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Chapter 1. Lebesgue Measure

1.1 Definition: When I is equal to any one of the bounded intervals (a, b), [a, b), (a, b]
or [a, b], where a, b ∈ R with a ≤ b, we define |I| = b − a. When I is equal to any of the
unbounded intervals (−∞, a), (−∞, a], (a,∞), [a,∞) or (−∞,∞), where a ∈ R, we define
|I| =∞.

1.2 Definition: For a bounded set A ⊆ R, the Jordan outer content of A is

c∗(A) = inf
{ n∑
k=1

|Ik|
∣∣∣n ∈ Z+, each Ik is a bounded open interval and A ⊆

n⋃
k=1

Ik

}
.

1.3 Theorem: (Properties of Jordan Outer Content) Let A,B ⊆ R be bounded.

(1) (Translation) If a ∈ R and 0 6= r ∈ R then c∗(a+A) = c∗(A).
(2) (Scaling) If 0 6= r ∈ R then c∗(rA) = |r| c∗(A).
(3) (Inclusion) If A ⊆ B then c∗(A) ≤ c∗(B).
(4) If A is finite then c∗(A) = 0.
(5) If I is a bounded interval then c∗(I) = |I|.
(6) (Subadditivity) We have c∗(A ∪B) ≤ c∗(A) + c∗(B).
(7) We have c∗(A ) = c∗(A).

Proof: The proof is left as an exercise.

1.4 Exercise: Show that when A ⊆ R and I and J are bounded intervals with A ⊆ I ⊆ J
we have |I| − c∗(I \A) = |J | − c∗(J \A).

1.5 Definition: For a bounded set A ⊆ R, we say that A has (a well-defined) Jordan
content when

c∗(A) = |I| − c∗(I \A)

where I is any interval which contains A and, in this case, we define the Jordan content
of A to be c(A) = c∗(A).

1.6 Exercise: Show that Q ∩ [0, 1] does not have a well-defined Jordan content.

1.7 Theorem: (Properties of Content) Let A,B ⊆ R be bounded.
(1)(Translation) If a ∈ R then a+A has Jordan content if and only if A does.
(2) (Scaling) If 0 6= r ∈ R then rA has Jordan content if and only if A does.
(3) If c∗(A) = 0 then A has Jordan content.
(4) If A and B have Jordan content then so do A ∪B, A ∩B and A \B.
(5) Every bounded interval has Jordan content.
(6) The set A has Jordan content if and only if c∗(A \A0) = 0.

Proof: The proof is left as an exercise.
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1.8 Definition: For a set A ⊆ R, the (Lebesgue) outer measure of A is

λ∗(A) = inf
{ ∞∑
n=1
|In|

∣∣∣ each In is a bounded open interval and A ⊆
∞⋃
n=1

In

}
.

1.9 Theorem: (Properties of Outer Measure) Let A,B ⊆ R and let Ak ⊆ R for k ∈ Z+.

(1) (Translation) If a ∈ R then λ∗(a+A) = λ∗(A).
(2) (Scaling) If 0 6= r ∈ R then λ∗(rA) = |r|λ∗(A).
(3) (Inclusion) If A ⊆ B then λ∗(A) ≤ λ∗(B).
(4) If A is finite or countable then λ∗(A) = 0.
(5) If I is an interval then λ∗(I) = |I|.
(6) (Subadditivity) We have λ∗

( ∞⋃
n=1

An

)
≤
∞∑
n=1

λ∗(An).

Proof: We leave the proofs of parts (1), (2) and (3) as an exercise. We prove Part (4)
in the case that A is countable. Let A = {a1, a2, a3, · · ·}. Let ε > 0. For each n ∈ Z+,

let In =
(
an − ε

2n , an + ε
2n

)
. Then A ⊆

∞⋃
n=1

In so we have λ∗(A) ≤
∞∑
n=1
|In| = 2ε. Since

0 ≤ λ∗(A) < 2ε for every ε > 0, it follows that λ∗(A) = 0.
Let us prove Part (5). When I is a degenerate interval (so I is empty or has only

one point) we know, from Part (4), that λ∗(I) = 0. Suppose that I is a nondegenerate
bounded interval, say I is equal to one of the intervals (a, b), [a, b), (a, b] or [a, b] where

a < b. Let ε > 0, let I1 = (a−ε, b+ε) and let In = ∅ for n ≥ 2. Then I ⊆
∞⋃
n=1

In so we have

λ∗(I) ≤
∞∑
n=1
|In| = b − a + 2ε. Since ε > 0 was arbitrary, it follows that λ∗(I) ≤ b − a. It

remains to show that λ∗(I) ≥ b− a. Let I1, I2, I3, · · · be any bounded open intervals such

that I ⊆
∞⋃
n=1

In. Let 0 < ε < b−a
2 and consider the compact interval K = [a+ ε, b− ε] ⊂ I.

Note that U = {I1, I2, I3, · · ·} is an open cover of K. Choose a finite subset V ⊆ U so that
K ⊆

⋃
J∈V

J . Choose J1 = (a1, b1) ∈ V so that a1 < a − ε < b1. If b1 ≤ b − ε then choose

J2 = (a2, b2) ∈ V so that a2 < b1 < b2. If b2 ≤ b − ε then choose J3 = (a3, b3) ∈ V so
that a3 < b2 < b3. Continue this procedure until we have chosen J` = (a`, b`) ∈ V with
b` > b− ε, and note that K ⊆ J1 ∪ J2 ∪ · · · ∪ J` and {J1, J2, · · · , J`} ⊆ V ⊆ U . We have

∞∑
n=1
|In| ≥

∑̀
n=1
|Jn| = (b1 − a1) + (b2 − a2) + · · ·+ (b` − a`)

>
(
a2 − (a+ ε)

)
+ (a3 − a2) + (a4 − a3) + · · ·+ (a` − a` − 1) +

(
(b− ε)− a`

)
= b− a− 2ε.

Since ε was arbitrarily small it follows that
∞∑
n=1
|In| ≥ b−a. Since this is true for all bounded

open intervals I1, I2, I3, · · · which cover I, it follows that λ∗(I) ≥ b− a, as required.
When I is an unbounded interval, we must have λ∗(I) =∞ because for every R > 0

we can choose a bounded interval J ⊆ I with |J | > R and then we have λ∗(I) ≥ λ∗(J) > R.
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To prove Part (6), let A1, A2, A3, · · · ⊆ R. Let ε > 0. For each n ∈ Z+, choose open

bounded intervals In,1, In,2, In,3, · · · so that An ⊆
∞⋃
k=1

In,k and
∞∑
k=1

|In.k| ≤ λ∗(An) + ε
2n .

Then we have
∞⋃
n=1

An ⊆
∞⋃

n,k=1

In,k so that

λ∗
( ∞⋃
n=1

An

)
≤

∞∑
n,k=1

|In,k| ≤
∞∑
n=1

(
λ∗(An) + ε

2n

)
=
∞∑
n=1

λ∗(An) + ε.

Since ε > 0 was arbitrary, we have λ∗
( ∞⋃
n=1

Ak

)
≤
∞∑
n=1

λ∗(An), as required.

1.10 Definition: For A ⊆ R, we say that A is (Lebesgue) measurable when for every
set X ⊆ R we have

λ∗(X) = λ∗(X ∩A) + λ∗(X \A).

When A is measurable, we define the (Lebesgue) measure of A to be λ(A) = λ∗(A). We
let M denote the set of all measurable subsets of R.

1.11 Note: For any setsA,X ⊆ R, we haveX = (X∩A)∪(X\A) and so (by subadditivity)
λ∗(X) ≤ λ∗(X ∩A) + λ∗(X \A). Thus a set A ⊆ R is measurable if and only if for every
set X ⊆ R we have

λ∗(X) ≥ λ∗(X ∩A) + λ∗(X \A).

1.12 Theorem: (Properties of Measure) Let A,B,Ak ⊆ R for k ∈ Z+.

(1) If a ∈ R then A is measurable if and only if a+A is measurable.
(2) If 0 6= r ∈ R then A is measurable if and only if rA is measurable.
(3) ∅ and R are measurable.
(4) If λ∗(A) = 0 then A is measurable.
(5) If A is measurable then so is Ac = R \A.
(6) If A and B are measurable then so are A ∪B , A ∩B and A \B.
(7) Every interval is measurable.

(8) If A1, A2, A3, · · · are measurable then so are
∞⋃
k=1

Ak and
∞⋂
k=1

Ak.

(9) If A1, A2, A3, · · · are measurable and disjoint then λ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

λ(Ak).

Proof: We leave the proofs of Parts (1) and (2) as an exercise. To prove Part (3), note
that ∅ and R are measurable because for every set X ⊆ R we have

λ∗(X ∩ ∅) + λ∗(X \ ∅) = λ∗(∅) + λ∗(X) = λ∗(X), and

λ∗(X ∩R) + λ∗(X \R) = λ∗(X) + λ∗(∅) = λ∗(X).

To prove Part (4), let A ⊆ R and suppose that λ∗(A) = 0. Let X ⊆ R. Since
X ∩A ⊆ A and X \A ⊆ X we have

λ∗(X ∩A) + λ∗(X \A) ≤ λ∗(A) + λ∗(X) = λ∗(X).

Part (5) holds because if A ⊆ R is measurable and X ⊆ R then, since X ∩Ac = X \A
and X \Ac = X ∩A, we have

λ∗(X ∩Ac) + λ∗(X \Ac) = λ∗(X \A) + λ∗(X ∩A) = λ∗(X).
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To prove Part (6), suppose that A and B are measurable and let X ⊆ R. Then

λ∗(X) = λ∗(X ∩A) + λ∗(X \A) , since A is measurable

= λ∗(X ∩A) + λ∗
(
(X \A) ∩B

)
+ λ∗

(
(X \A) \B

)
, since B is measurable

= λ∗(X ∩A) + λ∗
(
(X \A) ∩B

)
+ λ∗

(
X \ (A ∪B)

)
≥ λ∗

(
X ∩ (A ∪B)

)
+ λ∗

(
X \ (A ∪B)

)
, by subadditivity

since (X ∩A)∪
(
(X \A)∩B

)
= X ∩ (A∪B). This shows that A∪B is measurable. Using

Part (5), it follows that A ∩B is measurable because A ∩B = (Ac ∪Bc)c and hence that
A \B is measurable because A \B = A ∩Bc.

Let us prove Part (7) in the case of a nonempty bounded open interval. Let I = (a, b)
where a < b. Let X ⊆ R. Let ε > 0. Choose open bounded intervals I1, I2, I3, · · · so that

X ⊆
∞⋃
n=1

In and
∞∑
n=1
|In| < λ∗(X) + ε. For n ∈ Z∗, let Jn = In ∩ (a, b), Kn = In ∩ (−∞, a)

and Ln = In ∩ (b,∞). Then X ∩ I ⊆
∞⋃
n=1

Jn so that λ∗(X ∩ I) ≤
∞∑
n=1
|Jn| and X \ I ⊆

(a− ε, a+ ε)∪ (b− ε, b+ ε)∪
∞⋃
n=1

Kn ∪
∞⋃
n=1

Ln so that λ∗(X \ I) ≤ 4ε+
∞∑
n=1
|Kn|+

∞∑
n=1
|Ln|

and so we have

λ∗(X ∩ I) + λ∗(X \ I) ≤ 4ε+
∞∑
n=1

(
|In|+ |Jn|+ |Kn|

)
= 4ε+

∞∑
n=1
|In| < λ∗(X) + 5ε.

Since ε > 0 was arbitrary, we have λ∗(X ∩ I) + λ∗(X \ I) ≤ λ∗(X), Since X ⊆ R was
arbitrary, we se that I is measurable.

Before proving Parts (8) and (9) we remark that for A,B ⊆ R, if A is measurable and
A ∩B = ∅ then for all X ⊆ R we have

λ∗
(
X ∩ (A ∪B)

)
= λ∗

(
(X ∩ (A ∪B)) ∩A

)
+ λ∗

(
(X ∩ (A ∪B) \A

)
= λ∗(X ∩A) + λ∗(X ∩B)

It follows, inductively, that if A1, A2, · · · , An ⊆ R are measurable and disjoint then for all
X ⊆ R we have

λ∗
(
X ∩

n⋃
k=1

Ak
)

=
n∑
k=1

λ∗(X ∩Ak).

Now let A1, A2, A3, · · · ⊆ R be measurable and disjoint and let X ⊆ R. For all n ∈ Z+

we have

n∑
k=1

λ∗(X ∩Ak) = λ∗
(
X ∩

n⋃
k=1

Ak
)

, by the above remark,

≤ λ∗
(
X ∩

∞⋃
k=1

Ak
)

, since X ∩
n⋃
k=1

Ak ⊆ X ∩
∞⋃
k=1

Ak,

= λ∗
( ∞⋃
k=1

(X ∩Ak)
)

, since X ∩
∞⋃
k=1

Ak =
∞⋃
k=1

(X ∩Ak),

≤
∞∑
k=1

λ∗(X ∩Ak) , by subadditivity.
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Taking the limit as n tends to infinity gives

λ∗
(
X ∩

∞⋃
k=1

Ak
)

=
∞∑
k=1

λ∗(X ∩Ak).

The special case X = R gives the formula λ∗
( ∞⋃
k=1

Ak
)

=
∞∑
k=1

λ∗(Ak) for Part (9). For all

n ∈ Z+ we have

λ∗(X) = λ∗
(
X ∩

n∑
k=1

Ak
)

+ λ∗
(
X \

n⋃
k=1

Ak
)

=
n∑
k=1

λ∗(X ∩Ak) + λ∗
(
X \

n⋃
k=1

Ak
)

≥
n∑
k=1

λ∗(X ∩Ak) + λ∗
(
X \

∞⋃
k=1

Ak
)

Taking the limit as n tends to infinity gives

λ∗(X) ≥
∞∑
k=1

λ∗(X ∩Ak) + λ∗
(
X \

∞⋃
k=1

Ak
)

= λ∗
(
X ∩

∞⋃
k=1

Ak
)

+ λ∗
(
X \

∞⋃
k=1

Ak
)

so that
∞⋃
k=1

Ak is measurable, proving Part (8) in the case that the sets Ak are disjoint.

To complete the proof of Part (8) in the case that A1, A2, A3, · · · ⊆ R are measurable (but
not necessarily disjoint) simply note that

∞⋃
k=1

Ak = A1 ∪ (A2 \A1) ∪ (A3 \ (A1 ∪A2)) ∪ (A4 \ (A1 ∪A2 ∪A3)) ∪ · · ·

which is a countable union of disjoint measurable sets.
Finally, we recall that we only proved Part (7) in the case of a bounded open interval.

We note that every interval can be obtained from bounded open intervals by performing
complements and countable unions or intersections, and so every interval is measurable.

1.13 Corollary: Let A1, A2, A3, · · · ⊆ R be measurable sets.

(1) If A1 ⊆ A2 ⊆ A3 ⊆ · · · then λ
( ∞⋃
n=1

An

)
= lim
n→∞

λ(An).

(2) If A1 ⊇ A2 ⊇ A3 ⊇ · · · and Am is finite for some m ∈ Z+ then λ
( ∞⋂
n=1

An

)
= lim
n→∞

λ(An).

Proof: To prove Part (1), suppose that A1 ⊆ A2 ⊆ A3 ⊆ · · ·. Let B1 = A1 and Bk =

Ak\Ak−1 for k ≥ 2, Then the sets Bk are measurable and disjoint and we have An =
n⋃
k=1

Bk

for all n ∈ Z+ and also
∞⋃
n=1

An =
∞⋃
n=1

Bn. Thus

λ
( ∞⋃
n=1

An
)

= λ
( ∞⋃
n=1

Bn
)

=
∞∑
n=1

λ(Bn) = lim
n→∞

n∑
k=1

λ(Bk) = lim
n→∞

λ
( n⋃
k=1

Bk
)

= lim
n→∞

λ(An).

This proves Part (1), and Part (2) follows from Part (1) by taking complements in Am.
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1.14 Theorem: All open and closed sets in R are measurable.

Proof: Recall that every set in Rn (or any metric or topological space) is equal to the
disjoint union of its connected components, and recall that the connected components of an
open set are all open. Note that the set of connected components of an open set in Rn is at
most countable because we can choose an element of Qn inside each of the open connected
components. Also recall that the connected sets in R are the intervals in R. It follows
that every nonempty open set in R is equal to the finite or countable disjoint union of its
connected components, each of which is a nonempty open interval. Thus every open set in
R is measurable. We also remark that when the connected components of the nonempty
open set U ⊆ R are the disjoint open intervals I1, I2, I3, · · · we have λ(U) =

∑
k≥1
|Ik|.

Closed sets are also measurable because every closed set is the complement of an open set.

1.15 Corollary: For A ⊆ R we have

λ∗(A) = inf
{
λ(U)

∣∣U ⊆ R is open with A ⊆ U
}
.

1.16 Example: The (standard) Cantor set is the set C ⊆ [0, 1] constructed as follows.
Let C0 = [0, 1]. Let I1 be the open middle third of C0, that is let I1 =

(
1
3 ,

2
3

)
, and let

C1 = A0\U1 =
[
0, 13
]
∪
[
2
3 , 1
]
. Let I2 and I3 be the open middle thirds of the two component

intervals of C1, that is let I2 =
(
1
9 ,

2
9

)
and I3 =

(
7
9 ,

8
9

)
, and let C2 = C1 \ (I2 ∪ I3). Having

constructed the set Ck, which is the disjoint union of 2k closed intervals each of length 1
3k

,

let I2k , I2k+1, · · · , I2k+1−1 be the open middle thirds of these 2k component intervals and
let Ck+1 = Ck \ (I2k , I2k+1, · · · , I2k+1−1). Finally, we let

C =
∞⋂
k=1

Ck.

Since C0 ⊇ C1 ⊇ C2 ⊇ · · ·, and since each Ck is the disjoint union of 2k closed intervals

each of size 1
3k

so that λ(Ck) =
(
2
3

)k
, we have

λ(C) = lim
k→∞

λ(Ck) = 0.

Note that Ck is the set of all numbers x ∈ [0, 1] which can be written in base 3 such that
the the first k digits of x are not equal to 1, and so C is the set of all numbers x ∈ [0, 1]
which can be written in base 3 with none of the digits of x equal to 1, and it follows that
the cardinality of C is |C| = 2ℵ0 .

1.17 Example: We can construct a (generalized) Cantor set C ⊆ [0, 1], having any
desired value for the measure λ(C) < 1 as follows. Let 0 ≤ m < 1. Choose a sequence

of positive real numbers a1, a2, · · · with
∞∑
k=1

ak = 1 − m. Let C0 = [0, 1] and note that

λ(C0) = 1. Choose an open interval I1 ⊆ C0 with λ(I1) = a1 such that C0\I1 is the disjoint
union of two nondegenerate closed intervals each of measure less than 1

2 . Let C1 = C0 \ I1
and note that λ(C1) = 1 − a1. Having constructed the set Ck, which is the disjoint
union of 2k nondegenerate closed intervals each of measure less than 1

2k
and having total

measure λ(Ck) = 1−(a1+a2+ · · ·+ak), we choose 2k open intervals I2k , I2k+1, · · · , I2k+1−1
which are contained in each of the 2k component intervals of Ck so that the set Ck+1 =
Ck \(I2k∪· · ·∪I2k+1−1) is the disjoint union of 2k+1 non-degenerate closed intervals each of
measure less than 1

2k+1 and having total measure λ(Ck+1) = 1− (a1 + · · ·+ak+1). Finally,

we let C =
∞⋂
k=1

Ck and note that λ(C) = lim
k→∞

λ(Ck) = 1−
∞∑
k=1

ak = m.
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1.18 Theorem: Let M be the set of all measurable subsets of R. Then |M| = 22
ℵ0

.

Proof: Let C be the standard Cantor set. Because λ(C) = 0 it follows that every subset
of C is measurable. Because |C| = 2ℵ0 we have

22
ℵ0

=
∣∣{A|A ⊆ R}

∣∣ ≥ |M| ≥ ∣∣{A|A ⊆ C}∣∣ = 22
ℵ0
.

1.19 Theorem: There exists a nonmeasurable set in R.

Proof: Define an equivalence relation on the set [0, 1] by defining x ∼ y when y − x ∈ Q.
Let C denote the set of equivalence classes. For each c ∈ C, choose an element xc ∈ c
and let A = {xc|c ∈ C} ⊆ [0, 1]. We shall prove that the set A is not measurable. Let
Q∩ [0, 2] = {a1, a2, a3, · · ·}, with the ak distinct. For each k ∈ Z+, let Ak = ak+A ⊆ [0, 3].
We claim that the sets Ak are disjoint. Let k, ` ∈ Z+ and suppose that Ak∩A` 6= ∅. Choose
y ∈ Ak ∩ A`, say y = ak + xc = a` + xd where c, d ∈ C. Since xc − xd = a` − ak ∈ Q we
have xc ∼ xd and hence c = d (since we only chose one element from each class). Since
c = d we have xc = xd, hence ak = a`, and hence k = `. Thus the sets Ak are disjoint, as

claimed. Next, we claim that [1, 2] ⊆
∞⋃
k=1

Ak. Let y ∈ [1, 2]. Since y − 1 ∈ [0, 1] we have

y − 1 ∈ c for some c ∈ C. Since y − 1 ∈ c we have y − 1− xc ∈ Q hence also y − xc ∈ Q.
Since y ∈ [1, 2] and xc ∈ [0, 1] we have y − xc ∈ [0, 2]. Since y − xc ∈ Q ∩ [0, 2] we have

y − xc = ak for some k ∈ Z+ so that y ∈ Ak. This proves that [1, 2] ⊆
∞⋃
k=1

Ak.

Suppose, for a contradiction, that the set A is measurable. By translation, each of
the sets Ak = ak +A is measurable with λ(Ak) = λ(A). Since the sets Ak are disjoint and
measurable, additivity gives

λ
( ∞⋃
k=1

Ak
)

=
∞∑
k=1

λ(Ak) =
∞∑
k=1

λ(A) =

{
0 , if λ(A) = 0,

∞ , if λ(A) > 0.

But since [0, 1] ⊆
∞⋃
k=1

Ak ⊆ [0, 3] we also have 1 ≤ λ
( ∞⋃
k=1

Ak
)
≤ 3, giving the desired

contradiction.

1.20 Notation: Let X be a set. For any set C of subsets of X we write

Cσ =
{ ∞⋃
k=1

Ak

∣∣∣ each Ak ∈ C
}

and Cδ =
{ ∞⋂
k=1

Ak

∣∣∣ each Ak ∈ C
}
.

Note that Cσσ = Cσ and Cδδ = Cδ.

1.21 Definition: Let X be a set. A σ-algebra in X is a set C of subsets of X such that

(1) ∅ ∈ C,
(2) if A ∈ C then Ac = X \A ∈ C, and

(3) if A1, A2, A3, · · · ∈ C then
∞⋃
k=1

Ak ∈ C.

Note that when C is a σ-algebra in X we have Cσ = C and Cδ = C.

1.22 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that Gσ = G
and Fδ = F .
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1.23 Example: For any set X, the set
{
∅, X

}
and the set P(X) of all subsets of X are

σ-algebras in X, The set M =M(R) of all measurable sets in R is a σ-algebra in R.

1.24 Note: Note that given any set C of subsets of a set X there exists a unique smallest
σ-algebra in X which contains C, namely the intersection of all σ-algebras in X which
contain C.

1.25 Definition: In a metric space (or topological space) X, the Borel σ-algebra B is
the smallest σ-algebra in X which contains G (hence also F). The elements of B are called
Borel sets. Note that B contains all of the sets G,Gδ,Gδσ,Gσδσ, · · · and all of the sets
F ,Fσ,Fσδ,Fσδσ, · · ·.

1.26 Exercise: Show that F ⊆ Gδ or, equivalently, that G ⊆ Fσ,

1.27 Theorem: All Borel sets in R are measurable.

Proof: The set M of all measurable subsets of R is a σ-algebra which contains G, and
the Borel σ-algebra B is the intersection of all σ-algebra in which contain G, so we have
B ⊆M.

1.28 Remark: It can be shown, using transfinite induction, that in R we have |B| = 2ℵ0 .
Since |B| < |M|, it follows that there exist measurable functions which are not Borel.

1.29 Theorem: For every set A ⊆ R there exists a set B ∈ Gδ with A ⊆ B such that
λ(B) = λ∗(A).

Proof: Let A ⊆ R. For each n ∈ Z+, choose bounded open intervals In,1, In,2, In,3, · · ·

such that A ⊆
∞⋃
k=1

In,k and
∞∑
k=1

|In,k| ≤ λ∗(A) + 1
n , then let Un =

∞⋃
k=1

In,k. Note that for

each n ∈ Z+ the set Un is open with A ⊆ Un, and we have λ(Un) ≤
∞∑
k=1

|In,k| ≤ λ∗(A)+ 1
n .

Let B =
∞⋂
n=1

Un and note that B ∈ Gδ. Since A ⊆ Un for all n ∈ Z+, we have A ⊆
∞⋂
n=1

Un,

that is A ⊆ B, and hence λ∗(A) ≤ λ(B). For every n ∈ Z+ we have B ⊆ Un so that
λ(B) ≤ λ(Un) ≤ λ∗(A) + 1

n , and it follows that λ(B) ≤ λ∗(A). Thus λ(B) = λ∗(A), as
required.

1.30 Theorem: Let A ⊆ R. Then the following statements are equivalent.

(1) A is measurable.
(2) For every ε > 0 there exists an open set U with A ⊆ U ⊆ R such that λ(U \A) < ε.
(3) There exists a set B ∈ Gδ with A ⊆ B ⊆ R such that λ(B \A) = 0.
(4) For every ε > 0 there exists a closed set K ⊆ A such that λ(A \K) < ε.
(5) There exists a set C ∈ Fσ with C ⊆ A such that λ(A \ C) = 0.

Proof: We prove that (1) is equivalent to (3) and leave proofs of other equivalences as an
exercise. To show that (3) implies (1), suppose that there exists a set B ∈ Gδ with A ⊆ B
such that λ∗(B \ A) = 0. Since λ∗(B \ A) = 0 we know that B \ A is measurable, and
hence the set A = B \ (B \A) is also measurable.
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Suppose, conversely, that A is measurable. If λ(A) < ∞ then, by Theorem 1.28, we
can choose B ∈ Gδ with A ⊆ B such that λ(B) = λ(A), and then we have λ(B \ A) =
λ(B) − λ(A) = 0, as required. If λ(A) = ∞ then more care is needed. For each n ∈ Z+,
let An = A∩ [−n, n], note that An is measurable, and choose Bn ∈ Gδ with An ⊆ Bn such

that λ(Bn) = λ(An), and note that λ(Bn \ An) = λ(Bn) − λ(An) = 0. Let B =
∞⋃
n=1

Bn.

Then we have A =
∞⋃
n=1

An ⊆
∞⋃
n=1

Bn = B and we have B \ A =
∞⋃
n=1

Bn \ A ⊆
∞⋃
n=1

Bn \ An

so that λ(B \A) ≤
∞∑
n=1

λ(Bn \An) = 0.

1.31 Theorem: Let A,B ⊆ R. Suppose that A ⊆ B and B is measurable with λ(B) <∞.
Then A is measurable if and only if λ(B) = λ∗(A) + λ∗(B \A).

Proof: If A is measurable then for all X ⊆ R we have λ∗(X) = λ∗(X ∩A) + λ∗(X \A) so
that in particular (taking X = B) we have λ∗(B) = λ∗(A) + λ∗(B \A).

Suppose that λ∗(B) = λ∗(A) + λ∗(B \A), and let X ⊆ R. By Theorem 1.28, we can
choose E ∈ Gδ with X ∩ B ⊆ E such that λ(E) = λ∗(X ∩ B). Let C = E ∩ B and note
that C is measurable with X ∩B ⊆ C ⊆ B. Since X ∩B ⊆ C we have λ∗(X ∩B) ≤ λ(C)
and since C ⊆ E we have λ(C) ≤ λ(E) = λ∗(X ∩B), and so λ(C) = λ∗(X ∩B). Since C
is measurable, and since (B \ A) ∩ C = C \ A and (A \ C) ∪ ((B \ A) \ C) = B \ C and
(C ∩A) ∪ (C \A) = C and C = B ∩ C, we have

λ∗(B) = λ∗(A) + λ∗(B \A)

=
(
λ∗(A ∩ C) + λ∗(A \ C)

)
+
(
λ∗((B \A) ∩ C) + λ∗((B \A) \ C)

)
= λ∗(A ∩ C) + λ∗(A \ C) + λ∗(C \A) + λ∗((B \A) \ C)

=
(
λ∗(C ∩A) + λ∗(C \A)

)
+
(
λ∗(A \ C) + λ∗((B \A) \ C)

)
≥
(
λ∗(C ∩A) + λ∗(C \A)

)
+ λ∗(B \ C)

≥ λ∗(C) + λ∗(B \ C) = λ∗(B ∩ C) + λ∗(B \ C)

= λ∗(B)

Since the first and last terms above are equal, it follows that all terms must be equal, so
in particular we have λ∗(C ∩ A) + λ∗(C \ A) + λ∗(B \ C) = λ∗(C) + λ∗(B \ C) hence
λ∗(C) = λ∗(C ∩A) + λ∗(C \A). Thus

λ∗(X ∩B) = λ∗(C) = λ∗(C ∩A) + λ∗(C \A)

≥ λ∗((X ∩B) ∩A) + λ∗((X ∩B) \A) , since X ∩B ⊆ C,
= λ∗(X ∩A) + λ∗((X ∩B) \A) , since (X ∩B) ∩A = X ∩A.

hence

λ∗(X) = λ∗(X ∩B) + λ∗(X \B) , since B is measurable,

= λ∗(X ∩A) + λ∗((X ∩B) \A) + λ∗(X \B)

≥ λ∗(X ∩A) + λ∗(X \A) , since ((X ∩B) \A) ∪ (X \B) = X \A.

Thus A is measurable, as required.

9



1.32 Definition: Let X be a metric space and let A ⊆ X. We say A is dense (in X)
when for every nonempty open ball B ⊆ X we have B ∩ A 6= ∅, or equivalently when
A = X. We say A is nowhere dense (in X) when for every nonempty open ball B ⊆ R

there exists a nonempty open ball C ⊆ B with C ∩A = ∅, or equivalently when A
0

= ∅.

1.33 Example: The generalized Cantor sets are nowhere dense in R.

1.34 Note: When A ⊆ B ⊆ X, note that if A is dense in X then so is B and, on the
other hand, if B is nowhere dense in X then so is A.

1.35 Note: When A,B ⊆ X with B = Ac = X \ A, note that A is nowhere dense ⇐⇒
A

0
= ∅ ⇐⇒ B0 = X ⇐⇒ the interior of B is dense.

1.36 Definition: Let A ⊆ X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when Ac is first category.

1.37 Example: Every countable set in R is first category since if A = {a1, a2, a3, · · ·}
then we have A =

∞⋃
k=1

{ak}. In particular Q is first category and Qc = R \Q is residual.

1.38 Note: If A ⊆ X is first category then so is every subset of A.

1.39 Note: If A1, A2, A3, · · · ⊆ X are are all first category then so is
∞⋃
k=1

Ak.

1.40 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.

(2) Every residual set in X is dense.

(3) Every countable union of closed sets with empty interiors in X has an empty interior.

(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

LetA ⊆ X be first category, sayA =
∞⋃
n=1

Cn where each Cn is nowhere dense. Suppose,

for a contradiction, that A has nonempty interior, and choose an open ball B0 = B(a0, r0)
with 0 < r0 < 1 such that B0 ⊆ A . Since each Cn is nowhere dense, we can chose a
nested sequence of open balls Bn = B(an, rn) with 0 < rn <

1
2n such that Bn ⊆ Bn−1 and

Bn ∩ Cn = ∅. Because rn → 0, it folows that the sequence {an} is Cauchy. Because X
is complete, it follows that {an} converges in X, say a = lim

n→∞
an. Note that a ∈ Bn for

all n since ak ∈ Bn for all k ≥ n. Since a ∈ B0 and B0 ⊆ A we have a ∈ A. But since

a ∈ Bnfor al n ≥ 1, and Bn ∩Cn = ∅, we have a /∈ Cn for all n ≥ 1 hence a /∈
∞⋃
n=1

Cn, that

is a /∈ A.

1.41 Example: Recall that Q is first category and Qc is residual. The Baire Category
Theorem shows that Qc cannot be first category because if Q and Qc were both first
category then R = Q ∪Qc would also be first category, but this is not possible since R
does not have empty interior.
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1.42 Exercise: For each n ∈ Z+, let fn : R → R be continuous. Suppose that for all
x ∈ R there exists n ∈ Z+ such that fn(x) ∈ Q. Prove that there exists n ∈ Z+ such that
fn is constant in some nondegenerate interval.

1.43 Exercise: Show that Fσ 6= Gδ and show that Gδ 6= Gδσ.

1.44 Remark: Each of the following sets C of subsets of R

C =
{
A ⊆ R

∣∣A is finite or countable
}

C =
{
A ⊆ R

∣∣λ(A) = 0
}

C =
{
A ⊆ R

∣∣A is first category
}

has the following properties:

(1) if A ⊆ B and B ∈ C then A ∈ C,
(2) if A1, A2, A3, · · · ∈ C then

∞⋃
k=1

Ak ∈ C, and

(3) if A ∈ C then A0 = ∅.
Because of this, it seems reasonable to consider the sets in C to be, in some sense, “small”.
The following theorem, then, states that every set in R is the union of two small sets.

1.45 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1, a2, a3, · · ·}. For k, ` ∈ Z+, let Ik,` =
(
a` − 1

2k+` , a` + 1
2k+`

)
and for

k ∈ Z+, let Uk =
∞⋃
`=1

Ik,`. Note that U1 ⊇ U2 ⊇ U3 ⊇ · · · and for each k ∈ Z+ we have

Q ⊆ Uk and λ(Uk) ≤
∞∑̀
=1

|Ik,`| = 1
2k−1 and we have U1 ⊃ U2 ⊇ U3 ⊇ · · ·. Let B =

∞⋂
k=1

Uk.

Note that B is residual (it is a countable intersection of dense open sets) and we have
λ(B) = lim

k→∞
λ(Uk) = 0 since λ(Uk) ≤ 1

2k
for all k ∈ Z+. Finally note that any set A is

equal to the disjoint union A = (A∩B)∪ (A∩Bc), and we have λ(A∩B) = 0 and the set
A ∩Bc is first category.

.
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Chapter 2. Lebesque Integration

2.1 Definition: For E ⊆ A ⊆ R, the characteristic function for E on A is the function
χ
E

: A→ {0, 1} given by

χ
E

(x) =

{
1 , if x ∈ E,
0 , if x /∈ E.

2.2 Definition: Let a, b ∈ R with a < b. A step function on [a, b] is a function
s : [a, b]→ R of the form

s =
n∑
k=1

ckχIk

where n ∈ Z+, each ck ∈ R, and the sets Ik are disjoint intervals with
n⋃
k=1

Ik = A. The

numbers ck and the intervals Ik are uniquely determined from s if we require that Ik−1 is
to the left of Ik and ck−1 6= ck for 1 < k ≤ n, and then we have Ik = s−1(ck).

2.3 Definition: For the step function on [a, b] given by s =
n∑
k=1

ckχIk
, we define the

Riemann integral of s on [a, b] to be∫ b

a

s =

∫ b

a

s(x) dx =
n∑
k=1

ck|Ik|.

For a bounded function f : [a, b] → R we define the upper Riemann integral and the
lower Riemann integral of f on [a, b] to be

U(f) = inf

{∫ b

a

s

∣∣∣∣ s is a step function on [a, b] with s ≥ f
}
,

L(f) = sup

{∫ b

a

s

∣∣∣∣ s is a step function on [a, b] with s ≤ f
}
.

We say that f is Riemann integrable on [a, b] when U(f) = L(f), and in this case we
define the Riemann integral of f on [a, b] to be∫ b

a

f =

∫ b

a

f(x) dx = U(f) = L(f).

2.4 Theorem: (Properties of the Riemann Integral) Let a < b and let f, g : [a, b]→ R be
bounded.

(1) If f and g are Riemann integrable on [a, b] and f ≤ g then

∫ b

a

f ≤
∫ b

a

g.

(2) If f and g are Riemann integrable on [a, b] and c ∈ R then the functions cf and f + g

are Riemann integrable on [a, b] and

∫ b

a

(cf) = c

∫ b

a

f and

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

(3) If c ∈ (a, b) then f is Riemann integrable on [a, b] if and only if f is Riemann integrable

both on [a, c] and on [c, b] and, in this case,

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

(4) If f(x) = g(x) for all but finitely many x ∈ [a, b] then f is Riemann integrable on [a, b]

if and only if g is Riemann integrable on [a, b] and, in this case,

∫ b

a

f =

∫ b

a

g.

Proof: The proof is left as an exercise.
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2.5 Theorem: Let a < b and let f : [a, b]→ R be bounded.

(1) If f is continuous then f is Riemann integrable.
(2) If f is monotonic then f is Riemann integrable.

Proof: We omit the proof.

2.6 Theorem: (Lebesgue) Let a < b and let f : [a, b] → R. Then f is Riemann
integrable on [a, b] if and only if f is bounded and the set of all points in [a, b] at which f
is discontinuous has measure zero.

Proof: We omit the proof.

2.7 Theorem: (The Fundamental Theorem of Calculus) Let f, g : [a, b] → R. Suppose
that g is differentiable with g′ = f in [a, b] and that f is Riemann integrable on [a, b]. Then∫ b

a

f(x) dx = g(b)− g(a).

Proof: We omit the proof.

2.8 Example: The function f : [0, 1] → [0, 1] defined by f(x) = 1 when x ∈ Q and
f(x) = 0 when x /∈ Q is discontinuous everywhere in [0, 1], and is not Riemann integrable.

2.9 Example: The function f : [0, 1] → [0, 1] given by f
(
a
b

)
= 1

b when a, b ∈ Z with
0 ≤ a ≤ b and gcd(a, b) = 1, and f(x) = 0 when x /∈ Q, is discontinuous at all rational
points, and is Riemann integrable.

2.10 Example: Define s : R → [0, 1] by s(x) = 0 for x ≤ 0 and s(x) = 1 for x > 0. Let

Q ∩ [0, 1] = {a1, a2, a3, · · ·} and define f : [0, 1] → [0, 1] by f(x) =
∞∑
k=1

s(x−ak)
2k

. Then f is

increasing with jump discontinuities at all rational points, and f is Riemann integrable.

2.11 Example: Given a Cantor set C = [0, 1]\U , where U =
∞⋃
k=1

Ik with the sets Ik being

the disjoint open intervals from Example 1.17, we can construct a corresponding Cantor
function f : [0, 1]→ [0, 1] with f(x) = 1

2 on I1, f(x) = 1
4 on I2, f(x) = 3

4 on I3, f(x) = 1
8

on I4, f(x) = 3
8 on I5, f(x) = 5

8 on I6, f(x) = 7
8 on I7 and so on, and then extending f to

make it continuous on all of [0, 1]. Then f is continuous and nondecreasing with f ′(x) = 0
for all x ∈ U .

2.12 Example: When C = [0, 1] \ U is a Cantor set and f : [0, 1] → [0, 1] is the corre-
sponding Cantor function (as in the previous example), the function g : [0, 1]→ [0, 2] given
by g(x) = x+ f(x) is a homeomorphism. Note that g sends each component interval of U
to an interval of the same size, so that we have λ

(
g(U)

)
= λ(U).

In the case that C is the standard Cantor set we have λ
(
g(U)

)
= λ(U) = 1. It follows

that λ
(
g(C)

)
= 2− λ(U) = 1, so g sends a set of measure zero to a set of measure 1. Also

note that if we choose a nonmeasurable set B ⊆ g(C) and let A = g−1(B), then A ⊆ C
so that A is a measurable set with measure zero, but g sends A to the nonmeasurable set
g(A) = B.
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2.13 Example: Given a Cantor set C = [0, 1]\U where U is the disjoint union U =
∞⋃
k=1

Ik,

choose intervals Jk ⊂6= Ik so that Jk has the same centre as Ik with |Jk| = 1
2 |Ik|, then choose

continuous functions fk : [0, 1] → [0, 1] such that f(x) = 0 outside Jk and f(x) = 1 at

the midpoint of Jk and then let f(x) =
∞∑
k=1

fk(x) for all x ∈ [0, 1]. Then f is continuous

in U and discontinuous in C. When λ(C) > 0, f is not Riemann integrable. If we define

g(x) =
∞∑
k=1

∫ x

0

fk(t) dt then g is differentiable with g′ = f in [a, b].

2.14 Example: Let Q∩[0, 1] = {a1, a2, · · ·}. Define f : [0, 1]→ R by f(x) =
∞∑
k=1

(x−ak)1/3
2k

.

Then f is increasing with f ′(x) =
∞∑
k=1

(x−ak)−2/3

3·2k when x /∈ Q and f ′(x) =∞ when x ∈ Q.

Verify that f ′(x) ≥ 1
3 for all x. The map f sends the interval [0, 1] homeomorphically to

an interval [a, b] and the inverse map g : [a, b]→ [0, 1] is increasing and differentiabe with
g′(x) = 0 for all x ∈ Q and g′(x) ≤ 3 for all x. Note that g′ cannot be Riemann integrable

because if it was then we would have

∫ b

a

g′ = g(b) − g(a) = 1 but, because g′(x) = 0 for

all x ∈ Q, all of the lower Riemann sums are zero.

2.15 Definition: We shall find it useful on occasion to allow our functions to take the
values ±∞ so we shall use the set of extended real numbers [−∞,∞] = R∪{−∞,∞}.
In [−∞,∞], the open balls are the open intervals B(−∞, r) =

(
−∞, 1r

)
, B(∞, r) =

(
1
r ,∞

)
and B(a, r) = (a − r, a + r) with a ∈ R. For A ⊆ [−∞,∞], we say that A is open in
[−∞,∞] when for every a ∈ A there exists r > 0 such that B(a, r) ⊆ A. Verify that every
open set in [−∞,∞] is a finite or countable union of disjoint open intervals, where each
open inerval is of one of the forms ∅, (a, b), (−∞, a), (a,∞), (−∞,∞), [−∞, a), (a,∞]
or [−∞,∞] where a, b ∈ R. We also use (partially-defined) addition and multiplication
operations on [−∞,∞], as usual, leaving certain sums and products undefined. We do not
define the expressions ∞+ (−∞), −∞+∞, 0 · (±∞) and (±∞) · 0.

2.16 Definition: For f : A ⊆ R → B ⊆ [−∞,∞], we say that f is measurable (in A)
when f−1(U) is measurable for every open set U in [−∞,∞] (or equivalently for every
open set U in B). Note that in particular, in order for f to be measurable, the set A must
be measurable because A = f−1

(
[−∞,∞]

)
.

2.17 Note: If f : A ⊆ R→ B ⊆ [−∞,∞] is measurable and ϕ : B ⊆ [−∞,∞]→ [−∞,∞]
is continuous, then the composite ϕ ◦ f : A ⊆ R → [−∞,∞] is measurable because, for
every open set U in [−∞,∞], ϕ−1(U) is open in B since ϕ is continuous, and hence the
set (ϕ ◦ f)−1(U) = f−1

(
ϕ−1(U)

)
is measurable since the function f is measurable.

2.18 Theorem: Let A ⊆ R be measurable and let f : A→ [−∞,∞], Then

f is measurable ⇐⇒ f−1
(
(a,∞]

)
is measurable for all a ∈ R

⇐⇒ f−1
(
[a,∞]

)
is measurable for all a ∈ R

⇐⇒ f−1
(
[−∞, a)

)
is measurable for all a ∈ R

⇐⇒ f−1
(
[−∞, a]

)
is measurable for all a ∈ R
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Proof: We shall prove the first equivalence. If f is measurable then f−1(U) is measurable
for every open set U ⊆ [−∞,∞] so, in particular, f−1

(
(a,∞]

)
is measurable for every

a ∈ R. Suppose, conversely, that f−1
(
(a,∞]

)
is measurable for every a ∈ R. Then for

every a, b ∈ R, each of the following sets is measurable.

f−1
(
[−∞, a]

)
= R \ f−1

(
(a,∞]

)
,

f−1
(
[−∞, a)

)
=
∞⋃
n=1

f−1
(
[−∞, a− 1

n ]
)
,

f−1(a, b) = f−1
(
[−∞, b)

)
∩ f−1

(
(a,∞]

)
.

Since every open U set in [−∞,∞] is a finite or countable union of sets Uk, each of which

is of one of the forms [−∞, a), (a, b), (a,∞], and because f−1
( ∞⋃
k=1

Uk
)

=
∞⋃
k=1

f−1(Uk), it

follows that f−1(U) is measurable for every open set U in [−∞,∞].

2.19 Theorem: Let E ⊆ A ⊆ R with A measurable, and let f : A→ [−∞,∞].

(1) The function χ
E

is measurable if and only if the set E is measurable.
(2) If f is continuous then f is measurable.
(3) If f is monotonic then f is measurable.

Proof: To prove Part (1), note that if E is not measurable then neither is χ
E

because

χ
E
−1((0,∞]

)
= E, and if E is measurable then so is χ

E
because for all sets U in [−∞,∞],

the set f−1(U) is equal to one of the measurable sets ∅, E, A \ E or A.
To prove Part (2), suppose that f is continuous and let U be any open set in [−∞,∞].

Since f is continuous and U is open, the set f−1(U) is open in A. Since f−1(U) is open
in A, we can choose an open set V in R such that f−1(U) = V ∩A, which is measurable.

To prove Part (c), suppose that f is monotonic, say f is increasing. Let a ∈ R. For
all x, y ∈ A, if x ∈ f−1

(
(a,∞]

)
and y ≥ x then f(y) ≥ f(x) > a so that y ∈ f−1

(
(a,∞]

)
.

It follows that the set f−1
(
(a,∞]

)
must a set of one of the forms ∅, A ∩ (b,∞], A ∩ [b,∞]

or A, and so f−1
(
(a,∞]

)
is measurable.

2.20 Definition: Given a function f : A ⊆ R → [−∞,∞], we define f+ : A → [−∞,∞]
and f− : A→ [−∞,∞] by

f+(x) =

{
f(x) , if f(x) ≥ 0,

0 , if f(x) ≤ 0,
f−(x) =

{
0 , if f(x) ≥ 0,

−f(x) , if f(x) ≤ 0.

2.21 Theorem: (Operations on Measurable Functions) Let f, g : A ⊆ R → [−∞,∞] be
measurable functions, and let c ∈ R. Then each of the following fuctions are measurable

cf , f + g , fg , |f | , f+ , f−

provided they are well-defined.

Proof: The function cf is well-defined unless c = 0 and f(x) = ±∞ for some x ∈ A. When
c = 0 and f(x) 6= ±∞, the function cf is the zero function, which is measurable. When
c 6= 0 the function ϕ : [−∞,∞] → [−∞,∞] given by ϕ(x) = cx is continuous and so the
the function cf = ϕ ◦ f is measurable by Note 2.17.
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The function f + g is measurable because for all a ∈ R we have

(f + g)−1
(
(a,∞]

)
=
{
x ∈ A

∣∣f(x) + g(x) > a
}

=
⋃
r∈Q

{
f(x) > r and g(x) > a− r

}
=
⋃
r∈Q

(
f−1

(
r,∞]

)
∩ g−1

(
a− r,∞]

)
,

which is measurable.
The function ϕ : [−∞,∞] → [0,∞] given by ϕ(x) = x2 is continuous so, by Note

2.17, for every measurable function h : A → [−∞,∞], the function h2 = ϕ ◦ h is also
measurable. It follows that the function fg = 1

4

(
(f + g)2 − (f − g)2

)
is measurable.

The function ϕ : [−∞,∞] → [0,∞] given by ϕ(x) = |x| is continuous so, by Note
2.17, the function |f | = ϕ ◦ f is measurable, hence so are the functions f+ = 1

2

(
|f | + f

)
and f− = 1

2

(
|f | − f

)
.

2.22 Theorem: Let fn : A ⊆ R→ [−∞,∞] be measurable for each n ∈ Z+. Then each
of the following functions are well-defined and measurable:

sup{fn
∣∣n ∈ Z+} , inf{fn

∣∣n ∈ Z+} , lim sup
n→∞

{fn} , lim inf
n→∞

{fn}.

Proof: Let g = sup{fn|n ∈ Z+}. For x ∈ A and a ∈ R we have

x ∈ g−1
(
(a,∞]

)
⇐⇒ g(x) > a ⇐⇒ sup{fn|n ∈ Z+} > a

⇐⇒ fn(x) > a for some n ∈ Z+ ⇐⇒ x ∈
∞⋃
n=1

fn
−1((a,∞]

)
.

Thus for all a ∈ R we have g−1
(
(a,∞]

)
=
∞⋃
n=1

fn
−1((a,∞]

)
, which is measurable. Simi-

larly, when h = inf{fn
∣∣n ∈ Z+} and a ∈ R we have h−1

(
[a,∞]

)
=
∞⋂
n=1

fn
−1([a,∞]

)
, which

is measurable. Also, we have

lim sup
n→∞

fn = inf
{

sup{fn|n ≥ 1}, sup{fn|n ≥ 2}, sup{fn|n ≥ 3}, · · ·
}

and

lim inf
n→∞

fn = sup
{

inf{fn|n ≥ 1}, inf{fn|n ≥ 2}, inf{fn|n ≥ 3}, · · ·
}
.

It follows that lim sup
n→∞

fn and lim inf
n→∞

fn are measurable.

2.23 Definition: Let A ⊆ R be measurable. We say that a property or statement holds
for almost every (written a.e.) x ∈ A, or almost everywhere (written a.e.) in A, when
the property or statement holds for every x ∈ A \ E for some set E ⊆ A with λ(E) = 0.
For example, for functions f, g : A→ [−∞,∞], we say that f(x) = g(x) for a.e. x ∈ A (or
f = g a.e. in A) when f(x) = g(x) for every x ∈ A\E for some set E ⊆ A with λ(E) = 0.

2.24 Theorem: Let A ⊆ R be measurable and let f, g : A→ [−∞,∞].

(1) If λ(A) = 0 then f is measurable.
(2) If A = B ∪C where B and C are disjoint and measurable then f is measurable (in A)
if and only if the restrictions of f to B and to C are both measurable (in B and in C).
(3) If f = g a.e. in A then f is measurable if and only if g is measurable.

Proof: The proof is left as an exercise.
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2.25 Definition: Let A ⊆ R. A simple function on A is a function s : A → R of the
form

s =
n∑
k=1

ckχAk

where n ∈ Z+, each ck ∈ R, and the sets Ak are disjoint measurable sets with
n⋃
k=1

Ak = A.

The numbers ck and sets Ak are uniquely determined from the function s if we require
that c1 < c2 < · · · < cn, and then we have Ak = s−1(ck).

2.26 Definition: For the nonnegative simple function s : A ⊆ R → [0,∞) given by

s =
n∑
k=1

ckχAk
, the (Lebesgue) integral of s on A is defined to be∫

A

f(x) dx =

∫
A

s =

∫
A

s dλ =
n∑
k=1

ckλ(Ak).

Note that the value of the integral does not depend on whether or not the numbers ck are
distinct because if ck = cl then ckλ(Ak) + clλ(Al) = ck

(
λ(Ak) + λ(Al)

)
= ckλ(Ak ∪Al).

2.27 Theorem: (Properties of Integration) Let r, s : A ⊆ R → [0,∞) be nonnegative
simple functions, and let c ∈ R.

(1) If r ≤ s then

∫
A

r ≤
∫
A

s.

(2) We have

∫
A

(cs) = c

∫
A

s and

∫
A

(r + s) =

∫
A

r +

∫
A

s.

(3) If A = B ∪ C, where B and C are disjoint and measurable, then

∫
A

s =

∫
B

s+

∫
C

s.

(4) If B ⊆ A is measurable then

∫
B

s =

∫
A

s · χ
B

.

(5) If λ(A) = 0 then

∫
A

s = 0.

(6) If r = s a.e. in A then

∫
A

r =

∫
A

s, and if

∫
A

r = 0 then r = 0 a.e. in A.

Proof: We shall prove Parts (1) and (2) and leave the proofs of the remaining parts as

an exercise. Let r =
n∑
k=1

akχAk
and s =

m∑
l=1

blχBl
and let Ck,l = Ak ∩ Bl. Note that the

sets Ck,l are disjoint with
n⋃
k=1

Ck,l =
n⋃
k=1

(Ak ∩ Bl) =
( n⋃
k=1

Ak
)
∩ Bl = A ∩ Bl = Bl and it

follows that
n∑
k=1

χ
Ck,l

= χ
Bl

and that
n∑
k=1

λ(Ck,l) = λ(Bl). Similary, we have
m⋃
l=1

Ck,l = Ak,

n∑
l=1

χ
Ck,l

= χ
Ak

and
m∑
l=1

λ(Ck,l) = λ(Ak).

To prove Part (1), suppose that r ≤ s. For all pairs (k, l) with Ck,l 6= ∅, we can choose
x ∈ Ck,l and then we have ak = r(x) ≤ s(s) = bl. It follows that∫

A

r =
n∑
k=1

akλ(Ak) =
n∑
k=1

ak
m∑
l=1

λ(Ck,l) =
∑
k,l

akλ(Ck,l) =
∑

k,l3Ck,l 6=∅
akλ(Ck,l)

≤
∑

k,l3Ck,l 6=∅
blλ(Ck,l) =

∑
k,l

blλ(Ck,l) =
m∑
l=1

bl
n∑
k=1

λ(Ck,l) =
m∑
l=1

blλ(Bl) =

∫
A

s .
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The first formula in Part (2) is clear. Let us prove the second formula. We have

r + s =
n∑
k=1

akχAk
+

m∑
l=1

blχBl
=

n∑
k=1

ak
m∑
l=1

χ
Ck,l

+
m∑
l=1

bl
n∑
k=1

χ
Ck,l

=
∑
k,l

(ak + bl)χCk,l

and so ∫
A

(r + s) =
∑
k,l

(ak + bl)λ(Ck,l) =
∑
k,l

akλ(Ck,l) +
∑
k,l

blλ(Ck,l)

=
n∑
k=1

ak
m∑
l=1

λ(Ck,l) +
m∑
l=1

bl
n∑
k=1

λ(Ck,l)

=
n∑
k=1

akλ(Ak) +
m∑
l=1

blλ(Bl) =

∫
A

r +

∫
A

s .

2.28 Note: Given any nonnegative measurable function f : A ⊆ R → [0,∞], we can
construct an increasing sequence {sn} of nonnegative simple functions sn : A → [0,∞)
with sn → f pointwise in A as follows. For n ∈ Z+, we let

sn(x) =

{
k−1
2n , if k−1

2n ≤ f(x) < k
2n with k ∈ {1, 2, · · · , n2n},

n , if f(x) ≥ n,

that is sn =
n2n∑
k=1

k−1
2n
χ
Ak

where Ak = f−1
[
k−1
2n , k2n

)
for 1 ≤ k < n2n and An2n = f−1[n,∞].

We remark that if f is bounded the sn → f uniformly in A.

2.29 Definition: For a nonnegative measurable function f : A ⊆ R → [0,∞], we define
the (Lebesgue) integral of f on A to be∫
A

f(x) dx =

∫
A

f =

∫
A

f dλ = sup

{∫
A

s

∣∣∣∣ s is a simple function on A with 0 ≤ s ≤ f
}
.

We say that f : A→ [0,∞] is (Lebesgue) integrable (on A) when

∫
A

f <∞.

2.30 Theorem: (Properties of Integration) Let f, g : A ⊆ R → [0,∞] be non-negative
measurable functions and let c ∈ R. Then

(1) If f ≤ g on A then

∫
A

f ≤
∫
A

g.

(2) We have

∫
A

(cf) = c

∫
A

f and

∫
A

(f + g) =

∫
A

f +

∫
A

g.

(3) If A = B ∪ C, where B and C are disjoint and measurable, then

∫
A

f =

∫
B

f +

∫
C

f .

(4) If B ⊆ A is measurable then

∫
B

f =

∫
A

f · χ
B

.

(5) If λ(A) = 0 then

∫
A

f = 0.

(6) If f = g a.e. in A then

∫
A

f =

∫
A

g , and if

∫
A

f = 0 then f = 0 a.e. in A.

Proof: All parts follow fairly easily from the analogous parts of Theorem 2.27 except for
the second formula in Part (2). We shall return to the proof of this formula later.
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2.31 Theorem: (Fatou’s Lemma) Let fn : A ⊆ R → [0,∞] be nonnegative measurable
functions for n ∈ Z+. Then ∫

A

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

fn .

Proof: By the definition of the integral on the left, it suffices to prove that for every

nonnegative simple function s on A with s ≤ lim inf
n→∞

fn we have

∫
A

s ≤ lim inf
n→∞

∫
A

fn. Let

s be any nonnegative simple function on A with s ≤ lim inf
n→∞

fn. Write s =
m∑
k=1

akχAk
. For

all x ∈ Ak we have ak = s(x) ≤ lim inf
n→∞

fn(x), and it follows that for all 0 ≤ r < 1 there

exists n ∈ Z+ such that for all l ≥ n we have fl(x) ≥ rak. Let 0 ≤ r < 1. For k, n ∈ Z+,
let

Bk,n =
{
x ∈ Ak

∣∣fl(x) ≥ rak for all l ≥ n
}

=
⋂
l≥n

fl
−1[rak,∞].

Note that each set Bk,n is measurable with Bk,1 ⊆ Bk,2 ⊆ Bk,3 ⊆ · · · and
∞⋃
n=1

Bk,n = Ak.

It follows that λ(Ak) = lim
n→∞

λ(Bk,n). For all x ∈ Bk,n we have fl(x) ≥ rak for all l ≥ n

so that, in particular, fn(x) ≥ rak. It follows that fn ≥
m∑
k=1

rakχBk,n
hence∫

A

fn ≥
m∑
k=1

rakλ(Bk,n).

Taking the lim inf on both sides gives

lim inf
n→∞

∫
A

fn ≥ lim
n→∞

m∑
k=1

rakλ(Bk,n) =
m∑
k=1

rakλ(Ak) = r

∫
A

s .

Since 0 ≤ r < 1 was arbitrary, it follows that lim inf
n→∞

∫
A

fn ≥
∫
A

s, as required.

2.32 Corollary: Let fn : A ⊆ R → [0,∞] be nonnegative measurable functions for
n ∈ Z+. Suppose that the pointwise limit lim

n→∞
fn(x) exists with fn(x) ≤ lim

n→∞
fn(x) for

all x ∈ A. Then ∫
A

lim
n→∞

fn = lim
n→∞

∫
A

fn .

Proof: For all n ∈ Z+, since fn ≤ lim
n→∞

fn we have

∫
A

fn ≤
∫
A

lim
n→∞

fn. Taking the lim sup

gives

lim sup
n→∞

∫
A

fn ≤
∫
A

lim
n→∞

fn .

By Fatou’s Lemma, we also have∫
A

lim
n→∞

fn =

∫
A

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

fn .

2.33 Corollary: (Lebesgue’s Monotone Convergence Theorem) Let fn : A ⊆ R→ [0,∞]
be nonnegative measurable functions such that {fn(x)} is increasing for every x ∈ A. Then∫

A

lim
n→∞

fn = lim
n→∞

∫
A

fn .

Proof: This is a special case of the previous corollary.
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2.34 Note: We now return to the proof of the second formula in Part (2) of Theorem
2.30. We suppose that f, g : A ⊆ R → [0,∞] are nonnegative measurable functions, and
we need to prove that ∫

A

(f + g) =

∫
A

f +

∫
A

g.

Proof: Using the construction described in Note 2.28, choose increasing sequences {rn} and
{sn} of nonnegative simple functions on A such that lim

n→∞
rn = f and lim

n→∞
sn = g. Then

the sequence {rn + sn} is also increasing with lim
n→∞

(rn + sn) = f + g. By the Monotone

Convergence Theorem, along with Part (2) of Theorem 2.27, we have∫
A

(f + g) =

∫
A

lim
n→∞

(rn + sn) = lim
n→∞

∫
A

(rn + sn) = lim
n→∞

(∫
A

rn +

∫
A

sn

)
= lim
n→∞

∫
A

rn + lim
n→∞

∫
A

sn =

∫
A

lim
n→∞

rn +

∫
A

lim
n→∞

sn =

∫
A

f +

∫
A

g .

2.35 Corollary: Let A ⊆ R be measurable and let {fn} be a sequence of nonnegative
measurable functions fn : A→ [0,∞]. Then∫

A

∞∑
n−1

fn =
∞∑
n=1

∫
A

fn .

Proof: This follows by applying Lebesgue’s Monotone Convergence Theorem to the se-

quence of partial sums Sn(x) =
n∑
k=1

fk(x).

2.36 Corollary: Let A =
∞⋃
k=1

Ak where the sets An are measurable and disjoint, and let

f : A→ [0,∞] be nonnegative and measurable. Then∫
A

f =
∞∑
n=1

∫
An

f .

Proof: This follows from the above corollary using fn = f · χ
An

.

2.37 Remark: For a σ-algebra C, a measure on C is a function µ : C → [0,∞] such that

(1) µ(∅) = 0, and

(2) if A1, A2, A3, · · · ∈ C are disjoint then µ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak).

When M is the σ-algebra of Lebesgue measurable sets in R, and f : R → [0,∞] is any
nonnegative measurable function on R, the above corollary shows that we can define a
measure µ on M by

µ(A) =

∫
A

f .
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2.38 Definition: For a measurable function f : A ⊆ R → [−∞,∞], we say that f is
(Lebesgue) integrable (on A) when the functions f+ and f− are both Lebesgue integrable
on A and, in this case, we define the (Lebesgue) integral of f on A to be∫

A

f(x) dx =

∫
A

f =

∫
A

f dλ =

∫
A

f+ −
∫
A

f−.

In the case that A = [a, b] we also write

∫
A

f(x) dx as

∫ b

a

f(x) dx.

2.39 Note: For f : A ⊆ R→ [−∞,∞], f is integrable if and only if |f | is integrable.

2.40 Theorem: Let f, g : A ⊆ R→ [−∞,∞] be integrable and let c ∈ R.

(1) We have

∣∣∣∣ ∫
A

f

∣∣∣∣ ≤ ∫
A

|f | .

(2) If f ≤ g then

∫
A

f ≤
∫
A

g.

(3) We have

∫
A

(cf) = c

∫
A

f and

∫
A

(f + g) =

∫
A

f +

∫
A

g.

(4) If A = B ∪ C where B and C are disjoint and measurable then

∫
A

f =

∫
B

f +

∫
C

f .

(5) If B ⊆ A is measurable then

∫
B

f =

∫
A

f · χ
B

.

(6) If λ(A) = 0 then

∫
A

f = 0.

(7) If f = g a.e. on A then

∫
A

f =

∫
A

g , and if

∫
A

|f | = 0 then f = 0 a.e. in A.

Proof: The proof is left as an exercise.

2.41 Theorem: (Lebesgue’s Dominated Convergence Theorem) Let A ⊆ R be a mea-
surable set and let fn : A → [−∞,∞] be measurable functions for n ∈ Z+. Suppose the
pointwise limit lim

n→∞
fn(x) exists for all x ∈ A. Suppose there exists an integrable function

g : A→ [0,∞] such that |fn(x)| ≤ g(x) for all n ∈ Z+, x ∈ A. Then∫
A

lim
n→∞

fn = lim
n→∞

∫
A

fn .

Proof: Let f = lim
n→∞

fn. Note that since −g ≤ fn ≤ g for all n we gave −g ≤ f ≤ g so

that f is integrable. By Fatou’s Lemma, applied to the function g + fn, we have∫
A

g +

∫
A

lim
n→∞

fn =

∫
A

lim inf
n→∞

(g + fn) ≤ lim inf
n→∞

∫
A

(g + fn) =

∫
A

g + lim inf
n→∞

fn.

It follows, since
∫
A
g <∞, that

lim inf
n→∞

∫
A

fn ≥
∫
A

lim
n→∞

fn.

By Fatou’s Lemma, applied to the function g − fn, we have∫
A

g −
∫
A

lim
n→∞

fn =

∫
A

lim inf
n→∞

(g − fn) ≤ lim inf
n→∞

∫
A

(g − fn) =

∫
A

g − lim sup
n→∞

∫
A

fn.

It follows, since
∫
A
g <∞, that

lim sup
n→∞

∫
A

fn ≤
∫
A

lim
n→∞

fn.
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2.42 Theorem: Let a, b ∈ R with a < b and let f : [a, b]→ R be bounded and Riemann
integral. Then f is also measurable and Lebesgue integrable, and the two kinds of integral
are equal.

Proof: I may include a proof later.

2.43 Remark: I may include a discussion of complex-valued functions f : A ⊆ R → C
later.

.
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Chapter 3. The Lp Spaces

3.1 Definition: Let F = R or C. Let W be a vector space over F . An inner product
over F is a function 〈 , 〉 : W ×W →W (meaning that if u, v ∈W then 〈u, v〉 ∈W ) such
that for all u, v, w ∈W and all t ∈ F we have

(1) (Sesquilinearity) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 , 〈tu, v〉 = t 〈u, v〉,
〈u, v + w〉 = 〈u,w〉+ 〈v, w〉 , 〈u, tv〉 = t 〈u, v〉,

(2) (Conjugate Symmetry) 〈u, v〉 = 〈v, u〉, and
(3) (Positive Definiteness) 〈u, u〉 ≥ 0 with 〈u, u〉 = 0 ⇐⇒ u = 0.

For u, v ∈ W , 〈u, v〉 is called the inner product of u with v. An inner product space
over F is a vector space over F equipped with an inner product. Given two inner product
spaces U and V over F , a linear map L : U → V is called a homomorphism of inner
product spaces (or we say that L preserves inner product) when

〈
L(x), L(y)

〉
= 〈x, y〉

for all x, y ∈ U .

3.2 Theorem: Let W be an inner product space over F = R or C and let u, v ∈ W .
Then if 〈x, u〉 = 〈x, v〉 for all x ∈ U , or if 〈u, x〉 = 〈v, x〉 for all x ∈ U then u = v.

Proof: Suppose that 〈x, u〉 = 〈x, v〉 for all x ∈ U . Then 〈x, u− v〉 = 〈x, u〉 − 〈x, v〉 = 0 for
all x ∈ U . In particular, taking x = u− v we have 〈u− v, u− v〉 = 0, so u− v = 0 hence
u=v. Similarly, if 〈u, x〉 = 〈v, x〉 for all x ∈ U then u = v.

3.3 Definition: Let F = R or C. Let W be a vector space over F . A norm on W is a
map || || : W → R such that for all u, v ∈W and all t ∈ F we have

(1) (Scaling) ||tu|| = |t| ||u||,
(2) (Positive Definiteness) ||u|| ≥ 0 with ||u|| = 0 ⇐⇒ u = 0, and
(3) (Triangle Inequality) ||u+ v|| ≤ ||u||+ ||v||.
For u ∈ W the real number ||u|| is called the norm (or length) of u, and we say that
u is a unit vector when ||u|| = 1. A normed linear space over F is a vector space
over F equipped with a norm. Given two normed linear spaces U and V over F , a linear
map L : U → V is called a homomorphism of normed linear spaces (or we say that L
preserves norm) when

∣∣∣∣L(x)
∣∣∣∣ = ||x|| for all x ∈ U .

3.4 Theorem: Let F = R or C. Let W be an inner product space over F . For u ∈ W
define ||u|| =

√
〈u, u〉. Then

(1) (Scaling) ||tu|| = |t| ||u||,
(2) (Positive Definiteness) ||u|| ≥ 0 with ||u|| = 0 ⇐⇒ u = 0,
(3) ||u+ v||2 = ||u||2 + 2 Re〈u, v〉+ ||v||2,
(4) (Pythagoras’ Theorem) if 〈u, v〉 = 0 then ||u+ v||2 = ||u||2 + ||v||2,
(5) (Parallelogram Law) ||u+ v||2 + ||u− v||2 = 2||u||2 + 2||v||2,
(6) (Polarization Identity) if F = R then 〈u, v〉 = 1

4

(
||u+ v|| − ||u− v||

)
and

if F = C then 〈u, v〉 = 1
4

(
||u+ v||2 + i||u+ iv||2 − ||u− v||2 − i||u− iv||2

)
,

(7) (The Cauchy-Schwarz Inequality) |〈u, v〉| ≤ |u| |v| with |〈u, v〉| = ||u|| ||v|| if and only if
{u, v} is linearly dependent, and

(8) (The Triangle Inequality)
∣∣||u|| − ||v||∣∣ ≤ ||u+ v|| ≤ ||u||+ ||v||.

In particular, || || is a norm on W .

23



Proof: We only prove Part (7) and part of Part (8). To prove Cauchy’s Inequality, suppose
first that {u, v} is linearly dependent. Then one of x and y is a multiple of the other, say
v = tu with t ∈ F . Then |〈u, v〉| = |〈u, tu〉| =

∣∣ t 〈u, u〉∣∣ = |t| ||u||2 = ||u|| ||tu|| = ||u|| ||v||.
Next we suppose that {u, v} is linearly independent. Then 1 ·v+ t ·u 6= 0 for all t ∈ F ,

so in particular v − 〈v,u〉|u|2 u 6= 0. Thus we have

0 <
∣∣∣∣∣∣v − 〈v,u〉||u||2 u

∣∣∣∣∣∣2 =
〈
v − 〈v,u〉||u||2 u , v −

〈v,u〉
||u||2 u

〉
= 〈v, v〉 − 〈v,u〉||u||2 〈v, u〉 −

〈v,u〉
||u||2 〈u, v〉+ 〈v,u〉

||u||2
〈v,u〉
||u||2 〈u, u〉

= ||v||2 − |〈u,v〉|
2

||u||2

so that |〈u,v〉|
2

||u||2 < ||v||2 and hence |〈u, v〉| ≤ ||u|| ||v||. This proves Part (7).

Using Parts (3) and (7), and the inequality |Re(z)| ≤ |z| for z ∈ C (which follows
from Pythagoras’ Theorem in R2), we have

||u+ v||2 = ||u||2 + 2 Re〈u, v〉+ ||v||2 ≤ ||u||2 + 2|〈u, v〉|+ ||v||2

≤ ||u||2 + 2||u|| ||v||+ ||v||2 =
(
||u||+ ||v||

)2
.

Taking the square root on both sides gives ||u+ v|| ≤ ||u||+ ||v||.

3.5 Definition: A metric on a set X is a function d : X × X → R such that, for all
x, y, z ∈ X we have

(1) (Positive Definiteness) d(x, y) ≥ 0 with d(x, y) = 0 ⇐⇒ x = y,
(2) (Symmetry) d(x, y) = d(y, x) and
(3) (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z).

A set with a metric is called a metric space.

3.6 Definition: A topology on a set X is a set T of subsets of X such that

(1) ∅ ∈ T and X ∈ T ,
(2) if U ∈ T and V ∈ T then U ∩ V ∈ T , and
(3) if K is a set and Uk ∈ T for each k ∈ K then

⋃
k∈K

Uk ∈ T .

For a subset A ⊆ X, we say that A is open (in X) when A ∈ T and we say that A is
closed (in X) when X \A ∈ T . A set with a topology is called a topological space.

3.7 Note: Given an inner product on a vector space V over F = R or C, Theorem 3.4
shows that we can define an associated norm on V by letting ||x|| =

√
〈x, x〉 for x ∈ V .

Given a norm on a vector space V , verify that we can define an associated metric on
any subset X ⊆ V by letting d(x, y) = ||x− y|| for x, y ∈ X.

Given a metric on a set X, verify that we can define an associated topology on X by
stipulating that a subset A ⊆ X is open when it has the property that for all a ∈ A there
exists r > 0 such that B(a, r) ⊆ A, where B(a, r) =

{
x ∈ X

∣∣d(x, a) < r
}

.
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3.8 Definition: Let {xn}n≥1 be a sequence in a metric space X. We say that the sequence
{xn} converges in X when there exists a ∈ X such that lim

n→∞
xn = a, that is when

∃ a∈X ∀ ε>0 ∃n∈Z+ ∀k∈Z+
(
k ≥ n =⇒ d(xn, a) < ε

)
.

We say that {xn} is Cauchy when

∀ ε>0 ∃n∈Z+ ∀ k, l∈Z+
(
k, l ≥ n =⇒ d(xk, xl) < ε

)
.

3.9 Note: Verify that, in a metric space, if a sequence converges then it is Cauchy.

3.10 Definition: A metric space X is called complete when, in X, every Cauchy se-
quence converges. A complete normed linear space is called a Banach space and a
complete inner-product space is called a Hilbert space.

3.11 Theorem: (The Completeness of Rn) The metric space Rn is complete.

Proof: We omit the proof.

3.12 Definition: Let Rω denote the set of all sequences x = {x1, x2, x3, · · ·} with each
xk ∈ R. For x ∈ Rω and for 1 ≤ p <∞ let

||x||p =
( ∞∑
k=1

|xk|p
)1/p

, and

||x||∞ = sup
{
|xk|

∣∣k ∈ Z+
}
.

Let
`p =

{
x ∈ Rω

∣∣||x||p <∞} , and

`∞ =
{
x ∈ Rω

∣∣||x||∞ <∞
}
.

3.13 Definition: Let A ⊆ R be measurable. Let M(A) denote the set of all measurable
functions f : A→ [−∞,∞]. For f ∈M(A) and for 1 ≤ p <∞, let

||f ||p =

(∫
A

|f |p
)1/p

, and

||f ||∞ = inf
{
a ≥ 0

∣∣∣λ(|f |−1(a,∞]
)

= 0
}
.

where |f |−1(a,∞] =
{
x ∈ A

∣∣|f(x)| > a
}

. Let

Lp(A) =
{
f ∈M(A)

∣∣∣||f ||p <∞}/ ∼ , and

L∞(A) =
{
f ∈M(A)

∣∣∣||f ||∞ <∞
}/
∼

where ∼ is the equivalence relation given by f ∼ g ⇐⇒ f = g a.e. in A.

3.14 Remark: The reason that we quotient by the equivalence relation in the above
definition is that we want ||f ||p to define a norm on Lp(A) and the quotient is necessary
to ensure that ||f ||p is positive definite (see Part 6 of Theorem 2.30).
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3.15 Lemma: Let f : A ⊆ R→ [−∞,∞] be measurable. Then
{
x ∈ A

∣∣|f(x)| > ||f ||∞
}

has measure zero.

Proof: We claim that for all y > ||f ||∞ we have λ
(
|f |−1(y,∞]

)
= 0. Let y > ||f ||∞. By the

definition of ||f ||∞ we can choose a with ||f ||∞ ≤ a < y such that λ
(
|f |−1(a,∞]

)
= 0. Since

a < y we have (y,∞] ⊆ (a,∞], so |f |−1(y,∞] ⊆ |f |−1(a,∞], hence λ
(
|f |−1(y,∞]

)
= 0, as

claimed.
Let B =

{
x ∈ A

∣∣|f(x)| > ||f ||∞
}

and let Bn =
{
x ∈ A

∣∣|f(x)| > ||f ||∞ + 1
n

}
for

n ∈ Z+. Then each Bn is measurable with B1 ⊆ B2 ⊆ B3 ⊆ · · ·, and we have
∞⋃
n=1

Bn = B.

By the above claim, we have λ(Bn) = 0 for all n ∈ Z+ and so λ(B) = lim
n→∞

λ(Bn) = 0.

3.16 Definition: For p, q ∈ [1,∞] we say that p and q are conjugate when 1
p + 1

q = 1

where we use the convention that 1
∞ = 0 so that 1 and ∞ are conjugate.

3.17 Lemma: Let p, q ∈ (1,∞) with 1
p+ 1

q = 1. Then for all a, b ≥ 0 we have ab ≤ ap

p + bq

q .

Proof: Note that for p, q ∈ (1,∞) we have

1
p + 1

q = 1 ⇐⇒ 1
q = 1− 1

p = p−1
p ⇐⇒ q(p− 1) = p ⇐⇒ p(q − 1) = q.

For x, y ≥ 0 we have

y = xp−1 ⇐⇒ yq = xq(p−1) ⇐⇒ yq = xp ⇐⇒ yp(q−1) = xp ⇐⇒ yq−1 = x

so the functions f(x) = xp−1 and g(y) = yq−1 are inverses of each other. By considering
the area under y = f(x) with 0 ≤ x ≤ a and the area to the left of y = f(x) with 0 ≤ y ≤ b
we see that

ab ≤
∫ a

x=0

xp−1 dx+

∫ b

y=0

yq−1 dy =
[
1
p x

p
]a
x=0

+
[
1
q y

q
]b
y=0

= ap

p + bq

q .

3.18 Theorem: (Hölder’s Inequality) Let p, q ∈ [1,∞] with 1
p + 1

q = 1 and let A ⊆ R be
measurable.

(1) For all x, y ∈ Rω we have ||xy||1 ≤ ||x||p||y||q.
(2) For all f, g ∈M(A) we have ||fg||1 ≤ ||f ||p||g||q.

Proof: To prove Part (1) in the case that p, q ∈ (1,∞), let x, y ∈ Rω. If x = 0 or y = 0 the
equality holds, so suppose that x, y 6= 0. For each index k, apply the above lemma using

a = |xk|
||x||p and b = |yk|

||y||q to get

|xkyk|
||x||p||y||q

≤ |xk|
p

p||x||pp
+
|y|q

q||y||qq
.

Sum over k to get

||xy||1 ≤
||x||pp
p||x||pp

+
||y||qq
q||y||qq

= 1
p + 1

q = 1 .
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To prove Part (2) in the case that p, q ∈ (1,∞), let f, g ∈ M(R). If f = 0 or g = 0 then
the equality holds, so suppose that f, g 6= 0. For each x ∈ A, apply the above lemma using

a = |f(x)|
||f ||p and b = |g(x)|

||g||q to get

|f(x)g(x)|
||f ||p||g||q

≤ |f(x)|p

p||f ||p
+
|g(x)|q

q||g||q
.

Integrate over A to get

||fg||1 ≤
||f ||pp
p||f ||pp

+
||g||qq
q||g||qq

= 1
p + 1

q = 1 .

To prove Part (1) in the case that p = 1 and q =∞, let x, y ∈ Rω. Note that |yk| ≤ ||y||∞
for all indices k and so

||xy||1 =
∞∑
k=1

|xk||yk| ≤
∞∑
k=1

|xk| ||y||∞ = ||x||1||y||∞.

Finally, to prove Part (2) in the case that p = 1 and q = ∞, let f, g ∈ M(A). Let
B =

{
x ∈ A

∣∣|g(x)| ≤ ||g||∞
}

and let C =
{
x ∈ A

∣∣g(x)| > ||g||∞
}

. Note that B and C are
disjoint and measurable with A = B ∪ C and that λ(C) = 0 by Lemma 3.15. Thus

||fg||1 =

∫
A

|f ||g| =
∫
B

|f ||g| ≤
∫
B

|f | ||g||∞ =

∫
A

|f | ||g||∞ = ||f ||1||g||∞.

3.19 Theorem: (Minkowski’s Inequality) Let p ∈ [1,∞] and let A ⊆ R be measurable.

(1) For all x, y ∈ Rω we have ||x+ y||p ≤ ||x||p + ||y||p.
(2) For all f, g ∈M(A) for which f + g is defined, we have ||f + g||p ≤ ||f ||p + ||g||p.
Proof: To Prove Part (1) in the case that p = 1, note that when x, y ∈ Rω we have

||x+ y||1 =
∞∑
k=1

|xk + yk| ≤
∞∑
k=1

|xk|+ |yk| =
∞∑
k=1

|xk|+
∞∑
k=1

|yk| = ||x||1 + ||y||1.

To prove Part (2) in the case that p = 1, note that when f, g, f + g ∈M(A) we have

||f + g||1 =

∫
A

|f + g| ≤
∫
A

|f |+ |g| =
∫
A

|f |+
∫
A

|g| = ||f ||1 + ||g||1.

To prove Part (1) in the case that p ∈ (1,∞), let x, y ∈ Rω and let q be the conjugate of
p so that 1

q = 1− 1
p = p−1

p . For each index k we have

|xk + yk|p = |xk + yk| |xk + yk|p−1 ≤
(
|xk|+ |yk|

)
|xk + yk|p−1

= |xk| |xk + yk|p−1 + |yk| |xk + yk|p−1.

Sum over k then apply Hölder’s Inequality to get

||x+ y||pp ≤
∣∣∣∣∣∣|x| |x+ y|p−1

∣∣∣∣∣∣
1
+
∣∣∣∣∣∣|y| |x+ y|p−1

∣∣∣∣∣∣
1
≤ ||x||p

∣∣∣∣∣∣|x+ y|p−1
∣∣∣∣∣∣
q
+ ||y||p

∣∣∣∣∣∣|x+ y|p−1
∣∣∣∣∣∣
q

=
(
||x||p + ||y||q

)∣∣∣∣∣∣|x+ y|p−1
∣∣∣∣∣∣
q

=
(
||x||p + ||y||q

)( ∞∑
k=1

|x+ y|q(p−1)
)1/q

=
(
||x||p + ||y||q

)( ∞∑
k=1

|x+ y|p
)(p−1)/p

=
(
||x||p + ||y||q

)
||x+ y||p−1p .
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To prove Part (2) in the case that p ∈ (1,∞), let f, g, f + g ∈ M(A) and let q be the
conjugate of p so that 1

q = 1− 1
p = p−1

p . For each x ∈ A we have

|f(x) + g(x)|p = |f(x) + g(x)| |f(x) + g(x)|p−1 ≤
(
|f(x)|+ |g(x)|

)
|f(x) + g(x)|p−1

= |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1.

Integrate over A then apply Hölder’s Inequality to get

||f + g||pp ≤
∣∣∣∣∣∣|f | |f + g|p−1

∣∣∣∣∣∣
1
+
∣∣∣∣∣∣|g| |f + g|p−1

∣∣∣∣∣∣
1
≤ ||f ||p

∣∣∣∣∣∣|f + g|p−1
∣∣∣∣∣∣
q
+ ||g||p

∣∣∣∣∣∣|f + g|p−1
∣∣∣∣∣∣
q

=
(
||f ||p + ||g||q

)∣∣∣∣∣∣|f + g|p−1
∣∣∣∣∣∣
q

=
(
||f ||p + ||g||q

)(∫
A

|f + g|q(p−1)
)1/q

=
(
||f ||p + ||g||q

)(∫
A

|f + g|p
)(p−1)/p

=
(
||f ||p + ||g||q

)
||f + g||p−1p .

To prove Part (1) in the case that p =∞, note that if x, y ∈ `∞ then we have

||x+ y||∞ = sup
k≥1
|xk + yk| ≤ sup

k≥1

(
|xk|+ |yk|

)
≤ sup

k≥1
|xk|+ sup

k≥1
|yk| = ||x||∞ + ||y||∞.

To prove Part (2) in the case that p = ∞, let f, g ∈ M(A). For all x ∈ A, note that if∣∣f(x) + g(x)
∣∣ > ||f ||∞ + ||g||∞ then |f(x)| + |g(x)| ≥

∣∣f(x) + g(x)
∣∣ > ||f ||∞ + ||g||∞ and

hence either |f(x)| > ||f ||∞ or |g(x)| > ||g||∞. This shows that{
x∈A

∣∣|f(x) +g(x)| > ||f ||∞+ ||g||∞
}
⊆
{
x∈A

∣∣|f(x)| > ||f ||∞
}
∪
{
x∈A

∣∣|g(x)| > ||g||∞
}
.

By Lemma 3.15, the two sets on the right both have measure zero, and so the set on the left
has measure zero. By the definition of ||f+g||∞ it follows that ||f+g||∞ ≤ ||f ||∞+ ||g||∞.

3.20 Corollary: Let p ∈ [1,∞] and let A ⊆ R be measurable. Then `p and Lp(A) are
normed linear spaces using their p-norms.

Proof: We prove that Lp(A) is a normed linear space when p ∈ [1,∞). For f, g ∈ M(A)

and c ∈ R, we have ||f ||p =

(∫
A

|f |p
)1/p

≥ 0 and, by Part 6 of Theorem 2.30,

||f || = 0 ⇐⇒
∫
A

|f |p = 0 ⇐⇒ |f |p = 0 a.e. in A,

and we have ||cf ||p =

(∫
A

|cf |p
)1/p

= |c|
(∫

A

|f |p
)1/p

= |c| ||f ||p, and by Minkowski’s

Inequality we have ||f + g||p ≤ ||f ||p + ||g||p. This shows that ||f ||p satisfies the three
properties which define a norm. We also need to verify that Lp(A) is a vector space. Let
V =

{
f ∈ M(A)

∣∣||f ||p < ∞}. Then V is a vector space because if f, g ∈ V and c ∈ R
then we have cf ∈ V because ||cf ||p = |c|||f ||p < ∞ and we have f + g ∈ V because
||f + g||p ≤ ||f ||p + ||g||p <∞ by Minkowski’s Inequality. Note that Lp(A) is the quotient
space of the vector space V by the subspace W =

{
f ∈ V

∣∣f = 0 a.e. in A
}

.
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3.21 Theorem: Let p ∈ [1,∞] and let A ⊆ R be measurable. Then the normed linear
spaces `p and Lp(A) are complete.

Proof: We leave the proof that `p is complete as an exercise. To prove that Lp(A) is
complete in the case that p < ∞, let {fn} be a Cauchy sequence in Lp(A). This means
that for all ε > 0 there exists m ∈ Z+ such that k, l ≥ m =⇒ ||fk − fl||p < ε. Choose a
subsequence {fnk

} with the property that
∣∣∣∣fnk+1

− fnk

∣∣∣∣
p
≤ 1

2k
for all k ≥ 1. For each

` ∈ Z+, let

g` =
∑̀
k=1

∣∣fnk+1
− fnk

∣∣
and let g = lim

`→∞
g` (note that the limit exists because {g`(x)} is increasing for all x ∈ A).

By Minkowski’s Inequality, for all ` ∈ Z+ we have

||g`||p ≤
∑̀
k=1

||fnk+1
− fnk

||p ≤
∑̀
k=1

1
2k
< 1.

By Fatou’s Lemma,

||g||pp =

∫
A

|g|p =

∫
A

lim
`→∞

|g`|p ≤ lim inf
`→∞

∫
A

|g`|p = lim inf
`→∞

||g`||pp ≤ 1

so that g ∈ Lp(A). Because ||g||p is finite, it follows that g is finite a.e. in A, so the sum∑∣∣fnk+1
− fnk

∣∣ converges a.e. in A, hence the sum
∑(

fnk+1
− fnk

)
converges a.e. in A,

and hence the sequence {fn`
} converges a.e. in A because fn`

= fn1 +
`−1∑
k=1

(
fnk+1

− fnk

)
.

We define f : A→ R by

f(x) =

{
lim
`→∞

fn`
(x) , if the limit exists in R, and

0 , otherwise.

We claim that f ∈ Lp(A) and that lim
n→∞

fn = f in Lp(A). Let ε > 0. Choose m ∈ Z+ so

that for all k, l ≥ m we have ||fk − fl||p ≤ ε. Then for all k such that nk ≥ m we have
||fnk

− fm||p ≤ ε. By Fatou’s Lemma,

||f − fm||pp =

∫
A

|f − fm|p =

∫
A

lim
k→∞

|fnk
− fm|p

≤ lim inf
k→∞

∫
A

|fnk
− fm|p = lim inf

k→∞
||fnk

− fm||pp ≤ εp

so that ||f − fm||p ≤ ε. This shows that for all ε > 0 there exists m ∈ Z+ such that for all
n ≥ m we have ||f − fn||p ≤ ε. It will follow that lim

n→∞
fn = f in Lp(A) once we show that

f ∈ Lp(A). Taking ε = 1 and choosing m as above so that ||f − fm|| ≤ 1, Minkowski’s
Inequality gives ||f ||p ≤ ||f − fm||p + ||fm||p ≤ 1 + ||fm||p < ∞ so that f ∈ Lp(A), as
required.
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Now let us prove that L∞(A) is complete. Let {fn} be a Cauchy sequence in L∞(A).
Let Bn =

{
x ∈ A

∣∣|fn(x) > ||fn||∞
}

and let Ck,l =
{
x ∈ A

∣∣|fk(x)− fl(x)| > ||fk − fl||∞
}

.
By Lemma 3.15, the sets Bn and Ck,l all have measure zero. Let E be the union of all the
sets Bn and Ck,l. Since E is a countable union of sets of measure zero, we have λ(E) = 0.
Given ε > 0, since {fn} is Cauchy in L∞(A) we can choose m ∈ Z+ so that for all k, l ≥ m
we have ||fk − fl||∞ ≤ ε. Then for all k, l ≥ m we have |fk(x) − fl(x)| ≤ ||fk − fl||∞ ≤ ε
for all x ∈ A \ E. It follows, by the Cauchy criterion for uniform convergence, that the
sequence {fn} converges uniformly in A \ E. Define f : A→ R by

f(x) =

{
lim
n→∞

fn(x) , if x ∈ A \ E

0 , if x ∈ E.

We claim that f ∈ L∞(A) and that lim
n→∞

fn = f in L∞(A). Given ε > 0, since {fn}
converges uniformly to f in A \ E, we can choose m ∈ Z+ so that for all n ≥ m we have
|fn(x)− f(x)| ≤ ε for all x ∈ A \E hence ||fn − f ||∞ ≤ ε since λ(E) = 0. This shows that
for all ε > 0 there exists m ∈ Z+ such that for all n ≥ m we have ||f − fn||∞ ≤ ε. Taking
ε = 1 and choosing m as above, we have ||fm − f ||∞ ≤ 1 so by Minkowski’s Inequality
||f ||∞ ≤ ||f − fm||∞ + ||fm||∞ ≤ 1 + ||fm||∞ and so f ∈ L∞(A).

3.22 Theorem: Let 1 ≤ p < q ≤ ∞ and let A ⊆ R be measurable. Then

(1) `p ⊆ `q, and
(2) if λ(A) <∞ then Lq(A) ⊆ Lp(A).

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that
λ(A) < ∞. Consider first the case that q < ∞. Let f ∈ Lq(A). Then by Hölder’s
Inequality, for any u, v > 1 with 1

u + 1
v = 1 we have

||f ||pp =

∫
A

|f |p =
∣∣∣∣∣∣|f |p∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣|f |p∣∣∣∣∣∣

u

∣∣∣∣∣∣1∣∣∣∣∣∣
v

=

(∫
A

|f |pu
)1/u

λ(A)1/v.

Choose u = q
p and, to get 1

v = 1− 1
u = 1− p

q = q−p
q , choose v = q

q−p . Then

||f ||pp ≤
(∫

A

|p|q
)p/q

λ(A)(q−p)/q = ||f ||pq λ(A)(q−p)/q

so that ||f ||p ≤ ||f ||q λ(A)
1
p−

1
q . Thus ||f ||p <∞ so f ∈ Lp(A).

Now consider the case that q =∞. Let f ∈ L∞(A). Let B =
{
x ∈ A

∣∣|f(x)| ≤ ||f ||∞
}

and C =
{
x ∈ A

∣∣|f(x)| > ||f ||∞
}

. By Lemma 3.15 we have λ(C) = 0, so

||f ||pp =

∫
A

|f |p =

∫
B

|f |p ≤
∫
B

||f ||p∞ = ||f ||p∞ λ(B) = ||f ||p∞ λ(A)

so that ||f ||p ≤ ||f ||∞ λ(A)1/p. Thus ||f ||p <∞ so f ∈ Lp(A).
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3.23 Theorem: Let 1 ≤ p < q < r ≤ ∞ and let A ⊆ R be measurable. Then
(1) `p ∩ `r ⊆ `q ⊆ `p + `r, and
(2) Lp(A) ∩ Lr(A) ⊆ Lq(A) ⊆ Lp(A) + Lr(A).

Proof: Part (1) follows as an immediate corollary of Theorem 3.23. Let us prove Part (2).
First we claim that Lq(A) ⊆ Lp(A) +Lr(A). Let f ∈ Lq(A). Let B =

{
x ∈ A

∣∣|f(x)| > 1
}

and let C =
{
x ∈ A

∣∣|f(x)| ≤ 1
}

. Let g = f · χ
B

and h = f · χ
C

so that f = g + h. Note
that g ∈ Lp(A) because

||g||pp =

∫
A

|g|p =

∫
B

|f |p ≤
∫
B

|f |q ≤
∫
A

|f |q = ||f ||qq <∞,

note that h ∈ L∞(A) because |f(x)| ≤ 1 for all x ∈ A so that ||h||∞ ≤ 1, and note that
when r <∞ we have h ∈ Lr(A) because

||h||rr =

∫
A

|h|r =

∫
C

|f |r ≤
∫
C

|f |q ≤
∫
A

|f |q = ||f ||qq <∞.

Thus we have Lq(A) ⊆ Lp(A) + Lr(A) as claimed.
Next we claim that Lp(A) ∩ Lr(A) ⊆ Lq(A). Let f ∈ Lp(A) ∩ Lr(A). Suppose first

that r <∞. Note that for any 0 < k, l ∈ R with k + l = q and for any 1 < u, v ∈ R with
1
u + 1

v = 1, Hölder’s Inequality gives

||f ||qq =

∫
A

|f |q ≤
∣∣∣∣|f |k∣∣∣∣

u

∣∣∣∣|f |l∣∣∣∣
v

=

(∫
A

|f |ku
)1/u(∫

A

|f |lv
)1/v

.

We solve the equations k + l = q, 1
u + 1

v = 1, ku = p and lv = r to get

k = p(r−q)
r−p , l = r(q−p)

r−p , u = r−p
r−q and v = r−p

q−p

and note that since 1 ≤ p < q < r <∞ we have k, l > 0 and 1 < u, v <∞. Thus

||f ||qq ≤
(∫

A

|f |ku
)1/u(∫

A

|f |lv
)1/v

=

(∫
A

|f |p
)k/p(∫

A

|f |r
)l/r

= ||f ||kp||f ||lr <∞.

When r =∞, we let B =
{
x ∈ A

∣∣|f(x)| > ||f ||∞
}

and C =
{
x ∈ A

∣∣|f(x)| ≤ ||f ||∞
}

, and
then by Lemma 3.15 we have λ(B) = 0, and so

||f ||qq =

∫
A

|f |q =

∫
C

|f |q =

∫
C

|f |p|f |q−p ≤ ||f ||q−p∞
∫
C

|f |p ≤ ||f ||pp||f ||q−p∞ <∞.

This proves that Lp(A) ∩ Lr(A) ⊆ Lq(A) as claimed.
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3.24 Definition: A metrix space is called separable when it contains a countable dense
subset.

3.25 Theorem: Let 1 ≤ p <∞ and let a < b.

(1) `p is separable but `∞ is not.
(2) Lp

(
[a, b]

)
is separable but L∞

(
[a, b]

)
is not.

Proof: We leave the proof of Part (1) as an exercise. We sketch a proof of Part (2) leaving
the details as an exercise. To show that Lp[a, b] is separable, we shall show that Q[x]
is dense in Lp[a, b] by showing that a given function f ∈ Lp[a, b] can be approximated,
arbitrarily closely in the p-norm, by a polynomial in Q[x]. Since f = f+ − f− it suffices
to consider the case that f is nonnegative. By Note 2.28, together with the Monotone
Convergence Theorem, we can approximate a given nonnegative function f ∈ Lp[a, b],
arbitrarily closely in the p-norm, using a nonnegative simple function since we can construct
an increasing sequence of simple functions sn : [a, b] → [0,∞) with sn → f pointwise
on [a, b]. We can approximate a given nonnegative simple function s : [a, b] → [0,∞),
arbitrarily closely in the p-norm, using a nonnegative step function r : [a, b] → [0,∞)
because we can cover a measurable set A ⊆ [a, b] by a disjoint union of intervals Jk ⊆ [a, b]
so that χ

A
is approximated by

∑
χ
Jk

. We can then approximate a given step function

r : [a, b] → [0,∞), arbitrarily closely in the p-norm, using a continuous function because
for any interval J , the step function χ

J
can be approximated arbitrarily closely in the

p-norm by a piecewise linear function. This shows that the set of continuous functions
C[a, b] is dense in Lp[a, b], using the p-norm. On the other hand, using the∞-norm (which
agrees with the supremum norm for continuous functions), Q[x] is dense in R[x], and
we know from the Stone-Weirstrass Theorem that R[x] is dense in C[a, b]. Since Q[x]
is dense in C[a, b] using the ∞-norm, it is also dense using the p-norm by the formula
||f ||p ≤ (b− a)1/p||f ||∞ which is obtained in the proof of Theorem 3.22.

We claim that L∞[a, b] is not separable. Let S be any dense subset of L∞[a, b].
We must show that S is uncountable. For each k ∈ N let xk = b − b−a

2k
so that we

have a = x0 < x1 < x2 < · · · < b. Let {0, 1}ω denote the set of binary sequences

α = (α1, α2, · · ·) where each αk ∈ {0, 1}. For each α ∈ {0, 1}ω, let sα =
∞∑
k=1

αkχ[xk−1,xk)

and note that when α 6= β we have ||sα − sβ ||∞ = 1. Since S is dense in L∞[a, b], for each
α ∈ {0, 1}ω we can choose fα ∈ S such that ||sα − fα||∞ < 1

2 . Define F : {0, 1}ω → S by
F (α) = fα. Note that F is injective because when α 6= β we have

1 = ||sα − sβ ||∞ ≤ ||sα − fα||∞ + ||fα − fβ ||∞ + ||fβ − sβ ||∞ < 1
2 + ||fα − fβ ||∞ + 1

2

so that ||fα − fβ ||∞ > 0. Since F is injective we have |S| ≥
∣∣{0, 1}ω∣∣ = 2ℵ0 , and so S is

uncountable, as required.

3.26 Remark: I may include a discussion of the complex-valued Lp spaces Lp(A,C) later.

.
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Chapter 4. Banach and Hilbert Spaces

4.1 Definition: Let W be an inner product space over F = R or C. For a subset A ⊆W ,
we say that A is orthogonal when 〈u, v〉 = 0 for all u, v ∈ A with u 6= v, and we say that
A is orthonormal when A is orthogonal with ||u|| = 1 for every u ∈ A.

4.2 Theorem: Let W be an inner product space over F = R or C. Let A ⊆W .

(1) If A is an orthogonal set of nonzero vectors then for x ∈ SpanA with say x =
n∑
k=1

ckuk

where ck ∈ F and uk ∈ A, we have ck = 〈x, uk〉/||uk||2 for all indices k, and in particular,
A is linearly independent.

(2) If A is orthonormal then for x ∈ SpanA with say x =
n∑
k=1

ckuk where ck ∈ F and

uk ∈ A, we have ck = 〈x, uk〉 for all k, and in particular, A is linearly independent.

Proof: To prove Part (1), suppose that A is an orthogonal set of nonzero vectors and let

x =
n∑
j=1

cjuj with each cj ∈ F and each uj ∈ A. Then for all indices k, since 〈uj , uk〉 = 0

whenever j 6= k we have 〈x, uk〉 =
〈 n∑
j=1

cjuj , uk

〉
=

n∑
j=1

cj〈uj , uk〉 = ck〈uk, uk〉 = ck||uk||2

and so ck = 〈x,uk〉
||uk||2 , as required. In particular, when x = 0 we find that ck = 0 for all k,

and this shows that A is linearly independent. This proves Part (1), and Part (2) follows
immediately from Part (1).

4.3 Theorem: (The Gram-Schmidt Procedure) LetW be a finite or countable dimensional
inner product space over F = R or C. Let A = {u1, u2, · · ·} be an ordered basis for W .

Let v1 = u1 and for n ≥ 2 let vn = un −
n−1∑
k=1

〈un, vk〉
||vk||2

vk. Then the set B = {v1, v2, · · ·}

is an orthogonal basis for W with the property that for every index n ≥ 1 we have
Span{v1, · · · , vn} = Span{u1, · · · , un}.
Proof: We prove, by induction on n, that {v1, v2, · · · , vn} is an orthogonal basis for
Span{u1, u2, · · · , un}. When n = 1 this is clear since v1 = u1. Let n ≥ 2 and sup-
pose, inductively, that {v1, · · · , vn−1} is an orthogonal basis for Span{u1, · · · , un−1}. Since

vn = un −
∑n−1
k=1

〈un,vk〉
||vk||2 vk, we see that un is equal to vn plus a linear combination of the

vectors v1, · · · , vn−1, and so we have Span{v1, · · · , vn−1, vn} = Span{v1, · · · , vn−1, un}. By
the induction hypothesis, we have Span{v1, · · · , vn−1} = Span{u1, · · · , un−1} so we have

Span{v1, · · · , vn−1, vn} = Span{v1, · · · , vn−1, un} = Span{u1, · · · , un−1, un}.

It remains to show that the set {v1, v2, · · · , vn} is an orthogonal set. By the induction
hypothesis, we have 〈vj , vk〉 = 0 for all 1 ≤ j, k < n, so it suffices to show that 〈vn, vk〉 = 0
for all indices 1 ≤ k < n and indeed, for 1 ≤ k < n we have

〈vn, vk〉 =
〈
un −

n−1∑
j=1

〈un,vj〉
||vj ||2 vj , vk

〉
= 〈un, vk〉 −

n−1∑
j=1

〈un,vj〉
||vj ||2 〈vj , vk〉

= 〈un, vk〉 −
〈un, vk〉
||vk||2

〈vk, vk〉 = 0.
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4.4 Corollary: Every finite or countable dimensional inner product space W over F = R
or C has an orthonormal basis.

Proof: The proof is left as an exercise.

4.5 Remark: It is not the case that every uncountable dimensional inner product space
has an orthonormal basis. For example, we shall see below that an infinite dimensional
separable Hilbert space does not have an orthonormal basis.

4.6 Corollary: Let W be a finite or countable dimensional inner product space over
F = R or C. Let U ⊆ W be a finite dimensional subspace. Then every orthogonal (or
orthonormal) basis A for U extends to an orthogonal (or orthonormal) basis for W .

Proof: The proof is left as an exercise.

4.7 Remark: The above corollary does not hold in general in the case that the subspace
U is countable dimensional, as we shall soon see in Example 4.18.

4.8 Corollary: Let F = R or C and let U and V be finite or countable dimensional inner
product spaces over F . Then U and V are isomorphic (as inner product spaces) if and
only if dim(U) = dim(V ). In particular, if dim(U) = n then U is isomorphic to Fn and if
dim(U) = ℵ0 then U is isomorphic to F∞.

Proof: The proof is left as an exercise.

4.9 Definition: Let W be an inner product space over F = R or C. For a subspace
U ⊆W , we define the orthogonal complement of U in W to be the set

U⊥ =
{
x ∈W

∣∣〈x, u〉 = 0 for all u ∈ U
}
.

4.10 Theorem: Let W be an inner product space over F = R or C. Let U ⊆ W be a
subspace. Then

(1) U⊥ is a subspace of W ,
(2) if A is a basis for U then U⊥ =

{
x ∈W

∣∣〈x, u〉 = 0 for all u ∈ U
}

,
(3) U ∩ U⊥ = {0}, and
(4) U ⊆ (U⊥)⊥.

If U is finite dimensional, then we also have

(5) U ⊕ U⊥ = W , and
(6) U = (U⊥)⊥.

Proof: We leave the proofs of Parts (1) to (4) as an exercise. To prove Parts (5) and (6),
suppose that U is finite-dimensional. Let A = {u1, u2, · · · , un} be an orthonormal basis
for A. To prove Part (5), we need to show that for every x ∈W there exist unique vectors
u, v ∈ W with u ∈ U , v ∈ U⊥ and u+ v = x. First we prove uniqueness. Let x ∈ W , and
suppose that u ∈ U , v ∈ U⊥ and u+ v = x. Note that for all indices k we have

〈x, uk〉 = 〈u+ v, uk〉 = 〈u, uk〉+ 〈v, uk〉 = 〈u, uk〉.

and so, by Theorem 4.2, we have

u =
n∑
k=1

〈u, uk〉uk =
n∑
k=1

〈x, uk〉uk.
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This proves uniqueness, since given x ∈W , the vector u must be given by u =
n∑
k=1

〈x, uk〉uk
and then the vector v must be given by v = x− u.

To prove existence, let x ∈W and choose u and v to be the vectors u =
n∑
k=1

〈x, uk〉uk

and v = x − u. Then we have u ∈ U and u + v = x, so it suffices to show that v ∈ U⊥.
For all indices k we have

〈v, uk〉 = 〈x− u, uk〉 = 〈x, uk〉 − 〈u, uk〉 = 〈x, uk〉 −
〈 n∑
j=1

〈x, uj〉uj , uk
〉

= 〈x, uk〉 −
n∑
j=1

〈x, uj〉〈uj , uk〉 = 〈x, uk〉 −
n∑
j=1

〈x, uj〉δj,k = 〈x, uk〉 − 〈x, uk〉 = 0.

Since 〈v, uk〉 = 0 for all 1 ≤ k ≤ n, from Part (2) we have v ∈ U⊥. This proves Part (5).
Let us prove Part (6). From Part (4), we have U ⊆ (U⊥)⊥. Conversely, let x ∈ (U⊥)⊥.

Using Part (5), we can choose u, v ∈W with u ∈ U , v ∈ V and u+v = x. Since x ∈ (U⊥)⊥

and v ∈ U⊥, we have 〈x, v〉 = 0, and so 0 = 〈x, v〉 = 〈u + v, v〉 = 〈u, v〉 + 〈v, v〉 = 〈v, v〉.
Since 〈v, v〉 = 0 we have v = 0 and so x = u+ v = u ∈ U . Thus (U⊥)⊥ ⊆ U , as required.

4.11 Remark: Parts (5) and (6) of the above theorem do not always hold when U is
infinite dimensional, as the following example shows.

4.12 Example: Let F = R or C. Let W = F∞ and let U =
{
a ∈ F∞

∣∣ ∞∑
k=1

ak = 0
}

. Note

that W is a countable-dimensional inner product space with standard basis {e1, e2, e3, · · ·}
and U is a countable-dimensional proper subspace of W with basis A = {u1, u2, u3, · · ·}
where uk = e1 − ek+1 = (1, 0, · · · , 0,−1, 0, · · ·). We have

U⊥ =
{
x ∈W

∣∣〈x, uk〉 = 0 for all k
}

=
{
x ∈W

∣∣〈x, e1 − ek+1〉 = 0 for all k
}

=
{
x ∈W

∣∣x1 = xk+1 for all k
}

=
{
x ∈W

∣∣x1 = x2 = x3 = · · ·
}

= {0}

because for x ∈ F∞ we have xn = 0 for all but finitely many indices n. Notice that in
this example we have U ⊂6= UT = W and we do not have U ⊕ U⊥ = W . Also notice

that, although we could apply the Gram-Schmidt Procedure to the basis A to obtain an
orthogonal basis B = {v1, v2, · · ·} for U , the basis B cannot be extended to an orthogonal
basis for W because there is no nonzero vector 0 6= x ∈W with 〈x, vk〉 for all k.

4.13 Definition: Let W be an inner product space over F = R or C. Let U ⊆ W be
a subspace such that W = U ⊕ U⊥. For x ∈ W , we define the orthogonal projection
of x onto U , denoted by ProjU (x), as follows. Since W = U ⊕ U⊥, we can choose unique
vectors u, v ∈W with u ∈ U , v ∈ V and u+ v = x. We then define

ProjU (x) = u.

Since U = (U⊥)⊥, for u and v as above we have ProjU⊥(x) = v. When y ∈ W and
U = Span{y}, we also write Projy(x) = ProjU (x).

4.14 Note: Let W be an inner product space over F = R or C. Let U be a finite
dimensional subspace of W . Let A = {u1, u2, · · · , un} be an orthogonal basis for U . Then
for x ∈W , as in the proof of Part (5) of Theorem 4.15, we see that

ProjU (x) =
n∑
k=1

〈x, u1〉
||uk||2

uk.
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4.15 Example: As an exercise, show that for A ∈ Mn×m(C) and U = Col(A), given
x ∈ Cn there exists y ∈ Cm such that A∗Ay = A∗x and that for any such y we have
ProjU (x) = Ay. In particular, when rank(A) = m show that A∗A is invertible so that
ProjU (x) = A(A∗A)−1A∗x.

4.16 Theorem: Let W be an inner product space over F = R or C. Let U ⊆ W be a
subspace of W such that W = U ⊕U⊥. Let x ∈W . Then ProjU (x) is the unique point in
U which is nearest to x.

Proof: Let u, v ∈ W be the vectors with u ∈ U , v ∈ V and u + v = x, so that we have
ProjU (x) = u. Let w ∈ U with w 6= u. Since 〈w−u, x−u〉 = 〈w−u, v〉 = 〈w, v〉−〈u, v〉 = 0,
Pythagoras’ Theorem gives

||x− w||2 = ||(x− u)− (w − u)||2 = ||x− u||2 + ||w − u||2 > ||x− u||2

and so ||x− w|| > ||x− u||.

4.17 Definition: Let W be a vector space over F = R or C. For a subset S ⊆ W , we
say that S is convex when for all a, b ∈ S we have a+ t(b− a) ∈ S for all 0 ≤ t ≤ 1.

4.18 Theorem: Let H be a Hilbert space over F = R or C. Let S ⊆ H be nonempty,
closed and convex. Then for every a ∈ H there exists a unique point b ∈ S which is nearest
to a, that is such that ||a− b|| ≤ ||a− x|| for all x ∈ S.

Proof: Let a ∈ H. Let d = dist(a, S) = inf
{
||x− a||

∣∣x ∈ S}. Choose a sequence {xn} in
S so that ||xn − a|| → d, hence ||xn − a||2 → d2. Let ε > 0 and choose m ∈ Z+ so that for

all n ≥ m we have ||xn − a||2 ≤ d2 + ε2

4 . Let k, l ≥ m. By the Parallelogram Law we have∣∣∣∣(xk − a) + (xl − a)
∣∣∣∣2 +

∣∣∣∣(xk − a)− (xl − a)
∣∣∣∣2 = 2

∣∣∣∣xk − a∣∣∣∣2 + 2
∣∣∣∣xl − a∣∣∣∣2

Since S is convex, we have xk+xl

2 ∈ S, hence
∣∣∣∣xk+xl

2 − a
∣∣∣∣ ≥ d, and so∣∣∣∣xk − xl∣∣∣∣2 =

∣∣∣∣(xk − a)− (xk − a)
∣∣∣∣2

= 2
∣∣∣∣xk − a∣∣∣∣2 + 2

∣∣∣∣xl − a∣∣∣∣2 − ∣∣∣∣(xk − a) + (xk − a)
∣∣∣∣2

= 2
∣∣∣∣xk − a∣∣∣∣2 + 2

∣∣∣∣xl − a∣∣∣∣2 − 4
∣∣∣∣xk+xl

2 − a
∣∣∣∣2

≤ 2
(
d2 + ε2

4

)
+ 2
(
d2 + ε2

4

)
− 4d2 = ε2.

so that ||xk−xl|| ≤ ε. This shows that the sequence {xn} is Cauchy. Since H is complete,
{xn} converges in H, and since S is closed in H, the limit lies in S. Let b = lim

n→∞
xn ∈ S.

Since b ∈ S we have ||d − a|| ≥ d, and we have ||b − a|| ≤ ||b − xn|| + ||xn − a|| for all
n ∈ Z+ so that ||b−a|| ≤ lim

n→∞

(
||b−xn||+ ||xn−a||

)
= d, and so ||b−a|| = d. This shows

that ||d− a|| ≥ ||x− a|| for all x ∈ S. Finally, we note that the point b is unique because
given c ∈ S with ||c − a|| = d, since S is convex we have b+c

2 ∈ S so that
∣∣∣∣ b+c

2 − a
∣∣∣∣ ≥ d,

and so the Parallelogram Law gives

||b− c||2 =
∣∣∣∣(b− a)− (c− a)

∣∣∣∣2 = 2||b− a||2 + 2||c− a||2 −
∣∣∣∣(b− a) + (c− a)

∣∣∣∣
= 4d2 − 4

∣∣∣∣ b−c
2 − a

∣∣∣∣2 ≤ 4d2 − 4d2 = 0

so that ||b− c|| = 0 hence b = c.
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4.19 Theorem: Let H be a Hilbert space over F = R or C. Let U ⊆ H be a closed
subspace. Then we have H = U ⊕ U⊥. This means that for all x ∈ H there exist unique
points u ∈ U and v ∈ U⊥ such that u+ v = x. In this case, the point u is the unique point
in U nearest to x.

Proof: Let x ∈ H. Since U is a vector space it is convex, so by the previous theorem
there is a unique point u ∈ U which is nearest to x. Let u be this nearest point and
let v = x − u so that u + v = x. We claim that v ∈ U⊥. Suppose, for a contradiction,
that v /∈ U⊥. Choose u1 ∈ U with 〈v, u1〉 6= 0. Write 〈v, u1〉 = reiθ with r > 0 and
θ ∈ R (when F = R we have eiθ = ±1) and let u2 = eiθu1. Note that u2 ∈ U and
〈v, u2〉 = 〈v, eiθu1〉 = e−iθ〈v, u1〉 = e−iθr eiθ = r > 0. For all t ∈ R we have∣∣∣∣x− (u+ tu2)

∣∣∣∣2 = ||v − tu2||2 = ||v||2 − 2tRe〈v, u2〉+ t2||u2||2 = ||v||2 − 2r t+ ||u2||2t2.

It follows that for small t > 0 we have
∣∣∣∣x − (u + tu2)

∣∣∣∣2 ≤ ||v||2 = ||x − u||2 which is not
possible, since u is the point in U which is nearest to x.

It remains to show that the points u ∈ U and v ∈ U⊥ with u + v = x, which we
found in the previous paragraph, are the only such points. Let x ∈ H. Suppose that
u ∈ U , v ∈ U⊥ and u + v = x. We claim that u must be equal to the (unique) point in
U which is nearest to x. Let u′ ∈ U with u′ 6= u. Since v ∈ U⊥ and u′ − u ∈ U we have
〈x− u, u′ − u〉 = 〈v, u′ − u〉 = 0 and so∣∣∣∣x− u′∣∣∣∣2 =

∣∣∣∣(x− u)− (u′ − u)
∣∣∣∣2 = ||x− u||2 − 2 Re〈x− u, u′ − u > +||u′ − u||2

= ||x− u||+ ||u′ − u|| > ||x− u||2

so that ||x− u′|| > ||x− u||. Thus u is the point in U which is nearest to x, as required.

4.20 Theorem: Every inner product space contains a maximal orthonormal set.

Proof: Let W be an inner product space. Let S be the set of all orthonormal sets in W ,
ordered by inclusion. If C is a chain in S (that is a totally ordered subset of S) then

⋃
C

is an upper bound for C in S. Since every chain in S has an upper bound, it follows from
Zorn’s Lemma that S has a maximal element.

4.21 Theorem: Let H be a Hilbert space over F = R or C. Let A be an orthonormal
set in H and let U = Span

F
A. Then A is maximal if and only if U is dense in H.

Proof: If A is not maximal then we can choose v ∈ U⊥ with ||v|| = 1 (so that A ∪ {v} is
orthonormal) and then for all u ∈ U , since 〈v, u〉 = 0, we have ||u− v||2 = ||u||2 + ||v||2 ≥
||v||2 = 1. Thus U is not dense in H, indeed there is no u ∈ U with ||u− v|| ≤ 1

2 .

Suppose, conversely, that U is not dense in H, that is U 6= H. Note that U is a vector
space, indeed given a, b ∈ U we can choose {xn} and {yn} with xn → a and yn → b in
H and then (xn + yn) → (a + b) so that a + b ∈ U , and for c ∈ F we have cxn → ca so

that ca ∈ U . By the above theorem, we have H = U ⊕ U⊥. Since H 6= U we must have

U
⊥ 6= {0}. Choose v ∈ U⊥ with ||v|| = 1. Since 〈v, u〉 = 0 for all u ∈ U we certainly have
〈v, u〉 = 0 for all u ∈ U , so the set A ∪ {v} is orthonormal. And we cannot have v ∈ U
since U ∩ U⊥ = {0}, and so A ⊂6= A ∪ {v} so that A is not maximal.
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4.22 Theorem: Let H be a Hilbert space over F = R or C. Let A be a maximal
orthonormal set in H. Then H is separable if and only if A is at most countable.

Proof: Suppose that A is uncountable. Let S be any dense subset of H. For each u ∈ A
choose su ∈ S with ||su−u|| ≤

√
2
4 . For u, v ∈ A with u 6= v we have ||u|| = 1 and ||v|| = 1

and 〈u, v〉 = 0 so that ||u− v||2 = ||u||2 + ||v||2 = 2 and so

||su−sv|| =
∣∣∣∣(su−u)+(u−v)+(v−sv)

∣∣∣∣ ≥ ||u−v||−(||su−u||+||sv−v||) =
√

2−
√
2
4 −

√
2
4 > 0

so that su 6= sv. Thus A is uncountable.
Suppose, conversely, that A = {u1, u2, · · ·} is finite or countable. By the above theo-

rem, U = Span
F
A is dense in H. Note that SpanQA is dense in SpanRA and SpanQ[i]

A
is dense in SpanCA. Indeed given c1, c2, · · · , cn ∈ F (where F = R or C) we can choose
r1, r2, · · · , rn ∈ R (where R = Q or Q[i]) such that |rk − ck| < ε

n and then

∣∣∣∣∣∣ n∑
k=1

rkuk −
n∑
k=1

ckuk

∣∣∣∣∣∣ =
∣∣∣∣∣∣ n∑
k=1

(rk − ck)uk

∣∣∣∣∣∣ ≤ n∑
k=1

∣∣∣∣(rk − ck)uk
∣∣∣∣

=
n∑
k=1

|rk − ck| ||uk|| =
n∑
k=1

|rk − ck| < ε.

4.23 Theorem: Let H be a separable Hilbert space over F = R or C, let A = {u1, u2, · · ·}
be a countable orthonormal set in H, and let U = Span

F
A. Then the following are

equivalent.

(1) A is maximal.
(2) U is dense in H.

(3) For every x ∈ H we have x =
∞∑
k=1

〈x, uk〉uk in H.

(4) For every x ∈ H we have ||x||2 =
∞∑
k=1

∣∣〈x, uk〉∣∣2 in R.

(5) For all x, y ∈ H we have 〈x, y〉 =
∞∑
k=1

〈x, uk〉〈y, uk〉.

Proof: The equivalence of Parts (1) and (2) follows from Theorem 4.26. Let us prove
that (2) implies (3). Suppose that U is dense in H. Let x ∈ H. For each n ∈ Z+, let

Un = Span{u1, u2, · · · , un} and let wn = ProjUn
(x) =

n∑
k=1

〈x, uk〉uk. Let ε > 0. Since U is

dense in H we can choose u ∈ U with ||u−x|| < ε. Say u =
m∑
k=1

ckuk. For all n ≥ m, since

u ∈ Un and wn is the point in Un nearest to x we have ||wn − x|| ≤ ||u − x|| < ε. Thus

lim
n→∞

wn = x in H. This means that x =
∞∑
k=1

〈x, uk〉uk in H.

Let us prove that (3) implies (4). Suppose that for every x ∈ H we have x = lim
n→∞

wn

where wn =
n∑
k=1

〈x, uk〉uk. Note that

||wn||2 =
〈 n∑
k=1

〈x, uk〉uk ,
n∑̀
=1

〈x, u`〉u`
〉

=
n∑
k=1

n∑̀
=1

〈x, uk〉〈x, u`〉δk,` =
n∑
k=1

∣∣〈x, uk〉∣∣2.
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Let ε > 0. Choose m ∈ Z+ such that for all n ≥ m we have ||wn − x|| < ε. By the

Triangle Inequality, for all n ≥ m we have
∣∣∣||wn|| − ||x||∣∣∣ ≤ ||wn− x|| < ε. This shows that

lim
n→∞

||wn|| = ||x|| in R, hence ||x||2 = lim
n→∞

||wn||2 =
∞∑
k=1

∣∣〈x, uk〉∣∣2 in R.

Next we prove that (4) implies (5). Suppose that (4) holds. Let x, y ∈ H. Let

xn =
n∑
k=1

〈x, uk〉uk and yn =
n∑
k=1

〈y, uk〉uk. Note that

〈xn, yn〉 =
〈 n∑
k=1

〈x, uk〉uk ,
n∑̀
=1

〈y, uk〉uk
〉

=
n∑
k=1

n∑̀
=1

〈x, uk〉〈y, u`〉δk,` =
n∑
k=1

〈x, uk〉〈y, uk〉

and note that for c ∈ C we have xn + cyn =
n∑
k=1

〈x + cy, uk〉uk. Since (4) holds, we have

lim
n→∞

||xn||2 = ||x||2, lim
n→∞

||yn||2 = ||y||2, and lim
n→∞

||xn + cyn||2 = ||x + cy||2. By the

Polarization Identity,

〈x, y〉 = 1
4

(
||x+ y||2 + i ||x+ iy||2 − ||x− y||2 − i ||x− iy||2

)
= lim
n→∞

1
4

(
||xn + yn||2 + i ||xn + iyn||2 − ||xn − yn||2 − i ||xn − iyn||2

)
= lim
n→∞

〈
xn, yn〉 =

∞∑
k=1

〈x, uk〉〈y, uk〉.

Note that (4) follows immediately from (5) by taking y = x. We finish the proof by

proving that (4) implies (2). Suppose that for all x ∈ H we have ||x||2 =
∞∑
k=1

∣∣〈x, uk〉∣∣2.

As above, let wn = ProjUn
=

n∑
k=1

〈x, uk〉uk so that ||wn||2 =
n∑
k=1

∣∣〈x, uk〉∣∣2. Then we have

lim
n→∞

||wn||2 = ||x||2. Given ε > 0, choose n ∈ Z+ so that ||x||2 − ||wn||2 < ε2. Since

wn = ProjUn
(x) we have wn ∈ Un and x − wn ∈ Un

⊥ so that 〈x − wn, wn〉 = 0. By
Pythagoras’ Theorem, ||x−wn||2 = ||x||2 − ||wn||2 < ε2, hence ||x = wn|| < ε. Since ε > 0
was arbitrary and wn ∈ U , this shows that U is dense in H.

4.24 Definition: A maximal orthonormal set in a Hilbert space H (over R or C) is called
a Hilbert basis for H (over R or C).

4.25 Theorem: Let H be an infinite dimensional separable Hilbert space over F , where
F = R or C, and let A = {u1, u2, u3, · · ·} be a countable Hilbert basis for H.

(1) For all x ∈ H, if x =
∞∑
k=1

akuk and x =
∞∑
k=1

bkuk then ak = bk = 〈x, uk〉.

(2) For all ck ∈ F ,
∞∑
k=1

ckuk converges in H if and only if
∞∑
k=1

|ck|2 converges in R.

(3) The map φ : H → `2(F ) given by φ(x) =
(
〈x, u1〉, 〈x, u2〉, · · ·

)
is an inner product

space isomorphism.

Proof: The proof is left as an exercise.
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4.26 Definition: When X and Y are normed linear spaces over F = R or C, a linear
map L : X → Y is also called a linear operator, and a linear map L : X → F is also
called a linear functional on X.

4.27 Definition: Let X and Y be normed linear spaces and let L : X → Y be a linear
operator. The operator norm of L is given by

||L|| = sup
{
||Lx||

∣∣∣x ∈ X with ||x|| ≤ 1
}

and we say that L is bounded when ||L| <∞. Since Lx = ||x||L
(
x
||x||
)

for all 0 6= x ∈ X,

it follows that
||Lx|| ≤ ||L|| ||x|| for all x ∈ X.

4.28 Theorem: Let X and Y be normed linear spaces and let L : X → Y be a linear
operator. Then the following are equivalent.

(1) L is continuous at 0.
(2) L is bounded.
(3) L is uniformly continuous in X.

Proof: Suppose that L is continuous at 0. Choose δ > 0 so that ||x|| ≤ δ =⇒ ||Lx|| ≤ 1.
Then ||x|| ≤ 1 =⇒ ||δx|| ≤ δ =⇒ ||L(δx)|| ≤ 1 =⇒ ||L(x)|| = 1

δ ||L(δx)|| ≤ 1
δ so ||L|| ≤ 1

δ .
Now suppose that L is bounded. Fx, y ∈ X we have∣∣∣∣Lx− Ly∣∣∣∣ =

∣∣∣∣L(x− y)
∣∣∣∣ =

∣∣∣∣∣∣L( x−y
||x−y||

)∣∣∣∣∣∣||x− y|| ≤ ||L|| ||y − x||.
Thus given ε > 0 we can choose δ = 1

||L|| and then ||x− y|| < δ =⇒ ||Lx− Ly|| < ε.

Finally, we note that if L is uniformly continuous in X then L is continuous at 0.

4.29 Theorem: (The Uniform Boundedness Principle) Let X be a Banach space and
let Y be a normed linear space. Let S be a set of bounded linear operators L : X → Y .
Suppose that for every x ∈ X there exists mx ≥ 0 such that ||Lx|| ≤ mx for all L ∈ S.
Then there exists m ≥ 0 such that ||L|| ≤ m for all L ∈ S.

Proof: For each n ∈ Z+, let An =
{
x∈X

∣∣ ||Lx||≤n for all L∈S
}

. Note that An is closed

because the sets {x∈X
∣∣ ||Lx|| ≤ n} are closed for each L ∈ S, and An is the intersection

of these sets. By the hypothesis of the theorem, we have X =
⋃∞
n=1An. By the Baire

Category Theorem (since X is complete), the sets An cannot all be nowhere dense. Choose
n ∈ Z+ so that An is not nowhere dense. Chose a ∈ An and r > 0 so that B(a, r) ⊆ An.
For all x ∈ X, if x ∈ B(a, r) then x ∈ An so we have ||L(x)|| ≤ n for all L ∈ S. If ||x|| < r
then x+ a ∈ B(a, r) and a ∈ B(a, r) and so

||L(x)|| = ||L(x+ a)− L(a)|| ≤ ||L(x+ a)||+ ||L(a)|| ≤ 2n for all L ∈ S.

For all L ∈ S and x ∈ X, if ||x|| ≤ 1 then ||rx|| ≤ r and so ||L(x)|| = 1
r ||L(rx)|| ≤ 2n

r .
Thus we have ||L|| ≤ 2n

r for all L ∈ S.
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4.30 Theorem: (Condensation of Singularities) Let X be a Banach space and let Y be a
normed linear space. For each m,n ∈ Z+, let Lm,n : X → Y be a bounded linear operator.
Suppose that for each m ∈ Z+ there exists xm ∈ X such that lim sup

n→∞
||Lmn(xm)|| = ∞.

Then the set E =
{
x ∈ X

∣∣∣ lim sup
n→∞

||Lmn(x)|| =∞ for all m ∈ Z+
}

is a dense Gδ set.

Proof: Fixm ∈ Z+. For each ` ∈ Z+, letA` =
{
x∈X

∣∣ ||Ln,m(x)|| ≤ ` for all n ∈ Z+
}

and
note that each set A` is closed. As in the proof of the Uniform Boundedness Principle, if one
of the sets A` was not nowhere dense then we could choose m ≥ 0 such that ||Lm,n|| ≤ m
for all n ∈ Z+. But then for all x ∈ X we would have ||Lm,n(x)|| ≤ m||x|| for all n so
that lim sup

n→∞
||Lm,n(x)|| ≤ m||x||, contradicting the hypothesis of the theorem. Thus all of

the sets A` must be nowhere dense. Let Bm =
∞⋃
`=1

A` =
{
x∈X

∣∣ lim sup
n→∞

||Lm,n(x)|| <∞
}

and let C =
∞⋃
m=1

Bm =
{
x∈X

∣∣ lim sup
n→∞

||Lm,n(x)|| <∞ for some m ∈ Z+
}

, and note that

E = X \C. Then C is a countable union of closed nowhere dense sets, so E is a countable
intersection of open dense sets. By the Baire Category Theorem, E is dense.

.
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Chapter 5. Fourier Series

5.1 Remark: We shall begin with an informal discussion of Fourier series and how they
can be used in physics and engineering.

5.2 Definition: A real trigonometric series is a series of the form

a0 +
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx

where an, bn ∈ R and x ∈ R. If the series converges, we say it is the real Fourier series
of its sum

f(x) = a0 +
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx,

which is a periodic function of the real variable x with period 2π, and the numbers an, bn
are called the Fourier coefficients of f(x). If we are justified in integrating term by term
then, using the formulas∫ π

−π
1 = 2π ,

∫ π

−π
cosnx dx = 0 =

∫ π

−π
sinnx dx ,

∫ π

−π
cos2 nx dx = π =

∫ π

−π
sin2 nx dx∫ π

−π
cosnx cosmx dt = 0 =

∫ π

−π
sinnx sinmx dt , and

∫ π

−π
cosnx sinmx dt = 0

where n, n ∈ Z+ with n 6= m, we find that the Fourier coefficients are given by

a0 =
1

2π

∫ π

−π
f(x) dx , an =

1

π

∫ π

−π
f(x) cosnx dx , and bn =

1

π

∫ π

−π
f(x) sinnx dx.

5.3 Remark: For the moment, we shall blithely assume that, given a 2π-periodic function
f : R → R, the Fourier series with coefficients an and bn given by the above formulas
converges to the given function f(x).

5.4 Example: Find the Fourier coefficients of the 2π-periodic function f : R→ R with

f(x) =

{
π
2 + x for − π ≤ x ≤ 0,
π
2 − x for 0 ≤ x ≤ π.

Solution: Since f(x) is even, we have an = 0 for all n ∈ Z+, and we have

a0 =
1

2π

∫ π

−π
f(x) dx =

2

π

∫ π

0

f(x) dx =
2

π

∫ π

0

π
2 − x dx = 2

π

[
π
2x−

1
2x

2
]π
0

= 0

an =
1

π

∫ π

−π
f(x) cosnx dx =

2

π

∫ π

0

f(x) cosnx dx =
2

π

∫ π

0

(
π
2 − x

)
cosnx dx

=

∫ π

0

cosnx dx− 2

π

∫ π

0

x cosnx dx =
[
1
n sinnx

]π
0
− 2

π

[
1
nx sinnx+ 1

n2 cosnx
]π
0

= 0− 2
π

(
1
n2 (−1)n − 1

)
=

{
0 if n is even,

4
π n2 if n is odd.

Thus, assuming that the Fourier series of f(x) converges to f(x), we have

f(x) = 4
π

(
1
12 cosx+ 1

32 cos 3x+ 1
52 cos 5x+ · · ·

)
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5.5 Remark: Assuming convergence, putting x = 0 into the above function f(x) gives
π
2 = 4

π

(
1
12 + 1

32 + 1
52 + · · ·

)
so we obtain the formula

∞∑
k=1

1
(2k+1)2 = π2

8 .

5.6 Example: (Forced Damped Oscillations) Suppose an object of mass m is attached to a
spring of spring-constant k and vibrates in a fluid of damping-constant c and let x = x(t)
be the displacement of the object from its equilibrium position at time t. Suppose, in
addition, that the object is acted on by an external force f(t). The total force F (t) acting
on the object consists of the force exerted by the spring, which is equal to −kx(t), the
resistive force exerted by the fluid, which is equal to −cx′(t), and the external driving
force, which is equal to f(t). By Newton’s Second Law of motion we have F (t) = mx′′(t)
and so x(t) satisfies the differential equation (the DE)

mx′′(t) + cx′(t) + kx(t) = f(t).

5.7 Example: Use Fourier series to solve the above DE with m = 1, c = 2 and k = 5,
where f(t) is the function from Example 5.4,

Solution: We need to solve the DE

x′′(t) + 2x′(t) + 5x(t) = f(t).

To solve the associated homogeneous DE x′′ + 2x′ + 5x = 0, we look for a solution of the
form x = x(t) = ert. Putting x = ert, x′ = rert and x′′ = r2ert into the homogeneous DE
gives (r2+2r+5)ert = 0 hence r = −1±2i. This gives us the two complex-valued solutions
x(t) = e(−1±2i)t = e−t(cos 2t ± i sin 2t). By taking suitable linear combinations of these
two complex-valued solutions we obtain the two real-valued solutions x1(t) = e−t cos 2t
and x2(t) = e−t sin 2t. The general solution to the DE x′′ + 2x′ + 5x = 0 is given by

x(t) = Ae−t cos 2t+Be−t sin 2t , where A,B ∈ R.

For each n ∈ Z+, to find a particular solution to the DE x′′+2x′+5x = cosnt, we look for
a solution of the form x = x(t) = An cosnt+Bn sinnt. Putting x = An cosnt+Bn sinnt,
x′ = −nAn sinnx + nBn cosnt and x′′ = −n2An cosnt − n2Bn sinnt into x′′ + 2x′ + 5 =
cosnt gives

(
− n2An + 2nBn + 5An

)
cosnt+

(
− n2Bn − 2nAn + 5Bn) sinnt = cosnt for

all t ∈ R and so we must have (5 − n2)An + 2nBn = 1 and (5 − n2)Bn − 2nAn = 0. We

solve these two equations to get An = 5−n2

n4−6n2+25 and Bn = 2n
n4−6n2+25 and so one solution

to the DE x′′ + 2x′ + 5 = cosnt is given by

x(t) = An cosnt+Bn sinnx , where An = 5−n2

n4−6n2+25 and Bn = 2n
n4−6n2+25 .

Since f(t) =
∑

n odd

4
πn2 cosnt, one particular solution, called the steady state solution,

to the original DE x′′ + 2x′ + 5x = f(t) is given by

x(t) =
∑
n odd

4

πn2
(
An cosnt+Bn sinnt

)
and the general solution is

x(t) = Ae−t cos 2t+Be−t sin 2t+
∑
n odd

4

πn2
(
An cosnt+Bn sinnt

)
, where A,B ∈ R.
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5.8 Example: (The One-Dimensional Wave Equation) An elastic string is stretched to
length π and is fixed at its two endpoints along the x-axis at x = 0 and x = π. The string
is displaced so that it follows the curve u = f(x) with f(0) = 0 and f(π) = 0, then at
time t = 0 the string is released and allowed to vibrate. The problem is to determine the
strings shape u = u(x, t) at all points 0 ≤ x ≤ π and all times t ≥ 0.

To formulate a differential equation (or DE) which models the situation, we consider
a segment of string, at time t, between the points p1 = (x1, u(x1, t)) and p2 = (x2, u(x2, t))
where the difference dx = x2−x1 is small. The slope of the curve u = g(x) = u(x, t) at p1
is ∂u

∂x (x1, t) and the angle θ1 from the horizontal is given by tan θ1 = ∂u
∂x (x1, t). Similarly,

the angle θ2 at p2 is given by tan θ2 = ∂u
∂x (x2, t), and we have

tan θ2 − tan θ1 = ∂u
∂x1

(x1, t)− ∂u
∂x (x2, t) = ∂2u

∂x2 dx.

Let T1 be the magnitude of the force exerted on p1 by the portion of the string which
lies to the left of p1, and let T2 be the magnitude of the force exerted on p2 by the
portion of the string which lies to the right of p2. Assuming that the segment of string
moves only vertically (so the total horizontal component of the force is zero) we have
T1 cos θ1 = T2 cos θ2. Let

T = T1 cos θ1 = T2 cos θ2

and note that T is a constant which we call the tension of the string. The total vertical
component of the force is F = T2 sin θ2−T1 sin θ1 and by Newton’s Second Law of motion,
we have

T2 sin θ2 − T2 sin θ1 = m∂2u
∂t2 = ρ dx∂

2u
∂t2

where ρ is the linear density of the string, that is its mass per unit length. From the

equations tan θ2− tan θ1 = ∂2u
∂x2 dx, T1 cos θ1 = T2 cos θ2 and T2 sin θ2−T1 sin θ2 = ρ dx ∂2u

∂t2

we obtain the one-dimentional wave equation

∂2u
∂t2 = c2 ∂

2u
∂x2 , where c2 = T

ρ .

5.9 Example: Use Fourier series to solve the one-dimensional wave equation ∂2u
∂t2 = c2 ∂

2u
∂x2

subject to the boundary conditions u(0, t) = 0 and u(0, π) = 0 for all t ≥ 0 and to the
initial conditions u(x, 0) = f(x) and ∂u

∂t (x, 0) = g(x) for all 0 ≤ x ≤ π.

Solution: We use a method known as separation of variables. We look for a solution
to the DE of the form u(x, t) = y(x)s(t) which satisfies the given boundary conditions
0 = u(0, t) = y(0)s(t) and 0 = u(π, t) = y(π)s(t). If we had y(x) = 0 for all x or
s(t) = 0 for all t then we would obtain the trivial solution u(x, t) = 0 for all x, t, so
let us assume this is not the case, so the boundary conditions become y(0) = y(π) = 0.
When u(x, t) = y(x)s(t), the DE becomes y(x)s′′(t) = c2y′′(x)s(t) which we can write as
y′′(x)
y(x) = 1

c2
s′′(t)
s(t) . Since the function on the left is a function of x (and is constant in t) and

the function on the right is a function of t (and is constant in x), in order for these two
functions to be equal for all x, t they must both be constant, say

y′′(x)
y(x) = k = 1

c2
s′′(t)
s(t)

where k is constant.
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First we solve the DE y′′(x)
y(x) = k subject to the boundary conditions y(0) = y(π) = 0.

If k = 0 then the DE becomes y′′ = 0, which has solution y = Cx+D, and the boundary
conditions give C = D = 0, so we obtain the trivial solution. If k > 0, say k = n2 where
n > 0, then the DE becomes y′′−n2y = 0, which has solution y = Cenx +De−nx, and the
boundary conditions give C+D = 0 and Cenπ +De−nπ = 0 which imply that C = D = 0,
so again we obtain the trivial solution. Suppose that k < 0, say k = −n2 where n > 0.
The DE becomes y′′+ n2y = 0 which has solution y = C cosnx+D sinnx. The boundary
condition y(0) = 0 gives C = 0 so that y = D sinnx, and the boundary condition y(π) = 0
gives D = 0 or sinnπ = 0. If D = 0 we obtain the trivial solution and if sinnπ = 0 then we
must have n ∈ Z. Thus in order to obtain a nontrivial solution to the DE which satisfies
the boundary conditions we must have k = −n2 for some n ∈ Z+ and, in this case,

y(x) = Dn sinnx , where Dn ∈ R.

When k = −n2 with n ∈ Z+, and y(x) = Dn sinnx, the DE 1
c2

s′′(t)
s(t) = k. becomes

s′′(t) + (cn)2s(t) = 0, and the solution is s(t) = An cos(cn t) +Bn sin(cn t). Thus, for each
n ∈ Z+, and for all An, Bn ∈ R, the function

u(x, t) = y(x)s(t) =
(
An cos cnt+Bn sin cnt

)
sinnx

is a solution to the one-dimensional wave equation which satisfies the boundary conditions
(we remark that it would be redundant to include the constants Dn as they could be
amalgamated with the constants An and Bn).

In order to find a solution which satisfies the given initial conditions u(x, 0) = f(x)
and ∂u

∂t (x, 0) = g(x), we look for a solution of the form

u(x, t) =

∞∑
n=1

(
An cos cnt+Bn sin cnt

)
sinnx .

In order to obtain u(x, 0) = f(x) we need
∞∑
n=1

An sinnx = f(x) and so we choose An to be

equal to the Fourier coefficients of the odd 2π-periodic function F (x) with F (x) = f(x)
for 0 ≤ x ≤ π, that is we choose

An =
1

π

∫ π

−π
F (x) sinnx dx =

2

π

∫ π

0

f(x) sinnx dx .

Assuming that we can differentiate term-by-term, we have

∂u
∂t (x, t) =

∞∑
n=1

(
− cnAn sin cnt+ cnBn cosnt

)
sinnx.

In order to obtain ∂u
∂t (x, 0) = g(x) we need

∞∑
n=1

cnBn sinnx = g(x) and so we choose Bn to

be equal to the Fourier coefficients of the odd 2π-periodic function G(x) with G(x) = g(x)
for 0 ≤ x ≤ π, that is

Bn =
2

cnπ

∫ π

0

g(x) sinnx dx .
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5.10 Remark: Let us now begin a more formal presentation of Fourier series in which we
consider convergence issues more carefully.

5.11 Definition: A real-valued trigonometric polynomial is a function f : R→ R of
the form

f(x) = a0 +
m∑
n=1

an cosnx+
m∑
n=1

bn sinnx

for some an, bn ∈ R, and we say that f(x) is of degree m when either am 6= 0 or bm 6= 0.
A real-valued trigonometric series is a series of the form

a0 +
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx

which is given by its sequence of partial sums sm(x) = a0 +
m∑
n=1

an cosnx+
m∑
n=1

bn sinnx.

5.12 Remark: A trigonometric series may or may not converge and, indeed, we can con-
sider several different notions of convergence, for example pointwise convergence, uniform
convergence, or convergence with respect to a p-norm.

5.13 Definition: Every real-valued trigonometric polynomial is a smooth 2π-periodic
function f : R→ R. Every 2π-periodic function f : R→ R determines, and is determined
by, a function f : [−π, π]→ R with f(−π) = f(π), or equivalently by a function f : T → R
where T = R/2πZ, or equivalently by a function f : S → R where S =

{
eit
∣∣− π ≤ t ≤ π}

= {z ∈ Z
∣∣|z| = 1

}
. A function f : T → R is continuous (or differentiable, or Ck) if and

only if the corresponding 2π-periodic function f : R→ R is continuous (or differentiable,
or Ck). We say that a function f : T → R is measurable when the corresponding
2π-periodic function f : R → R is measurable, or equivalently when the corresponding
function f : [−π, π] → R with f(−π) = f(π) is measurable. For a measurable function
f : T → R and for 1 ≤ p ≤ ∞ we define the p-norm ||f ||p of the function f : T → R to
be equal to the p-norm ||f ||p of the corresponding function f : [−π, π] → R. We define
Lp(T,R) to be the quotient of the set of measurable functions f : T → R with ||f ||p <∞
under the equivalence relation in which f ∼ g when f(x) = g(x) for a.e. x ∈ [−π, π]. Note
that because λ

(
[−π, π]

)
= 2π <∞, for 1 ≤ p ≤ ∞ we have L∞(T ) ⊆ Lp(T ) ⊆ L1(T ).

5.14 Definition: When f(x) = a0 +
m∑
n=1

an cosnx+ bn sinnx, where an, bn ∈ R, we have

f ∈ C∞(T ) and we know that the coefficients an and bn are given by the formulas

a0 =
1

2π

∫ π

−π
f(x) dx , an =

1

π

∫ π

−π
f(x) cosnx dx , bn =

1

π

∫ π

−π
f(x) sinnx dx .

Note that the above integrals all exist and are finite for any function f ∈ L1(T,R). Given
a function f ∈ L1(T,R), we define the real Fourier coefficients of f to be the real
numbers an = an(f) and bn = bn(f) given by the above formulas, and we define the real
Fourier series of f to be the corresponding real trigonometric series. Note that a real
Fourier series is a real trigonometric series which arises, in this way, from some function
f ∈ L1(T,R).
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5.15 Definition: A complex-valued trigonometric polynomial is a function f : R→ C
of the form

f(x) =
m∑

n=−m
cne

inx

for some cn ∈ C, and we say that f(x) is of degree m when either cm 6= 0 or c−m 6= 0. A
complex-valued trigonometric series is a series of the form

∞∑
n=−∞

cne
inx

which is given by its sequence of partial sums sm(x) =
m∑

n=−m
cne

inx.

5.16 Definition: Every complex-valued trigonometric polynomial is a smooth 2π-periodic
function f : R→ C. Every 2π-periodic function f : R→ C determines, and is determined
by, a function f : [−π, π]→ C with f(−π) = f(π), or equivalently by a function f : T → C
where T = R/2πZ, or equivalently by a function f : S → C where S = {z ∈ Z

∣∣|z| = 1
}

.
For 1 ≤ p ≤ ∞, we define Lp(T ) = Lp(T,C) in the same way that we defined Lp(T,R).
For f : T → C given by f = u + iv where u : T → R and v : T → R, f is measurable if
and only if u and v are both measurable, and in this case we have

∫
T
f =

∫
T
u + i

∫
T
v,∫

T
|f | =

∫
T

√
u2 + v2, ||f ||p = ||

√
u2 + v2||p and f ∈ Lp(T,C) if and only if u ∈ Lp(T,R)

and v ∈ Lp(T,R).

5.17 Definition: When f(x) =
m∑

n=−m
cne

inx, where cn ∈ C, because

∫
T

eikxe−ilxdx =

∫ π

−π
cos(k − l)x dx+ i

∫ π

−π
sin(k − l)x dx =

{
2π if k = l

0 if k 6= l,

it follows that the coefficients cn are given by the formula

cn = cn(f) =
1

2π

∫ π

−π
f(x)e−inx dx .

Note that the above integrals exist and are finite for any function f ∈ L1(T ) = L1(T,C).
Given a function f ∈ L1(T ), we define the (complex) Fourier coefficients of f to be the
complex numbers cn = cn(f) given by the above formulas, and we define the (complex)
Fourier series of f to be the corresponding complex trigonometric series.

5.18 Note: Given an, bn ∈ R, we have

a0 +
m∑
n=1

an cosnx+
m∑
n=1

bn sinnx = a0 +
m∑
n=1

an
einx+e−inx

2 +
m∑
n=1

bn
einx−e−inx

2i

= a0 +
m∑
n=1

(
a0
2 − i

bn
2

)
einx +

m∑
n=1

(
a0
2 −

bn
2i

)
e−inx =

m∑
n=−m

cne
inx

where c0 = a0 and cn = 1
2 (an − ibn) and c−n = cn = 1

2 (an + ibn) for n > 0.
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On the other hand, given f ∈ L1(T,R), for n > 0 we have

cn =
1

2π

∫
T

f(x)e−inx dx =
1

2π

∫ π

−π
f(x)

(
cosnx− i sinnx

)
dx

=
1

2π

(∫ π

−π
f(x) cosnx− i

∫ π

−π
f(x) sinnx dx

)
= 1

2 (an − i bn)

c−n =
1

2π

∫
T

f(x)einx dx = 1
2 (an + i bn)

It follows that when f ∈ L1(T,R), the mth partial sum of the real Fourier series for f is
exactly equal to the mth partial sum for the complex Fourier series for f .

5.19 Definition: For f ∈ L1(T ) = L1(T,C) we denote the mth partial sum of the Fourier
series of f by sm(f), so we have

sm(f)(x) =
m∑

n=−m
cne

inx , where cn = cn(f) =
1

2π

∫ π

−π
f(t)e−intdt.

5.20 Exercise: Show that if f ∈ Lp(T ) with 1 ≤ p ≤ ∞, and sm(x) =
m∑

n=−m
dn e

inx with

sm → f in Lp(T ), then dn = cn(f).

5.21 Theorem: (The Stone-Weierstrass Theorem) Let X be a compact metric space and
let C(X) = C(X,F ) be the set of continuous functions f : X → F where F = R or C.
Let A be an algebra in C(X) which contains the constant functions and which separates
points in X. Then A is uniformly dense in C(X), which means that for all f ∈ C(X) and
for all ε > 0 there exists g ∈ A such that ||g − f ||∞ < ε.

Proof: We omit the proof.

5.22 Corollary: The set of polynomials R[x] is uniformly dense in C
(
[a, b]

)
.

5.23 Corollary: The set of functions of the form

u(x, y) =
n∑
k=1

fk(x)gk(y) , where fk ∈ C([a, b]) and gk ∈ C
(
[c, d]

)
is uniformly dense in C

(
[a, b]× [c, d]

)
.

5.24 Corollary: The set of real trigonometric polynomials is uniformly dense in C
(
T,R),

and the set of complex trigonometric polynomials is uniformly dense in C(T ) = C(T,C).

5.25 Corollary: (The Riemann-Lebesgue Lemma) Let f ∈ L1(T ). Then lim
n→±∞

cn(f) = 0.

Proof: Let ε > 0. Choose a trigonometric polynomial p(x) =
m∑

n=−m
ane

inx with ||p−f ||∞< ε.

Then for n > m we have cn(p) = 0 and so

|cn(f)| =
∣∣cn(f)− cn(p)

∣∣ =

∣∣∣∣ 1

2π

∫ π

−π

(
f(x)− p(x)

)
e−inx dx

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(x)− p(x)
∣∣ dx ≤ ||f − p||∞ < ε.
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5.26 Note: Since real trigonometric polynomials are dense in C(T,R), hence also in
L2(T,R), it follows that the orthonormal set{

1√
2π
, 1√

π
cosnx , 1√

π
sinnx

∣∣n ∈ Z+
}

is a Hilbert basis for the Hilbert space L2(T,R). For f ∈ L2(T,R) we have

a0(f) = 1
2π 〈f, 1〉 , an(f) = 1

2π 〈f, cosnx〉 , bn = 1
2π 〈f, sinnx〉.

Similarly, since complex trigonometric polynomials are dense in L2(T ) = L2(T,C), it
follows that the orthonormal set {

1√
2π
einx

∣∣n ∈ Z
}

is a Hilbert basis for the Hilbert space L2(T,C). For f ∈ L2(T,C) we have

cn(f) = 1
2π 〈f, e

inx〉.

The following theorem is an immediate consequence of our earlier study of Hilbert spaces.

5.27 Theorem: In the Hilbert space L2(T ) = L2(T,C), we have the following.

(1) (Best Approximation) Given f ∈ L2(T ), sm(f) is the unique trigonometric polynomial
of degree at most m which best approximates f in L2(T ).

(2) (Convergence) Given f ∈ L2(T ) we have sm(f)→ f in L2(T ).

(3) (Parseval’s Identity) Given f ∈ L2(T ) we have ||f ||22 = 2π
∞∑

n=−∞

∣∣cn(f)
∣∣2.

(4) (Inner Product Formula) Given f, g ∈ L2(T ) we have 〈f, g〉 = 2π
∞∑

n=−∞
cn(f) cn(g).

(5) (The Riesz-Fischer Theorem) Given cn ∈ C, if
∞∑

n=−∞
|cn|2 <∞ then there exists a

unique f ∈ L2(T ) such that cn = cn(f).

Proof: These are immediate consequences of Theorems 4.23 and 4.24.

5.28 Exercise: Show that when f ∈ L2(T,R), Parseval’s Identity becomes

||f ||22 = 2π
∣∣a0(f)

∣∣2 + π
∞∑
n=1

∣∣an(f)
∣∣2 + π

∞∑
n=1

∣∣bn(f)
∣∣2 .

5.29 Exercise: Use Parseval’s Identity, together with the result of Example 5.4, to prove

that
∞∑
k=0

1
(2k+1)4 = π4

96 and use this result to calculate
∞∑
n=1

1
n4 .
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5.30 Note: Let f ∈ L1(T ). Then

sm(f)(x) =
m∑

n=−m
cn(f) einx =

m∑
n=−m

(
1

2π

∫ π

−π
f(t)e−int dt

)
einx

=
1

2π

∫ π

−π
f(t)

m∑
n=−m

ein(x−t) dt =
1

2π

∫ π

−π
f(t)Dm(x− t) dt

where

Dm(u) =
m∑

n=−m
einu = e−imu

ei(2m+1)u − 1

eiu − 1
=
ei(m+1)u − e−imu

eiu − 1
· e
−iu/2

e−iu/2

=
ei(2m+1)u/2 − ei(2m+1)u/2

eiu/2 − e−iu/2
=

sin (2m+1)u
2

sin u
2

.

5.31 Definition: The above function Dm : T → R is called the mth Dirichlet kernel.

5.32 Remark: For f, g ∈ L1(T ), the convolution of f with g is the function f? g : T → R
given by (f ? g)(x) = 1

2π

∫
T
f(t)g(x− t) dt. Using this notation we have sm(f) = f ? Dm.

5.33 Note: We have∫ π

−π
Dm(u) du =

∫ π

−π

m∑
n=−m

einu du =

∫ π

−π
1 +

m∑
n=1

2 cos(nu) du = 2π

and ∫ π

−π

∣∣Dm(u)
∣∣ du =

∫ π

−π

∣∣∣∣∣ sin
(2m+1)u

2

sin u
2

∣∣∣∣∣ du = 2

∫ π

0

∣∣∣∣∣ sin
(2m+1)u

2

sin u
2

∣∣∣∣∣ du
≥ 2

∫ π

u=0

∣∣∣ sin (2m+1)u
2

∣∣∣
u
2

du = 2

∫ (m+ 1
2 )π

t=0

| sin t|
t

2m+1

· 2
2m+1 dt

≥ 4
m∑
n=1

∫ nπ

(n−1)π

| sin t|
t

dt ≥ 4
m∑
n=1

∫ nπ

(n−1)π

| sin t|
nπ

dt

= 8
π

m∑
n=1

1
n ≥

8
π

∫ m+1

x=1

1
x dx = 8

π ln(m+ 1) ≥ 8
π lnm.
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5.34 Theorem: (Pointwise Divergence) Let C(T ) = C(T,C) be the Banach space of
continuous functions f : T → C equipped with the supremum norm. There exists a dense
Gδ set E ⊆ C(T ) such that for every f ∈ E the set of points x ∈ T at which the Fourier
series for f diverges is dense in T .

Proof: First we fix x = 0. For m ∈ Z+, define Fm : C(T )→ C by

Fm(f) = sm(f)(0) =
1

2π

∫ π

−π
f(t)Dm(t) dt.

Note that ∣∣Fm(f)
∣∣ ≤ 1

2π

∫ π

−π

∣∣f(t)
∣∣ ∣∣Dm(t)

∣∣ dt ≤ 1

2π
||f ||∞

∫ π

−π

∣∣Dm(t)
∣∣ dt

so we have

||Fm|| ≤
1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt .

We claim that in fact ||Fm|| =
1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt. Fix m and define

s(t) =

{
1 if Dm(t) ≥ 0,

−1 if Dm(t) < 0.

Construct continuous functions gn : T → R with |gn| ≤ 1 such that gn → s in L1(T ). By
the Dominated Convergence Theorem, we have

Fm(gn) =
1

2π

∫ π

−π
gn(t)Dm(t) dt −→ 1

2π

∫ π

−π
s(t)Dm(t) dt =

1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt.

It follows that ||Fm|| =
1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt, as claimed. By the above note, ||Fm|| ≥ 8

π lnm,

so the set of linear operators S =
{
Fm
∣∣m ∈ Z+

}
is not uniformly bounded. By the Uniform

Boundedness Principle, applied to the set S, there exists a function f ∈ C(T ) such that
for all M > 0 we have

∣∣∣∣Fm(f)
∣∣∣∣ > M , that is

∣∣sm(f)(0)
∣∣ > M , for some m ∈ Z+. For this

function f ∈ C(T ), the Fourier series for f diverges at 0 because lim sup
m→∞

∣∣sm(f)(0)
∣∣ =∞.

Let Q = {a1, a2, a3, · · ·} be a dense subset of [0, 2π] and consider each an as an
element in T . For each n ∈ Z+ let fn(x) = f(x − an) so that lim sup

m→∞

∣∣sm(fn)(an)
∣∣ = ∞.

For n,m ∈ Z+, define Ln,m : C(T ) → C by Ln,m(f) = sm(f)(an). By Condensation of
Singularities, the set

E =
{
f ∈ C(T )

∣∣∣ lim sup
m→∞

∣∣∣∣Ln,m(f)
∣∣∣∣ =∞ for all n ∈ Z+

}
is a dense Gδ in the Banach space C(T ). For each f ∈ E, we have lim sup

m≥0

∣∣sm(f)(an)
∣∣ =∞

for every n ∈ Z+, so the Fourier series for f diverges at every point an.
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5.35 Theorem: (Cesàro Convergence) Let an ∈ C for n ≥ 0, let sm =
m∑
n=0

an and let

σ` = 1
`+1

∑̀
m=0

sm .

If the sequence {sm} converges then so does the sequence {σ`} and, in this case, we have

lim
`→∞

σ` = lim
m→∞

sm.

Proof: The proof is left as an exercise.

5.36 Definition: For f ∈ L1(T ) = L1(T,C), we define the `th Cesàro mean of the
Fourier series of f to be the function σ`(f) : T → C given by

σ`(f) = 1
`+1

∑̀
m=0

sm(f).

5.37 Note: For f ∈ L1(T ) = L1(T,C) we have

σ`(f)(x) =
1

`+ 1

∑̀
m=0

sm(f)(x) =
1

`+ 1

∑̀
m=0

1

2π

∫ π

−π
f(t)Dm(x− t) dt

=
1

2π

∫ π

−π
f(t) 1

`+1

∑̀
m=0

Dm(x− t) dt =
1

2π

∫ π

−π
f(t)K`(x− t) dt

where

K`(u) =
1

`+ 1

∑̀
m=0

Dm(u) =
1

`+ 1

∑̀
m=0

sin (2m+1)u
2

sin u
2

=
1

(`+ 1) sin u
2

· Im
( ∑̀
m=0

ei(2m+1)u/2
)

=
1

(`+ 1) sin u
2

· Im
(
eiu/2

∑̀
m=0

eimu
)

=
1

(`+ 1) sin u
2

· Im
(
eiu/2

ei(`+1)u − 1

eiu − 1

)
=

1

(`+ 1) sin u
2

· Im
( ei(`+1)u − 1

eiu/2 − e−iu
2

)
=

1

(`+ 1) sin u
2

· Im
(ei(`+1)u/2 − e−i(`+1)u/2

eiu/2 − e−iu/2
· ei(`+1)u/2

)
=

1

(`+ 1) sin u
2

·
sin (`+1)u

2

sin u
2

· sin (`+1)u
2 =

sin2 (`+1)u
2

(`+ 1) sin2 u
2

.

5.38 Definition: The above function K` : T → R is called the `th Féjer kernel.

5.39 Remark: Using convolution notation, for f ∈ L1(T ) we have σ`(f) = f ?K`.

5.40 Lemma: We have

(1) For 0 < t ≤ π we have 0 ≤ K`(t) ≤ π2

(`+1) t2 .

(2)

∫ π

−π
K`(t) dt = 2

∫ π

0

K`(t) dt = 2π.

(3)

∫ π

π

f(t)K`(x− t) dt =

∫ π

−π
f(x+ t)K`(t) dt =

∫ π

−π
f(x− t)K`(t) dt.

Proof: The proof is left as an exercise.
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5.41 Theorem: (Convergence of the Cesàro Means) Let f ∈ L1(T ) and consider f as a
2π-periodic function f : R→ C.

(1) If a ∈ R and the one-sided limits f(a−) = lim
x→a−

f(x) and f(a+) = lim
x→a+

f(x) both

exist in C, then

lim
`→∞

σ`(f)(a) =
f(a−) + f(a+)

2
.

(2) If a, b ∈ R with a ≤ b and f is continuous in [a, b] then σ` → f uniformly on [a, b].

Proof: By Part 3 of the above lemma, we have

σ`(f)(a) =
1

2π

∫ π

−π
f(t)K`(a− t) dt =

1

2π

∫ π

−π

f(a+ t) + f(a− t)
2

K`(t) dt

and by Part 2 of the above lemma we have

f(a+) + f(a−)

2
=

1

2π

∫ π

−π

f(a+) + f(a−)

2
K`(t) dt

and so∣∣∣∣σ`(f)(a)− f(a+) + f(a−)

2

∣∣∣∣ =

∣∣∣∣ 1

2π

∫ π

−π

(
f(a+t) + f(a−t)

2
− f(a+) + f(a−)

2

)
K`(t) dt

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

0

(
(f(a+t)− f(a+)) + (f(a−t)− f(a−))

)
K`(t) dt

∣∣∣∣
≤ 1

2π

∫ π

0

(∣∣f(a+t)− f(a+)
∣∣+
∣∣f(a−t)− f(a−)

∣∣)K`(t) dt

= Iδ + Jδ,

for any 0 < δ ≤ π, where

Iδ =
1

2π

∫ δ

0

(∣∣f(a+t)− f(a+)
∣∣+
∣∣f(a−t)− f(a−)

∣∣)K`(t) dt

Jδ =
1

2π

∫ π

δ

(∣∣f(a+t)− f(a+)
∣∣+
∣∣f(a−t)− f(a−)

∣∣)K`(t) dt .

Let ε > 0. Choose δ > 0 so that for all 0 < t < δ we have
∣∣f(x + t) − f(a+)

∣∣ < ε
2 and∣∣f(x− t)− f(a−)

∣∣ < ε
2 . Then, by Part 2 of the above lemma,

Iδ ≤
1

2π

∫ π

0

ε ·K`(t) dt ≤ ε
2 .

By Part 1 of the above lemma, for δ ≤ t ≤ π we have K`(t) ≤ π2

(`+1) δ2 so for ` + 1 ≥ M
ε

where M = π
(
||f ||1 + π|f(a+) + f(a−)|

)/
δ2 we have

Jδ ≤
1

2π

∫ π

δ

(
|f(a+ t)|+ |f(a− t|+ |f(a+) + f(a−)

∣∣) π2

(`+1) δ2 dt

≤ 1
2π ·

π2

(`+1) δ2

(
||f ||1 + π

∣∣f(a+) + f(a−)
∣∣ = M

2(`+1) ≤
ε
2 .

This proves Part (1), and Part (2) can be proven using the same method noting that the
estimates can be made uniformly.
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5.42 Corollary: Let f ∈ L1(T ), consider f as a 2π-periodic function f : R→ C, and let
a ∈ R. If f(a+), f(a−) and lim

m→∞
sm(f)(a) all exist in C then

lim
m→∞

sm(f)(a) =
f(a+) + f(a−)

2
.

5.43 Remark: The above corollary justifies the argument given in Remark 5.5 where we

showed that
∞∑
k=1

1
(2k+1)2 = π2

8 .
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