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Chapter 1. Cardinality

1.1 Definition: Let X and Y be sets and let f : X → Y . Recall that the domain of f
and the range of f are the sets

Domain(f) = X , Range(f) = f(X) =
{
f(x)

∣∣x ∈ X} .
For A ⊆ X, the image of A under f is the set

f(A) =
{
f(x)

∣∣x ∈ A}.
For B ⊆ Y , the inverse image of B under f is the set

f−1(B) =
{
x ∈ X

∣∣f(x) ∈ B
}
.

1.2 Definition: Let X, Y and Z be sets, let f : X → Y and let g : Y → Z. We define
the composite function g ◦ f : X → Z by (g ◦ f)(x) = g

(
f(x)

)
for all x ∈ X.

1.3 Definition: We say that f is injective (or one-to-one, written as 1 : 1) when for
every y ∈ Y there exists at most one x ∈ X such that f(x) = y. Equivalently, f is
injective when for all x1, x2 ∈ X, if f(x1) = f(x2) then x1 = x2. We say that f is
surjective (or onto) when for every y ∈ Y there exists at least one x ∈ X such that
f(x) = y. Equivalently, f is surjective when Range(f) = Y . We say that f is bijective
(or invertible) when f is both injective and surjective, that is when for every y ∈ Y there
exists exactly one x ∈ X such that f(x) = y. When f is bijective, we define the inverse
of f to be the function f−1 : Y → X such that for all y ∈ Y , f−1(y) is equal to the unique
element x ∈ X such that f(x) = y. Note that when f is bijective so is f−1, and in this
case we have (f−1)−1 = f .

1.4 Theorem: Let f : X → Y and let g : Y → Z. Then

(1) if f and g are both injective then so is g ◦ f ,

(2) if f and g are both surjective then so is g ◦ f , and

(3) if f and g are both invertible then so is g ◦ f , and in this case (g ◦ f)−1 = f−1 ◦ g−1.

Proof: To prove Part 1, suppose that f and g are both injective. Let x1, x2 ∈ X. If
g(f(x1)) = g(f(x2)) then since g is injective we have f(x1) = f(x2), and then since f is
injective we have x1 = x2. Thus g ◦ f is injective.

To prove Part 2, suppose that f and g are surjective. Given z ∈ Z, since g is surjective
we can choose y ∈ Y so that g(y) = z, then since f is surjective we can choose x ∈ X so
that f(x) = y, and then we have g(f(x)) = g(y) = z. Thus g ◦ f is surjective.

Finally, note that Part 3 follows from Parts 1 and 2.

1.5 Definition: For a set X, we define the identity function on X to be the function
IX : X → X given by IX(x) = x for all x ∈ X. Note that for f : X → Y we have
f ◦ IX = f and IY ◦ f = f .

1.6 Definition: Let X and Y be sets and let f : X → Y . A left inverse of f is a function
g : Y → X such that g ◦ f = IX . Equivalently, a function g : Y → X is a left inverse of f
when g

(
f(x)

)
= x for all x ∈ X. A right inverse of f is a function h : Y → X such that

f ◦ h = IY . Equivalently, a function h : Y → X is a right inverse of f when f
(
h(y)

)
= y

for all y ∈ Y .
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1.7 Theorem: Let X and Y be nonempty sets and let f : X → Y . Then

(1) f is injective if and only if f has a left inverse,
(2) f is surjective if and only if f has a right inverse, and
(3) f is bijective if and only if f has a left inverse g and a right inverse h, and in this case
we have g = h = f−1.

Proof: To prove Part 1, suppose first that f is injective. Since X 6= ∅ we can choose a ∈ X
and then define g : Y → X as follows: if y ∈ Range(f) then (using the fact that f is 1:1)
we define g(y) to be the unique element xy ∈ X with f(xy) = y, and if y /∈ Range(f) then
we define g(y) = a. Then for every x ∈ X we have y = f(x) ∈ Range(f), so g(y) = xy = x,
that is g

(
f(x)

)
= x. Conversely, if f has a left inverse, say g, then f is 1:1 since for all

x1, x2 ∈ X, if f(x1) = f(x2) then x1 = g
(
f(x1)

)
= g
(
f(x2)

)
= x2.

To prove Part 2, suppose first that f is onto. For each y ∈ Y , choose xy ∈ X with
f(xy) = y, then define g : Y → X by g(y) = xy (we need the Axiom of Choice for
this). Then g is a right inverse of f since for every y ∈ Y we have f

(
g(y)

)
= f(xy) = y.

Conversely, if f has a right inverse, say g, then f is onto since given any y ∈ Y we can
choose x = g(y) and then we have f(x) = f

(
g(y)

)
= y.

To prove Part 3, suppose first that f is bijective. The inverse function f−1 : Y → X
is a left inverse for f because given x ∈ X we can let y = f(x) and then f−1(y) = x so
that f−1

(
f(x)

)
= f−1(y) = x. Similarly, f−1 is a right inverse for f because given y ∈ Y

we can let x be the unique element in X with y = f(x) and then we have x = f−1(y) so
that f

(
f−1(y)

)
= f(x) = y. Conversely, suppose that g is a left inverse for f and h is a

right inverse for f . Since f has a left inverse, it is injective by Part 1. Since f has a right
inverse, it is surjective by Part 2. Since f is injective and surjective, it is bijective. As
shown above, the inverse function f−1 is both a left inverse and a right inverse. Finally,
note that g = f−1 = h because for all y ∈ Y we have

g(y) = g
(
f
(
f−1(y)

))
= f−1(y) = f−1

(
f
(
h(y)

))
= h(y) .

1.8 Corollary: Let X and Y be nonempty sets. Then there exists an injective map
f : X → Y if and only if there exists a surjective map g : Y → X.

Proof: Suppose f : X → Y is an injective map. Then f has a left inverse. Let g be a left
inverse of f . Since g ◦ f = IX , we see that f is a right inverse of g. Since g has a right
inverse, g is surjective. Thus there is a surjective map g : Y → X. Similarly, if g : Y → X
is surjective, then it has a right inverse f : X → Y which is injective.

1.9 Definition: Let A and B be sets. We say that A and B have the same cardinality,
and we write |A| = |B|, when there exists a bijective map f : A→ B (or equivalently when
there exists a bijective map g : B → A). We say that the cardinality of A is less than
or equal to the cardinality of B, and we write |A| ≤ |B|, when there exists an injective
map f : A → B (or equivalently when there exists a surjective map g : B → A). We say
that the cardinality of A is less than the cardinality of B, and we write |A| < |B|, when
|A| ≤ |B| and |A| 6= |B|, (that is when there exists an injective map f : A→ B but there
does not exist a bijective map g : A → B). We also write |A| ≥ |B| when |B| ≤ |A| and
|A| > |B| when |B| < |A|.

1.10 Example: Let N =
{
n ∈ Z

∣∣n ≥ 0
}

= {0, 1, 2, · · ·}. The map f : N → 2N given
by f(k) = 2k is bijective, so |2N| = |N |. The map g : N → Z given by g(2k) = k and
g(2k+ 1) = −k− 1 for k ∈ N is bijective, so we have |Z| = |N|. The map h : N×N→ N
given by h(k, l) = 2k(2l + 1)− 1 is bijective, so we have |N×N| = |N|.
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1.11 Theorem: For all sets A, B and C,

(1) |A| = |A|,
(2) if |A| = |B| then |B| = |A|,
(3) if |A| = |B| and |B| = |C| then |A| = |C|,
(4) |A| ≤ |B| if and only if (|A| = |B| or |A| < |B|), and

(5) if |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|.

Proof: Part 1 holds because the identity function IA : A → A is bijective. Part 2 holds
because if f : A→ B is bijective then so is f−1 : B → A. Part 3 holds because if f : A→ B
and g : B → C are bijective then so is the composite g ◦ f : A→ C. The rest of the proof
is left as an exercise.

1.12 Definition: Let A be a set. For each n ∈ N, let Sn = {0, 1, 2, · · · , n−1}. For n ∈ N,
we say that the cardinality of A is equal to n, or that A has n elements, and we write
|A| = n, when |A| = |Sn|. We say that A is finite when |A| = n for some n ∈ N. We say
that A is infinite when A is not finite. We say that A is countable when |A| = |N|.

1.13 Note: When a set A is finite with |A| = n, and when f : A → Sn is a bijection, if
we let ak = f−1(k) for each k ∈ Sn then we have A = {a0, a1, · · · , ak−1} with the elements
ak distinct. Conversely, if A = {a0, a1, · · · , ak−1} with the elements ak all distinct, then
we define a bijection f : A→ Sn by f(ak) = k. Thus we see that A is finite with |A| = n
if and only if A is of the form A = {a0, a1, · · · , an−1} with the elements ak all distinct.
Similarly, a set A is countable if and only if A is of the form A = {a0, a1, a2, · · ·} with the
elements ak all distinct.

1.14 Note: For n ∈ N, if A is a finite set with |A| = n+ 1 and a ∈ A then |A \ {a}| = n.
Indeed, if A = {a0, a1, · · · , an} with the elements ai distinct, and if a = ak so that we have
A \ {a} = {a0, a1, · · · , ak−1, ak+1, · · · , an}, then we can define a bijection f : Sn → A \ {a}
by f(i) = ai for 0 ≤ i < k and f(i) = ai+1 for k ≤ i < n.

1.15 Theorem: Let A be a set. Then the following are equivalent.

(1) A is infinite.

(2) A contains a countable subset.

(3) |N| ≤ |A|
(4) There exists a map f : A→ A which is injective but not surjective.

Proof: To prove that (1) implies (2), suppose that A is infinite. Since A 6= ∅ we can
choose an element a0 ∈ A. Since A 6= {a0} we can choose an element a1 ∈ A \ {a0}.
Since A 6= {a0, a1} we can choose a3 ∈ A \ {a0, a1}. Continue this procedure: having
chosen distinct elements a0, a1, · · · , an−1 ∈ A, since A 6= {a0, a1, · · · , an−1} we can choose
an ∈ A \ {a0, a1, · · · , an−1}. In this way, we obtain a countable set {a0, a1, a2, · · ·} ⊆ A.

Next we show that (2) is equivalent to (3). Suppose that A contains a countable
subset, say {a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Since the ai are distinct, the
map f : N → A given by f(k) = ak is injective, and so we have |N| ≤ |A|. Conversely,
suppose that |N| ≤ |A|, and chose an injective map f : N→ A. Considered as a map from
N to f(N), f is bijective, so we have |N| = |f(N)| hence f(N) is a countable subset of A.

Next, let us show that (2) implies (4). Suppose that A has a countable subset, say
{a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Define f : A → A by f(ak) = ak+1 for
all k ∈ N and by f(b) = b for all b ∈ A \ {a0, a1, a2, · · ·}. Then f is injective but not
surjective (the element a0 is not in the range of f).
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Finally, to prove that (4) implies (1) we shall prove that if A is finite then every
injective map f : A→ A is surjective. We prove this by induction on the cardinality of A.
The only set A with |A| = 0 is the set A = ∅, and then the only function f : A→ A is the
empty function, which is surjective. Since that base case may appear too trivial, let us
consider the next case. Let n = 1 and let A be a set with |A| = 1, say A = {a}. The only
function f : A → A is the function given by f(a) = a, which is surjective. Let n ≥ 1 and
suppose, inductively, that for every set A with |A| = n, every injective map f : A → A is
surjective. Let B be a set with |B| = n+ 1 and let g : B → B be injective. Suppose, for a
contradiction, that g is not surjective. Choose an element b ∈ B which is not in the range
of g so that we have g : B → B \ {b}. Let A = B \ {b} and let f : A → A be given by
f(x) = g(x) for all x ∈ A. Since g : B → A is injective and f(x) = g(x) for all x ∈ A, f is
also injective. Again since g is injective, there is no element x ∈ B \ {b} with g(x) = g(b),
so there is no element x ∈ A with f(x) = g(b), and so f is not surjective. Since |A| = n
(by the above note), this contradicts the induction hypothesis. Thus g must be surjective.
By the Principle of Induction, for every n ∈ N and for every set A with |A| = n, every
injective function f : A→ A is surjective.

1.16 Corollary: Let A and B be sets.

(1) If A is countable then A is infinite.
(2) When |A| ≤ |B|, if B is finite then so is A (equivalently if A is infinite then so is B).
(3) If |A| = n and |B| = m then |A| = |B| if and only if n = m.
(4) If |A| = n and |B| = m then |A| ≤ |B| if and only if n ≤ m.
(5) When one of the two sets A and B is finite, if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Proof: Part 1 is immediate: if A is countable then A contains a countable subset (itself),
so A is infinite, by Theorem 1.15.

To prove Part 2, suppose that |A| ≤ |B and that |A| is infinite. Since A is infinite, we
have |N| ≤ |A| (by Theorem 1.15). Since |N| ≤ |A| and |A| ≤ |B| we have |N| ≤ |B| (by
Theorem 1.11). Since |N| ≤ |B|, B is infinite (by Theorem 1.15 again).

To Prove Part 3, suppose that |A| = n and |B| = m. If n = m then we have Sn = Sm
and so |A| = |Sn| = |Sm| = |B|. Conversely, suppose that |A| = |B|. Suppose, for a
contradiction, that n 6= m, say n > m, and note that Sm ⊂6= Sn. Since |A| = |B| we have

|Sn| = |A| = |B| = |Sm| so we can choose a bijection f : Sn → Sm. Since Sm ⊂6= Sn, we can

consider f as a function f : Sn → Sn which is injective but not surjective. This contradicts
Theorem 1.16, and so we must have n = m. This proves Part 3.

To prove Part 4, we again suppose that |A| = n and |B| = m. If n ≤ m then Sn ⊆ Sm
so the inclusion map I : Sn → Sm is injective and we have |A| = |Sn| ≤ |Sm| = |B|.
Conversely, suppose that |A| ≤ |B| and suppose, for a contradiction, that n > m. Since
|A| ≤ |B| we have |Sn| = |A| ≤ |B| = |Sm| so we can choose an injective map f : Sn → Sm.
Since n > m we have Sm ⊂6= Sn so we can consider f as a map f : Sn → Sn, and this map

is injective but not surjective. This contradicts Theorem 1.15, and so n ≤ m.
Finally, to prove Part 5 we suppose that one of the two sets A and B is finite, and

that |A| ≤ |B| and |B| ≤ |A|. If A is finite then, since |B| ≤ |A|, Part 2 implies that B is
finite. If B is finite then, since |A| ≤ |B|, Part 2 implies that A is finite. Thus, in either
case, we see that A and B are both finite. Since A and B are both finite with |A| ≤ |B|
and |B| ≤ |A|, we must have |A| = |B| by Parts 3 and 4.
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1.17 Theorem: Let A be a set. Then |A| ≤ |N| if and only if A is finite or countable.

Proof: First we claim that every subset of N is either finite or countable. Let A ⊆ N and
suppose that A is not finite. Since A 6= ∅, we can set a0 = minA (using the Well-Ordering
Property of N). Note that {0, 1, · · · , a0} ∩A = {a0}. Since A 6= {a0} (so the set A \ {a0}
is nonempty) we can set a1 = minA \ {a0}. Then we have a0 < a1 and {0, 1, 2, · · · , a1} ∩
A = {a0, a1}. Since A 6= {a0, a1} we can set a2 = minA \ {a0, a1}. Then we have
a0 < a1 < a2 and {0, 1, 2, · · · , a3} ∩ A = {a0, a1, a2}. We continue the procedure: having
chosen a0, a1, · · · , an−1 ∈ A with a0 < a1 < · · · < an−1 such that A ∩ {0, 1, · · · , an−1} =
{a0, a1, · · · , an−1}, since A 6= {a0, a1, · · · , an−1} we can set an = minA\{a0, a1, · · · , an−1},
and then we have a0 < a1 < · · · < an−1 < an and A{0, 1, 2, · · · , an}∩A = {a0, a1, · · · , an}.
In this way, we obtain a countable set {a0, a1, a2, · · ·} ⊆ A with a0 < a1 < a2 < · · ·
with the property that for all m ∈ N, {0, 1, 2, · · · , am} ∩ A = {a0, a1, · · · , am}. Since
0 ≤ a0 < a1 < a2 < · · ·, it follows (by induction) that ak ≥ k for all k ∈ N. It follows in
turn that A ⊆ {a0, a1, a2 · · ·} because given m ∈ A, since m ≤ am we have

m ∈ {0, 1, 2, · · · ,m} ∩A ⊆ {0, 1, 2, · · · , am} ∩A = {a0, a1, · · · , am}.
Thus A = {a0, a1, a2, · · ·} and the elements ai are distinct, so A is countable. This proves
our claim that every subset of N is either finite or countable.

Now suppose that |A| ≤ |N | and choose an injective map f : A → N. Since f is
injective, when we consider it as a map f : A→ f(A), it is bijective, and so |A| = |f(A)|.
Since f(A) ⊆ N, the previous paragraph shows that f(A) is either finite or countable. If
f(A) is finite with |f(A)| = n then |A| = |f(A)| = |Sn|, and if f(A) is countable then we
have |A| = |f(A)| = |N|. Thus A is finite or countable.

1.18 Theorem: Let A be a set. Then

(1) |A| < |N| if and only if A is finite,
(2) |N| < |A| if and only if A is neither finite nor countable, and
(3) if |A| ≤ |N| and |N| ≤ |A| then |A| = |N|.

Proof: Part 1 follows from Theorem 1.15 because

|A| < |N| ⇐⇒ (|A| ≤ |N| and |A| 6= |N|)
⇐⇒ (A is finite or countable and A is not countable)

⇐⇒ A is finite

and Part 2 follows from Theorem 1.17 because

|N| < |A| ⇐⇒ (|N| ≤ |A| and |N| 6= |A|)
⇐⇒ (A is not finite and A is not countable.)

To prove Part 3, suppose that |A| ≤ |N| and |N| ≤ |A|. Since |A| ≤ |N|, we know
that A is finite or countable by Theorem 1.17. Since |N| ≤ |A|, we know that that A is
infinite by Theorem 1.15. Since A is finite or countable and A is not finite, it follows that
A is countable. Thus |A| = |N|.

1.19 Definition: Let A be a set. When A is countable we write |A| = ℵ0. When A is
finite we write |A| < ℵ0. When A is infinite we write |A| ≥ ℵ0. When A is either finite or
countable we write |A| ≤ ℵ0 and we say that A is at most countable. when A is neither
finite nor countable we write |A| > ℵ0 and we say that A is uncountable.
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1.20 Theorem:

(1) If A and B are countable sets, then so is A×B.
(2) If A and B are countable sets, then so is A ∪B.
(3) If A0, A1, A2, · · · are countable sets, then so is

⋃∞
k=0Ak.

(4) Q is countable.

Proof: To prove both Parts 1 and 2, let A = {a0, a1, a2, · · ·} with the ai distinct and let
B = {b0, b1, b2, · · ·} with the bi distinct. Since every positive integer can be written uniquely
in the form 2k(2l+1) with k, l ∈ N, the map f : A×B → N given by f(ak, bl) = 2k(2l+1)−1
is bijective, and so |A×B| = |N|. This proves Part 1. Since the map g : N→ A∪B given
by g(k) = ak is injective, we have |N| ≤ |A ∪ B|. Since the map h : N→ A ∪ B given by
h(2k) = ak and h(2k + 1) = bk is surjective, we have |A ∪ B| ≤ |N |. Since |N| ≤ |A ∪ B|
and |A ∪B| ≤ |N|, we have |A ∪B| = |N| by Part 3 of Theorem 1.18. This proves 2.

To prove Part 3, for each k ∈ N, let Ak = {ak0, ak1, ak2, · · ·} with the aki distinct.
Since the map f : N →

⋃∞
k=0Ak given by f(k) = a0,k is injective, |N| ≤

∣∣⋃∞
k=0Ak

∣∣.
Since N×N is countable by Part (1), and since the map g : N×N→

⋃∞
k=0Ak given by

g(k, l) = ak,l is surjective, we have
∣∣⋃∞

k=0Ak
∣∣ ≤ |N ×N| = |N|. By Part 3 of Theorem

1.18, we have
∣∣⋃∞

k=0Ak
∣∣ = |N|, as required.

Finally, we prove Part 4. Since the map f : N → Q given by f(k) = k is injective,
we have |N| ≤ |Q|. Since the map g : Q → Z × Z, given by g

(
a
b

)
= (a, b) for all

a, b ∈ Z with b > 0 and gcd(a, b) = 1, is injective, and since Z × Z is countable, we have
|Q| ≤ |Z× Z| = |N|. Since |N| ≤ |Q| and |Q| ≤ |N|, we have |Q| = |N|, as required.

1.21 Exercise: Let A be a countable set. Show that the set of finite sequences with terms
in A is countable. Show that the set of all finite subsets of A is countable.

1.22 Definition: For a set A, let P(A) denote the power set of A, that is the set of all
subsets of A, and let 2A denote the set of all functions from A to S2 = {0, 1}.

1.23 Theorem:

(1) For every set A,
∣∣P(A)

∣∣ =
∣∣2A∣∣.

(2) For every set A, |A| <
∣∣P(A)

∣∣.
(3) R is uncountable.

Proof: Let A be any set. Define a map g : P(A) → 2A as follows. Given S ∈ P(A), that
is given S ⊆ A, we define g(S) ∈ 2A to be the map g(S) : A→ {0, 1} given by

g(S)(a) =

{
1 if a ∈ S,
0 if a /∈ S.

Define a map h : 2A → P(A) as follows. Given f ∈ 2A, that is given a map f : A→ {0, 1},
we define h(f) ∈ P(A) to be the subset

h(f) =
{
a ∈ A

∣∣f(a) = 1
}
⊆ A.

The maps g and h are the inverses of each other because for every S ⊆ A and every
f : A→ {0, 1} we have

f = g(S) ⇐⇒ ∀a ∈ A f(a) = g(S)(a) ⇐⇒ ∀a ∈ A f(a) =

{
1 if a ∈ S,

0 if a /∈ S,
⇐⇒ ∀a ∈ A

(
f(a) = 1 ⇐⇒ a ∈ S

)
⇐⇒

{
a ∈ A

∣∣f(a) = 1
}

= S ⇐⇒ h(f) = S.

This completes the proof of Part 1.
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Let us prove Part 2. Again we let A be any set. Since the the map f : A→ P(A) given
by f(a) = {a} is injective, we have |A| ≤

∣∣P(A)
∣∣. We need to show that |A| 6=

∣∣P(A)
∣∣.

Let g : A→ P(A) be any map. Let S =
{
a ∈ A

∣∣a /∈ g(a)
}

. Note that S cannot be in the
range of g because if we could choose a ∈ A so that g(a) = S then, by the definition of S,
we would have a ∈ S ⇐⇒ a /∈ g(a) ⇐⇒ a /∈ S which is not possible. Since S is not in
the range of g, the map g is not surjective. Since g was an arbitrary map from A to P(A),
it follows that there is no surjective map from A to P(A). Thus there is no bijective map
from A to P(A) and so we have |A| 6=

∣∣P(A)
∣∣, as desired.

Finally, we shall prove that R is uncountable using the fact that every real number has
a unique decimal expansion which does not end with an infinite string of 9’s. Define a map
g : 2N → R as follows. Given f ∈ 2N, that is given a map f : N→ {0, 1}, we define g(f) to
be the real number g(f) ∈ [0, 1) with the decimal expansion g(f) = 0.f(0)f(1)f(2)f(3) · · ·,
that is g(f) =

∞∑
k=0

f(k)10−k−1. By the uniqueness of decimal expansions, the map g

is injective, so we have
∣∣2N∣∣ ≤ |R|. Thus |N| <

∣∣P(N)
∣∣ =

∣∣2N∣∣ ≤ |R|, and so R is
uncountable, by Part 2 of Theorem 1.18.

1.24 Theorem: (Cantor - Schroeder - Bernstein) Let A and B be sets. Suppose that
|A| ≤ |B| and |B| ≤ |A|. Then |A| = |B|

Proof: We sketch a proof. Choose injective functions f : A → B and g : B → A. Since
the functions f : A → f(A), g : B → g(B) and f : g(B) → f

(
g(B)

)
are bijective we have

|A| = |f(A)| and |B| = |g(B)| =
∣∣f(g(B))

∣∣. Also note that f
(
g(B)

)
⊆ f(A) ⊆ B. Let

X = f
(
g(B)

)
, Y = f(A) and Z = B. Then we have X ⊆ Y ⊆ Z and we have |X| = |Z|

and we need to show that |Y | = |Z|. The composite h = f ◦ g : Z → X is a bijection.
Define sets Zn and Yn for n ∈ N recursively by

Z0 = Z, Zn = h(Zn−1) and Y0 = Y , Yn = h(Yn−1).

Since Y0 = Y , Z0 = Z, Z1 = h(Z0) = h(Z) = X and X ⊆ Y ⊆ Z, we have

Z1 ⊆ Y0 ⊆ Z0.

Also note that for 1 ≤ n ∈ N,

Zn ⊆ Yn−1 ⊆ Zn−1 =⇒ h(Zn) ⊆ h(Yn−1) ⊆ h(Zn−1) =⇒ Zn+1 ⊆ Yn ⊆ Zn.
By the Induction Principle, it follows that Zn ⊆ Yn−1 ⊆ Zn−1 for all n ≥ 1, so we have

Z0 ⊇ Y0 ⊇ Z1 ⊇ Y1 ⊇ Z2 ⊇ Y2 ⊇ · · ·

Let Un = Zn \ Yn, U =
∞⋃
n=0

Un and V = Z \ U . Define H : Z → Y by

H(x) =

{
h(x) if x ∈ U,
x if x ∈ V.

Verify that H is bijective.
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1.25 Example: Show that |R| =
∣∣2N∣∣.

Solution: g : 2N → R as follows: for f ∈ 2N we let g(f) be the real number g(f) ∈ [0, 1)
with decimal expansion g(f) = 0.f(0)f(1)f(2) · · · .. Then g is injective so

∣∣2N∣∣ ≤ |R|.
Define h : 2N → [0, 1) as follows: for f ∈ 2N let h(f) be the real number h(f) ∈ [0, 1] with
binary expansion h(f) = 0.f(0)f(1)f(2) · · ·. Then h is surjective so we have

∣∣[0, 1]
∣∣ ≤ ∣∣2N∣∣.

The map k : R→ [0, 1] given by k(x) = 1
2 + 1

π tan−1 x is injective so we have |R| ≤
∣∣[0, 1]

∣∣.
Since |R| ≤

∣∣[0, 1]
∣∣ ≤ ∣∣2N∣∣ and

∣∣2N∣∣ ≤ |R|, we have |R| =
∣∣2N∣∣ by the Cantor-Schroeder-

Bernstein Theorem.

1.26 Notation: For sets A and B, we write AB to denote the set of functions f : B → A.

1.27 Theorem: Let A and B be finite sets and let P(A) is the power set of A (that is
the set of all subsets of A). Then

(1) if A and B are disjoint then |A ∪B| = |A|+ |B|,
(2) |A×B| = |A| · |B|,
(3)

∣∣AB∣∣ = |A||B|, and

(3) |P(A)| = 2|A|.

Proof: The proof is left as an exercise.

1.28 Theorem: Let A, B, C and D be sets with |A| = |C| and |B| = |D|. Then

(1) if A ∩B = ∅ and C ∩D = ∅ then
∣∣A ∪B∣∣ =

∣∣C ∪D∣∣,
(2)

∣∣A×B∣∣ =
∣∣C ×D∣∣, and

(3)
∣∣AB∣∣ =

∣∣CD∣∣.
Proof: The proof is left as an exercise.

1.29 Remark: It is possible to define certain specific sets called cardinals such that
for every set A there exists a unique cardinal κ with |A| = |κ|. We can then define the
cardinality of a set A to be equal to the unique cardinal κ such that |A| = |κ| and, in
this case, we define the cardinality of the set A to be |A| = κ. In foundational set theory,
the natural numbers are defined, formally, to be equal to the sets 0 = ∅, 1 = {0} = {∅},
2 = {0, 1} =

{
∅, {∅}

}
and, in general, n+1 = n∪{n} so that the natural number n is equal

to the set that we previously denoted by Sn, that is n = Sn = {0, 1, · · · , n− 1
}

. The finite
cardinals are equal to the natural numbers and the countable cardinal ℵ0 is equal to the
set of natural numbers. The previous theorem allows us to define arithmetic operations
on cardinals which extend the usual arithmetic operations on the natural numbers. Given
cardinals κ and λ we define κ+ λ, κ · λ and κλ to be the cardinals such that

κ+ λ =
∣∣(κ× {0}) ∪ (λ× {1})

∣∣,
κ · λ =

∣∣κ× λ∣∣,
κλ =

∣∣κλ∣∣.
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1.30 Theorem: Let κ, λ and µ be cardinals. Then

(1) κ+ λ = λ+ κ,
(2) (κ+ λ) +mu = κ+ (λ+ µ),
(3) κ+ 0 = κ,
(4) λ ≤ µ =⇒ κ+ λ ≤ κ+ µ,
(5) κ · λ = λ · κ,
(6) (κ · λ) · µ = κ · (λ · µ),
(7) κ · 1 = κ,
(8) κ · (λ+ µ) = (κ · λ) + (κ · µ),
(9) λ ≤ µ =⇒ κ · λ ≤ κ · µ,
(10) κλ+µ = κλ · κµ,
(11) (κλ)µ = κλ·µ,
(12) (κ · λ)µ = κµ · λµ,
(13) λ ≤ µ =⇒ κλ ≤ κµ, and
(14) κ ≤ λ =⇒ κµ ≤ λµ.

Proof: We sketch a proof for Parts 9 and 11 and leave the rest as an exercise. To prove
Part 9, let A, B and C be sets with |A| = κ, |B| = λ and |C| = µ and suppose that
|B| ≤ |C|. We need to show that |A×B| ≤ |A× C|. Let f : B → C be an injective map.
Define F : A×B → A× C by F (a, b) =

(
a, f(b)

)
then verify that F is injective.

To prove Part 11, let A, B and C be sets with |A| = κ, |B| = λ and |C| = µ. We need
to show that

∣∣(AB)C
∣∣ =

∣∣AB×C∣∣. Define F : (AB)C → AB×C by F (f)(b, c) = f(c)(b).
Verify that F is bijective with inverse G : AB×C → (AB)C given by G(g)(c)(b) = g(b, c).

1.31 Exercise: Show that
∣∣∣ ∞⋃
n=0

Rn
∣∣∣ = 2ℵ0 .

1.32 Exercise: Find
∣∣R[0,1]

∣∣.
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Chapter 2. Metric Spaces

2.1 Definition: Let F = R or C. Let U be a vector space over F . An inner product
on U (over F ) is a function 〈 , 〉 : U × U → F (meaning that if u, v ∈ U then 〈u, v〉 ∈ F )
such that for all u, v, w ∈ U and all t ∈ F we have

(1) (Sesquilinearity) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 , 〈tu, v〉 = t 〈u, v〉,
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 , 〈u, tv〉 = t 〈u, v〉,

(2) (Conjugate Symmetry) 〈u, v〉 = 〈v, u〉, and
(3) (Positive Definiteness) 〈u, u〉 ≥ 0 with 〈u, u〉 = 0 ⇐⇒ u = 0.

For u, v ∈ U , 〈u, v〉 is called the inner product of u with v. We say that u and v are
orthogonal when 〈u, v〉 = 0. An inner product space (over F ) is a vector space over
F equipped with an inner product. Given two inner product spaces U and V over F , a
linear map L : U → V is called a homomorphism of inner product spaces (or we say
that L preserves inner product) when

〈
L(x), L(y)

〉
= 〈x, y〉 for all x, y ∈ U . A bijective

homomorphism is called an isomorphism.

2.2 Theorem: Let U be an inner product space over F = R or C and let u, v ∈ U . Then
if 〈x, u〉 = 〈x, v〉 for all x ∈ U , or if 〈u, x〉 = 〈v, x〉 for all x ∈ U , then u = v.

Proof: Suppose that 〈x, u〉 = 〈x, v〉 for all x ∈ U . Then 〈x, u− v〉 = 〈x, u〉 − 〈x, v〉 = 0 for
all x ∈ U . In particular, taking x = u − v we have 〈u − v, u − v〉 = 0 so that u = v, by
positive definiteness. Similarly, if 〈u, x〉 = 〈v, x〉 for all x ∈ U then u = v.

2.3 Definition: Let U be an inner product space over F = R or C. For u ∈ U , we define
the norm (or length) of u to be

||u|| =
√
〈u, u〉.

2.4 Theorem: Let U be an inner product space over F = R or C. For u, v ∈ U and
t ∈ F we have

(1) (Scaling) ||tu|| = |t| ||u||,
(2) (Positive Definiteness) ||u|| ≥ 0 with ||u|| = 0 ⇐⇒ u = 0,
(3) ||u+ v||2 = ||u||2 + 2 Re 〈u, v〉+ ||v||2,
(4) (Polarization Identity) if F = R then 〈u, v〉 = 1

4

(
||u+ v|| − ||u− v||

)
and

if F = C then 〈u, v〉 = 1
4

(
||u+ v||2 + i||u+ iv||2 − ||u− v||2 − i||u− iv||2

)
,

(5) (The Cauchy-Schwarz Inequality)
∣∣〈u, v〉∣∣ ≤ ||u|| ||v|| with |〈u, v〉| = ||u|| ||v|| if and only

if {u, v} is linearly dependent, and
(6) (The Triangle Inequality)

∣∣‖u‖ − ‖v‖∣∣ ≤ ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof: The first 4 parts are all easy to prove. To prove Part 5, suppose first that {u, v}
is linearly dependent. Then one of u and v is a multiple of the other, say v = tu with
t ∈ F . Then we have |〈u, v〉| = |〈u, tu〉| =

∣∣ t 〈u, u〉∣∣ = |t| ||u||2 = ||u|| ||tu|| = ||u|| ||v||.
Next suppose that {u, v} is linearly independent. Then 1 · v + t · u 6= 0 for all t ∈ F , so in

particular v − 〈v,u〉||u||2 u 6= 0. Thus we have

0 <
∣∣∣∣v − 〈v,u〉||u||2 u

∣∣∣∣2 =
〈
v − 〈v,u〉||u||2 u , v −

〈v,u〉
||u||2 u

〉
= 〈v, v〉 − 〈v,u〉||u||2 〈v, u〉 −

〈v,u〉
||u||2 〈u, v〉+ 〈v,u〉

||u||2
〈v,u〉
||u||2 〈u, u〉

= ||v||2 − |〈u,v〉|
2

||u||2
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so that |〈u,v〉|
2

|u|2 < |v|2 and hence |〈u, v〉| ≤ |u| |v|. This proves Part 5.

Using Parts 3 and 5, and the inequality |Re (z)| ≤ |z| for z ∈ C (which follows from
Pythagoras’ Theorem in R2), we have

||u+ v||2 = ||u||2 + 2 Re 〈u, v〉+ ||v||2 ≤ ||u||2 + 2|〈u, v〉|+ ||v||2

≤ ||u||2 + 2||u|| ||v||+ ||v||2 =
(
||u||2 + ||v||2

)
.

Taking the square root on both sides gives ||u + v|| ≤ ||u|| + ||v||. Finally note that
||u|| = ||(u+v)−v|| ≤ ||u+v||+||−v|| = ||u+v||+||v|| so that we have ||u||−||v|| ≤ ||u+v||,
and similarly ||v|| − ||u|| ≤ ||u+ v||, hence

∣∣||u|| − ||v||∣∣ ≤ ||u+ v||. This proves Part 6.

2.5 Definition: Let F = R or C. Let U be a vector space over F . A norm on U is a
function || || : U → R (meaning that if u ∈ U then ||u|| ∈ R) such that for all u, v ∈ U
and all t ∈ F we have

(1) (Scaling) ||tu|| = |t| ||u||,
(2) (Positive Definiteness) ||u|| ≥ 0 with ||u|| = 0 ⇐⇒ u = 0, and
(3) (Triangle Inequality) ||u+ v|| ≤ ||u||+ ||v||.
For u ∈ U the real number ||u|| is called the norm (or length) of u, and we say that u is a
unit vector when ||u|| = 1. A normed linear space (over F ) is a vector space equipped
with a norm. Given two normed linear spaces U and V over F , a linear map L : U → V
is called a homomorphism of normed linear spaces (or we say that L preserves norm)
when

∣∣∣∣L(x)
∣∣∣∣ = ||x|| for all x ∈ U . A bijective homomorphism is called an isomorphism.

2.6 Definition: Let F = R or C and let U be a normed linear space over F . For u, v ∈ U ,
we define the distance between u and v to be

d(u, v) = ||v − u||.

2.7 Theorem: Let U be as normed linear space over F = R or C. For all u, v, w ∈ U ,

(1) (Symmetry) d(u, v) = d(v, u),
(2) (Positive Definiteness) d(u, v) ≥ 0 with d(u, v) = 0 ⇐⇒ u = v, and
(3) (Triangle Inequality) d(u,w) ≤ d(u, v) + d(v, w).

Proof: The proof is left as an easy exercise.

2.8 Definition: Let X be a non-empty set. A metric on X is a map d : X × X → R
such that for all a, b, c ∈ X we have

(1) (Symmetry) d(a, b) = d(b, a),
(2) (Positive Definiteness) d(a, b) ≥ 0 with d(a, b) = 0 ⇐⇒ a = b, and
(3) (Triangle Inequality) d(a, c) ≤ d(a, b) + d(b, c).

For a, b ∈ X, d(a, b) is called the distance between a and b. A metric space is a set
X which is equipped with a metric d, and we sometimes denote the metric space by X
and sometimes by the pair (X, d). Given two metric spaces (X, dX) and (Y, dY ), a map
f : X → Y is called a homomorphism of metric spaces (or we say that f is distance
preserving) when dY

(
f(a), f(b)

)
= dX(a, b) for all a, b ∈ X. A bijective homomorphism

is called an isomorphism or an isometry.
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2.9 Note: Every inner product space is also a normed linear space, using the induced
norm given by ‖u‖ =

√
〈u, u〉. Every normed linear space is also a metric space, using the

induced metric given by d(u, v) = ‖v − u‖. If U is an inner product space over F = R or
C then every subspace of U is also an inner product space using (the restriction of) the
same inner product used in U . If U is a normed linear space over F = R or C then every
subspace of U is also a normed linear space using the same norm. If X is a metric space
then so is every subset of X using the same metric.

2.10 Example: Let F = R or C. The standard inner product on Fn is given by

〈u, v〉 = v∗u =
n∑
i=1

uivi.

The standard inner product induces the standard norm on Fn, which is also called the
2-norm on Fn, given by

‖u‖2 = ‖u‖ =
√
〈u, u〉 =

( n∑
i=1

|ui|2
)1/2

.

The standard norm on Fn induces the standard metric on Fn, given by

d2(u, v) = d(u, v) = ‖v − u‖ =
( n∑
i=1

|vi − ui|2
)1/2

.

The 1-norm on Fn is given by

‖u‖1 =
n∑
i=1

|ui|

and it induces the 1-metric on Fn given by d1(u, v) = ‖v − u‖1. The supremum norm,
also called the infinity norm, on Fn is given by

‖u‖∞ = max
{
|u1|, |u2|, · · · , |un|

}
and it induces the supremum metric on Fn given by d∞(u, v) = ‖v − u‖∞.

2.11 Example: Let F = R or C. We write

Fω =
{
u = (u1, u2, u3, · · ·)

∣∣ each ui ∈ F
}

F∞ =
{
u ∈ Fω | there exists n∈Z+ such that uk = 0 for all k ≥ n

}
.

Recall that F∞ is a countable-dimensional vector space with standard basis {e1, e2, e3, · · ·}
where e1 = (1, 0, 0, · · ·), e2 = (0, 1, 0, · · ·) and so on. The standard inner product on
F∞ is given by

〈u, v〉 =
∞∑
i=1

uivi

and it induces the standard norm, also called the 2-norm, on F∞ given by

‖u‖2 =
√
〈u, u〉 =

( ∞∑
i=1

|ui|2
)1/2

.

The 1-norm on F∞ is given by

‖u‖1 =
∞∑
i=1

|ui|

and it induces the 1-metric on F∞ given by d1(u, v) = ‖v − u‖1. The supremum norm,
also called the infinity norm, on F∞ is given by

‖u‖∞ = max
{
|u1|, |u2|, |u3| · · ·}

and it induces the supremum metric on F∞ given by d∞(u, v) = ‖v − u‖∞.
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2.12 Example: For F = R or C, the standard inner product, the 1-norm, the 2-norm and
the ∞-norm, which are well-defined on the vector space F∞, do not extend naturally to
give a well-defined inner product or well-defined norms on the vector space Fω (because the
relevant sums do not necessarily converge). But we can, and do, extend these definitions
to various subspaces of Fω. We define

`1(F) =
{
u ∈ Fω

∣∣ ∞∑
i=1

|ui| <∞},

`2(F) =
{
u ∈ Fω

∣∣ ∞∑
i=1

|ui|2 <∞
}
,

`∞(F) =
{
u ∈ Fω

∣∣ sup{|u1|, |u2|, · · ·} <∞
}
.

Verify that `1(F) is a normed linear space using the 1-norm given by ‖u‖1 =
∞∑
i=1

|ui|,

hence `1(F) is also a metric space using the 1-metric d1(u, v) = ‖v − u‖1. Verify that
`∞(F) is a normed linear space using the supremum norm, also called the infinity
norm, given by ‖u‖∞ = sup{|u1|, |u2|, · · ·}, hence `∞(F) is also a metric space using
the supremum metric d∞(u, v) = ‖v − u‖∞. Verify that `2(F) is an inner product

space using the standard inner product given by 〈u, v〉 =
∞∑
i=1

uivi. The standard inner

product on `2(F) induces the standard norm, also called the 2-norm, on `2(F) given by

‖u‖2 =
( ∞∑
i=1

|ui|2
)1/2

and the standard metric, or the 2-metric, d2(u, v) = ‖v − u‖2.

Since we shall usually work with the field F = R, for p = 1, 2 or ∞ we shall write

`p = `p(R) .

2.13 Example: For F = R or C and for a, b ∈ R with a ≤ b, we write

F
(
[a, b],F

)
= F[a,b] =

{
f : [a, b]→ F

}
,

B
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣ f is bounded
}
,

C
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣f is continuous
}
.

Recall that for f : [a, b]→ C given by f = u+ i v where u, v : [a, b]→ R, the function f is

continuous if and only if both u and v are continuous and, in this case,
∫ b
a
f =

∫ b
a
u+i

∫ b
a
v.

In the space C
(
[a, b],F

)
we have the 1-norm, the 2-norm, and the supremum norm

‖f‖1 =

∫ b

a

|f | ,

‖f‖2 =

(∫ b

a

|f |2
)1/2

,

‖f‖∞ = sup
a≤x≤b

∣∣f(x)
∣∣ .

The supremum norm also gives a well-defined norm on the space B
(
[a, b],F

)
. The 2-norm

on C
(
[a, b],F

)
is induced by the inner product on C

(
[a, b],F

)
given by

〈f, g〉 =

∫ b

a

f g .

Since we shall usually work with the field F = R, we shall write

F [a, b] = F
(
[a, b],R

)
, B[a, b] = B

(
[a, b],R

)
and C[a, b] = C

(
[a, b],R

)
.
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2.14 Remark: For F = R or C and for 1 ≤ p < ∞, one can show that we can define a
norm on Fn by

‖u‖p =
( n∑
i=1

|ui|p
)1/p

,

and we can define a norm on F∞ or on the space `p(F) =
{
u ∈ Fω

∣∣ ∞∑
i=1

|ui|p <∞
}

by

‖u‖p =
( ∞∑
i=1

|ui|p
)1/p

.

Also, we can define a norm on the space C
(
[a, b],F

)
by

‖f‖p =

(∫ b

a

|f |p
)1/p

.

2.15 Example: For any set X 6= ∅, the discrete metric on X is given by d(x, y) = 1
for all x, y ∈ X with x 6= y and d(x, x) = 0 for all x ∈ X.

2.16 Definition: Let X be a metric space. For a ∈ X and 0 < r ∈ R, the open ball, the
closed ball, and the (open) punctured ball in X centred at a of radius r are defined to
be the sets

B(a, r) = BX(a, r) =
{
x ∈ X

∣∣ d(x, a) < r
}
,

B(a, r) = BX(a, r) =
{
x ∈ X

∣∣ d(x, a) ≤ r
}
,

B∗(a, r) = B∗X(a, r) =
{
x ∈ X

∣∣ 0 < d(x, a) < r
}
.

When the metric on X is denoted by dp with 1 ≤ p ≤ ∞, we often write B(a, r), B(a, r)
and B∗(a, r) as Bp(a, r), Bp(a, r) and B∗p(a, r). For A ⊆ X, we say that A is bounded
when A ⊆ B(a, r) for some a ∈ X and some 0 < r ∈ R.

2.17 Exercise: Draw a picture of the open balls B1(0, 1), B2(0, 1) and B∞(0, 1) in R2

(using the metrics d1, d2 and d∞).

2.18 Definition: Let X be a metric space. For A ⊆ X, we say that A is open (in X)
when for every a ∈ A there exists r > 0 such that B(a, r) ⊆ A, and we say that A is
closed (in X) when its complement Ac = X \A is open in X.

2.19 Example: Let X be a metric space. Show that for a ∈ X and 0 < r ∈ R, the set
B(a, r) is open and the set B(a, r) is closed.

Solution: Let a ∈ X and let r > 0. We claim that B(a, r) is open. We need to show that
for all b ∈ B(a, r) there exists s > 0 such that B(b, s) ⊆ B(a, r). Let b ∈ B(a, r) and note
that d(a, b) < r. Let s = r − d(a, b) and note that s > 0. Let x ∈ B(b, s), so we have
d(x, b) < s. Then, by the Triangle Inequality, we have

d(x, a) ≤ d(x, b) + d(b, a) < s+ d(a, b) = r

and so x ∈ B(a, r). This shows that B(b, s) ⊆ B(a, r) and hence B(a, r) is open.
Next we claim that B(a, r) is closed, that is B(a, r)c is open. Let b ∈ B(a, r)c, that is

let b ∈ X with b /∈ B(a, r). Since b /∈ B(a, r) we have d(a, b) > r. Let s = d(a, b)− r > 0.
Let x ∈ B(b, s) and note that d(x, b) < s. Then, by the Triangle Inequality, we have

d(a, b) ≤ d(a, x) + d(x, b) < d(x, a) + s

and so d(x, a) > d(a, b)− s = r. Since d(x, a) > r we have x /∈ B(a, r) and so x ∈ B(a, r)c.
This shows that B(b, s) ⊆ B(a, r)c and it follows that B(a, r)c is open and hence that
B(a, r) is closed.
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2.20 Theorem: (Basic Properties of Open Sets) Let X be a metric Space.

(1) The sets ∅ and X are open in X.
(2) If S is a set of open sets in X then the union

⋃
S =

⋃
U∈S

U is open in X.

(3) If S is a finite set of open sets in X then the intersection
⋂
S =

⋂
U∈S

U is open in X.

Proof: The empty set is open because any statement of the form “for all x∈∅ F” (where
F is any statement) is considered to be true (by convention). The set X is open because
given a ∈ X we can choose any value of r > 0 and then we have B(a, r) ⊆ X by the
definition of B(a, r). This proves Part 1.

To prove Part 2, let S be any set of open sets in X. Let a ∈
⋃
S =

⋃
U∈S U . Choose

an open set U ∈ S such that a ∈ U . Since U is open we can choose r > 0 such that
B(a, r) ⊆ U . Since U ∈ S we have U ⊆

⋃
S. Since B(a, r) ⊆ U and U ⊆

⋃
S we have

B(a, r) ⊆
⋃
S. Thus

⋃
S is open, as required.

To prove Part 3, let S be a finite set of open sets in X. If S = ∅ then we use the
convention that

⋂
S = X, which is open. Suppose that S 6= ∅, say S = {U1, U2, · · · , Um}

where each Uk is an open set. Let a ∈
⋂
S =

⋂m
k=1 Uk. For each index k, since a ∈ Uk

we can choose rk > 0 so that B(a, rk) ⊆ Uk. Let r = min{r1, r2, · · · , rm}. Then for each
index k we have B(a, r) ⊆ B(a, rk) ⊆ Uk. Since B(a, r) ⊆ Uk for every index k, it follows
that B(a, r) ⊆

⋂m
k=1 Uk =

⋂
S. Thus

⋂
S is open, as required.

2.21 Theorem: (Basic Properties of Closed Sets) Let X be a metric space.

(1) The sets ∅ and X are closed in X.
(2) If S is a set of closed sets in X then the intersection

⋂
S =

⋂
K∈S

K is closed in X.

(3) If S is a finite set of closed sets in X then the union
⋃
S =

⋃
K∈S

K is closed in X.

Proof: The proof is left as an exercise

2.22 Definition: A topology on a set X is a set T of subsets of X such that

(1) ∅ ∈ T and X ∈ T ,
(2) for every set S ⊆ T we have

⋃
S ∈ T , and

(3) for every finite subset S ⊆ T we have
⋂
S ∈ T .

A topological space is a set X with a topology T . When X is a metric space, the set of
all open sets in X is a topology on X, which we call the metric topology (or the topology
induced by the metric). When X is any topological space, the sets in the topology T are
called the open sets in X and their complements are called the closed sets in X. When
S and T are both topologies on a set X with S ⊆ T , we say that the topology T is finer
than the topology S, and that the topology S is coarser than the topology T .

2.23 Example: Show that in Rn, the metrics d1, d2 and d∞ all induce the same topology.

Solution: For a, x ∈ Rn we have

max
1≤i≤n

|xi − ai| ≤
( n∑
i=1

|xi − ai|2
)1/2 ≤ n∑

i=1

|xi − ai| ≤ n maxni=1 |xi − ai|
and so

d∞(a, x) ≤ d2(a, x) ≤ d1(a, x) ≤ nd∞(a, x).

It follows that for all a ∈ Rn and r > 0 we have

B∞(a, r) ⊇ B2(a, r) ⊇ B1(a, r) ⊇ B∞
(
a, rn

)
.

Thus for U ⊆ Rn, if U is open in Rn using d∞ then it is open using d2, and if U is open
using d2 then it is open using d1, and if U is open using d1 then it is open using d∞.
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2.24 Example: Show that on the space C[a, b], the topology induced by the metric d∞ is
strictly finer than the topology induced by the metric d1.

Solution: For f, g ∈ C[a, b] we have

d1(f, g) =

∫ b

a

|f − g| ≤
∫ b

a

max
a≤x≤b

∣∣f(x)− g(x)
∣∣ = (b− a) d∞(f, g).

It follows that for f ∈ C[a, b] and r > 0 we have

B∞(f, r) ⊆ B1

(
f, (b− a)r

)
.

Thus for U ⊆ C[a, b], if U is open using d1 then U is also open using d∞, and so the
topology induced by the metric d∞ is finer (or equal to) the topology induced by d1.

On the other hand, we claim that for f ∈ C[a, b] and r > 0, the set B∞(f, r) is not open
in the topology induced by d1. Fix g ∈ B∞(f, r) and let s > 0. Choose a bump function

h ∈ C[a, b] with h ≥ 0,
∫ b
a
h < s and maxa≤x≤b h(x) > 2r. Then we have g + h ∈ B1(g, s)

but g + h /∈ B∞(f, r). It follows that B∞(f, r) is not open in the topology induced by d1,
as claimed.

2.25 Example: For any set X, the trivial topology on X is the the topology in which
the only open sets in X are the sets ∅ and X, and the discrete topology on X is the
topology in which every subset of X is open. Note that the discrete metric on a nonempty
set X induces the discrete topology on X.

2.26 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. The
interior and the closure of A (in X) are the sets

Ao =
⋃{

U ⊆ X
∣∣U is open, and U ⊆ A

}
,

A =
⋂{

K ⊆ X
∣∣K is closed and A ⊆ K

}
.

We say that A is dense in X when A = X.

2.27 Theorem: Let X be a metric space (or a topological space) and let A ⊆ X.

(1) The interior of A is the largest open set which is contained in A. In other words,
Ao ⊆ A and Ao is open, and for every open set U with U ⊆ A we have U ⊆ Ao.
(2) The closure of A is the smallest closed set which contains A. In other words, A ⊆ A
and A is closed, and for every closed set K with A ⊆ K we have A ⊆ K.

Proof: Let S =
{
U ⊆ X

∣∣U is open, and U ⊆ A
}

. Note that Ao is open (by Part 2 of
Theorem 2.20 or by Part 2 of Definition 2.22) because Ao is equal to the union of S, which
is a set of open sets. Also note that Ao ⊆ A because Ao is equal to the union of S, which
is a set of subsets of A. Finally note that for any open set U with U ⊆ A we have U ∈ S
so that U ⊆

⋃
S = Ao. This completes the proof of Part 1, and the proof of Part 2 is

similar.

2.28 Corollary: Let X be a metric space (or a topological space) and let A ⊆ X.

(1) (Ao)o = Ao and A = A.
(2) A is open if and only if A = Ao

(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.
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2.29 Definition: Let X be a metric space and let A ⊆ X. An interior point of A is a
point a ∈ A such that for some r > 0 we have B(a, r) ⊆ A. A limit point of A is a point
a ∈ X such that for every r > 0 we have B∗(a, r) ∩ A 6= ∅. An isolated point of A is a
point a ∈ A which is not a limit point of A. A boundary point of A is a point a ∈ X
such that for every r > 0 we have B(a, r)∩A 6= ∅ and B(a, r)∩Ac 6= ∅. The set of all limit
points of A is denoted by A′. The boundary of A, is the set of all boundary points of A.

2.30 Theorem: (Properties of Interior, Limit and Boundary Points) Let X be a metric
space and let A ⊆ X.
(1) Ao is equal to the set of all interior points of A.
(2) A is closed if and only if A′ ⊆ A.
(3) A = A ∪A′.
(4) ∂A = A \Ao.

Proof: We leave the proofs of Parts 1 and 4 as exercises. To prove Part 2, note that when
a /∈ A we have B(a, r) ∩A = B∗(a, r) ∩A and so

A is closed ⇐⇒ Ac is open

⇐⇒ ∀a∈Ac ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
a /∈A =⇒ ∃r>0 B∗(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
∀r>0 B∗(a, r) ∩A 6= ∅ =⇒ a∈A

)
⇐⇒ ∀a∈Rn

(
a ∈ A′ =⇒ a ∈ A

)
⇐⇒ A′ ⊆ A.

To prove Part 3 we shall prove that A ∪ A′ is the smallest closed set which contains A.
It is clear that A ∪ A′ contains A. We claim that A ∪ A′ is closed, that is (A ∪ A′)c is
open. Let a ∈ (A ∪ A′)c, that is let a ∈ X with a /∈ A and a /∈ A′. Since a /∈ A′ we
can choose r > 0 so that B(a, r) ∩ A = ∅. We claim that because B(a, r) ∩ A = ∅ it
follows that B(a, r) ∩A′ = ∅. Suppose, for a contradiction, that B(a, r) ∩A′ 6= ∅. Choose
b ∈ B(a, r) ∩ A′. Since b ∈ B(a, r) and B(a, r) is open, we can choose s > 0 so that
B(b, s) ⊆ B(a, r). Since b ∈ A′ it follows that B(b, s) ∩ A 6= ∅. Choose x ∈ B(b, s) ∩ A.
Then we have x ∈ B(b, s) ⊆ B(a, r) and x ∈ A and so x ∈ B(a, r) ∩ A, which contradicts
the fact that B(a, r) ∩ A = ∅. Thus B(a, r) ∩ A′ = ∅, as claimed. Since B(a, r) ∩ A = ∅
and B(a, r)∩A′ = ∅ it follows that B(a, r)∩ (A∪A′) = ∅ hence B(a, r) ⊆ (A∪A′)c. Thus
proves that (A ∪A′)c is open, and hence A ∪A′ is closed.

It remains to show that for every closed set K in X with A ⊆ K we have A∪A′ ⊆ K.
Let K be a closed set in X with A ⊆ K. Note that since A ⊆ K it follows that A′ ⊆ K ′

because if a ∈ A′ then for all r > 0 we have B(a, r) ∩ A 6= ∅ hence B(a, r) ∩K 6= ∅ and
so a ∈ K ′. Since K is closed we have K ′ ⊆ K by Part 2. Since A′ ⊆ K ′ and K ′ ⊆ K we
have A′ ⊆ K. Since A ⊆ K and A′ ⊆ K we have A∪A′ ⊆ K, as required. This completes
the proof of Part 3.

2.31 Remark: Let X be a topological space and let A ⊆ X. An interior point of A is
a point a ∈ Ao. A limit point of A is a point a ∈ X such that for every open set U in X
with a ∈ U there exists a point b ∈ U ∩A with b 6= a. The boundary of A in X is the set
∂A = A \Ao, and a boundary point of A is a point a ∈ ∂A.
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2.32 Note: Let X be a metric space and let P ⊆ X. Note that P is also a metric space
using (the restriction of) the metric used in X. For a ∈ P and 0 < r ∈ R, note that the
open and closed balls in P , centred at a and of radius r, are related to the open and closed
balls in X by

BP (a, r) =
{
x ∈ P

∣∣ d(x, a) < r
}

= BX(a, r) ∩ P,
BP (a, r) =

{
x ∈ P

∣∣ d(x, a) ≤ r
}

= BX(a, r) ∩ P.

2.33 Theorem: Let X be a metric space and let A ⊆ P ⊆ X.

(1) A is open in P if and only if there exists an open set U in X such that A = U ∩ P .
(2) A is closed in P if and only if there exists a closed set K in X such that A = K ∩ P .

Proof: To prove Part 1, suppose first that A is open in P . For each a ∈ A, choose
ra > 0 so that BP (a, ra) ⊆ A, that is BX(a, ra) ∩ P ⊆ A, and let U =

⋃
a∈ABX(a, ra).

Since U is equal to the union of a set of open sets in X, it follows that U is open in
X. Note that A ⊆ U ∩ P and, since BX(a, ra) ∩ P ⊆ A for every a ∈ A, we also have

U ∩ P =
(⋃

a∈U BX(a, ra)
)
∩ P =

⋃
a∈A

(
BX(a, ra) ∩ P

)
⊆ A. Thus A = U ∩ P , as

required.
Suppose, conversely, that A = U ∩ P with U open in X. Let a ∈ A. Since we

have a ∈ A = U ∩ P , we also have a ∈ U . Since a ∈ U and U is open in X we can
choose r > 0 so that BX(a, r) ⊆ U . Since BX(a, r) ⊆ U and U ∩ P = A we have
BP (a, r) = BX(a, r) ∩ P ⊆ U ∩ P = A. Thus A is open, as required.

To prove Part 2, suppose first that A is closed in P . Let B be the complement of A
in P , that is B = P \ A. Then B is open in P . Choose an open set U in X such that
B = U ∩ P . Let K be the complement of U in X, that is K = X \ U . Then A = K ∩ P
since for x ∈ X we have x ∈ A ⇐⇒

(
x ∈ P and x /∈ B

)
⇐⇒

(
x ∈ P and x /∈ U ∩ P

)
⇐⇒

(
x ∈ P and x /∈ U

)
⇐⇒

(
x ∈ P and x ∈ K

)
⇐⇒ x ∈ K ∩ P .

Suppose, conversely, that K is a closed set in P with A = K ∩ P . Let B be the
complement of A in P , that is B = P \ A, and let U be the complement of K in P ,
that is U = P \ K, and note that U is open in P . Then we have B = U ∩ P since
for x ∈ P we have x ∈ B ⇐⇒

(
x ∈ P and x /∈ A

)
⇐⇒

(
x ∈ P and x /∈ K ∩ P

)
⇐⇒

(
x ∈ P and x /∈ K

)
⇐⇒

(
x ∈ P and x ∈ U

)
⇐⇒ x ∈ U ∩ P . Since U is open in

P and B = U ∩ P we know that B is open in P . Since B is open in P , its complement
A = P \B is closed in P .

2.34 Remark: Let X be a topological space and let P ⊆ X. Verify, as an exercise, that
we can use the topology on X to define a topology on P as follows. Given a set A ⊆ P ,
we define A to be open in P when A = U ∩ P for some open set U in X. The resulting
topology on P is called the subspace topology.
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Chapter 3. Limits and Continuity

3.1 Definition: Let (xn)n≥p be a sequence in a metric space X. We say that the sequence
(xn)n≥p is bounded when the set {xn}n≥p is bounded, that is when there exists a ∈ X
and r > 0 such that xn ∈ B(a, r) for all indices n ≥ p.

For a ∈ X, we say that the sequence (xn)n≥p converges to a (or that the limit of
xn is equal to a) and we write lim

n→∞
xn = a (or we write xn → a) when for every ε > 0

there exists an index m ≥ p such that d(xn, a) < ε for all indices n ≥ m. We say that the
sequence (xn)n≥p converges (in X) when it converges to some point a ∈ X, and otherwise
we say that (xn)n≥p diverges (in X).

We say that the sequence (xn)n≥p is Cauchy when for every ε > 0 there exists an
index m ≥ p such that d(xk, x`) < ε for all indices k, ` ≥ m.

3.2 Remark: When (xn)n≥p is a sequence in a topological space X and a ∈ X, we say
that (xn)n≥p converges to a (or we say that the limit of (xn)n≥p is equal to a) and we
write lim

n→∞
xn = a (or we write xn → a) when for every open set U in X with a ∈ U there

exists an index m ≥ p such that xn ∈ U for every index n ≥ m.

3.3 Theorem: (Basic Properties of Limits of Sequences) Let (xn)n≥p be a sequence in a
metric space X, and let a ∈ X.

(1) If (xn)n≥p converges then its limit is unique.
(2) If q ≥ p and yn = xn for all n ≥ q, then (xn)n≥p converges if and only if (yn)n≥q
converges and, in this case, lim

n→∞
yn = lim

n→∞
xn.

(3) If (xnk
)k≥q is a subsequence of (xn)n≥p, and lim

n→∞
xn = a, then lim

k→∞
xnk

= a.

(4) If (xn)n≥p converges then it is bounded.
(5) If (xn)n≥p converges then it is Cauchy.
(6) We have lim

n→∞
xn = a in X if and only if lim

n→∞
d(xn, a) = 0 in R.

(7) We have lim
n→∞

xn = a if and only if for every open set U in X with a ∈ U there exists

an index m ≥ p such that xn ∈ U for every index n ≥ m.

Proof: The proof is left as an exercise.

3.4 Note: Because of Part 2 of the above theorem, the initial index p of a sequence
(xn)n≥p does not effect whether or not the sequence converges and it does not effect the
limit. For this reason, we often omit the initial index p from our notation and write (xn)
for the sequence (xn)n≥p. Also, we often choose a specific value of p, usually p = 1, in the
statements or the proofs of various theorems with the understanding that any other initial
value would work just as well.

3.5 Exercise: For each n ∈ Z+, let xn ∈ R∞ be the sequence given by xn = 1
n

n∑
k=1

ek,

that is by (xn,k)k≥1 =
(
1
n ,

1
n , · · · ,

1
n , 0, 0, 0, · · ·

)
with n non-zero terms. Show that (xn)

converges in (R∞, d2) but diverges in (R∞, d1).

3.6 Exercise: For each n ∈ Z+, let fn ∈ C[0, 1] be given by fn(x) =
√
nxn. Show that

(fn)n≥1 converges in
(
C[0, 1], d1

)
but diverges in

(
C[0, 1], d2

)
.
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3.7 Note: Recall that B[a, b] denotes the space of bounded functions f : [a, b] → R.
Let (fn) be a sequence of bounded functions in B[a, b] and let g ∈ B[a, b]. Note that (fn)
converges in the metric space

(
B[a, b], d∞

)
, if and only if (fn) converges uniformly on [a, b].

Indeed for ε > 0 we have d∞(fn, g) < ε if and only if sup
a≤x≤b

∣∣fn(x)− g(x)
∣∣ < ε if and only if∣∣fn(x) − g(x)

∣∣ < ε for all x ∈ [a, b]. The same is true for a sequence (fn) in C[a, b]: (fn)

converges in the metric space
(
C[a, b], d∞

)
if and only if (fn) converges uniformly on [a, b].

3.8 Theorem: (The Sequential Characterization of Limit Points and Closed Sets) Let X
be a metric space, let a ∈ X, and let A ⊆ X.

(1) a ∈ A′ if and only if there exists a sequence (xn) in A \ {a} with lim
n→∞

xn = a.

(2) a ∈ A if and only if there exists a sequence (xn) in A with lim
n→∞

xn = a.

(3) A is closed in X if and only if for every sequence (xn) in A which converges in X, we
have lim

n→∞
xn ∈ A.

Proof: We prove Parts 1 and 3 and leave the proof of Part 2 as an exercise. Suppose that
a ∈ A′ (which means that for every r > 0 we have B∗(a, r) ∩ A 6= ∅). For each n ∈ Z+,
choose xn ∈ B∗

(
a, 1

n

)
∩ A, that is choose xn ∈ A \ {a} with d(xn, a) < 1

n . Then (xn)n≥1
is a sequence in A \ {a} with lim

n→∞
xn = a.

Suppose, conversely, that (xn)n≥1 is a sequence in A \ {a} with lim
n→∞

xn = a. Let

r > 0. Choose m ∈ Z+ such that d(xn, a) < r for all n ≥ m. Since xm ∈ A \ {a} with
d(xm, a) < r, we have xm ∈ B∗(a, r) ∩A and so B∗(a, r) ∩A 6= ∅. This proves Part 1.

To prove Part 3, suppose that A is closed in X. Let (xn)n≥1 be a sequence in A which
converges in X, and let a = lim

n→∞
xn ∈ X. Suppose, for a contradiction, that a /∈ A. Since

a /∈ A we have A = A\{a} so in fact (xn) is a sequence in A\{a}. Since (xn) is a sequence
in A \ {a} with lim

n→∞
xn = a, it follows from Part 1 that a ∈ A′. Since A is closed we have

A′ ⊆ A and so a ∈ A giving the desired contradiction.
Suppose, conversely, that for every sequence in A which converges in X, the limit of

the sequence lies in A. Let a ∈ A′. By Part 1, we can choose a sequence (xn) in A \ {a}
with lim

n→∞
xn = a. Then (xn) is a sequence in A which converges in X, so its limit lies in

A, that is a ∈ A. Since a ∈ A′ was arbitrary, this shows that A′ ⊆ A, and so A is closed.
This proves Part 3.

3.9 Example: Note that C[a, b] is closed in the metric space
(
B[a, b], d∞

)
. We can see

this using Note 3.7 together with the above theorem. Indeed, given a sequence (fn) with
each fn ∈ C[a, b], if the sequence (fn) converges in

(
B[a, b], d∞

)
to the function g ∈ B[a, b],

then (fn) converges uniformly to g on [a, b], and so (from MATH 148) we know that g
must be continuous, hence g ∈ C[a, b].

3.10 Exercise: Let

R[a, b] =
{
f ∈ B[a, b]

∣∣ f is Riemann integrable
}
,

P[a, b] =
{
f ∈ B[a, b]

∣∣ f is a polynomial
}
,

C1[a, b] =
{
f ∈ B[a, b]

∣∣ f is continuously differentiable
}
.

Determine which of the above spaces are closed in the metric space B[a, b], using the
supremum metric d∞.
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3.11 Example: Recall that R∞ denotes the set of sequences with only finitely many
non-zero terms. Show that R∞ is dense in the metric space (`1, d1).

Solution: Since the closure of R∞ in `1 is contained in `1 (by the definition of closure), it

suffices to show that `1 ⊆ R∞. Let a = (an)n≥1 ∈ `1, so we have
∞∑
n=1
|an| < ∞. For each

n ∈ Z+ let xn = (xn,k)k≥1 be the sequence given by xn,k = ak for 1 ≤ k ≤ n and xn,k = 0
for k > n, that is

(xn,k)k≥1 = (xn,1, xn,2, · · · , xn,n, xn,n+1, · · ·) = (a1, a2, · · · , an, 0, 0, 0, · · ·).

Then each xn ∈ R∞ and, in the metric space `1, we have xn → a because given ε > 0 we
can choose an index m so that

∑
k>m

|ak| < ε and then for all n ≥ m we have

‖xn − a‖1 =
∞∑
k=1

|xn,k − ak| =
∑
k>n

|ak| ≤
∑
k>m

|ak| < ε.

It follows, from Part 2 of Theorem 3.8, that a ∈ R∞ and so we have `1 ⊆ R∞, as claimed.

3.12 Exercise: Find the closure of R∞ in the metric space `2 using the metric d2, and
find the closure of R∞ in the metric space `∞ using the metric d∞.

3.13 Definition: Let (X, dX) and (Y, dY ) be metric spaces. Let A ⊆ X, let f : A → Y ,
let a ∈ A′, and let b ∈ Y . We say that the limit of f(x) as x tends to a is equal to b,
when for every ε > 0 there exists δ > 0 such that for all x ∈ A, if 0 < dX(x, a) < δ then
dY (f(x), b) < ε.

3.14 Theorem: (The Sequential Characterization of Limits) Let X and Y be metric
spaces, let A ⊆ X, let f : A → Y , let a ∈ A′ ⊆ X, and let b ∈ Y . Then lim

x→a
f(x) = b if

and only if for every sequence (xn) in A \ {a} with xn → a we have lim
n→∞

f(xn) = b.

Proof: Suppose that lim
x→A

f(x) = b. Let (xn) be a sequence in A \ {a} with xn → a. Let

ε > 0. Since lim
x→a

f(x) = b we can choose δ > 0 such that 0 < d(x, a) < δ =⇒ d
(
f(x), b

)
< ε.

Since xn → a we can choose m ∈ Z+ such that n ≥ m =⇒ d(xn, a) < δ. For n ≥ m we
have d(xn, a) < δ and we have xn 6= a

(
since (xn) is a sequence in A \ {a}

)
, so that

0 < d(xn, a) < δ, and hence d
(
f(xn), b

)
< ε. Thus lim

n→∞
f(xn) = b, as required.

Suppose, conversely, that lim
x→a

f(x) 6= b. Choose ε > 0 such that for every δ > 0 there

exists x ∈ A such that 0 < d(x, a) < δ and d
(
f(x), b

)
≥ ε. For each n ∈ Z+, choose xn ∈ A

such that 0 < d(xn, a) < 1
n and d

(
f(xn), b

)
≥ ε. For each n, since 0 < d(xn, a) we have

xn 6= a so the sequence (xn) lies in A \ {a}. Since d(xn, a) < 1
n for all n ∈ Z+, it follows

that xn → a. Since d
(
f(xn), b

)
≥ ε for all n ∈ Z+, it follows that lim

n→∞
f(x) 6= b. Thus we

have found a sequence (xn) in A \ {a} with xn → a such that lim
n→∞

f(xn) 6= b.

3.15 Definition: Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y . For
a ∈ X, we say that f is continuous at a when for every ε > 0 there exists δ > 0 such that
for all x ∈ X, if dX(x, a) < δ then dY

(
f(x), f(a)

)
< ε. We say that f is continuous (on

X) when f is continuous at every point a ∈ X. We say that f is uniformly continuous
(on X) when for every ε > 0 there exists δ > 0 such that for all x, y ∈ X, if dX(x, y) < δ
then dY

(
f(x), f(y)

)
< ε. We say that f is Lipschitz continuous (on X) when there is

a constant ` ≥ 0, called a Lipschitz constant for f , such that for all x, y ∈ X we. have
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d
(
f(x), f(y)

)
≤ ` · d(x, y). Note that if f is Lipschitz continuous then f is also uniformly

continuous (indeed we can take δ = ε
` in the definition of uniform continuity).
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3.16 Note: Let X and Y be metric spaces and let a ∈ X. If a is a limit point of X then
f is continuous at a if and only if lim

x→a
f(x) = f(a). If a is an isolated point of X then f

is necessarily continuous at a, vacuously.

3.17 Theorem: (The Sequential Characterization of Continuity) Let X and Y be metric
spaces using metrics dX and dY , let f : X → Y , and let a ∈ X. Then f is continuous at a
if and only if for every sequence (xn) in X with xn → a we have lim

n→∞
f(xn) = f(a).

Proof: The proof is left as an exercise.

3.18 Theorem: (Composition of Continuous Functions) Let X, Y and Z be metric spaces,
let f : X → Y , let g : Y → Z. If f is continuous at the point a ∈ X and g is continuous
at the point f(a) ∈ Y then the composite function g ◦ f is continuous at a.

Proof: The proof is left as an exercise.

3.19 Theorem: (The Topological Characterization of Continuity) Let X and Y be metric
spaces and let f : X → Y . Then f is continuous (on X) if an only if f−1(V ) is open in X
for every open set V in Y .

Proof: Suppose that f is continuous in X. Let V be open in Y . Let a ∈ f−1(V ) and let
f(a) ∈ V . Since V is open, we can choose ε > 0 such that B

(
f(a), ε

)
⊆ V . Since f is

continuous at a we can choose δ > 0 such that for all x ∈ X with d(x, a) < δ we have
d
(
f(x), f(a)

)
< ε. Then we have f

(
B(a, δ)

)
⊆ B

(
f(a), ε

)
⊆ V and so B(a, δ) ⊆ f−1(V ).

Thus f−1(V ) is open in X, as required.
Suppose, conversely, that f−1(V ) is open in X for every open set V in Y . Let a ∈ X

and let ε > 0. Taking V = B
(
f(a), ε

)
, which is open in Y , we see that f−1

(
B
(
f(a), ε

))
is open in X. Since a ∈ f−1

(
B(f(a), ε

)
and f−1

(
B
(
f(a), ε

))
is open in X, we can choose

δ > 0 such that B(a, δ) ⊆ f−1
(
B
(
f(a), ε

))
. Then we have f

(
B(a, δ)

)
⊆ B

(
f(a), ε

)
or, in

other words, for all x ∈ X, if d(x, a) < δ then d
(
f(x), f(a)

)
< ε. Thus f is continuous at

a hence, since a was arbitrary, f is continuous on X.

3.20 Definition: Let X and Y be topological spaces and let f : X → Y . We say that f
is continuous (on X) when f−1(V ) is open in X for every open set V in Y . A bijective
map f : X → Y such that both f and f−1 are continuous is called a homeomorphism.

3.21 Note: If U and V are inner product spaces and L : U → V is an inner product
space isomorphism, then L and its inverse preserve distance so they are both continuous
(we can take δ = ε in the definition of continuity), hence L is a homeomorphism.

If U and V are finite-dimensional inner product spaces with say dimU = n and
dimV = m, and if φ : U → Rn and ψ : V → Rm are inner product space isomorphisms
(obtained by choosing orthonormal bases for U and V ) then a map F : U → V is continuous
if and only if the composite map ψFφ−1 : Rn → Rm is continuous. In particular, if F is
linear then F is continuous (since ψFφ−1 : Rn → Rm is linear, hence continuous).

We shall see below that the same is true for finite dimensional normed linear spaces:
every linear map between finite dimensional normed linear spaces is continuous. But this
is not always true for infinite dimensional spaces.

3.22 Example: Recall from Example 2.24 that every set U ⊆ C[a, b] which is open using
the metric d1 is also open using the metric d∞, but not vice versa. It follows that the
identity map I : C → C[a, b] given by I(f) = f is continuous as a map from the metric
space

(
C[a, b], d∞

)
to the metric space

(
C[a, b], d1

)
, but not vice versa.
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3.23 Theorem: Let U and V be normed linear spaces and let F : U → V be a linear
map. Then the following are equivalent:

(1) F is Lipschitz continuous on U ,
(2) F is continuous at some point a ∈ U ,
(3) F is continuous at 0, and
(4) F

(
B(0, 1)

)
is bounded.

In this case, if m ≥ 0 with F
(
B(0, 1)

)
⊆ B(0,m) then m is a Lipschitz constant for F .

Proof: It is clear that if F is Lipschitz continuous on U then F is continuous at some point
a ∈ U (indeed F is continuous at every point a ∈ U). Let us show that if F is continuous
at some point a ∈ U then F is continuous at 0. Suppose that F is continuous at a ∈ U .
Let ε > 0. Since F is continuous at a ∈ U , we can choose δ1 > 0 such that for all u ∈ U we
have ‖u− a‖ ≤ δ1 =⇒

∣∣∣∣F (u)− F (a)
∣∣∣∣ ≤ 1. Choose δ = δ1ε. Let x ∈ U with ‖x− 0‖ < δ.

If x = 0 then
∣∣∣∣F (x) − F (0)

∣∣∣∣ = ‖0‖ = 0. Suppose that x 6= 0. Then for u = a + δ1x
‖x‖ we

have ‖u−a‖ =
∣∣∣∣ δ1x
‖x‖
∣∣∣∣ = δ1 and so

∣∣∣∣F (u−a)
∣∣∣∣ =

∣∣∣∣F (u)−F (a)
∣∣∣∣ ≤ 1, that is

∣∣∣∣F ( δ1x‖x‖)∣∣∣∣ ≤ 1

hence, by the linearity of F and the scaling property of the norm, we have∣∣∣∣F (x)− F (0)
∣∣∣∣ =

∣∣∣∣F (x)
∣∣∣∣ = ‖x‖

δ1

∣∣∣∣F ( δ1x‖x‖)∣∣∣∣ ≤ ‖x‖δ1 < δ1ε
δ1

= ε.

Thus F is continuous at 0, as required
Next we show that if F is continuous at 0 then F

(
B(0, 1)

)
is bounded. Suppose that

F is continuous at 0. Choose δ > 0 so that for all u ∈ U we have ‖u‖ ≤ δ =⇒ ‖F (u)‖ ≤ 1.
Let m = 1

δ . For x ∈ U , when x = 0 we have ‖F (x)‖ = 0 ≤ m and when 0 < ‖x‖ ≤ 1 we
have

‖F (x)‖ =
∣∣∣∣∣∣‖x‖δ F

(
δx
‖x‖
)∣∣∣∣∣∣ = ‖x‖

δ

∣∣∣∣∣∣F ( δx‖x‖)∣∣∣∣∣∣ ≤ ‖x‖δ = m‖x‖ ≤ m.

Thus F
(
B(0, 1)

)
is bounded, as required.

Finally we show that if F
(
B(0, 1)

)
is bounded then F is Lipschitz continuous. Suppose

that F
(
B(0, 1)

)
is bounded. Choose m > 0 so that ‖F (u)‖ ≤ m for all u ∈ U with ‖u‖ ≤ 1.

Let x, y ∈ U . If x = y then
∣∣∣∣F (x) − F (y)

∣∣∣∣ = 0. Suppose that x 6= y. Then we have∣∣∣∣ x−y
‖x−y‖

∣∣∣∣ = 1 so that
∣∣∣∣F ( x−y

‖x−y‖
)∣∣∣∣ ≤ m and so∣∣∣∣F (x)− F (y)

∣∣∣∣ =
∣∣∣∣F (x− y)

∣∣∣∣ = ‖x− y‖
∣∣∣∣F ( x−y

‖x−y‖
)∣∣∣∣ ≤ m‖x− y‖.

Thus F is Lipschitz continuous with Lipschitz constant m, as required.

3.24 Example: Define L :
(
C[a, b], d∞

)
→
(
C[a, b], d∞

)
by L(f) =

∫ x

a

f(t) dt. Show that

L is Lipschitz continuous.

Solution: Let f ∈ C[a, b] with ‖f‖∞ ≤ 1, that is with max
a≤x≤b

|f(x)| ≤ 1. Then

∣∣∣∣F (f)
∣∣∣∣
∞ = max

a≤x≤b

∣∣∣∣ ∫ x

a

f(t) dt

∣∣∣∣ ≤ max
a≤x≤b

∫ x

a

1 dt = max
a≤x≤b

|x− a| = |b− a|.

Thus F
(
B(0, 1)

)
is bounded and so F is uniformly continuous.

3.25 Example: Define D :
(
C1[0, 1], d∞

)
→ C[0, 1], d∞

)
by D(f) = f ′. Show that D is

not continuous.

Solution: For n ∈ Z+, define fn : [0, 1] → R by fn(x) = xn. Then fn ∈ C1[a, b], and
‖fn‖∞ = max

0≤x≤1
|xn| = 1 so that fn ∈ B(0, 1), and

∣∣∣∣D(fn)
∣∣∣∣
∞ = max

0≤x≤1

∣∣nxn−1∣∣ = n. Thus

D
(
B(0, 1)

)
is not bounded, so D is not continuous

(
at any point g ∈ C[0, 1]

)
.
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3.26 Example: Let X be a metric space and let ∅ 6= A ⊆ X. Define F : X → R by

F (x) = dist(x,A) = inf
{
d(x, a)

∣∣a ∈ A}.
Show that F is uniformly continuous.

Solution: Given ε > 0, chose δ = ε
2 . Let x, y ∈ X with d(x, y) < δ = ε

2 . Since dist(y,A) =
inf
{
d(y, a)

∣∣a ∈ A} we can choose a ∈ A such that d(y, a) < dist(y,A) + ε
2 . Then we have

dist(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a) < ε
2 + dist(y,A) + ε

2

so that dist(x,A)− dist(y,A) < ε. Similarly, we have dist(y,A)− dist(x,A) < ε and so∣∣F (y)− F (x)
∣∣ =

∣∣dist(x,A)− dist(y,A)
∣∣ < ε.

3.27 Theorem: Let U be an n-dimensional normed linear space over R. Let {u1, · · · , un}
be any basis for U and let F : R → U be the associated vector space isomorphism given

by F (t) =
n∑
k=1

tkuk. Then both F and F−1 are Lipschitz continuous.

Proof: Let M =
( n∑
k=1

‖uk‖2
)1/2

. For t ∈ Rn we have

∣∣∣∣F (t)
∣∣∣∣ =

∣∣∣∣∣∣ n∑
k=1

tkuk

∣∣∣∣∣∣ ≤ n∑
k=1

|tk| ‖uk‖ , by the Triangle Inequality,

≤
( n∑
k=1

tk
2
)1/2( n∑

k=1

‖uk‖2
)1/2

, by the Cauchy-Schwarz Inequality,

= M‖t‖.

For all s, t ∈ Rn,
∣∣∣∣F (s)− F (t)

∣∣∣∣ =
∣∣∣∣F (s− t)

∣∣∣∣ ≤M ‖s− t‖, so F is Lipschitz continuous.

Note that the map N : U → R given by N(x) = ‖x‖ is (uniformly) continuous, indeed
we can take δ = ε in the definition of continuity. Since F and N are both continuous, so is
the composite G = N ◦F : Rn → R, which given by G(t) =

∣∣∣∣F (t)
∣∣∣∣. By the Extreme Value

Theorem, the map G attains its minimum value on the unit sphere
{
t ∈ Rn

∣∣‖t‖ = 1
}

,

which is compact. Let m = min
‖t‖=1

G(t) = min
‖t‖=1

∣∣∣∣F (t)
∣∣∣∣. Note that m > 0 because when

t 6= 0 we have F (t) 6= 0 (since F is a bijective linear map) and hence ‖F (t)‖ 6= 0. For
t ∈ Rn, if ‖t‖ > 1 then we have

∣∣∣∣ t
‖t‖
∣∣∣∣ = 1 so, by the choice of m,∣∣∣∣F (t)

∣∣∣∣ = ‖t‖
∣∣∣∣∣∣F ( t

‖t‖
)∣∣∣∣∣∣ ≥ ‖t‖ ·m > m.

It follows that for all t ∈ Rn, if
∣∣∣∣F (t)

∣∣∣∣ ≤ m then ‖t‖ ≤ 1. Since F is bijective, it follows

that for x ∈ U , if ‖x‖ ≤ m then
∣∣∣∣F−1(x)

∣∣∣∣ ≤ 1. Thus for all x ∈ U , if x = 0 then

‖F−1(x)‖ = 0 = ‖x‖
m and if x 6= 0 then since

∣∣∣∣mx
‖x‖
∣∣∣∣ = m we have∣∣∣∣F−1(x)

∣∣∣∣ = ‖x‖
m

∣∣∣∣F−1(mx‖x‖)∣∣∣∣ ≤ ‖x‖m .

For all x, y ∈ U , we have
∣∣∣∣F−1(x) − F−1(y)

∣∣∣∣ =
∣∣∣∣F−1(x − y)

∣∣∣∣ ≤ 1
m ‖x − y‖, so F−1 is

Lipschitz continuous.

3.28 Corollary: When U and V are finite-dimensional normed linear spaces, every linear
map F : U → V is Lipschitz continuous.

3.29 Corollary: Any two norms on a finite-dimensional vector space U induce the same
topology on U .
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Chapter 4. Separability and Completeness

4.1 Note: Let X be a metric space. Recall that for A ⊆ X we say that A is dense in X
when A = X. Also recall that by Part 3 of Theorem 2.30 we have A = A ∪ A′ where A′

is the set of limit points of A and so, by the definition of limit points, it follows that A is
dense in X if and only if every open ball in X contains a point in A. By the sequential
characterization of the closure (Part 2 of Therem 3.8) we can also say that A is dense in
X if and only if for every a ∈ X there exists a sequence (xn) in A with xn → a in X.

4.2 Definition: Let X be a metric space (or a topological space). We say that X is
separable when it has a finite or countable dense subset.

4.3 Definition: Let X be a topological space. A basis (or a base) for the topology on
X is a set B of open sets in X with the property that for every subset A ⊆ X, A is open
if and only if for every point a ∈ A there exists a basic set U ∈ B with a ∈ U ⊆ A.

4.4 Example: In a metric space X, the set of open balls B =
{
B(a, r)

∣∣a ∈ X, 0 < r ∈ R
}

is a basis for the metric topology on X.

4.5 Theorem: Let X be a metric space.

(1) If X is separable then there is a finite or countable basis for the metric topology on X.
(2) If every infinite subset of X has a limit point then X is separable.
(3) If X is separable then every subspace of X is separable.

Proof: The proof is left as an exercise.

4.6 Example: Euclidean space
(
Rn, d2

)
is separable with Qn as a countable dense subset.

Every subspace of Euclidean space is also separable.

4.7 Example: As an exercise, show that
(
`∞, d∞

)
is not separable (consider characteristic

functions χA for subsets A ⊆ N.

4.8 Example: As an exercise, show that the set
(
c, d∞

)
of convergent sequences of real

(or complex) numbers is separable. Every subspace of c is also separable, for example the
space c0 of sequences which converge to 0.

4.9 Example: As an exercise, show that the space
(
B[a, b], d∞

)
of bounded functions on

the interval [a, b] is not separable
(
consider characteristic functions χA for appropriate sets

A ⊆ [a, b]
)
.

4.10 Example: Later (see Corollary 6.21 after the Weierstrass Approximation Theorem)
we will show that the space

(
C[a, b], d∞

)
of continuous real valued functions on the interval

[a, b] is separable. Once we have proven this, it will follow that every subspace of C[a, b] is
separable.
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4.11 Definition: Recall that a sequence (xn)n≥1 in a metric space X is called a Cauchy
sequence when it has the property that for all ε > 0 there exists an index m ∈ Z+ such
that for all indices k, ` ≥ m we have d(xk, x`) < ε.

4.12 Theorem: Let X be a metric space.

(1) Every Cauchy sequence in X is bounded.
(2) Every convergent sequence in X is Cauchy.
(3) If some subsequence of a Cauchy sequence (xn) converges, then (xn) converges.

Proof: To prove Part 1, let (xn)n≥1 be a Cauchy sequence in X. Choose m ∈ Z+ such
that k, ` ≥ m =⇒ d(xk, x`) ≤ 1 and note that, in particular, we have d(xk, xm) ≤ 1 for all
k ≥ m. Let a = xm and choose r > max

{
d(x1, a), d(x2, a), · · · , d(xm−1, a), 1

}
. Then for

all n ∈ Z+ we have d(xn, a) < r so the sequence (xn) is bounded, as required.
We remark that Part 2 of this theorem was stated earlier, without proof, as Part 5 of

Theorem 3.2. We give the proof here. Let (xn)n≥1 be a convergent sequence in X and let
a = lim

n→∞
xn. Let ε > 0. Choose m ∈ Z+ such that n ≥ m =⇒ d(xn, a) < ε

2 . Then for all

k, ` ≥ m we have
d(xk, x`) ≤ d(xk, a) + d(a, x`) <

ε
2 + ε

2 = ε,

so the sequence (xn) is Cauchy, as required.
To prove Part 3, let (xn)n≥1 be a Cauchy sequence in X, let (xnk

)k≥1 be a subsequence
of (xn)n≥1, suppose tha (xnk

)k≥1 converges, and let a = lim
k→∞

xnk
. Let ε > 0. Since (xn)

is Cauchy we can choose m ∈ Z+ so that k, ` ≥ m =⇒ d(xk, x`) <
ε
2 . Since lim

k→∞
nk =∞

and lim
k→∞

xnk
= a, we can choose an index ` such that n` ≥ m and d(xn`

, a) < ε
2 . Then

for all k ≥ m we have

d(xk, a) ≤ d(xk, xn`
) + d(xn`

, a) < ε
2 + ε

2 = ε.

4.13 Definition: A metric space X is called complete when every Cauchy sequence in
X converges in X. A complete inner product space is called a Hilbert space, and a
complete normed linear space is called a Banach space.

4.14 Theorem: Let X be a complete metric space and let A ⊆ X. Then A is complete
if and only if A is closed in X

Proof: Suppose that A is closed in X. Let (xn) be a Cauchy sequence in A. Since X is
complete, (xn) converges in X. Since A is closed in X and (xn) is a sequence in A which
converges in X, we have lim

n→∞
xn ∈ A by Theorem 3.5 (The Sequential Characterization of

Closed Sets). Thus every Cauchy sequence in A converges in A, so A is complete.
Suppose, conversely, that A is complete. Let a ∈ A′, that is let a ∈ X be a limit point

of A. Since a ∈ A′, by Theorem 3.5 (The Sequential Characterization of Limit Points) we
can choose a sequence (xn) in A (indeed in A \ {a}) with limn→∞xn = a. Since (xn)
converges in X, it is Cauchy. Since (xn) is Cauchy and A is complete, (xn) converges in
A, that is a = lim

n→∞
xn ∈ A.

4.15 Example: Recall, from MATH 247 or PMATH 333, that
(
Rn, d2

)
is complete. It

follows that every closed subset A ⊆ Rn is complete (using the standard metric d2).

4.16 Example: Note that completeness is not invariant under homeomorphism. For
example, R is homeomorphic to (0, 1) ⊆ R, but R is complete while (0, 1) is not.
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4.17 Theorem: Every finite-dimensional normed linear space is complete.

Proof: Let U be an n-dimensional normed linear space. Let {u1, · · · , un} be a basis for
the vector space U and let F : Rn → U be the associated vector space isomorphism

given by F (t) =
n∑
k=1

tkuk. Recall, from Theorem 3.25, that both F and F−1 are Lipschitz

continuous. Let L be a Lipshitz constant for F and let M be a Lipschitz constant for F−1.
Let (xn)n≥1 be a Cauchy sequence in U . For each n ∈ Z+, let tn = F−1(xn) ∈ Rn. Note
that (tn) is a Cauchy sequence in Rn because

‖tk − t`‖ =
∣∣∣∣F−1(xk)− F−1(x`)

∣∣∣∣ ≤M‖xk − x`‖.
Since (tn) is a Cauchy sequence in Rn and Rn is complete, (tn) converges in Rn. Let
s = lim

n→∞
tn ∈ Rn and let a = F (s) ∈ U . Then we have lim

n→∞
xn = a because

‖xn − a‖ =
∣∣∣∣F (tn)− F (s)

∣∣∣∣ ≤ L‖tn − s‖.
4.18 Corollary: The metric spaces (Rn, d1), (Rn, d2) and (Rn, d∞) are all complete.

4.19 Theorem: The metric spaces (`1, d1), (`2, d2) and (`∞, d∞) are all complete.

Proof: We prove that (`1, d1) is complete and we leave the proof that (`2, d2) and (`∞, d∞)
are complete as an exercise. Let (an)n≥1 be a Cauchy sequence in `1. For each n ∈ Z+,

write an = (an,k)k≥1 = (an,1, an,2, an,3, · · ·). Since an ∈ `1 we have
∞∑
k=1

|an,k| < ∞. Since

(an)n≥1 is Cauchy, for every ε > 0 we can choose N ∈ Z+ such that for all n,m ≥ N we

have ‖an − am‖1 < ε, that is
∞∑
k=1

|an,k − am,k| < ε. For each fixed k ∈ Z+, note that for

n,m ≥ N we have |an,k,−am,k| ≤
∞∑
j=1

|an,j − am,j | < ε, and so the sequence (an,k)n≥1 is

Cauchy in R, so it converges. For each k ∈ Z+, let bk = lim
n→∞

an,k ∈ R and let b = (bk)k≥1.

We claim that b ∈ `1. Since (an)n≥1 is Cauchy, for every ε > 0 we can choose N ∈ Z+

such that for all n,m ≥ N we have ‖an − am‖1 < ε, that is
∞∑
k=1

|an,k − am,k| < ε. By

the Triangle Inequality, for n,m ≥ N we have
∣∣‖an‖1 − ‖am‖1∣∣ ≤ ‖an − am‖1 < ε It

follows that the sequence
(
‖an‖

)
n≥1 is a Cauchy sequence in R, so it converges. Let

M = lim
n→∞

‖an‖1 ∈ R. For each fixed K ∈ Z+ we have

K∑
k=1

|bk| =
K∑
k=1

∣∣ lim
n→∞

an,k
∣∣ = lim

n→∞

K∑
k=1

|an,k| ≤ lim
n→∞

∞∑
k=1

|an,k| = lim
n→∞

‖an‖1 = M.

Since
K∑
k=1

|bk| ≤M for all K ∈ Z+ it follows that
∞∑
k=1

|bk| ≤M , so b ∈ `1, as claimed.

Finally, we claim that lim
n→∞

an = b in `1. Let ε > 0. Choose N ∈ Z+ such that for all

n,m ≥ N we have ‖an − am‖1 < ε. Then for each K ∈ Z+ we have
K∑
k=1

|an,k − bk| =
K∑
k=1

∣∣an,k − lim
m→∞

am,k
∣∣ = lim

m→∞

K∑
k=1

|an,k − am,k|

≤ lim
m→∞

∞∑
k=1

|an,k − am,k| = lim
m→∞

‖an − am‖1 ≤ ε

Since
K∑
k=1

|an,k − bk| ≤ ε for all K ∈ Z+ it follows that ‖an − b‖1 =
∞∑
k=1

|an,k − bk| ≤ ε.
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4.20 Exercise: Show that (`1, d∞) and (`2, d∞) are not closed in (`∞, d∞) and so they
are not complete.

4.21 Exercise: Show that the metric spaces
(
C[a, b], d1

)
and

(
C[a, b], d2

)
are not complete.

Hint: in the case [a, b] = [−1, 1], consider fn : [−1, 1] → R given by fn(x) = x1/2n−1 for
n ∈ Z+. Show that if (fn) did converge, either in

(
C[−1, 1], d1

)
or in

(
C[−1, 1], d2

)
, then it

would necessarily converge to a function g with g(x) = 1 when x > 0 and g(x) = −1 when
x < 0, but such a function g cannot be continuous.

4.22 Definition: Let F = R or C. For a metric space X, we define

F(X,F) = FX =
{
f : X → F

}
B(X,F) =

{
f : X → F

∣∣ f is bounded
}

C(X,F) =
{
f : X → F

∣∣ f is continuous
}
,

Cb(X,F) =
{
f : X → F

∣∣ f is bounded and continuous
}
.

Since we usually take F = R we write

F(X) = F(X,R) , B(X) = B(X,R) , C(X) = C(X,R) and Cb(X) = Cb(X,R).

Note that B(X,F) is a normed linear space using the supremum norm given by

‖f‖∞ = sup
x∈X

∣∣f(x)
∣∣

and a metric space using the supremum metric given by d∞(f, g) = sup
x∈X

∣∣f(x)− g(x)
∣∣.

These do not determine a well-defined norm and metric on C(X,F) since ‖f‖∞ = sup
x∈X
|f(x)|

might not be finite, but they do determine a well-defined norm and metric on Cb(X,F).

4.23 Definition: For a sequence (fn) in F(X) and for g ∈ F(X), we say that (fn)
converges uniformly to g on X, and write fn → g uniformly on X, when for every ε > 0
there exists m ∈ Z+ such that |fn(x)− g(x)| < ε for every n ≥ m and every x ∈ X.

4.24 Note: For a sequence (fn) ∈ B(X) and for g ∈ B(X), note that |fn(x)− g| < ε for
every x ∈ X if and only if ‖fn − g‖∞ < ε. It follows that fn → g uniformly on X if and
only if fn → g in the metric space

(
B(X), d∞

)
.
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4.25 Theorem: Let X be a metric space. Then the metric spaces
(
B(X), d∞

)
and(

Cb(X), d∞
)

are complete.

Proof: Let (fn)n≥1 be a Cauchy sequence in
(
B(X), d∞

)
. Note that for each x ∈ X,

we have
∣∣fn(x) − fm(x)

∣∣ ≤ supy∈X
∣∣fn(y) − fm(y)

∣∣ = ‖fn − fm‖∞, and so the sequence(
fn(x)

)
n≥1 is a Cauchy sequence in R, so it converges. Thus we can define a function

g : X → R by g(x) = lim
n→∞

fn(x) and then we have fn → g pointwise in X.

We claim that g ∈ B(X), that is we claim that g is bounded. Since (fn) is a Cauchy
sequence in B(X), it is bounded (by Part 1 of Theorem 4.12) so we can choose M ≥ 0
such that ‖fn‖∞ ≤M for all indices n. Then for all x ∈ X we have |fn(x)| ≤ ‖fn‖∞ ≤M
and hence |g(x)| = lim

n→∞
|fn(x)| ≤M . Thus g is a bounded function, that is g ∈ B(X).

We know that fn → g pointwise on X. We must show that fn → g uniformly on X.
Let ε > 0. Since (fn) is Cauchy we can choose m ∈ Z+ such that ‖fk − f`‖∞ < ε for all
k, ` ≥ m. Then for all k ≥ m and for all x ∈ X we have∣∣fk(x)− g(x)

∣∣ = lim
`→∞

∣∣fk(x)− f`(x)
∣∣ ≤ ε.

It follows that fn → g uniformly on X, that is fn → g in the metric space
(
B(X), d∞

)
.

Thus
(
B(X), d∞

)
is complete.

To show that
(
Cb(X), d∞

)
is complete, it suffices (by Theorem 4.14) to show that

Cb(X) is closed in B(X). Let (fn) be a sequence in Cb(X) which converges in
(
B(X), d∞

)
.

Let g = lim
n→∞

fn ∈ B(X). We need to show that g is continuous. Let ε > 0 and let

a ∈ X. Since fn → g in
(
B(X), d∞

)
we know that fn → g uniformly on X, so we can

choose m ∈ Z+ such that
∣∣fm(x) − g(x)

∣∣ < ε
3 for all n ≥ m and all x ∈ X. Since fm is

continuous at a we can choose δ > 0 such that for all x ∈ X with d(x, a) < δ we have∣∣fm(x)− fm(a)
∣∣ < ε

3 . Then for all x ∈ X with d(x, a) < δ we have∣∣g(x)− g(a)
∣∣ ≤ ∣∣g(x)− fm(x)

∣∣+
∣∣fm(x)− fm(a)

∣∣+
∣∣fm(a)− g(a)

∣∣ < ε
3 + ε

3 + ε
3 = ε.

Thus g is continuous at a. Since a was arbitrary, g is continuous on X, hence g ∈ Cb(X).
By the Sequential Characterization of Closed Sets (Part 3 of Theorem 3.8) it follows that
Cb(X) is closed in B(X), as required.

4.26 Corollary: The metric space
(
C[a, b], d∞

)
is complete.

Proof: Since every continuous function f : [a, b]→ R is bounded, we have C[a, b] = Cb[a, b].

4.27 Example: In the metric space
(
C[a, b], d∞

)
, the space R[a, b] of Riemann integrable

functions is closed, hence complete, and the spaces P[a, b] of polynomial functions, and
C1[a, b] of continuously differentiable functions, are not closed, and hence not complete.
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4.28 Theorem: (Metric Completion) Every metric space X is isometric to a dense sub-
space of a complete metric space.

Proof: Let X be a metric space. Fix a ∈ X. For each x ∈ X, define fx : X → R
by fx(t) = d(t, x) − d(t, a). Note that fx is bounded since, by the Triangle Inequality,∣∣fx(t)

∣∣ =
∣∣d(x, t) − d(a, t)

∣∣ ≤ d(a, x). Note that fx is continuous (indeed fx Lipschitz
continuous) because for s, t ∈ X we have∣∣fx(s)− fx(t)

∣∣ =
∣∣d(s, x)− d(s, a)− d(t, x) + d(t, a)

∣∣
≤
∣∣d(s, x)− d(t, x)

∣∣+
∣∣d(s, a)− d(t, a)

∣∣
≤ d(s, t) + d(s, t) = 2 d(s, t).

Define F : X → Cb(X) by F (x) = fx. We claim that F preserves distance, using the d∞
metric on Cb(X). For all x, y, t ∈ X we have∣∣fx(t)− fy(t)

∣∣ =
∣∣d(x, t)− d(a, t)− d(y, t) + d(a, t)

∣∣ =
∣∣d(x, t)− d(y, t)

∣∣ ≤ d(x, y)

hence for all x, y ∈ X we have

‖fx − fy‖∞ = sup
t∈X

∣∣fx(t)− fy(y)
∣∣ ≤ d(x, y).

On the other hand, for all x, y ∈ X we also have

‖fx − fy‖∞ = sup
t∈X

∣∣fx(t)− fy(t)
∣∣ ≥ ∣∣fx(y)− fy(y)

∣∣ =
∣∣d(x, y)− d(y, y)

∣∣ = d(x, y),

and so F preserves distance, as claimed. Thus X is isometric to the image F (X) ⊆ Cb(X),
which is dense in its closure F (X), which is complete because it is a closed subspace of
the complete metric space Cb(X).

4.29 Remark: When X is a metric space and F : X → Cb(X) is the distance preserving
map in the proof of the above theorem, we often identify X with its isometric image F (X)
and think of X as a dense subspace of the complete metric space Y = F (X). Alternatively
we can do some cutting and pasting operations on sets to obtain a complete metric space
Y which actually contains X as a dense subspace. Here is an outline of one possible way
of constructing such a set Y . Choose a set Z which is disjoint from X and has the same
cardinality as Cb(X) (a bit of set theory is required to prove that such a set Z exists).
Choose a bijection G : Cb(X) → Z and give Z the metric which makes G an isometry.
Then Z is complete and the composite H = G ◦ F : X → Z is distance preserving so that
X is isometric to the image H(X), and H(X) is dense in the complete space H(X), and
H(X) is disjoint from X. Then let Y =

(
H(X) \H(X)

)
∪X so that we have X ⊆ Y . Let

K : Y → H(X) be the bijection given by K(x) = h(x) if x ∈ X and K(y) = y if h /∈ X,
and give Y the metric for which K is an isometry. Then Y is complete and X is dense in Y.

4.30 Definition: When X and Y are metric spaces with X ⊆ Y such that X is dense
in Y and Y is complete, we say that Y is the metric completion of X. The metric
completion of X is unique in the sense of the following theorem.
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4.31 Theorem: (Uniqueness of the Metric Completion) Let X, Y and Z be metric spaces
with Y and Z complete such that X ⊆ Y with X = Y and X ⊆ Z with X = Z. Then
there is a (unique) isometry F : Y → Z with F (x) = x for all x ∈ X.

Proof: Let a ∈ Y . Since X = Y we can choose a sequence (xn) in X with xn → a in Y .
Then (xn) is Cauchy in Y , hence also in X, hence also in Z. Since (xn) is Cauchy in Z,
it converges in Z, say xn → b in Z. In order for a map F : Y → Z to be continuous with
F (x) = x for every x ∈ X, we must have

F (a) = F
(

lim
n→∞

xn
)

= lim
n→∞

F (xn) = lim
n→∞

xn = b.

This shows that if such a map F exists, it is unique, and it must be given by the following
procedure: given a ∈ Y we choose a sequence (xn) in X with xn → a and then we define
F (a) = lim

n→∞
xn ∈ Z.

We claim that the above procedure does determine a well-defined map whose value
F (a) does not depend on the choice of the sequence (xn). Let a ∈ Y and let (xn) and
(yn) be two sequences in X with xn → a and yn → a in Y . Let b = lim

n→∞
xn in Z and let

c = lim
n→∞

in Z. We need to show that b = c. Let ε > 0. Choose m ∈ Z+ such that for all

indices n ≥ m we have dY (xn, a) < ε
4 , dY (yn, a) < ε

4 , dZ(xn, b) <
ε
4 . and dZ(yn, c) <

ε
4 .

Then since dZ(xn, yn) = dX(xn, yn) = dY (xn, yn) we have

dZ(b, c) ≤ dZ(b, xn) + dZ(xn, yn) + dZ(yn, c)

= dZ(b, xn) + dY (xn, yn) + dZ(yn, c)

≤ dZ(b, xn) + dY (xn, a) + dY (a, yn) + dZ(yn, c)

< ε
4 + ε

4 + ε
4 + ε

4 = ε.

Since dZ(b, c) < ε for every ε > 0 we must have dZ(b, c=0 hence b = c, as required.

Note that F is bijective with its inverse G given by the same construction: given c ∈ Z
we choose a sequence (xn) in X with xn → b in Z and define G(c) = b = lim

n→∞
xn in Y .

It remains to prove that F preserves distance. Let a, b ∈ Y . Chooose sequences (xn)
and (yn) in X with xn → a and yn → b in Y . Let c, d ∈ Z with xn → c and yn → d in Z.
We need to show that dY (a, b) = dZ(c, d). Since

dY (a, b) ≤ dY (a, xn) + dY (xn, yn) + dY (yn, b) , and

dY (xn, yn) ≤ dY (xn, a) + dY (a, b) + dY (b, yn)

it follows that ∣∣dY (a, b)− dY (xn, yn)
∣∣ ≤ dY (a, xn) + dY (yn, b).

Taking the limit as n→∞ gives
∣∣dY (a, b)− lim

n→∞
dY (xn, yn)

∣∣ = 0 so that

dY (a, b) = lim
n→∞

dY (xn, yn) = lim
n→∞

dX(xn, yn).

Similarly, we have dZ(c, d) = lim
n→∞

dX(xn, yn) and hence dY (a, b) = dZ(c, d), as required.
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Chapter 5. Compactness

5.1 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. An
open cover for A (in X) is a set S of open sets in X such that A ⊆

⋃
S =

⋃
U∈S

U .

When S is an open cover for A in X, a subcover of S for A is a subset T ⊆ S such that
A ⊆

⋃
T =

⋃
U∈T U . We say that A is compact (in X) when every open cover for A has

a finite subcover.

5.2 Example: Recall (from MATH 247 or PMATH 333) that for A ⊆ Rn, the Heine-Borel
Theorem states that A is compact if and only if A is closed and bounded.

5.3 Example: When X is a metric space and A ⊆ X is closed and bounded, it is not
always the case that A is compact. For example, if X is any infinite set and d is the discrete
metric on X, then every infinite subset A ⊆ X is closed and bounded but not compact. In
particular, closed unit balls are not compact, indeed for all a ∈ X we have B(a, 1) = X.

5.4 Theorem: Let A ⊆ X ⊆ Y where Y is a metric space (or a topological space). Then
A is compact in X if and only if A is compact in Y .

Proof: Suppose that A is compact inX. Let T be an open cover for A in Y . For each V ∈ T ,
let UV = V ∩ X. Note that each set UV is open in X by Theorem 2.33 (or by Remark
2.34). Since A ⊆ X and A ⊆

⋃
V ∈T V , we also have A ⊆

⋃
V ∈T (V ∩ X) =

⋃
V ∈T UV .

Thus the set S =
{
UV
∣∣V ∈ T

}
is an open cover for A in X. Since A is compact in

X we can choose a finite subcover, say
{
UV1 , · · ·UVn

}
of S, where each Vi ∈ T . Since

A ⊆
⋃n
i=1 UVi

=
⋃n
i=1(Vi ∩ X), we also have A ⊆

⋃n
i=1 Vi and so {V1, · · · , Vn} is a finite

subcover of T .
Suppose, conversely, that A is compact in Y . Let S be an open cover for A in X. For

each U ∈ S, by Theorem 2.33 (or by Remark 2.34) we can choose an open set VU in Y such
that U = VU ∩X. Then T =

{
VU
∣∣U ∈ S} is an open cover of A in Y . Since A is compact

in Y we con choose a finite subcover, say
{
VU1

, · · · , VUn

}
of T , where each Ui ∈ S. Then

we have A ⊆
⋃n
i=1(VUi

∩X) =
⋃n
i=1 Ui and so {U1, · · · , Un} is a finite subcover of S.

5.5 Remark: Let A ⊆ X where X is a metric space (or a topological space). By the
above theorem, note that A is compact in X if and only if A is compact in itself. For this
reason, we do not usually say that A is compact in X, we simply say that A is compact.

5.6 Theorem: Let X be a metric space and let A ⊆ X. If A is compact then A is closed
and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let a ∈ Ac. For each
x ∈ A, let rx = d(a, x) > 0, let Ux = B

(
a,

rx
2

)
, and let Vx = B

(
x,

rx
2

)
so that Ux and

Vx are disjoint. Note that the set S =
{
Vx
∣∣x ∈ A

}
is an open cover for A. Since A

is compact we can choose a finite subcover, say {Vx1 , · · · , Vxn} where each xi ∈ A. Let
r = min{rx1

, · · · , rxn
} so that B

(
a, r2

)
⊆ Uxi

for all i, and hence B
(
a, r2

)
is disjoint from

each set Vxi
. Since B

(
a, r2

)
is disjoint from each set Vxi and the sets Vxi cover A, it follows

that B
(
a, r2

)
is disjoint from A, hence B

(
a, r2

)
⊆ Ac. Thus Ac is open, hence A is closed.

We claim that A is bounded. Let a ∈ A. For each n ∈ Z+, let Un = B(a, n). Then the
set S = {U1, U2, U3, · · ·} is an open cover for A. Since A is compact, we can choose a finite
subcover, say {Un1 , Un2 , · · · , Un,`} ⊆ S, with each ni ∈ Z+. Let m = max{n1, n2, · · · , n`}
so that Uni

⊆ Um for all indices i. Then we have A ⊆
⋃`
i=1 Uni

= Um = B(a,m) and so
A is bounded.
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5.7 Theorem: Let X be a metric space (or a topological space) and let A ⊆ X. If X is
compact and A is closed in X, then A is compact.

Proof: Suppose that X is compact and A is closed in X. Let S be an open cover for A.
Then S∪{Ac} is an open cover for X. Since X is compact, we can choose a finite subcover
T of S∪{Ac}. Note that T may or may not contain the set Ac but, in either case, T \{Ac}
is an open cover for A with T \ {Ac} ⊆ S, so that T \ {Ac} is a finite subcover of S.

5.8 Corollary: Let X be a metric space (or a topological space), let A ⊆ X be closed,
and let K ⊆ X be compact. Then A ∩K is compact.

5.9 Theorem: Let X and Y be metric spaces (or topological spaces) and let f : X → Y .
If X is compact and f is continuous then f(X) is compact.

Proof: Suppose that X is compact and f is continuous. Let T be an open cover for
f(X) in Y . Since f is continuous, so that f−1(V ) is open in X for each V ∈ T , the set
S =

{
f−1(V )

∣∣V ∈ T
}

is an open cover for X. Since X is compact, we can choose a

finite subcover, say {f−1(V1), f−1(V2), · · · , f−1(Vn)
}

of S, with each Vi ∈ T . Then the set
{V1, V2, · · · , Vn} is a finite subcover of T for f(X).

5.10 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f : R→ R given by f(x) = 2

π tan−1(x) sends the closed set R
homeomorphically to the open interval (−1, 1).

5.11 Theorem: (The Extreme Value Theorem) Let X be a compact metric space (or
topological space) and let f : X → R be continuous. Then there exist a, b ∈ X such that
f(a) ≤ f(x) ≤ f(b) for all x ∈ X.

Proof: Since X is compact and f is continuous, it follows that f(X) is compact in R.
Since f(X) is compact, it is closed and bounded in R. Since f(X) is bounded in R, it
follows that m = inf f(X) and M = sup f(X) are both finite real numbers, and since f(X)
is closed in R it follows that m ∈ f(X) and M ∈ f(X) so that we can choose a, b ∈ X
such that f(a) = m = inf f(X) and f(b) = M = sup f(X).

5.12 Theorem: Let X and Y be metric spaces with X compact. Let f : X → Y be
continuous and bijective. Then f is a homeomorphism.

Proof: Let g = f−1 : Y → X. We need to prove that g is continuous. Let A ⊆ X be
closed in X. Since X is compact and A ⊆ X is closed, it follows (from Theorem 5.7)
that A is compact. Since the map f : A → Y is continuous and A is compact, it follows
(from Theorem 5.9) that f(A) is compact. Since f(A) is compact it follows (from Theorem
5.6) that f(A) is closed. Since g = f−1 we have g−1(A) = f(A), which is closed. Since
g−1(A) is closed in Y for every closed set A in X, it follows (by taking complements) that
g−1(U) is open in Y for every open set U in X. Thus g is continuous, by the Topological
Characterization of Continuity (Theorem 3.19).

5.13 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0, 2π) and Y is the unit circle Y = {z ∈ C

∣∣‖z‖ = 1
}

,
then the map f : X → Y given by f(t) = ei t is continuous and bijective, but the inverse
map is not continuous at 1.
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5.14 Theorem: (The Lebesgue Number) Let X be a compact metric space and let S
be an open cover for X. Then there exists a number λ > 0, which is called a Lebesgue
number for the cover S, such that for all a ∈ X there exists U ∈ S such that B(a, λ) ⊆ U .

Proof: For each x ∈ X, since S is an open cover for X we can choose Ux ∈ S with x ∈ Ux
and then, since Ux is open we can choose rx > 0 so that B(a, 2rx) ⊆ Ux. Note that the
set T =

{
B(x, rx)

∣∣x ∈ X} is an open cover for X. Since X is compact, we can choose

a finite subcover, say
{
B(x1, rx1

), · · · , B(xn, rxn
)
}

of T for X, with each xi ∈ X. Let
λ = min{rx1 , · · · , rxn}. We claim that λ is a Lebesgue number for S. Let a ∈ X. Choose
an index i such that a ∈ B(xi, rxi), and let U = Uxi ∈ S. For all y ∈ B(a, λ) we have
d(y, xi) ≤ d(y, a) + d(a, xi) ≤ λ + rxi

≤ 2rxi
and hence y ∈ B(xi, 2rxi

) ⊆ Uxi
= U . This

shows that B(a, λ) ⊆ U , as required.

5.15 Theorem: Let X and Y be metric spaces with X compact and let f : X → Y be
continuous. Then f is uniformly continuous.

Proof: We leave the proof as an exercise.

5.16 Definition: Let X be a metric space. We say that X is totally bounded when for

every ε > 0 there exists a finite subset {a1, a2, · · · , an} ⊆ X such that X =
n⋃
i=1

B(ai, ε).

We say that X has the finite intersection property on closed sets when for every set
T of closed sets in X, if every finite subset of T has non-empty intersection, then T has
non-empty intersection.

5.17 Theorem: Let X be a metric space. Then the following are equivalent.

(1) X is compact.
(2) X has the finite intersection property on closed sets.
(3) Every sequence (xn) in X has a convergent subsequence.
(4) Every infinite subset A ⊆ X has a limit point.
(5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set
of closed sets in X. Suppose that T has empty intersection, that is suppose

⋂
A∈T A = ∅.

Then
⋃
A∈T A

c = X so the set S =
{
Ac
∣∣A ∈ T

}
is an open cover for X. Since X is

compact, we can choose a finite subcover, say
{
A1

c, · · · , Anc
}

of S for X. Then we have
A1 ∩A2 ∩ · · · ∩An = ∅, showing that some finite subset of T has empty intersection.

Next we prove that (2) implies (3). Suppose X has the finite intersection property on
closed sets. Let (xn)n≥1 be a sequence in X. For each m ∈ Z+, let Am = {xn|n > m} and
note that each Am is closed with A1 ⊇ A2 ⊇ A3 ⊇ · · ·. Let T = {Am|m ∈ Z+}. Note that
every finite subset of T has non-empty intersection because given Am1

, · · · , Am`
∈ T we

can let m = max{m1, · · · ,m`} and then we have
⋂`
i=1Ami = Am and we have xn ∈ Am.

Since X has the finite intersection property on closed sets, it follows that T has non-empty
intersection. Choose a point a ∈

⋂∞
m=1Am. We construct a subsequence (xnk

)k≥1 of

(xn)n≥1 with lim
k→∞

xnk
= a as follows. Since a ∈ A1 = {xn|n > 1} we can choose n1 > 1

such that d(xn1
, a) < 1. Since a ∈ An1

= {xn|n > n1} we can choose n2 > n1 such
that d(xn2

, a) < 1
2 . Since a ∈ An2

= {xn|n > n2} we can choose n3 > n2 such that
d(xn3

, a) < 1
3 . Repeating this procedure, we can choose 1 < n1 < n2 < n3 < · · · such that

d(xnk
, a) < 1

k for all indices k, and then we have constructed a subsequence (xnk
) such

that lim
k→∞

xnk
= a.
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Next we prove that (3) implies (4). Suppose that every sequence (xn) in X has a
convergent subsequence. Let A ⊆ X be an infinite subset. Choose a sequence (xn) in A
with the terms xn all distinct. Choose a convergent subsequence (xnk

) of (xn) and let
a = lim

k→∞
xnk

. Then a is a limit point of the set A.

Now let us prove that (4) implies (5). Suppose that every infinite subset A ⊆ X has a
limit point. We claim that X is complete. Let (xn) be a Cauchy sequence in X. We claim
that (xn) has a convergent subsequence. If the set {xn|n ∈ Z+} is finite, then some term in
the sequence occurs infinitely often, so we can choose indices n1 < n2 < n3 < · · · such that
x1 = x2 = x3 = · · ·, and so in this case (xn) has a constant subsequence. Suppose the set
{xn|n ∈ Z+} is infinite. Let a be a limit point of the infinite set A = {xn|n ∈ Z+}. Since a
is a limit point of the set {xn} we can choose indices nk with n1 < n2 < n3 < · · · such that
0 < d(xnk

, a) < 1
k for each index k. Then (xnk

) is a subsequence of (xn) with lim
k→∞

xnk
= a.

Since the sequence (xn) Cauchy and has a convergent subsequence, it follows, from Part 3
of Theorem 5.11, that the sequence (xn) converges. Thus X is complete, as claimed.

Continuing our proof that (4) implies (5), suppose that X is not totally bounded.
Choose ε > 0 such that there do not exist finitely many points a1, · · · , an ∈ X for which
X =

⋃n
i=1B(ai, ε). Let a1 ∈ X. Since X 6= B(a1, ε) we can choose a2 ∈ X with a1 /∈

B(a1, ε). Since X 6= B(a1, ε)∪B(a2, ε) we can choose a3 ∈ X with a3 /∈ B(a1, ε)∪B(a2, ε).
Repeat this procedure to choose points a1, a2, a3, · · · with an+1 /∈

⋃n
k=1B(ak, ε). Then the

set A = {an|n ∈ Z+ is an infinite subset of X which has no limit point.
Finally we prove that prove that (5) implies (1). Suppose that X is complete and

totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open
cover S for X which has no finite subcover for X. Since X is totally bounded, we can
cover X by finitely many balls of radius 1. Choose one of the balls, say U1 = B(a1, 1)
such that there is no finite subcover of S for U1 (if there was a finite subcover for each
ball, then the union of all these subcovers would be a finite subcover for X). Since X
is totally bounded, we can cover X (hence also U1) by finitely many balls of radius 1

2 .
Choose one of these balls, say U2 = B(a2,

1
2

)
such that there is no finite subcover of S

for U1 ∩ U2. Repeat the procedure to obtain balls Un = B
(
an,

1
n

)
such that, for each n,

there is no finite subcover of S for
⋂n
k=1 Uk. In particular, each intersection

⋂n
k=1 Uk is

nonempty so we can choose an element xn ∈
⋂n
k=1 Uk. Since for all k, ` ≥ m we have

xk, x` ∈ Um = B
(
am,

1
m

)
it follows that (xn) is Cauchy. Since X is complete, it follows

that (xn) converges in X. Let a = lim
n→∞

xn. Since S covers X we can choose U ∈ S with

a ∈ U . Since U is open we can choose r > 0 such that B(a, r) ⊆ U . Since xn → a we
can choose m > 3

r such that d(xm, a) < r
3 . Then for all x ∈ Um = B

(
am,

1
m

)
we have

d(x, a) ≤ d(x, am) + d(am, xm) + d(xm, a) < 1
m + 1

m + r
3 < r, and so Um ⊆ B(a, r) ⊆ U .

But then S has a finite subcover for Um, namely the singleton {U}, which contradicts the
fact that S has no finite subcover for

⋂m
k=1 Uk.

5.18 Example: Show that in the metric space
(
C[0, 1], d∞

)
, the closed unit ball B(0, 1)

is not compact.

Solution: Let fn(x) = xn for n ∈ Z+. Note that ‖fn‖∞ = 1 so that each fn ∈ B(0, 1).
Note that the pointwise limit of the sequence (fn) is the function g : [0, 1] → R given by
g(x) = 0 when x < 1 and g(1) = 1, which is not continuous. If some subsequence (fnk

) of
(fn) were to converge in

(
C[0, 1], d∞

)
then it would need to converge uniformly on [0, 1] to

the function g. But this is not possible since the uniform limit of a sequence of continuous
functions is always continuous. Thus (fn) has no convergent subsequence and so B(0, 1)
is not compact.
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Chapter 6. Some Applications

Contraction Maps and Picard’s Theorem

6.1 Definition: Let X be a metric space. A map f : X → X is called a contraction
map on X when there exists a constant c ∈ [0, 1) such thatt for all x, y ∈ X we have

d
(
f(x), f(y)

)
≤ c d(x, y).

Such a constant c is called a contraction constant for f . Note that every contraction
map is uniformly continuous.

6.2 Definition: For a map f : X → X (where X is any set), a point a ∈ X such that
f(a) = a is called a fixed point of f .

6.3 Theorem: (The Banach Fixed-Point Theorem) Every contraction map on a complete
metric space has a unique fixed point.

Proof: Let X be a complete metric space and let f : X → X be a contraction map on
X with contraction constant c ∈ [0, 1). Let x0 ∈ X be any point. Let x1 = f(x0) and
x2 = f(x1) = f2(x0) and so on, so that for n ≥ 1 we have xn = f(xn−1) = fn(x0). Note
that the sequence (xn)n≥0 is Cauchy because for n < m we have

d(xn, xm) = d
(
fn(x0), fn(xm−n)

)
≤ cn d

(
x0, xm−n)

≤ cn
(
d(x0, x1) + d(x1, x2) + · · ·+ d(xm−n−1, xm−n)

)
≤ cnd(x0, x1)

(
1 + c+ c2 + · · ·+ cm−n−1

)
≤ cnd(x0, x1) 1

1−c −→ 0 as c→ 0+.

Since X is complete, the sequence (xn)n≥0 converges, so we can let a = lim
n→∞

xn. Note

that f(a) = a because f is continuous at a so that

f(a) = f
(

lim
n→∞

xn
)

= lim
n→∞

f(xn) = lim
n→∞

xn−1 = a.

Finally note that for a, b ∈ X, if f(a) = a and f(b) = b then since

d(a, b) = d
(
f(a), f(b)

)
≤ c d(a, b)

with 0 ≤ c < 1, it follows that d(a, b) = 0 so that a = b.
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6.4 Definition: Let A ⊆ R2 and let f : A → R. We say that f satisfies a Lipschitz
condition on A when there exists a constant ` ≥ 0 such that for all x, y1, y2 ∈ R for which
(x, y1) ∈ A and (x, y2) ∈ A, we have∣∣f(x, y2)− f(x, y1)

∣∣ ≤ ` |y2 − y1|.
Such a constant ` is called a Lipschitz constant for f .

6.5 Theorem: (Picard) Let U be an open set in R2, let (a, b) ∈ U , and let F : U → R
satisfy a Lipschitz condition on U . Then there exists δ > 0 such that the differential
equation dy

dx = F (x, y) has a unique solution y = f(x) with f(a) = b, defined for all
x ∈ [a−δ, a+δ].

Proof: First note that y = f(x) is a solution to the differential equation dy
dx = F (x, y) with

f(a) = b if and only if f(x) satisfies the integral equation

f(x) = b+

∫ x

a

F
(
t, f(t)

)
dt

for all x ∈ [a−δ, a+δ]. Let ` be a Lipschitz constant for F . Choose r > 0 such that
B
(
(a, b), r

)
⊆ U and let k = max

(x,y)∈B((a,b),r)

∣∣F (x, y)
∣∣. Choose δ with 0 < δ < 1

` small

enough such that the rectangle

R = [a−δ, a+δ]× [b−kδ, b+kδ]
is contained in B

(
(a, b), r

)
. Verify as an exercise (Using the Mean Value Theorem) that if

f(x) is any solution to the given differential equation with f(a) = b then the graph of f
must be contained in the rectangle R. Let

X =
{
f ∈ C[a−δ, a+δ]

∣∣Graph(f) ⊆ R
}
.

Verify that X is a closed subspace of the metric space C[a−δ, a+δ] (using the supremum
metric) and so X is complete. Define G : X → C[a−δ, a+δ] by

G(f)(x) = b+

∫ x

a

F
(
t, f(t)

)
dt.

Note that G(X) ⊆ X because for all f ∈ X and x ∈ [a−δ, a+δ] we have∣∣G(f)(x)− b
∣∣ =

∣∣∣∣ ∫ x

a

F (t, f(t)
)
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

k dt

∣∣∣∣ = k|x− a| ≤ kδ.

Note that G is a contraction map on X, with contraction constant c = `δ < 1 because, for
all f, g ∈ X and all x ∈ [a−δ, a+δ], we have∣∣G(f)(x)−G(g)(x)

∣∣ =

∣∣∣∣ ∫ x

a

(
F (t, f(t))− F (t, g(t))

)
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

∣∣F (t, f(t))− F (t, g(t))
∣∣dt∣∣∣∣

≤
∣∣∣∣ ∫ x

a

`
∣∣f(t)− g(t)

∣∣ dt∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

` ‖f − g‖∞ dt

∣∣∣∣
= `|x− a| ‖f − g‖∞ ≤ `δ ||f − g||∞.

By the Banach Fixed-Point Theorem, the map G has a unique fixed point f ∈ X, and this
function f ∈ X is the unique solution to the above integral equation, which is equivalent
to the given differential equation.
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The Arzela-Ascoli Theorem and Peano’s Theorem

6.6 Definition: Let X be a set and let S ⊆ F(X) = F(X,R). We say that S is pointwise
bounded when for every x ∈ X there exists m = m(x) > 0 such that |f(x)| ≤ m for every
function f ∈ S. We say that S is uniformly bounded when there exists m > 0 such that
|f(x)| ≤ m for every x ∈ X and every f ∈ S.

Let X be a metric space and let S ⊆ C(X) = C(X,R). We say that S is equicon-
tinuous when for every ε > 0 there exists δ > 0 such that for every f ∈ S and for all
x, y ∈ X, if d(x, y) < δ then d

(
f(x), f(y)

)
< ε

6.7 Note: When X is a compact metric space, by the Extreme Value Theorem, every
continuous function f : X → R is also bounded, so we have C(X) = Cb(X), which is a
complete metric space using the supremum norm. Unless otherwise stated, when we refer
to the metric space C(X) it is understood that we are using the supremum metric.

6.8 Note: When X is a compact metric space and S ⊆ C(X), note that S is uniformly
bounded if and only if S is bounded as a subspace of the metric space C(X).

6.9 Theorem: Let X be a compact metric space and let (fn) be a sequence in C(X). If
the sequence (fn) converges in the metric space C(X) (equivalently, if the sequence (fn)
converges uniformly on X) then the set {fn} is equicontinuous.

Proof: Suppose (fn) converges in C(X). Let ε > 0. Since (fn) converges in C(X) we
can choose ` ∈ Z+ such that for all n,m ≥ ` we have ‖fn − fm‖∞ < ε

3 . Since X is
compact, each of the functions fn is uniformly continuous on X. Choose δ > 0 such that
for all x, y ∈ X with d(x, y) < δ we have

∣∣fn(x) − fn(y)
∣∣ < ε for each n < ` and we have∣∣f`(x)− f`(y)

∣∣ < ε
3 . Then for all n ≥ ` and all x, y ∈ X with d(x, y) < δ we have∣∣fn(x)− fn(y)

∣∣ ≤ ∣∣fn(x)− f`(x)
∣∣+
∣∣f`(x)− f`(y)

∣∣+
∣∣f`(y)− fn(y)

∣∣ < ε.

6.10 Corollary: Let X be a compact metric space. Then every compact set S ⊆ C(X) is
equicontinuous.

Proof: Let S ⊆ C(X). Suppose that S is not equicontinuous. Choose ε > 0 such that
for all δ > 0 there exists f ∈ S and there exist x, y ∈ X with d(x, y) < δ such that∣∣f(x) − f(y)

∣∣ ≥ ε. For each n ∈ Z+, choose fn ∈ S such that there exist x, y ∈ X with

d(x, y) < 1
2n such that

∣∣fn(x) − fn(y)
∣∣ ≥ ε. Then no subsequence of (fn) can possibly

converge in S (using the supremum metric) and so S cannot be compact.

6.11 Theorem: Let X be a compact metric space and let (fn) be a sequence in C(X).
If the set {fn} is pointwise bounded and equicontinuous then the set {fn} is uniformly
bounded and the sequence (fn) has a convergent subsequence in C(X).

Proof: Suppose that the set {fn} is pointwise bounded and equicontinuous. We claim that
the set {fn} is uniformly bounded. Since {fn} is equicontinuous, we can choose δ > 0 such
that for all n ∈ Z+ and for all x, y ∈ X with d(x, y) < δ we have

∣∣fn(x)−fn(y)
∣∣ < 1. Since

X is compact, we can choose a1, a2, · · · , a` ∈ X such that X = B(a1, δ) ∪ · · · ∪ B(a`, δ).
Since {fn} is pointwise bounded, we can choose m > 0 such that for each index k with
1 ≤ k ≤ ` we have

∣∣fn(ak)
∣∣ ≤ m . Let n ∈ Z+ and x ∈ X. Choose an index k with

1 ≤ k ≤ ` such that x ∈ B(ak, δ). Since d(x, ak) < δ we have
∣∣fn(x)− fn(ak)

∣∣ < 1 and so∣∣fn(x)
∣∣ ≤ ∣∣fn(x) − fn(ak)

∣∣ +
∣∣fn(ak)

∣∣ < 1 + m. Thus the set {fn} is uniformly bounded,
as claimed.
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It remains to show that the sequence (fn) has a convergent subsequence in C(X).
Since X is compact, and hence separable, we can choose a countable dense subset A ⊆ X,
say A = {a1, a2, a3, · · ·}. We claim that the sequence (fn)n≥1 has a subsequence (fnk

)k≥1
which converges pointwise on A. Since the real-valued sequence

(
fn(a1)

)
n≥1 is bounded,

we can choose a subsequence, which we shall write as
(
f1,k

)
k≥1 =

(
f1,1, f1,2, f1,3, · · ·

)
,

of the sequence of functions (fn)n≥1 such that the real-valued sequence
(
f1,k(a1)

)
k≥1

converges. Since the real-valued sequence
(
f1,k(a2)

)
k≥1 is bounded, we can choose a sub-

sequence
(
f2,k

)
of the sequence of functions

(
f1,k

)
such that the real-valued sequence(

f2,k(a2)
)

converges. Note that since
(
f2,k(a1)

)
is a subsequence of the convergent se-

quence
(
f1,k(a1)

)
, it also converges. By recursively repeating this procedure, we construct

sequences (fn,k)k≥1 for each n ≥ 1, such that
(
fn+1,k

)
k≥1 is a subsequence of

(
fn,k

)
k≥1 and

the real-valued sequences
(
fn,k(aj)

)
k≥1 converge for all j with 1 ≤ j ≤ n. Let

(
fnk

)
k≥1

denote the sequence
(
f1,1, f2,2,, f3,3,, · · ·

)
, note that this is a subsequence of the original

sequence (fn), and the real-valued sequences
(
fnk

(aj)
)
k≥1 converge for all indices j ∈ Z+,

so the subsequence (fnk
) converges pointwise on A, as required.

Finally, we claim that the above subsequence (fnk
) converges in C(X). Let ε > 0.

Since the set {fn} is equicontinuous we can choose δ > 0 such that for all n ∈ Z+ and all
x, y ∈ X with d(x, y) < δ we have

∣∣fn(x) − fn(y)
∣∣ < ε

3 . Since A is dense in X, the set

U =
{
B(an, δ)

∣∣n ∈]Z+
}

is an open cover of X. Since X is compact, we can choose a finite
subcover of U , so we can choose a1, a2, · · · , ap ∈ X such that X = B(a1, δ)∪ · · · ∪B(ap, δ).
Since the sequences

(
fnk

(aj)
)
k≥1 all converge, we can choose m ∈ Z+ such that for all

j ∈ Z+ with 1 ≤ j ≤ p and all k, ` ∈ Z+ with k, ` ≥ m we have
∣∣fnk

(aj) − fn`
(aj)

∣∣ < ε
3 .

Let x ∈ X and let k, ` ∈ Z+ with k, ` ≥ m. Choose an index j with 1 ≤ j ≤ p such that
x ∈ B(aj , δ). Then we have∣∣fnk

(x)− fn`
(x)
∣∣ ≤ ∣∣fnk

(x)− fnk
(aj)

∣∣+
∣∣fnk

(aj)− fn`
(aj)

∣∣+
∣∣fn`

(aj)− fn`
(x)
∣∣ < ε.

6.12 Theorem: (The Arzela-Ascoli Theorem) Let X be a compact metric space and
let S ⊆ C(X). Then S is compact if and only if S is closed, pointwise bounded, and
equicontinuous.

Proof: Suppose that S is compact. Then we know that S is closed and bounded and
we know (from Corollary 6.9) that S is equicontinuous. Since S is bounded, using the
supremum metric, it follows that S is uniformly bounded, hence also pointwise bounded.

Suppose, conversely, that S is closed, pointwise bounded, and equicontinuous. Let
(fn) be a sequence in S. Since S is pointwise bounded and equicontinuous, the subset
{fn} is also pointwise bounded and equicontinuous. By the above theorem, the sequence
(fn) has a convergent subsequence (fnk

) in C(X). Since S is closed, the limit of this
subsequence lies in S. This proves that every sequence in S has a subsequence which
converges in S, and so S is compact.

6.13 Theorem: (Peano) Let U ∈ R2 be open, let (a, b) ∈ U , and let F : U → R be
continuous. Then there exists δ > 0 such that the differential equation dy

dx = F (x, y) has a
solution y = f(x) which is defined for all x ∈ [a−δ, a+δ].

Proof: I may include a proof later.
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The Stone-Weierstrass Theorem and Polynomial Approximation

6.14 Definition: A (commutative) algebra over a field F is a vector space U with
a binary multiplication operation such that for all u, v, w ∈ U and all t ∈ F we have
uv = vu, u(v + w) = uv + uw, and (tu)v = t(uv). A subspace A ⊆ U is a subalgebra of
U when it is an algebra using (the restriction of) the same operations used in U . Verify
that a subset A ⊆ U is a subalgebra of U when 0 ∈ A and for all u, v ∈ A and all t ∈ F
we have tu ∈ A, u+ v ∈ A and uv ∈ A.

6.15 Example: When X is a metric space, F(X) is an algebra over R and B(X), C(X),
and Cb(X) are all subalgebras.

6.16 Example: When a ≤ b, the space P[a, b] of polynomial maps f : [a, b]→ R and the
space C1[a, b] of continuously differentiable maps are subalgebras of the algebra C[a, b] of
continuous maps f : [a, b]→ R, and the space R[a, b] of Riemann integrable functions is a
subalgebra of the algebra B[a, b] of bounded functions f : [a, b]→ R.

6.17 Example: Show that f(x) = |x| lies in the closure of P[−1, 1] in C[−1, 1] (using the
supremum metric).

Solution: Let a ∈ R with 0 < a ≤ 1 and let g(x) =
√
x+ a2. Then g′(x) = 1

2 (x+ a2)−1/2,

g′′(x) = − 1
22 (x+ a2)−3/2, g′′′(x) = 1·3

23 (x+ a2)−5/2 and in general

g(n)(x) = (−1)n+11·3·5···(2n−3)
2n (x+ a2)−(2n−1)/2.

Let pn(x) be the nth Taylor polynomial for g(x) centred at 1
(
we centre at 1 so the Taylor

series converges in an open interval containing [0, 1]
)
. For all x ∈ [0, 1], since

(
2n
n

)
≤ 22n

we have ∣∣g(x)− pn(x)
∣∣ =

∣∣∣ g(n+1)(t)
(n+1)! (x− 1)n+1

∣∣∣ for some t ∈ [x, 1]

≤ 1·3···(2n−1)·a2n−1

2n+1(n+1)! = a2n−1

22n+1(n+1)

(
2n
n

)
≤ 1

2(n+1) .

For all x ∈ [−1, 1] we have x2 ∈ [0, 1] so∣∣√x2 + a2 − pn(x2)
∣∣ =

∣∣g(x2)− pn(x2)
∣∣ ≤ 1

2(n+1) .

Also note that for all x we have∣∣|x| −√x2 + a2
∣∣ =

√
x2 + a2 −

√
x2 =

a2
√
x2 + a2 +

√
x2
≤ a.

Given ε > 0 we can choose a > 0 with a < 1 and a < ε
2 and we can choose n ∈ Z+ so that

1
2(n+1) <

ε
2 and then for all x ∈ [−1, 1] we have∣∣|x| − pn(x2)

∣∣ ≤ ∣∣|x| −√x2 + a2
∣∣+
∣∣√x2 + a2 − pn(x2)

∣∣ ≤ a+ 1
2(n+1) < ε.

Thus for fn : [−1, 1]→ R given by fn(x) = pn(x2), we have each fn ∈ P[−1, 1] and fn → f
uniformly on [−1, 1], that is fn → f in the metric space

(
C[−1, 1], d∞

)
.

6.18 Definition: Let A ⊆ C(X). We say that A separates points when for all x, y ∈ X
with x 6= y there exist f ∈ A with f(x) 6= f(y). We say that A vanishes nowhere when
for all a ∈ X there exists f ∈ A such that f(x) 6= 0. Note that if 1 ∈ A (where 1 denotes
the constant function) the A vanishes nowhere.
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6.19 Theorem: (The Stone-Weierstrass Theorem) Let X be a compact metric space and
let A ⊆ C(X) be an algebra. If A separates points and vanishes nowhere then A = C(X).

Proof: Note first that A is also a subalgebra of C(X). Indeed given f, g ∈ A and c ∈ R,
we can choose sequences (fn) and (gn) in A such that fn → f and gn → g in C(X) (that
is fn → f and gn → g uniformly on X), and then we have cfn → cf , fn + gn → f + g and
fngn → fg uniformly on X, and hence cf ∈ A, f + g ∈ A and fg ∈ A. Also note that A
separates points and vanishes nowhere, and so we may assume, without loss of generality,
that A is closed.

Next we claim that if f ∈ A then we also have |f | ∈ A. Let f ∈ A ⊆ C(X). Choose
m > 0 with m ≥ ‖f‖∞. Let g = 1

mf and note that g ∈ A with ‖g‖∞ ≤ 1, that is
g(x) ∈ [−1, 1] for all x ∈ X. Let ε > 0. By Example 6.17, we can choose a polynomial
p0(x) = a0 + a1x + · · · + anx

n such that
∣∣p0(u) − |u|

∣∣ ≤ ε
2 for all u ∈ [−1, 1]. Let

p(x) = p0(x) − a0 and note that
∣∣p(u) − |u|

∣∣ ≤ ε for all u ∈ [−1, 1]. For all x ∈ X, we

have g(x) ∈ [−1, 1] and so
∣∣p(g(x)

)
−|g(x)|

∣∣ < ε. Note that the function h(x) = p
(
g(x)

)
=

a1g(x) + a2g(x)2 + · · · ang(x)n lies in A (because g ∈ A and A is an algebra). This shows
that for every ε > 0 we can find h ∈ A with

∣∣h− |g|∣∣ < ε, and (since A is closed) it follows
that |g| ∈ A and hence |f | = m|g| ∈ A.

Next we note that if f, g ∈ A then we also have max{f, g} ∈ A and min{f, g} ∈ A
because

max{f, g} =
f + g

2
+
|f + g|

2
and min{f, g} =

f + g

2
− |f + g|

2

and it follows, inductively, that if f1, f2, · · · , fn ∈ A then we have max{f1, · · · , fn} ∈ A
and min{f1, · · · , fn} ∈ A.

We claim that for all r, s ∈ R and for all a, b ∈ X with a 6= b, there is a function g ∈ A
with g(a) = r and g(b) = s. Let r, s ∈ R and let a, b ∈ X with a 6= b. Since A separates
points, we can choose h ∈ A with h(a) 6= h(b). Since A vanishes nowhere, we can choose
k, ` ∈ A with k(a) 6= 0 and `(b) 6= 0. Define u, v ∈ A by

u(x) =
(
h(x)− h(b)

)
k(x) and v(x) =

(
h(a)− h(x)

)
`(x)

and note that u(a) 6= 0 and u(b) = 0 while v(a) = 0 and v(b) 6= 0. Then define g ∈ A by

g(x) = r
u(x)

u(a)
+ s

v(x)

v(b)

to obtain g(a) = r and g(b) = s, as required.

We claim that for every f ∈ C(X), for every a ∈ X and for every ε > 0, there is a
function h ∈ A such that h(a) = f(a) and h(x) < f(x) + ε for all x ∈ X. Let f ∈ C(X),
let a ∈ X and let ε > 0. For each b ∈ X, by the previous claim we can choose gb ∈ A such
that gb(a) = f(a) and gb(b) = f(b). For each b ∈ X, since f and gb are continuous at b,
we can choose rb > 0 such that for all x ∈ B(b, rb) we have∣∣f(x)− f(b)

∣∣ < ε
2 and

∣∣gb(x)− gb(b)
∣∣ < ε

2 , hence
∣∣gb(x)− f(x)

∣∣ < ε.

Since X is compact and the set
{
B(b, rb)

∣∣ b∈X} covers X, we can choose b1, b2, · · · , bn ∈ X

such that X =
n⋃
k=1

B(bk, rbk), and then we let

h = min
{
gb1 , gb2 , · · · , gbn

}
∈ A.

For all x ∈ X we can choose an index k such that x ∈ B(bk, rak) and then we have
h(x) ≤ gbk(x) < f(x) + ε, as required.
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Finally, we complete the proof by showing that for every f ∈ C[0, 1] and every ε > 0
there exists g ∈ A such that |g(x)− f(x)| < ε for all x ∈ X. Let f ∈ C(X) and let ε > 0.
For each a ∈ X, by the previous claim we can choose ha ∈ A such that ha(a) = f(a) and
ha(x) < f(x) + ε for all x ∈ X. For each a ∈ X, since f and ha iare continuous at a, we
can choose sa > 0 such that for all x ∈ B(a, sa) we have∣∣f(x)− f(a)

∣∣ < ε
2 and

∣∣ha(x)− ha(a)
∣∣ < ε

2 hence
∣∣ha(x)− f(x)

∣∣ < ε.

Since X is compact and
{
B(ak, sk)

∣∣ a ∈ X} covers X, we can choose a1, a2, · · · , am ∈ X

such that X =
m⋃
k=1

B(ak, sak), and then we chose

g = max
{
ha1 , ha2 , · · · , ham

}
∈ A.

For all x ∈ X we can choose an index k such that x ∈ B(ak, sak) and we can choose an
index ` such that g(x) = ha`(x) and then we have

g(x) ≥ hak(x) > f(x)− ε and g(x) = ha`(x) < f(x) + ε.

6.20 Corollary: (The Weierstrass Approximation Theorem) Let X ⊆ Rn be compact
and let f ∈ C(X). Then for all ε > 0 there exists a polynomial p in n variables such that∣∣p(x)− f(x)

∣∣ < ε for all x ∈ X.

Proof: Each polynomial p in n-variables determines a continuous function p : X → R.
The set P(X) of such polynomial functions is a subalgebra of C(X) which separates points
(for a, b ∈ X, if a 6= b then ak 6= bk for some index k, and then the polynomial p(x) = xk
separates a and b) and vanishes nowhere

(
because 1 ∈ P(X)

)
, so P(X) is dense in C(X).

6.21 Corollary: The space
(
C[a, b], d∞

)
is separable, where a, b ∈ R with a < b.

Proof: Let P be the set of polynomials with coefficients in Q. Note that P is countable by
Theorem 1.20

(
indeed, Q is countable by Part 4 of Theorem 1.20, hence Q2,Q3, · · · ,Qn

are all countable by Part 1 of Theorem 1.20 and by induction, hence the space Pn of
polynomials over Q of degree at most n is countable since the map F : Qn+1 → Pn given

by F (a0, a1, · · · , an+1) =
n∑
k=0

akx
k is bijective, and hence P =

∞⋃
n=0

Pn is countable by Part 3

of Theorem 1.20
)
. We claim that P is dense in C[a, b]. Let f ∈ C[a, b] and let ε > 0. By the

Weierstrass Approximation Theorem we can choose a polynomial p with coefficients in R

such that ‖p− f‖∞ < ε
2 , say p(x) =

n∑
k=0

ckx
k with each ck ∈ R. Let m = max{|a|, |b|, 1},

for each index k, choose ak ∈ Q with |ak − ck| < ε
2(n+1)mn and let g(x) =

n∑
k=0

akx
k. Then

for all x ∈ [a, b] we have |x| ≤ m
(
since m ≥ max{|a|, |b|}

)
and hence for all 0 ≤ k ≤ n we

have |x|k ≤ mk ≤ mn (since m ≥ 1). Thus for all x ∈ [a, b] we have∣∣g(x)− p(x)
∣∣ =

∣∣∣ n∑
k=0

(ak − ck)xk
∣∣∣ ≤ n∑

k=0

|ak − ck| |x|k ≤
n∑
k=0

ε
2(n+1)mn m

n = ε
2 .

Thus ‖g − p‖∞ ≤
ε
2 and hence ‖g − f‖∞ ≤ ‖g − p‖∞ + ‖p− f‖∞ < ε

2 + ε
2 = ε.

6.22 Exercise: Let A =
{
b0 +

n∑
k=1

(ak sin(kx) + bk cos(kx))
∣∣∣n ∈ Z+, ak, bk ∈ R

}
. Show

that A is dense in C[0, π] but A is not dense in C[0, 2π].
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Chapter 7. The Baire Category Theorem

7.1 Definition: When I is the bounded open interval I = (a, b), where a, b ∈ R with
a ≤ b, the diameter of I is d(I) = b − a. For a subset A ⊆ R, we define the Lebesgue
outer measure of A to be

λ(A) = inf
{ ∞∑
k=1

d(Ik)
∣∣∣ each Ik is a bounded open interval in R and A ⊆

∞⋃
k=1

Ik

}
with 0 ≤ λ(A) ≤ ∞. We say that A has (Lebesgue) measure zero when λ(A) = 0.

7.2 Note: Every finite or countable set A ⊆ R has measure zero. Indeed, if A is finite,
say A = {a1, a2, · · · , an}, then given ε > 0 then we can take Ik =

(
ak− ε

2n , ak+ ε
2n

)
for

k ≤ n, and we can take Ik = ∅ for k > n, to get A ⊆
∞⋃
k=1

Ik and
∞∑
k=1

d(Ik) =
n∑
k=1

ε
n = ε.

And if A is infinite, say A = {a1, a2, a3, · · ·}, then we can take Ik =
(
a− ε

2k+1 , ak+ ε
2k+1

)
for all k ≥ 1 to get A ⊆

∞⋃
k=1

Ik and
∞∑
k=1

d(Ik) =
∞∑
k=1

ε
2k

= ε. Perhaps surprisingly, it is not

the case that every set of measure is at most countable.

7.3 Example: The (standard) Cantor set is the set C ⊆ [0, 1] constructed as follows.
Let C0 = [0, 1]. Let I1 be the open middle third of C0, that is let I1 =

(
1
3 ,

2
3

)
, and let

C1 = A0\U1 =
[
0, 13
]
∪
[
2
3 , 1
]
. Let I2 and I3 be the open middle thirds of the two component

intervals of C1, that is let I2 =
(
1
9 ,

2
9

)
and I3 =

(
7
9 ,

8
9

)
, and let C2 = C1 \ (I2 ∪ I3). Having

constructed the set Cn, which is the disjoint union of 2n closed intervals each of length 1
3n ,

let I2n , I2n+1, · · · , I2n+1−1 be the open middle thirds of these 2n component intervals and
let Cn+1 = Cn \ (I2n , I2n+1, · · · , I2n+1−1). Note that Cn is the set of all numbers x ∈ [0, 1]
which can be written in base 3 such that the the first n digits of x are not equal to 1.

The Cantor set is the set

C =
∞⋂
n=0

Cn

or equivalently, C is the set of all numbers x ∈ [0, 1] which can be written in base 3 with
none of the digits of x equal to 1.

Since C =
∞⋂
n=0

Cn with C0 ⊇ C1 ⊇ C2 ⊇ · · ·, it follows that C ⊆ Cn for all n ∈ N.

Since Cn is the (disjoint) union of 2n closed intervals each of size 1
3n , it follows that we

can cover Cn (hence also C) by a union of 2n open intervals each of size 2
3n , and so we

have λ(C) ≤ 2n · 2
3n = 2n+1

3n . Since λ(C) ≤ 2n+1

3n for all n ∈ N and 2n+1

3n → 0 as n→∞, it
follows that λ(C) = 0.

On the other hand, since C is the set of all real numbers x ∈ [0, 1] which can be
written in base 3 using only the digits 0 and 2, it follows that |C| = 2ℵ0 .

7.4 Remark: Note that the set C of numbers x ∈ [0, 1] which can be written in base 3
without using the digit 1, is not equal to the complement of the set B of numbers x ∈ [0, 1]
which can be written in base 3 using the digit 1 (at least once). For example, the number
x = 1

3 can be written in base 3 as x = 0.1 so we have x ∈ B, but it can also be written in
base 3 as x = 0.0222 · · ·, so we also have x ∈ C.

7.5 Exercise: Show that the set of all real numbers x ∈ [0, 1], which can be written in
base 5 without using the digit 2, has measure zero.
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7.6 Definition: Let X be a metric space and let A ⊆ X. Recall that A is dense (in X)
when for every nonempty open ball B ⊆ X we have B ∩A 6= ∅, equivalently when A = X.
We say A is nowhere dense (in X) when for every nonempty open ball B ⊆ R there

exists a nonempty open ball C ⊆ B with C ∩A = ∅, or equivalently when A
0

= ∅.

7.7 Exercise: Show that the Cantor set is nowhere dense in [0, 1] (or in R).

7.8 Note: When A ⊆ B ⊆ X, note that if A is dense in X then so is B and, on the other
hand, if B is nowhere dense in X then so is A.

7.9 Note: When A,B ⊆ X with B = Ac = X \ A, note that A is nowhere dense ⇐⇒
A

0
= ∅ ⇐⇒ B0 = X ⇐⇒ the interior of B is dense.

7.10 Definition: Let A ⊆ X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when Ac is first category.

7.11 Note: Every countable set in R is first category since if A = {a1, a2, a3, · · ·} then

we have A =
∞⋃
k=1

{ak}. In particular Q is first category and Qc = R \Q is residual.

7.12 Note: If A ⊆ X is first category then so is every subset of A.

7.13 Note: If A1, A2, A3, · · · ⊆ X are are all first category then so is
∞⋃
k=1

Ak.

7.14 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.
(2) Every residual set in X is dense.
(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

LetA ⊆ X be first category, sayA =
∞⋃
n=1

Cn where each Cn is nowhere dense. Suppose,

for a contradiction, that A has nonempty interior, and choose an open ball B0 = B(a0, r0)
with 0 < r0 < 1 such that B0 ⊆ A . Since each Cn is nowhere dense, we can chose a
nested sequence of open balls Bn = B(an, rn) with 0 < rn <

1
2n such that Bn ⊆ Bn−1 and

Bn ∩ Cn = ∅. Because rn → 0, it folows that the sequence {an} is Cauchy. Because X
is complete, it follows that {an} converges in X, say a = lim

n→∞
an. Note that a ∈ Bn for

all n since ak ∈ Bn for all k ≥ n. Since a ∈ B0 and B0 ⊆ A we have a ∈ A. But since

a ∈ Bnfor al n ≥ 1, and Bn ∩Cn = ∅, we have a /∈ Cn for all n ≥ 1 hence a /∈
∞⋃
n=1

Cn, that

is a /∈ A.

7.15 Example: Recall that Q is first category and Qc is residual. The Baire Category
Theorem shows that Qc cannot be first category because if Q and Qc were both first
category then R = Q ∪Qc would also be first category, but this is not possible since R
does not have empty interior.
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7.16 Example: Let f ∈ C∞(R) and suppose that for all x ∈ R there exists nx ∈ Z+ such
that f (nx)(x) = 0. Show that there exists a nonempty open interval (a, b) ⊆ R such that
the restriction of f to (a, b) is a polynomial.

Solution: For each n ∈ Z+, let An =
{
x ∈ R

∣∣f (n)(x) = 0
}

. Since we are assuming that for

all x ∈ R there exists nx such that f (nx)(x) = 0, it follows that
∞⋃
n=1

An = R. Note that

each set An is closed because f ∈ C∞(R) so that f (n) is continuous, and An is the inverse

image under f (n) of the closed set {0}. Since R =
∞⋃
n=1

An and each An is closed, it follows

from the Baire Category Theorem that at least one of the sets An must have a nonempty
interior. Choose n such that An has a nonempty interior, and choose a nonempty open
interval (a, b) ⊆ An. Then we have f (n)(x) = 0 for all x ∈ (a, b), and so the restriction of
f to (a, b) is a polynomial of degree at most n.

7.17 Exercise: For each n ∈ Z+, let fn : R → R be continuous. Suppose that for all
x ∈ R there exists n ∈ Z+ such that fn(x) ∈ Q. Prove that there exists n ∈ Z+ such that
fn is constant in some nondegenerate interval.

7.18 Remark: Let C1 =
{
A ⊆ R

∣∣A is finite or countable
}

, C2
{
A ⊆ R

∣∣λ(A) = 0
}

and

C3 =
{
A ⊆ R

∣∣A is first category
}

. Note that if C = Ck for some k ∈ {1, 2, 3}, then C has
the following properties:

(1) if A ⊆ B and B ∈ C then A ∈ C,
(2) if A1, A2, A3, · · · ∈ C then

∞⋃
k=1

Ak ∈ C, and

(3) if A ∈ C then A0 = ∅.
Because of this, it seems reasonable to consider each set Ck to be, in some sense, “small”.
Perhaps surprisingly, the following theorem states that every set in R is the union of two
such small sets.

7.19 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1, a2, a3, · · ·}. For k, ` ∈ Z+, let Ik,` =
(
a` − 1

2k+` , a` + 1
2k+`

)
and

for k ∈ Z+, let Uk =
∞⋃
`=1

Ik,`. Note that each Uk is open with Q ⊆ Uk, so each Uk is

a dense open set. Also note that for each k ∈ Z+ we have λ(Uk) ≤
∞∑̀
=1

d(Ik,`) = 1
2k−1 .

Let B =
∞⋂
k=1

Uk and note that B is residual, since it is a countable intersection of dense

open sets. Since B =
∞⋂
k=1

Uk and U1 ⊇ U2 ⊇ U3 ⊇ · · ·, we have B ⊆ Uk for all k, hence

λ(B) ≤ λ(Uk) ≤ 1
2k−1 for all k ∈ Z+, and it follows that λ(B) = 0. Thus R is the disjoint

union of the set B, which has measure zero, and its complement Bc which is first category
(since B is residual). Finally note that any set A ⊆ R is equal to the disjoint union
A = (A ∩B) ∪ (A ∩Bc), and we have λ(A ∩B) = 0 and the set A ∩Bc is first category.

7.20 Remark: At first glance, it might appear that the set B constructed in the above
proof might simply be equal to Q. But in fact, B must be uncountable, because if B was
countable then B would be first category, but then B and Bc would both be first category,
and hence R = B ∪ Bc would also be first category. But R is not first category by the
Baire Category Theorem.
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7.21 Example: Most students will have seen that it is possible to construct a continuous
function f : [0, 1]→ R such that f is nowhere differentiable. Show that the set of nowhere
differentiable functions is residual (hence dense) in C[0, 1].

Solution: Let A be the complement of the set of nowhere differentiable functions in C[0, 1],
that is

A =
{
f ∈ C[0, 1]

∣∣∣ f is differentiable at some point a ∈ [0, 1]
}
.

For each k, ` ∈ Z+, let

Ak,` =
{
f ∈ C[0, 1]

∣∣∣ ∃a∈ [0, 1] ∀x∈ [0, 1] 0 < |x− a| < 1
k =⇒

∣∣ f(x)−f(a)
x−a

∣∣ ≤ `}.
We shall show that A =

⋃
k,`

Ak,`, and that each Ak,` is closed in C[0, 1] with an empty

interior and so A is first category. Thus the set of nowhere differentiable functions is
residual, and hence dense by the Baire Category Theorem.

We claim that A =
⋃
k,`

Ak,`. Let f ∈ A. Choose a ∈ [0, 1] such that f is differentiable

at a. Choose ` ∈ Z+ such that
∣∣f ′(a)

∣∣ ≤ `. Choose δ > 0 such that for all x ∈ [0, 1] we

have 0 < |x − a| < δ =⇒
∣∣ f(x)−f(a)

x−a − f ′(a)
∣∣ < ` − |f ′(a)|. Choose k ∈ Z+ with 1

k ≤ δ.

Then for all x ∈ [0, 1], if 0 < |x− a| < 1
k then we have

∣∣ f(x)−f(a)
x−a − f ′(a)

∣∣ < `− |f ′(a)| and
hence ∣∣ f(x)−f(a)

x−a
∣∣ ≤ ∣∣ f(x)−f(a)x−a − f ′(a)

∣∣+ |f ′(a)| ≤
(
`− |f ′(a)|

)
+ |f ′(a)| = `

so that f ∈ Ak,`. Thus A =
⋃
k,`

Ak,`, as claimed.

We claim that each set Ak,` is closed in C[0, 1]. Let (fn)n≥1 be a sequence in Ak,`
which converges in C[0, 1], and let g = lim

n→∞
fn in C[0, 1]. Then fn → g uniformly in [0, 1],

and we need to show that g ∈ Ak,`. For each n ∈ Z+, since fn ∈ Ak,` we can choose

an ∈ [0, 1] such that for all x ∈ [0, 1] we have 0 < |x − an| < 1
k =⇒

∣∣ fn(x)−f(an)
x−an

∣∣ ≤ `.
Since [0, 1] is compact, we can choose a convergent subsequence (ank

)k≥1 of the sequence
(an)n≥1 and let a = lim

k→∞
ank
∈ [0, 1]. Note that the corresponding subsequence (fnk

)k≥1

of (fn)n≥1 converges in C[0, 1] with the same limit g = lim
k→∞

fnk
in C[0, 1]. Note that when

0 < |x−a| < 1
k , since ank

→ a it follows that we also have 0 < |x−ank
| < 1

k for sufficiently
large k ∈ Z+. Since fnk

→ g uniformly on [0, 1] and ank
→ a in [0, 1], recall (or verify)

that lim
k→∞

fnk
(ank

) = g(a) and so, for all x ∈ [0, 1] with 0 < |x− a| < 1
k∣∣∣g(x)− g(a)

x− a

∣∣∣ = lim
k→∞

∣∣∣fnk
(x)− fnk

(ank
)

x− ank

∣∣∣ ≤ `.
This proves that g ∈ Ak,` and so Ak,` is closed in C[0, 1], as claimed.

We claim that each set Ak,` has empty interior in C[0, 1]. Let f ∈ Ak,`. We need to
show that for all r > 0 there there is a function g ∈ B(f, r) with g /∈ Ak,`. Our strategy
is to first find a piecewise linear function p with ‖p− f‖∞ < r

2 and then to add a rapidly
oscillating sine function to obtain a function g = p + r

2 sin(wx) with g /∈ Ak,` and with
‖g − f‖∞ < r. Let r > 0. Since f is uniformly continuous on [0, 1] we can choose δ > 0
such that |x− y| < δ =⇒

∣∣f(x)− f(y)
∣∣ < r

4 . we can choose n ∈ Z+ such that 1
n < δ. Let

xi = i
n for 0 ≤ i ≤ n and let p ∈ C[0, 1] be the piecewise linear function whose graph has
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vertices at
(
xi, f(xi)

)
for 0 ≤ i ≤ n. Then for all i and for all x ∈ [xi−1, xi], we have∣∣f(x)− p(x)

∣∣ ≤ ∣∣f(x)− f(xi)
∣∣+
∣∣f(xi)− p(x)

∣∣ =
∣∣f(x)− f(xi)

∣∣+
∣∣p(xi)− p(x)

∣∣
≤
∣∣f(x)− f(xi)

∣∣+
∣∣p(xi)− p(xi−1)

∣∣ < r
4 + r

4 = r
2

and hence ‖f − p‖∞ < r
2 . Let m = max

t 6=xi

∣∣p′(t)∣∣ = max
1≤i≤n

n
∣∣f(xi)− f(xi−1)

∣∣. Choose ω ∈ R

such that 2π
ω < 1

k and 2π
w < r

2(`+m) , and consider the function g = p+ r
2 sin(ωx). Note that

‖g − f‖∞ ≤ ‖g − p‖∞ + ‖p− f‖∞ < r
2 + r

2 = r, so it remains only to show that g /∈ Ak,`.
Let a ∈ [0, 1]. By our choice of ω we can choose x ∈ [0, 1] with 0 < |x− a| < 1

k such that
|x− a| < r

2(`+m) and such that sin(ωx) = ±1 with sin(ωx) = 1 ⇐⇒ sin(ωa) ≤ 0 so that∣∣ sin(ωx)− sin(ωa)
∣∣ ≥ 1. Then we have

r
2

∣∣ sin(ωx)− sin(ωa)
∣∣ =

∣∣(g(x)− g(a)
)
−
(
p(x)− p(a)

)∣∣ ≤ ∣∣g(x)− g(a)
∣∣+
∣∣p(x)− p(a)

∣∣∣∣g(x)− g(a)
∣∣ ≥ r

2

∣∣ sin(ωx)− sin(ωa)
∣∣− ∣∣p(x)− p(a)

∣∣ ≥ r
2 −

∣∣p(x)− p(a)
∣∣∣∣∣ g(x)−g(a)x−a

∣∣∣ ≥ r

2|x− a|
−
∣∣∣p(x)− p(a)

x− a

∣∣∣ ≥ r

2 · 2(`+m)
r

−m = `

so that g /∈ Ak,`, as required.

7.22 Notation: Let X be a set. For any set C of subsets of X we write

Cσ =
{ ∞⋃
k=1

Ak

∣∣∣ each Ak ∈ C
}

and Cδ =
{ ∞⋂
k=1

Ak

∣∣∣ each Ak ∈ C
}
.

Note that Cσσ = Cσ and Cδδ = Cδ.

7.23 Definition: Let X be a set. A σ-algebra in X is a set C of subsets of X such that

(1) ∅ ∈ C,
(2) if A ∈ C then Ac = X \A ∈ C, and

(3) if A1, A2, A3, · · · ∈ C then
∞⋃
k=1

Ak ∈ C.

Note that when C is a σ-algebra in X we have Cσ = C and Cδ = C.

7.24 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that Gσ = G
and Fδ = F .

7.25 Example: For any set X, the set
{
∅, X

}
and the set P(X) of all subsets of X are

σ-algebras in X,

7.26 Note: Note that given any set C of subsets of a set X there exists a unique smallest
σ-algebra in X which contains C, namely the intersection of all σ-algebras in X which
contain C.

7.27 Definition: In a metric space (or topological space) X, the Borel σ-algebra B is
the smallest σ-algebra in X which contains G (hence also F). The elements of B are called
Borel sets. Note that B contains all of the sets G,Gδ,Gδσ,Gσδσ, · · · and all of the sets
F ,Fσ,Fσδ,Fσδσ, · · ·.

7.28 Exercise: Using the Baire Category Theorem, show that in R we have F ⊆ Gδ
(equivalently G ⊆ Fσ), Fσ 6= Gδ, and Gδ ∪ Fσ ⊂6= Gδσ ∩ Fσδ.
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