the trivial solution. Suppose that k < 0, say k = —n? where n > 0.
The DE becomes 3" +n?y = 0 which has solution y = C cosnzx + D sin nx. The boundary
condition y(0) = 0 gives C' = 0 so that y = D sinnz, and the boundary condition y(7) =0
gives D = 0 or sinnm = 0. If D = 0 we obtain the trivial solution and if sin nm = 0 then we
must have n € Z. Thus in order to obtain a nontrivial solution to the DE which satisfies
the boundary conditions we must have k = —n? for some n € Z* and, in this case,

y(z) = D, sinnz , where D,, € R.

When k = —n? with n € Z*, and y(z) = D, sinnz, the DE % % = k. becomes
s"(t) + (cn)?s(t) = 0, and the solution is s(t) = A, cos(cnt) + By, sin(ent). Thus, for each

n € ZT, and for all A,,, B,, € R, the function
u(z,t) = y(x)s(t) = (A, coscnt + By, sinent) sinnx

is a solution to the one-dimensional wave equation which satisfies the boundary conditions
(we remark that it would be redundant to include the constants D,, as they could be
amalgamated with the constants A,, and B,,).

In order to find a solution which satisfies the given initial conditions u(z,0) = f(x)
and %(:1:, 0) = g(x), we look for a solution of the form

oo
u(x,t) = Z (A, coscent + By, sinent) sinna .
n=1

In order to obtain u(z,0) = f(z) we need > A, sinnz = f(z) and so we choose 4,, to be
n=1

equal to the Fourier coefficients of the odd 2m-periodic function F(x) with F(x) = f(x)
for 0 < x < m, that is we choose

— T

An:—/ F(ac)sinnxdx:z/ f(x)sinnx dz.
T Jo

Assuming that we can differentiate term-by-term, we have

e 9]
9u(z,t) = Z (— cnA, sinent 4+ cnB,, cosnt) sinnz.
n=1

In order to obtain 2%(z,0) = g(z) we need 21 enBy, sinnx = g(x) and so we choose B,, to
n—=
be equal to the Fourier coefficients of the odd 27-periodic function G(x) with G(x) = g(z)
for 0 < x <, that is
2 ™
B, =— g(z)sinnz dx .
cnm Jo
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5.10 Remark: Let us now begin a more formal presentation of Fourier series in which we
consider convergence issues more carefully.

5.11 Definition: A real-valued trigonometric polynomial is a function f : R — R of
the form
m m
f@)=ao+ > apcosnx+ > b,sinnx
n=1 n=1
for some a,,b, € R, and we say that f(z) is of degree m when either a,, # 0 or b,, # 0.
A real-valued trigonometric series is a series of the form

o0 oo
ap+ Y apcosnz+ Y. bysinnx

m m
which is given by its sequence of partial sums s,,(z) = ag + > a,cosnx + > b, sinnx.
n=1 n=1
5.12 Remark: A trigonometric series may or may not converge and, indeed, we can con-
sider several different notions of convergence, for example pointwise convergence, uniform
convergence, or convergence with respect to a p-norm.

5.13 Definition: Every real-valued trigonometric polynomial is a smooth 2mw-periodic
function f : R — R. Every 27-periodic function f : R — R determines, and is determined
by, a function f : [—7, 7] — R with f(—m) = f(m), or equivalently by a function f : T"— R
where T'= R /2nZ, or equivalently by a function f : S — R where S = {eit| —m<t< 7T}
= {z € Z||z| = 1}. A function f : T — R is continuous (or differentiable, or C*) if and
only if the corresponding 2m-periodic function f : R — R is continuous (or differentiable,
or C¥). We say that a function f : T — R is measurable when the corresponding
2m-periodic function f : R — R is measurable, or equivalently when the corresponding
function f : [-7, 7] — R with f(—=n) = f(m) is measurable. For a measurable function
f:T — R and for 1 <p < oo we define the p-norm |[|f||, of the function f: T — R to
be equal to the p-norm ||f||, of the corresponding function f : [—7, 7] — R. We define
L,(T,R) to be the quotient of the set of measurable functions f : T — R with || f]|, < oo
under the equivalence relation in which f ~ g when f(x) = g(z) for a.e. x € [—7,7|. Note
that because A([—,7]) = 27 < oo, for 1 < p < 0o we have Lo (T') C L,(T) C L1 (T).

5.14 Definition: When f(z) = ao+ > a, cosnz + b, sin nz, where a,, b, € R, we have
n=1

f € C>®(T) and we know that the coefficients a,, and b,, are given by the formulas

17 17 L[
ao = 5 flx)dz , ap, = — f(z)cosnx dx | b, = — f(z)sinnx dz.
™ T J_n -7

-
Note that the above integrals all exist and are finite for any function f € L1(T,R). Given
a function f € Li(T,R), we define the real Fourier coefficients of f to be the real
numbers a, = a,(f) and b, = b,(f) given by the above formulas, and we define the real
Fourier series of f to be the corresponding real trigonometric series. Note that a real
Fourier series is a real trigonometric series which arises, in this way, from some function

f € Li(T,R).
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5.15 Definition: A complex-valued trigonometric polynomial is a function f : R — C
of the form
m .
fle)= > cpe™®
n=—m
for some ¢,, € C, and we say that f(z) is of degree m when either ¢, # 0 or c_,, #0. A
complex-valued trigonometric series is a series of the form

=S .
Z Cnezn:t
n=—00

which is given by its sequence of partial sums s,,(z) = > ¢,e™2.

5.16 Definition: Every complex-valued trigonometric polynomial is a smooth 27-periodic
function f : R — C. Every 2m-periodic function f : R — C determines, and is determined
by, a function f : [—7, 7] — C with f(—m) = f(m), or equivalently by a function f : T"— C
where T' = R/2nZ, or equivalently by a function f : S — C where S = {z € ZHz[ = 1}.
For 1 < p < oo, we define L,(T') = L,(T,C) in the same way that we defined L,(T,R).
For f: T — C given by f = u + v where v : T'— R and v : T' — R, f is measurable if
and only if v and v are both measurable, and in this case we have [, f = [u+1i [, v,
Jrlfl = JpvVu2+02, || fll, = [[Vu? +v?||, and f € L,(T,C) if and only if u € L,(T,R)
and v € L,(T,R).

5.17 Definition: When f(z) = Y. ¢,e™*, where ¢, € C, because

ik il " N 2rif k=1
e e "y = cos(k — )z dx +1i sin(k — l)x de = .
T - - 0 if k #1,
it follows that the coefficients ¢,, are given by the formula
el =5 [ Fa)ed
o =cnlf) = o x)e x.

—T

Note that the above integrals exist and are finite for any function f € Ly(T) = L1(T, C).
Given a function f € Li(T"), we define the (complex) Fourier coefficients of f to be the
complex numbers ¢, = ¢,(f) given by the above formulas, and we define the (complex)
Fourier series of f to be the corresponding complex trigonometric series.

5.18 Note: Given a,,b, € R, we have

m m m . . m .
. inT —inx T __ 2
ap+ > apcosnx + Y bysinne =ag+ Y, an —HF—+ > b, ¢
n=1 n=1 n=1 n=1

m ) m ) )
maot 35 (g ity $5 (e m S o
n=
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On the other hand, given f € L1(T,R), for n > 0 we have
Cn /f e~ dg f( )(cosnz — isinnz) dz

( f(x) cosnz — i f( ) sinnz d:1:> = L(a, —ib,)

%
o= 5= [ S e = T

It follows that when f € Li(T,R), the m*™ partial sum of the real Fourier series for f is
exactly equal to the m'" partial sum for the complex Fourier series for f.

5.19 Definition: For f € L,(T) = Li(T, C) we denote the m'" partial sum of the Fourier
series of f by s,,,(f), so we have

Sm(f)(xz) = % c,e™® | where ¢, = ¢, (f) = !

n=—m 2

[ remar

5.20 Exercise: Show that if f € L,(T) with 1 < p < oo, and s,,(z) = > d, ™® with
Sm — fin L,(T), then d,, = ¢, (f). e

5.21 Theorem: (The Stone-Weierstrass Theorem) Let X be a compact metric space and
let C(X) = C(X, F) be the set of continuous functions f : X — F where F = R or C.
Let A be an algebra in C'(X) which contains the constant functions and which separates
points in X. Then A is uniformly dense in C'(X), which means that for all f € C(X) and
for all € > 0 there exists g € A such that ||g — fl||c < €.

Proof: We omit the proof.
5.22 Corollary: The set of polynomials R[z] is uniformly dense in C([a, b]).
5.23 Corollary: The set of functions of the form

u(x,y) = é:l fk(aj)gk(y) ’ where fk € C([a7b]) and gk € C([Cv d])

is uniformly dense in C([a,b] x [c,d]).
5.24 Corollary: The set of real trigonometric polynomials is uniformly dense in C (T, R)

and the set of complex trigonometric polynomials is uniformly dense in C(T') = C(T, C).

5.25 Corollary: (The Riemann-Lebesgue Lemma) Let f € L1(T'). Then Erf cn(f) = 0.

m .
Proof: Let e > 0. Choose a trigonometric polynomial p(z) = >  a,e"™* with ||p— || < €.
n=—m
Then for n > m we have ¢, (p) = 0 and so

alDI = lealh) = enl®] = | = [ (160) = pla) e
<o [ 15@) —p@)|de <1If ~pllos < <
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5.26 Note: Since real trigonometric polynomials are dense in C(7,R), hence also in
Lo(T,R), it follows that the orthonormal set

{\/%7, \/Lgcosn:v, \/Lgsinn:r;‘n €zZt}

is a Hilbert basis for the Hilbert space Lo(T,R). For f € Lo(T,R) we have

ao(f) = %(f,1> , an(f) = %(f,cosm:) , by, = %(f,sinn:@.

Similarly, since complex trigonometric polynomials are dense in Lo(T) = Lo(T,C), it
follows that the orthonormal set

{\/%76'””0 ‘ n e Z}
is a Hilbert basis for the Hilbert space Ly(T,C). For f € Lo(T, C) we have

cn(f) = 55 (f, ™).

The following theorem is an immediate consequence of our earlier study of Hilbert spaces.

5.27 Theorem: In the Hilbert space Lo(T) = Lo(T, C), we have the following.

(1) (Best Approximation) Given f € Lo(T), sy (f) Is the unique trigonometric polynomial
of degree at most m which best approximates f in Lo(T).

(2) (Convergence) Given f € Ly(T) we have s, (f) — f in Ly(T).

(3) (Parseval’s Identity) Given f € Ly(T) we have ||f||§ =27y ‘cn(f){2

n=—oo
o0

(4) (Inner Product Formula) Given f,g € Lo(T) we have (f,g) =21 Y. cn(f)cn(g)-

n=—oo

(5) (The Riesz-Fischer Theorem) Given ¢, € C, if Y. |c,|? < oo then there exists a
unique f € Lo(T) such that ¢, = c,(f). nETee

Proof: These are immediate consequences of Theorems 4.23 and 4.24.

5.28 Exercise: Show that when f € Lo(T,R), Parseval’s Identity becomes

14113 = 27lao (DI + 7 3 Jau(HI* 47 Z Pu"

5.29 Exercise: Use Parseval’s Identity, together with the result of Example 5.4, to prove
o

o0
that > m = g—g and use this result to calculate y. .
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5.30 Note: Let f € L;(T). Then

= nx = 1 " —in mnx
@)= 30 e = Y (5 [ swer)e
L ft) f) eine— g = L [ f(t) Dy (z —t) dt
27 -7 n=—m ™ J_rx m
where
m ) ) i(2m+1)u _ 1 i(m+1)u _ —imu —iu/2
inu _ _—imu € € e . e
Dm(“) = n_z_me =e eiv _ 1 - elv — 1 e—iu/2

ci@m+1)u/2 _ Li2m+1)u/2  sin w

elu/2 _ g—iu/2 sin%

5.31 Definition: The above function D,, : T — R is called the m'™ Dirichlet kernel.

5.32 Remark: For f,g € Li(T), the convolution of f with g is the function fxg: T — R
given by (f * g)(z) = 5= [, f(t)g(z — t) dt. Using this notation we have s, (f) = f * Dy,.
5.33 Note: We have

T T

m ) 0 m
D, (u) du = S e™du = / 1+ > 2cos(nu) du =27
- —rn=—m T n=1
and
- 7 |sin (2m;—1)u 7 | sin (2m;—1)u
/ ‘Dm(u)‘du:/ — duz?/ — du
- - Sin b 0 Sin 3
T sin @mtu (m-l—%)ﬂ' |SiIlt| )
> 2 m du:2/ T amgy At
u=0 2 t=0 2m-+1
m nm . m nw .
242 |smt| dt242/ |Slnt| dt
n—1 (n—1)m t n—1 (n—1)m nm
m m—+1
:%Z%Z%/ ldz=2m(m+1)> 2 Inm
n=1 =1
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5.34 Theorem: (Pointwise Divergence) Let C(T) = C(T,C) be the Banach space of
continuous functions f : T — C equipped with the supremum norm. There exists a dense
Gs set E C C(T) such that for every f € E the set of points x € T at which the Fourier
series for f diverges is dense in T'.

Proof: First we fix x = 0. For m € Z", define F,, : C(T) — C by

Fulf) = DO = 5= [ 1) Dn(t)
Note that
FulD] < 52 | 1F0O1DatO] @t < 5o 1l [ Do)
so we have

1 s
1F|| < —/ Dy (0)| dt.

2 J_ .

1 ™
We claim that in fact ||F,,|| = o / }Dm(t)’ dt. Fix m and define
T

—T

1if Dy (t) > 0,
s(t) = _
—1if Dy, (t) <O0.
Construct continuous functions g, : T'— R with |g,| < 1 such that g, — s in L1(T). By
the Dominated Convergence Theorem, we have

Falon) = 5= [ aa0Dut)tt — o [ sDutyar = 5 [ (D] it

o o 2 J_, T om o

1 T
It follows that ||F),|| = by / | D (t)| dt, as claimed. By the above note, ||F,|| > £ Inm,
7r

us

so the set of linear operators S = {Fm ‘m € Z+} is not uniformly bounded. By the Uniform
Boundedness Principle, applied to the set S, there exists a function f € C(T') such that
for all M > 0 we have ||F,,,(f)|| > M, that is |s,,(f)(0)| > M, for some m € Z. For this

function f € C(T), the Fourier series for f diverges at 0 because limsup |s,,(f)(0)| = occ.
m—r o0

Let @ = {aj,az2,as,---} be a dense subset of [0,27] and consider each a, as an
element in 7. For each n € ZT let f,(z) = f(z — a,) so that limsup |s,,(fn)(an)| = .
m— 00

For n,m € Z*, define L, ,,, : C(T) — C by Lym(f) = sm(f)(an). By Condensation of
Singularities, the set

E:{feC@)

limsup || Ly, (f)|| = oo for all n € Z+}
m— o0

is a dense Gs in the Banach space C(T). For each f € E, we have limsup |s,,(f)(a,)| = oo
m>0

for every n € Z™, so the Fourier series for f diverges at every point a,,.
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m
5.35 Theorem: (Cesaro Convergence) Let a,, € C for n >0, let s, = > a, and let
¢ n=0
= 2
If the sequence {s,,} converges then so does the sequence {o,} and, in this case, we have

hm o¢ = lim s,,.
—)OO m—r0o0

Proof: The proof is left as an exercise.

5.36 Definition: For f € Li(T) = L(T,C), we define the /*' Cesaro mean of the
Fourier series of f to be the function o4(f) : T'— C given by

+ m=0 +1 m=0 2m -
1 T 4 1 4
5 |tk > Dula—t)dt =5 [ fOKa—1)ds
where
¢ ¢ - (2m4+1)u
1 1 Sin —
Ki(w) = ——" Dp(u) =
e(u) E—I—lmzzo (u) f—i—lmzzo sin &
1 I ( f: i(2m+1)u/2) 1 I ( iu)2 i imu)
R R—— e =————— .Imle e
(+1)sin g =0 (€ +1)sin g =0
1 . i(+u _q 1 i(t+1)u _q
= ~Im<e’“/2 S > = U 'Im(‘e. ﬂu)
(€ +1)sin g etv —1 (€ +1)sin g eit/2 _ o=
(£ u —i(l u
_ 1 ' m(e (e+1)u/2 _ g=i(t+1)u/2 .ei(€+1)u/2>
(0 +1)sin g eiu/2 — g—iu/2
. (+D)u .2 (U+1D)u
B 1 Sm e - gip D _ e
~ ((+1)sin%  sin 2 (+1)sin?%’
2

5.38 Definition: The above function K, : T'— R is called the /*" Féjer kernel.
5.39 Remark: Using convolution notation, for f € Li(T) we have o,(f) = f*xK,.
5.40 Lemma: We have

(1) For 0 <t < m we have 0 < K,(t) < (éff)tz
(2) TFKg( dt_2/ Ke dt—?ﬂ'
(3) / FOKy(z —t)dt = ’ Fla+t)K(t) dt = ’ flz — ) Ky (t) dt.

Proof: The proof is left as an exercise.
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5.41 Theorem: (Convergence of the Cesaro Means) Let f € Li(T) and consider f as a
2m-periodic function f: R — C.

(1) If a € R and the one-sided limits f(a™) = lim f(z) and f(a™) = hm f(x) both
T—a~ w—)a
exist in C, then

i oy (@) - £ H@)

£— 00 2

(2) If a,b € R with a < b and f is continuous in |a,b] then o, — f uniformly on |a,b].

Proof: By Part 3 of the above lemma, we have

I L[ flatt)+fla—1)

oe(f)(a) = o : Ft)Eela —t)dt = 3 5 Ko(t) dt
and by Part 2 of the above lemma we have
M) L I )
and so
at a” T a a— at a”
e - FOSHO) | [ (ot amt) S0 160

1

2

- \% [ (@) = @)+ (la=0) = ) Kett) dt\
1

<o [ (@)= f@h] + | a=0) - fa)]) Kate) e

21
=Is + Js,
for any 0 < § < 7, where
)
=5 [ (If(att) = @]+ [Fla—t) — f(a)]) Ko(e) d
0

s =5 [ (180 = 5] + | fla=1) = £a)]) Ket) dr

Let € > 0. Choose § > 0 so that for all 0 < ¢ < § we have |f(z +t) — f(a™)| <
}f(x —t) — f(a_)‘ < £. Then, by Part 2 of the above lemma,

€
5 and

1 7T
Is < — CKp(t)dt < €.
6_271'/06 () di < 3

By Part 1 of the above lemma, for § < ¢t < 7 we have K;(t) < ar )52 sofor/+1>24
where M = (|| f||1 + 7|f(a®) + f(a7)]) /6® we have

Jsé—/ a0 +1fa—t +1fa*) + fa)]) gyge di
<

< 2171' (£+1)52 (||f||1+7r‘f (a*) + f(a )‘ = 2(e+1)

This proves Part (1), and Part (2) can be proven using the same method noting that the
estimates can be made uniformly.

€
2°
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5.42 Corollary: Let f € L1(T), consider f as a 2mw-periodic function f : R — C, and let
a€R. If f(a), f(a™) and lim s,,(f)(a) all exist in C then
m— 00

at a~
i o)) = @) )

m— o0 2

5.43 Remark: The above corollary justifies the argument given in Remark 5.5 where we
2

o0
showed that k21 m =z
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