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Chapter 1. Cardinality

1.1 Definition: Let X and Y be sets and let f : X — Y. Recall that the domain of f
and the range of f are the sets

Domain(f) = X , Range(f) = f(X) = {f(z)|z € X}.
For A C X, the image of A under f is the set
f(A) ={f(z)|z € A}.
For B C Y, the inverse image of B under f is the set
f7HB) ={z € X|f(z) € B}.

1.2 Definition: Let X, Y and Z be sets, let f: X — Y and let g : Y — Z. We define
the composite function go f: X — Z by (go f)(z) = g(f(x)) for all z € X

1.3 Definition: We say that f is injective (or one-to-one, written as 1:1) when for
every y € Y there exists at most one x € X such that f(z) = y. Equivalently, f is
injective when for all zq,20 € X, if f(z1) = f(x2) then 1 = x5. We say that f is
surjective (or onto) when for every y € Y there exists at least one z € X such that
f(x) = y. Equivalently, f is surjective when Range(f) = Y. We say that f is bijective
(or invertible) when f is both injective and surjective, that is when for every y € Y there
exists exactly one z € X such that f(z) = y. When f is bijective, we define the inverse
of f to be the function f=1 : Y — X such that for all y € Y, f~1(y) is equal to the unique
element x € X such that f(z) = y. Note that when f is bijective so is f~!, and in this
case we have (f~1)7! = f.

1.4 Theorem: Let f: X — Y andlet g:Y — Z. Then

(1) if f and g are both injective then so is go f,
(2) if f and g are both surjective then so is g o f, and
(3) if f and g are both invertible then so is g o f, and in this case (go f)™! = f~log™L

Proof: To prove Part 1, suppose that f and g are both injective. Let xy,2o € X. If
g(f(z1)) = g(f(z2)) then since g is injective we have f(z1) = f(x2), and then since f is
injective we have x1 = x5. Thus g o f is injective.

To prove Part 2, suppose that f and g are surjective. Given z € Z, since g is surjective
we can choose y € Y so that g(y) = z, then since f is surjective we can choose € X so
that f(x) =y, and then we have g(f(x)) = g(y) = z. Thus g o f is surjective.

Finally, note that Part 3 follows from Parts 1 and 2.

1.5 Definition: For a set X, we define the identity function on X to be the function
Ix : X — X given by Ix(z) = =z for all x € X. Note that for f : X — Y we have

fOIX:faIldIyOf:f.

1.6 Definition: Let X and Y besets and let f : X — Y. A left inverse of f is a function
g:Y — X such that go f = I'x. Equivalently, a function g : Y — X is a left inverse of f
when g(f(x)) =z for all z € X. A right inverse of f is a function h : Y — X such that
f oh = Iy. Equivalently, a function h : Y — X is a right inverse of f when f(h(y)) =y
forally e Y.



1.7 Theorem: Let X and Y be nonempty sets and let f : X — Y. Then

(1) f is injective if and only if f has a left inverse,

(2) f is surjective if and only if f has a right inverse, and

(3) f is bijective if and only if f has a left inverse g and a right inverse h, and in this case
we have g =h = f~1.

Proof: To prove Part 1, suppose first that f is injective. Since X # () we can choose a € X
and then define g : Y — X as follows: if y € Range(f) then (using the fact that f is 1:1)
we define g(y) to be the unique element z, € X with f(z,) =y, and if y ¢ Range(f) then
we define g(y) = a. Then for every x € X we have y = f(z) € Range(f), so g(y) = z, = =,
that is g( f (l’)) = x. Conversely, if f has a left inverse, say g, then f is 1:1 since for all
z1,39 € X, if f(z1) = f(x2) then z1 = g(f(z1)) = g(f(z2)) = z2.

To prove Part 2, suppose first that f is onto. For each y € Y, choose z, € X with
f(zy) = y, then define g : ¥ — X by ¢g(y) = z, (we need the Axiom of Choice for
this). Then g is a right inverse of f since for every y € Y we have f(g(y)) = f(zy) = v.
Conversely, if f has a right inverse, say ¢, then f is onto since given any y € Y we can
choose z = g(y) and then we have f(z) = f(g(y)) = v.

To prove Part 3, suppose first that f is bijective. The inverse function f=!:Y — X
is a left inverse for f because given z € X we can let y = f(x) and then f~1(y) = z so
that f_l(f(x)) = f71(y) = x. Similarly, f~! is a right inverse for f because given y € Y’
we can let = be the unique element in X with y = f(x) and then we have z = f~!(y) so
that f(f'(y)) = f(z) = y. Conversely, suppose that g is a left inverse for f and h is a
right inverse for f. Since f has a left inverse, it is injective by Part 1. Since f has a right
inverse, it is surjective by Part 2. Since f is injective and surjective, it is bijective. As
shown above, the inverse function f~! is both a left inverse and a right inverse. Finally,
note that g = f~! = h because for all y € Y we have

9w)=g(f(f W) =) = (f(h)) = hy).

1.8 Corollary: Let X and Y be nonempty sets. Then there exists an injective map
f X — Y if and only if there exists a surjective map g :Y — X.

Proof: Suppose f: X — Y is an injective map. Then f has a left inverse. Let g be a left
inverse of f. Since go f = Ix, we see that f is a right inverse of ¢g. Since g has a right
inverse, g is surjective. Thus there is a surjective map ¢ : ¥ — X. Similarly, ifg: Y — X
is surjective, then it has a right inverse f : X — Y which is injective.

1.9 Definition: Let A and B be sets. We say that A and B have the same cardinality,
and we write |A| = | B|, when there exists a bijective map f : A — B (or equivalently when
there exists a bijective map g : B — A). We say that the cardinality of A is less than
or equal to the cardinality of B, and we write |A| < |B|, when there exists an injective
map f : A — B (or equivalently when there exists a surjective map g : B — A). We say
that the cardinality of A is less than the cardinality of B, and we write |A| < |B|, when
|A| < |B| and |A| # | B|, (that is when there exists an injective map f : A — B but there
does not exist a bijective map g : A — B). We also write |A| > |B| when |B| < |A| and
|A| > |B| when |B| < |A|.

1.10 Example: Let N = {n S/ | n > 0} =4{0,1,2,---}. The map f: N — 2N given
by f(k) = 2k is bijective, so |2N| = |N|. The map g : N — Z given by ¢(2k) = k and
g(2k+1) = —k — 1 for k € N is bijective, so we have |Z| = |N|. The map h: Nx N — N
given by h(k,1) = 2¥(21 + 1) — 1 is bijective, so we have [N x N| = |N|.



1.11 Theorem: For all sets A, B and C,

(1) |A] = [A],

(2) if |A] = |B| then |B| = |A],

(3) if |A| = |B| and |B| = |C] then |A| = |C],

(4) |A| < |B| if and only if (|A| = |B| or |A| < |B]), and
(5) if | 4] < |B| and | B| < |C| then |A| < |C].

Proof: Part 1 holds because the identity function I4 : A — A is bijective. Part 2 holds
because if f : A — B is bijective then sois f~! : B — A. Part 3 holds because if f : A — B
and g : B — C' are bijective then so is the composite go f : A — C. The rest of the proof
is left as an exercise.

1.12 Definition: Let A be a set. For each n € N, let S,, = {0,1,2,---,n—1}. Forn € N,
we say that the cardinality of A is equal to n, or that A has n elements, and we write
|A| = n, when |A| = |S,,|. We say that A is finite when |A| = n for some n € N. We say
that A is infinite when A is not finite. We say that A is countable when |A| = |N|.

1.13 Note: When a set A is finite with |A| = n, and when f: A — S, is a bijection, if
we let a = f~1(k) for each k € S,, then we have A = {ag, a1, --,ar_1} with the elements
ay distinct. Conversely, if A = {ag,a1,---,ar_1} with the elements aj all distinct, then
we define a bijection f: A — S, by f(ar) = k. Thus we see that A is finite with |A| =n
if and only if A is of the form A = {ag, a1, +,a,_1} with the elements a; all distinct.
Similarly, a set A is countable if and only if A is of the form A = {ag, a1, a2, -} with the
elements ay all distinct.

1.14 Note: For n € N, if A is a finite set with |[A| =n+ 1 and a € A then |A\ {a}| = n.
Indeed, if A = {ag,a1,--,a,} with the elements a; distinct, and if @ = ay, so that we have
A\{a} ={ao,a1, - -,ar-1,ak+1, -, an}, then we can define a bijection f : S,, — A\ {a}
by f(i) =a; for 0 <i < k and f(i) = a;41 for k <i < n.

1.15 Theorem: Let A be a set. Then the following are equivalent.
(1) A is infinite.

(2) A contains a countable subset.

(3) IN| < ]A4]

(4) There exists a map f : A — A which is injective but not surjective.

Proof: To prove that (1) implies (2), suppose that A is infinite. Since A # () we can
choose an element ag € A. Since A # {ap} we can choose an element a; € A\ {ag}.
Since A # {ap,a1} we can choose ag € A\ {ag,a1}. Continue this procedure: having
chosen distinct elements ag,ay,- -, a,—1 € A, since A # {ag,a1,---,a,—1} we can choose
an € A\ {ag,a1, --,a,_1}. In this way, we obtain a countable set {ag, a,as, -} C A.

Next we show that (2) is equivalent to (3). Suppose that A contains a countable
subset, say {ag, a1, az, -} € A with the element a; distinct. Since the a; are distinct, the
map f : N — A given by f(k) = ay is injective, and so we have |N| < |A|. Conversely,
suppose that [N| < |A|, and chose an injective map f : N — A. Considered as a map from
N to f(N), f is bijective, so we have |N| = |f(IN)| hence f(IN) is a countable subset of A.

Next, let us show that (2) implies (4). Suppose that A has a countable subset, say
{ag,a1,as, -} C A with the element a; distinct. Define f: A — A by f(ax) = ax41 for
all k € N and by f(b) = b for all b € A\ {ag,a1,az,---}. Then f is injective but not
surjective (the element ag is not in the range of f).
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Finally, to prove that (4) implies (1) we shall prove that if A is finite then every
injective map f : A — A is surjective. We prove this by induction on the cardinality of A.
The only set A with |A| = 0 is the set A = (), and then the only function f: A — A is the
empty function, which is surjective. Since that base case may appear too trivial, let us
consider the next case. Let n =1 and let A be a set with |A| =1, say A = {a}. The only
function f: A — A is the function given by f(a) = a, which is surjective. Let n > 1 and
suppose, inductively, that for every set A with |A| = n, every injective map f: A — A is
surjective. Let B be a set with |B| =n+ 1 and let g : B — B be injective. Suppose, for a
contradiction, that g is not surjective. Choose an element b € B which is not in the range
of g so that we have g : B — B\ {b}. Let A = B\ {b} and let f : A — A be given by
f(x) = g(z) for all z € A. Since g : B — A is injective and f(z) = g(x) for all x € A, f is
also injective. Again since g is injective, there is no element x € B\ {b} with g(x) = g(b),
so there is no element x € A with f(z) = g(b), and so f is not surjective. Since |A| =n
(by the above note), this contradicts the induction hypothesis. Thus g must be surjective.
By the Principle of Induction, for every n € N and for every set A with |A| = n, every
injective function f : A — A is surjective.

1.16 Corollary: Let A and B be sets.

(1) If A is countable then A is infinite.

(2) When |A| < |B|, if B is finite then so is A (equivalently if A is infinite then so is B).
(3) If |A| = n and |B| = m then |A| = |B| if and only if n = m.

(4) If |A| = n and |B| = m then |A| < |B| if and only if n < m.

(5) When one of the two sets A and B is finite, if |A| < |B| and |B| < |A| then |A| = |B|.

Proof: Part 1 is immediate: if A is countable then A contains a countable subset (itself),
so A is infinite, by Theorem 1.15.

To prove Part 2, suppose that |A| < |B and that |A| is infinite. Since A is infinite, we
have [N| < |A] (by Theorem 1.15). Since |N| < |A| and |A| < |B| we have |[N| < |B] (by
Theorem 1.11). Since |[N| < |B|, B is infinite (by Theorem 1.15 again).

To Prove Part 3, suppose that |A| = n and |B| = m. If n = m then we have S,, = S,
and so |[A| = |S,| = |Sm| = |B|. Conversely, suppose that |A| = |B|. Suppose, for a
contradiction, that n # m, say n > m, and note that S, % Sp. Since |A| = |B| we have
|Sn| = |A| = |B|] = |Sm| so we can choose a bijection f : S,, — S,,. Since S,, & S,, we can
consider f as a function f : .S, — S,, which is injective but not surjective. This contradicts
Theorem 1.16, and so we must have n = m. This proves Part 3.

To prove Part 4, we again suppose that |A| =n and |B| = m. If n < m then S,, C S,
so the inclusion map I : S,, — S,, is injective and we have |A| = |S,| < |Sn| = |B]|.
Conversely, suppose that |A| < |B| and suppose, for a contradiction, that n > m. Since
|A| < |B| we have |S,,| = |A| < |B| = |S| so we can choose an injective map f : S,, — S,.
Since n > m we have S, & S, so we can consider f as a map f :.S, — S,, and this map
is injective but not surjective. This contradicts Theorem 1.15, and so n < m.

Finally, to prove Part 5 we suppose that one of the two sets A and B is finite, and
that |A| < |B| and |B| < |A|. If A is finite then, since |B| < |A|, Part 2 implies that B is
finite. If B is finite then, since |A| < |B|, Part 2 implies that A is finite. Thus, in either
case, we see that A and B are both finite. Since A and B are both finite with |A| < |B|
and |B| < |A|, we must have |A| = |B| by Parts 3 and 4.



1.17 Theorem: Let A be a set. Then |A| < |N| if and only if A is finite or countable.

Proof: First we claim that every subset of N is either finite or countable. Let A C N and
suppose that A is not finite. Since A # (), we can set ag = min A (using the Well-Ordering
Property of N). Note that {0,1,---,a0} N A = {ap}. Since A # {ap} (so the set A\ {ao}
is nonempty) we can set a; = min A \ {ap}. Then we have ayp < a; and {0,1,2,--- a1} N
A = {ag,a1}. Since A # {ag,a1} we can set as = minA \ {ag,a1}. Then we have
ap < a1 < ag and {0,1,2,---,a3} N A = {ap, a1,a2}. We continue the procedure: having

chosen ag,aq, - ,ap—1 € A with ap < a1 < -++ < a,—1 such that AN{0,1,---,ap,_1} =
{ag, a1, -+, an—1}, since A # {ag,a1,---,an—1} we can set a,, = min A\ {ag, a1, -, an-1},
and then we have ag < a1 < -+ < anp—1 < ap and A{0,1,2,--- a,} NA = {ap,a1,---,an}.

In this way, we obtain a countable set {ag,a1,a2,---} C A with a9 < a1 < az < ---
with the property that for all m € N, {0,1,2,---,a,,} N A = {ag,a1, -, a,,}. Since
0<ag<a <ay<--- it follows (by induction) that ay > k for all £ € N. It follows in
turn that A C {ag, a1, a2 ---} because given m € A, since m < a,, we have

me{0,1,2,--- m}NAC{0,1,2,--,an}NA={ag,a1, -, am}-

Thus A = {ag, a1, a2, -} and the elements a; are distinct, so A is countable. This proves
our claim that every subset of N is either finite or countable.

Now suppose that |A| < |N| and choose an injective map f : A — N. Since f is
injective, when we consider it as a map f: A — f(A), it is bijective, and so |A| = |f(A)].
Since f(A) C N, the previous paragraph shows that f(A) is either finite or countable. If
f(A) is finite with |f(A)| = n then |A| = |f(A4)| = | S|, and if f(A) is countable then we
have |A| = |f(A)| = |N|. Thus A is finite or countable.

1.18 Theorem: Let A be a set. Then
(1) |A| < |N| if and only if A is finite,
(2) IN| < |A| if and only if A is neither finite nor countable, and
(3) if |A| < |N| and |N| < |A| then |A| = |NJ|.
Proof: Part 1 follows from Theorem 1.15 because
4] < IN| <= (]A] < |N]| and 4] # N])
<= (A is finite or countable and A is not countable)
<= A is finite

and Part 2 follows from Theorem 1.17 because
IN| < |A] <= (IN] < |A] and |N| # |A])
<= (A is not finite and A is not countable.)

To prove Part 3, suppose that |A| < |N| and |[N| < |A|. Since |A| < |N|, we know
that A is finite or countable by Theorem 1.17. Since |N| < |A|, we know that that A is

infinite by Theorem 1.15. Since A is finite or countable and A is not finite, it follows that
A is countable. Thus |A| = |N|.

1.19 Definition: Let A be a set. When A is countable we write |A| = Rg. When A is
finite we write |A| < RXg. When A is infinite we write |A| > 8y. When A is either finite or
countable we write |A| < Xy and we say that A is at most countable. when A is neither
finite nor countable we write |A| > Xy and we say that A is uncountable.



1.20 Theorem:

(1) If A and B are countable sets, then so is A x B.

(2) If A and B are countable sets, then so is AU B.

(3) If Ag, A1, As, - -+ are countable sets, then so is | Jp o Ak.
(4) Q is countable.

Proof: To prove both Parts 1 and 2, let A = {ag, a1, a9, -} with the a; distinct and let
B = {bg, by, ba, - - -} with the b; distinct. Since every positive integer can be written uniquely
in the form 2%(2({+1) with k£, € N, the map f : AxB — N given by f(az, b;) = 2F(21+1)—1
is bijective, and so |A x B| = |[N|. This proves Part 1. Since the map g : N — AU B given
by g(k) = ay is injective, we have |N| < |AU B|. Since the map h: N — AU B given by
h(2k) = aj and h(2k + 1) = by, is surjective, we have |A U B| < |N|. Since |N| < |[AU B|
and |[AU B| < |N|, we have |AU B| = [N| by Part 3 of Theorem 1.18. This proves 2.

To prove Part 3, for each k € N, let Ay = {ao, ar1,ake, -} with the ag; distinct.
Since the map f : N — |2, Ax given by f(k) = aoy is injective, |N| < |Upey Akl
Since N x N is countable by Part (1), and since the map g : N x N — [J7-  Ai given by
g(k,1) = ay, is surjective, we have |Jp, Ak| < |IN x N| = |N|. By Part 3 of Theorem
1.18, we have | ;- , Ax| = |NJ, as required.

Finally, we prove Part 4. Since the map f : N — Q given by f(k) = k is injective,
we have |[N| < |Q]. Since the map g : Q — Z x Z, given by g(%) = (a,b) for all
a,b € Z with b > 0 and ged(a,b) = 1, is injective, and since Z x Z is countable, we have
Q| < |Z x Z| = |N|. Since [N| < |Q] and |Q| < |N|, we have |Q| = |N|, as required.

1.21 Exercise: Let A be a countable set. Show that the set of finite sequences with terms
in A is countable. Show that the set of all finite subsets of A is countable.

1.22 Definition: For a set A, let P(A) denote the power set of A, that is the set of all
subsets of A, and let 24 denote the set of all functions from A to Sy = {0,1}.

1.23 Theorem:

(1) For every set A, |P(A)| = [24|.
(2) For every set A, |A| < |P(4)].
(3) R is uncountable.

Proof: Let A be any set. Define a map g : P(A) — 24 as follows. Given S € P(A), that
is given S C A, we define g(S) € 24 to be the map g(S) : A — {0, 1} given by

lifaels,
SV (a) =
9(S)(a) {01fa¢5.
Define a map h : 24 — P(A) as follows. Given f € 24, that is given a map f: A — {0,1},
we define h(f) € P(A) to be the subset
h(f)={a€A|f(a) =1} C A

The maps g and h are the inverses of each other because for every S C A and every
f:A—{0,1} we have

lifaes,
Oifa ¢ S,

— Va€A (fla)=1 < a€f) < {a€A|f(a):1}:S <~ h(f)=2S5.
This completes the proof of Part 1.

f=9(S) < Vaec A f(a)=9(5S)(a) <= Vaec A f(a):{



Let us prove Part 2. Again we let A be any set. Since the the map f: A — P(A) given
by f(a) = {a} is injective, we have [A| < |P(A)|. We need to show that |A| # |P(A)].
Let g : A — P(A) be any map. Let S = {a € Ala ¢ g(a)}. Note that S cannot be in the
range of g because if we could choose a € A so that g(a) = S then, by the definition of S,
we would have a € S <= a ¢ g(a) <= a ¢ S which is not possible. Since S is not in
the range of g, the map ¢ is not surjective. Since g was an arbitrary map from A to P(A),
it follows that there is no surjective map from A to P(A). Thus there is no bijective map
from A to P(A) and so we have |A| # |P(A)|, as desired.

Finally, we shall prove that R is uncountable using the fact that every real number has
a unique decimal expansion which does not end with an infinite string of 9’s. Define a map
g : 2N — R as follows. Given f € 2N, that is given a map f : N — {0, 1}, we define g(f) to
be the real number g(f) € [0, 1) with the decimal expansion g(f) = 0.f£(0)f(1)f(2)f(3)---,

that is g(f) = > f(k)107%=1. By the uniqueness of decimal expansions, the map g
k=0

is injective, so we have [2N| < |R|. Thus |[N| < [P(N)| = [2N| < |RJ, and so R is

uncountable, by Part 2 of Theorem 1.18.

1.24 Theorem: (Cantor - Schroeder - Bernstein) Let A and B be sets. Suppose that
|A| < |B| and |B| < |A|. Then |A| = |B]

Proof: We sketch a proof. Choose injective functions f : A — B and g : B — A. Since
the functions f : A — f(A), g: B — g(B) and f : g(B) — f(g(B)) are bijective we have
] = [f(4)] and |B| = |g(B)| = |f(9(B))|. Also note that f(g(B)) C f(4) C B. Let
X = f(g(B)),Y = f(A) and Z = B. Then we have X CY C Z and we have |X| = |Z]
and we need to show that |Y| = |Z|. The composite h = fog: Z — X is a bijection.
Define sets Z,, and Y,, for n € N recursively by

Zo=2, Zp=hZ,-1) and Yo=Y , Y, =h(Y,_1).
Since Yo=Y, Zy =2, 721 =h(Zy) =h(Z) =X and X CY C Z, we have
Z1 C Yy C Zp.
Also note that for 1 < n € N,
ZnCYy1CZyp1 = h(Z,) Ch(Yno1) Ch(Zy-1) = Zpnt1 CY, C Z,.
By the Induction Principle, it follows that Z,, CY,,_ 1 C Z,_; for all n > 1, so we have
Zo2Y92212Y1 222222

Let U, =2Z,\Y,, U= |J U,and V=2Z\U. Define H:Z —Y by
n=0

h(z)ifx € U,
H =
() { r ifxzeV.

Verify that H is bijective.



1.25 Example: Show that |[R| = |2N].

Solution: g : 2N — R as follows: for f € 2N we let g(f) be the real number g(f)
with decimal expansion g(f) = 0.f(0)f(1)f(2)---.. Then g is injective so |2N]|
Define h : 2N — [0, 1) as follows: for f € 2N let h(f) be the real number h(f) € |

binary expansion h(f) = 0.£(0)f(1)f(2)---. Then h is surjective so we have HO, 1]’ < 2N’.
The map k : R — [0, 1] given by k(z) = 5+ % tan™! z is injective so we have [R| < [0, 1]].
Since |R| < |[0,1]| < |2N]| and |2V] < |R|, we have |R| = |2N| by the Cantor-Schroeder-
Bernstein Theorem.

1.26 Notation: For sets A and B, we write A” to denote the set of functions f : B — A.

1.27 Theorem: Let A and B be finite sets and let P(A) is the power set of A (that is
the set of all subsets of A). Then

(1) if A and B are disjoint then |AU B| = |A| + |B|,

(2) |Ax Bl = |A[-|B],

(3) |AZ| = |A|®', and

(3) [P(A)] = 2141,

Proof: The proof is left as an exercise.

1.28 Theorem: Let A, B, C and D be sets with |A| = |C| and |B| = |D|. Then
(1) if ANB=0and CND =0 then |[AUB| =|CUD|,

(2) |Ax B| =|C x D|, and

(3) |AB| = |CP].

Proof: The proof is left as an exercise.

1.29 Remark: It is possible to define certain specific sets called cardinals such that
for every set A there exists a unique cardinal x with |A| = |k|. We can then define the
cardinality of a set A to be equal to the unique cardinal k such that |A| = || and, in
this case, we define the cardinality of the set A to be |A| = k. In foundational set theory,
the natural numbers are defined, formally, to be equal to the sets 0 = 0, 1 = {0} = {0},
2=1{0,1} = {0,{0}} and, in general, n+1 = nU{n} so that the natural number n is equal
to the set that we previously denoted by S,,, that isn =S, ={0,1,---,n— 1}. The finite
cardinals are equal to the natural numbers and the countable cardinal Nj is equal to the
set of natural numbers. The previous theorem allows us to define arithmetic operations
on cardinals which extend the usual arithmetic operations on the natural numbers. Given
cardinals k and \ we define k + \, k- A and k* to be the cardinals such that

k4= (kx {0}) U (A x {1})

/{-/\=|/£><)\|,
A‘.
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1.30 Theorem: Let x, A and p be cardinals. Then

(1) K+ A= A+k,
(2) (K+X)+mu=r+ A+ p),

(3) k+0=r,

(DXN<p= Kk+A<k+pu,
(5) k- A= XK,

(6) (k- A)-p=r-(Ap),
(7) k-1=k,

(8) k- A+ ) = (k- A) + (k- p),
DA<pu= K- A<k-pu,

(10) KATH = g - kM,

(11) (kM) = s,

(12) (k- A\)H = k! - AP

(13) A < p = k* < Kk*, and
(14) k <\ = KH < A,

Proof: We sketch a proof for Parts 9 and 11 and leave the rest as an exercise. To prove
Part 9, let A, B and C be sets with |A| = &, |B] = A and |C| = p and suppose that
|B| < |C|. We need to show that |[A x B] < |A x C|. Let f: B — C be an injective map.
Define F: A x B — A x C by F(a,b) = (a, f(b)) then verify that F is injective.

To prove Part 11, let A, B and C be sets with |A| = k, |B| = X and |C| = p. We need
to show that |(AP)C| = |AP*C|. Define F : (AP)¢ — ABXC by F(f)(b,c) = f(c)(b).
Verify that F is bijective with inverse G : AB*¢ — (AB)Y given by G(g)(c)(b) = g(b,c).

1.31 Exercise: Show that = 2%o,

U R"
n=0

1.32 Exercise: Find ’R[O’”




Chapter 2. Metric Spaces

2.1 Definition: Let F' = R or C. Let U be a vector space over F. An inner product
on U (over F') is a function (, ) : U x U — F (meaning that if u,v € U then (u,v) € F)
such that for all u,v,w € U and all ¢t € F' we have
(1) (Sesquilinearity) (u + v, w) = (u,w) + (v,w) , (tu,v) =t (u,v),

(u, v +w) = (u,v) + (u,w) , (u,tv) =t (u,v),
(2) (Conjugate Symmetry) (u,v) = (v,u), and
(3) (Positive Definiteness) (u,u) > 0 with (u,u) =0 <= u = 0.
For u,v € U, (u,v) is called the inner product of u with v. We say that u and v are
orthogonal when (u,v) = 0. An inner product space (over F) is a vector space over
F' equipped with an inner product. Given two inner product spaces U and V over F, a
linear map L : U — V is called a homomorphism of inner product spaces (or we say
that L preserves inner product) when <L(a:), L(y)> = (z,y) for all z,y € U. A bijective
homomorphism is called an isomorphism.

2.2 Theorem: Let U be an inner product space over F' = R or C and let u,v € U. Then
if (x,u) = (z,v) for all x € U, or if (u,x) = (v,x) for all x € U, then u = v.

Proof: Suppose that (z,u) = (x,v) for all z € U. Then (z,u —v) = (z,u) — (z,v) =0 for
all z € U. In particular, taking x = u — v we have (u — v,u — v) = 0 so that u = v, by
positive definiteness. Similarly, if (u,x) = (v, z) for all x € U then u = v.

2.3 Definition: Let U be an inner product space over ' = R or C. For u € U, we define
the norm (or length) of u to be
[lul] =/ (u, u).

2.4 Theorem: Let U be an inner product space over F' = R or C. For u,v € U and

t € F' we have

(1) (Scaling) ||tu]| = [¢][|ull,

(2) (Positive Definiteness) ||u|| > 0 with |ju|| =0 <= u =0,

(3) llu+vl|* = [|ull* + 2Re (u, v) + [Jv]%,

(4) (Polarization Identity) if F = R then (u,v) = ;(||u + v|| — ||u — v]|) and
if F = C then (u,v) = (||u+v||*> +ilju+ ]| — |Ju—v||* —i||u —iv]|]?),

(5) (The Cauchy-Schwarz Inequality) |(u,v)| < ||u]| ||v|| with [(u,v)| = ||u]| ||v|| if and only
if {u, v} is linearly dependent, and

(6) (The Triangle Inequality) |[[ull — [Jv]l| < [lu+ o[l < u]| + |[v]].

Proof: The first 4 parts are all easy to prove. To prove Part 5, suppose first that {u,v}
is linearly dependent. Then one of u and v is a multiple of the other, say v = tu with
t € F. Then we have |(u,v)| = |{u,tu)| = [T(u,w)| = [¢] [ul2 = [Jul||[tu]] = |[ul] |[o]I
Next suppose that {u, v} is linearly independent. Then 1-v+¢-u # 0 for all t € F, so in

particular v — ﬁzﬁg u # 0. Thus we have
(v,u) 2 (v,u) (v,u)
0<HU—WUH —<v—wu,v— 2u>

= (v,v) —

= |jv]|? = () |?

£
i
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so that % < |v]? and hence |(u,v)| < |u||v|. This proves Part 5.

Using Parts 3 and 5, and the inequality |Re (2)| < |z| for z € C (which follows from
Pythagoras’ Theorem in R?), we have

[l + ol]* = [ul]® + 2Re {u, v) + [[o]]* < [|ul|* + 2/(u, v)| + [[v]]”
< [Jull* + 2l ful [[o]] + [[0]]* = (ull* + [Jv]|*).

Taking the square root on both sides gives ||u + v|| < ||u|| + ||v||. Finally note that
[|ull = 1| (utv)=vl[ < [lutv|[+]]=v]| = [[utv|[+]|v]| so that we have [[u]|—[[v|| < [lutuv]],
and similarly |[v|| — [|u| < [Ju + v||, hence |[[u|| — ||v|| < [|u + v[|. This proves Part 6.

2.5 Definition: Let FF = R or C. Let U be a vector space over F'. A norm on U is a
function || || : U — R (meaning that if u € U then ||u|| € R) such that for all u,v € U
and all ¢ € F' we have

(1) (Scaling) |[#w] = [¢] |[u]],

(2) (Positive Definiteness) ||u|| > 0 with ||ju|]| =0 <= u =0, and

(3) (Triangle Inequality) ||u + v|| < [|ul| + ||v]|.

For u € U the real number ||ul| is called the norm (or length) of u, and we say that u is a
unit vector when ||u|| = 1. A normed linear space (over F') is a vector space equipped
with a norm. Given two normed linear spaces U and V over F', a linear map L : U — V
is called a homomorphism of normed linear spaces (or we say that L preserves norm)
when ||L(z)|| = ||#|| for all z € U. A bijective homomorphism is called an isomorphism.

2.6 Definition: Let FF = R or C and let U be a normed linear space over F'. For u,v € U,
we define the distance between u and v to be

d(u,v) = |jv = ul|.

2.7 Theorem: Let U be as normed linear space over F' = R or C. For all u,v,w € U,
(1) (Symmetry) d(u,v) = d(v,u),
(2) (Positive Definiteness) d(u,v) > 0 with d(u,v)

=0 <= u=v, and
(3) (Triangle Inequality) d(u,w) < d(u,v) + d(v,w).

Proof: The proof is left as an easy exercise.

2.8 Definition: Let X be a non-empty set. A metricon X isamapd: X x X — R
such that for all a,b,c € X we have

(1) (Symmetry) d(a,b) = d(b,a),

(2) (Positive Definiteness) d(a,b) > 0 with d(a,b) =0 <= a =b, and

(3) (Triangle Inequality) d(a,c) < d(a,b) + d(b, c).

For a,b € X, d(a,b) is called the distance between a and b. A metric space is a set
X which is equipped with a metric d, and we sometimes denote the metric space by X
and sometimes by the pair (X,d). Given two metric spaces (X,dx) and (Y,dy), a map
f: X — Y is called a homomorphism of metric spaces (or we say that f is distance
preserving) when dy (f(a), f(b)) = dx(a,b) for all a,b € X. A bijective homomorphism
is called an isomorphism or an isometry.
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2.9 Note: Every inner product space is also a normed linear space, using the induced

norm given by ||u|| = \/(u, u). Every normed linear space is also a metric space, using the
induced metric given by d(u,v) = ||v — ul||. If U is an inner product space over F = R or

C then every subspace of U is also an inner product space using (the restriction of) the
same inner product used in U. If U is a normed linear space over F = R or C then every
subspace of U is also a normed linear space using the same norm. If X is a metric space
then so is every subset of X using the same metric.

2.10 Example: Let F = R or C. The standard inner product on F" is given by

n
(u,v) =v*'u = > u;v;.
i=1

The standard inner product induces the standard norm on F", which is also called the
2-norm on F", given by

Jully =l = o] = (3 ual?) "

The standard norm on F" induces the standard metric on F", given by

do(u,0) = d(u,v) = o -l = ( 55 o - uf?)

=1

The 1-norm on F" is given by
lully = 22 Juil
i=1
and it induces the 1-metric on F" given by d; (u,v) = ||v — u||;. The supremum norm,
also called the infinity norm, on F” is given by
lull o = max {Jual, [uz], -, |un| }

and it induces the supremum metric on F" given by doo(u,v) = ||v — u| ..
2.11 Example: Let F = R or C. We write

FY = {u = (uy,usg,ug, ) } each u; € F}

F> = {u € F¥|there exists n€ Z" such that u, = 0 for all k > n}.

Recall that F*° is a countable-dimensional vector space with standard basis {e, ez, €3, -}
where e; = (1,0,0,--+), e2 = (0,1,0,---) and so on. The standard inner product on
F*° is given by

%)
<U,’U> = Z U;v;
=1

and it induces the standard norm, also called the 2-norm, on F* given by

00 1/2
Jully = /) = (3 uil?)
1=
The 1-norm on F* is given by
lull, = Z:l 3

and it induces the 1-metric on F*° given by d;(u,v) = ||[v — u||;. The supremum norm,
also called the infinity norm, on F*° is given by

lull oo = max {Jua], [uz], lus| -}

and it induces the supremum metric on F> given by doo(u,v) = ||v — u| -

12



2.12 Example: For F = R or C, the standard inner product, the 1-norm, the 2-norm and
the oo-norm, which are well-defined on the vector space F*°, do not extend naturally to
give a well-defined inner product or well-defined norms on the vector space F¥ (because the
relevant sums do not necessarily converge). But we can, and do, extend these definitions
to various subspaces of F*. We define

((F) = {u e F| Y |u| < oo},
i=1

EQ(F) = {U S Fw‘ i |Uz|2 < OO},
=1
EOO(F> = {u S Fw‘ Sup{|ul|7 |’lL2|, o } < OO}

Verify that ¢;(F) is a normed linear space using the 1-norm given by |jull; = > |uil,

1=

hence ¢, (F) is also a metric space using the 1-metric d;(u,v) = |[v —ul|;. Verify that

l+(F) is a normed linear space using the supremum norm, also called the infinity

norm, given by |jul|,, = sup{|ui|,|uzl, -}, hence ¢/ (F) is also a metric space using

the supremum metric do(u,v) = |v —ul|. Verify that {5(F) is an inner product
o]

space using the standard inner product given by (u,v) = > u;7;. The standard inner
i=1

product on ¢5(F) induces the standard norm, also called the 2-norm, on /5 (F) given by

0 1/2
ully, = < > |uz|2) and the standard metric, or the 2-metric, da(u,v) = [|[v — ull,.
i=1

Since we shall usually work with the field F = R, for p = 1,2 or oo we shall write

l,=0,(R).
2.13 Example: For F = R or C and for a,b € R with a < b, we write
F([a,0],F) =Fl*" = {f:[a,b] — F},
B([a,b],F) = {f : [a,b] - F ‘ fis bounded},
C([a,b],F) = {f : [a,b] — F|f is continuous}.
Recall that for f : [a,b] — C given by f = u+iv where u,v : [a,b] — R, the function f is

continuous if and only if both u and v are continuous and, in this case, ff f= fab u+i f; v.
In the space C([a, b], F) we have the 1-norm, the 2-norm, and the supremum norm

b
I = [ 151,

b 1/2
IIsz:(/ m?) |

£l = sup [f(z)].

a<z<b

The supremum norm also gives a well-defined norm on the space B([a, b], F) The 2-norm
on C ([a, b], F) is induced by the inner product on C ([a, b], F) given by

b
)= [ t3.
Since we shall usually work with the field F = R, we shall write
Fla,b] = F([a,b],R) , Bla,b] = B([a,b],R) and Cla,b] = C([a,b],R).

13



2.14 Remark: For F = R or C and for 1 < p < 0o, one can show that we can define a
norm on F" by

n 1/p
Jull, = ( 3 Juil”)

oo
and we can define a norm on F* or on the space £,(F) = {u € F¥| 3 |u;|P < 0o} by
i=1

1/p

ful, = ( £ ul”)

Also, we can define a norm on the space C ([a, b], F) by

b 1/p
T ( / |f\p) .

2.15 Example: For any set X # (), the discrete metric on X is given by d(z,y) = 1
for all z,y € X with = # y and d(z,x) = 0 for all z € X.

2.16 Definition: Let X be a metric space. For a € X and 0 < r € R, the open ball, the
closed ball, and the (open) punctured ball in X centred at a of radius r are defined to
be the sets

B(a,r) = Bx(a,r) = {:L' e X ! d(z,a) < r},
B(a,r) = Bx(a,r) = {z € X |d(z,a) <r},
B*(a,r) = Bx(a,r) = {z € X |0 < d(z,a) <r}.

When the metric on X is denoted by d), with 1 < p < oo, we often write B(a,r), B(a,r)

and B*(a,r) as By(a,r), By(a,r) and By(a,r). For A C X, we say that A is bounded
when A C B(a,r) for some a € X and some 0 < r € R.

2.17 Exercise: Draw a picture of the open balls B;(0,1), B(0,1) and B, (0,1) in R?
(using the metrics dy, de and d).

2.18 Definition: Let X be a metric space. For A C X, we say that A is open (in X)
when for every a € A there exists r > 0 such that B(a,r) C A, and we say that A is
closed (in X) when its complement A° = X \ A is open in X.

2.19 Example: Let X be a metric space. Show that for a € X and 0 < r € R, the set
B(a,r) is open and the set B(a,r) is closed.

Solution: Let a € X and let 7 > 0. We claim that B(a,r) is open. We need to show that
for all b € B(a,r) there exists s > 0 such that B(b,s) C B(a,r). Let b € B(a,r) and note
that d(a,b) < r. Let s = r — d(a,b) and note that s > 0. Let z € B(b, s), so we have
d(x,b) < s. Then, by the Triangle Inequality, we have
d(xz,a) < d(z,b) +d(b,a) < s+ d(a,b) =1

and so = € B(a,r). This shows that B(b,s) C B(a,r) and hence B(a,r) is open.

Next we claim that B(a,r) is closed, that is B(a,r)¢ is open. Let b € B(a,)¢, that is
let b € X with b ¢ B(a,r). Since b ¢ B(a,r) we have d(a,b) > r. Let s = d(a,b) —r > 0.
Let x € B(b, s) and note that d(x,b) < s. Then, by the Triangle Inequality, we have

d(a,b) < d(a,z) + d(z,b) < d(z,a) + s

and so d(z,a) > d(a,b) —s = r. Since d(z,a) > r we have x ¢ B(a,r) and so = € B(a,r)°.
This shows that B(b,s) C B(a,r)¢ and it follows that B(a,r)° is open and hence that
B(a,r) is closed.
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2.20 Theorem: (Basic Properties of Open Sets) Let X be a metric Space.

(1) The sets () and X are open in X.
(2) If S is a set of open sets in X then the union |JS = |J U is open in X.

ves
(3) If S is a finite set of open sets in X then the intersection (S = (] U is open in X.

UeS

Proof: The empty set is open because any statement of the form “for all z€() F” (where
F' is any statement) is considered to be true (by convention). The set X is open because
given a € X we can choose any value of r > 0 and then we have B(a,r) C X by the
definition of B(a,r). This proves Part 1.

To prove Part 2, let S be any set of open sets in X. Let a € |JS = JycgU. Choose
an open set U € S such that a € U. Since U is open we can choose r > 0 such that
B(a,r) C U. Since U € S we have U C |JS. Since B(a,r) C U and U C |JS we have
B(a,r) CJS. Thus |J S is open, as required.

To prove Part 3, let S be a finite set of open sets in X. If S = () then we use the
convention that (.S = X, which is open. Suppose that S # 0, say S = {U;,Us, -, Uy}
where each Uy, is an open set. Let a € (S = (=, Ux. For each index k, since a € Uy
we can choose 1 > 0 so that B(a,r;) C Ug. Let r = min{ry,ry,---,7,}. Then for each
index k we have B(a,r) C B(a,ry) C Ug. Since B(a,r) C Uy, for every index k, it follows
that B(a,r) C ey Ux =()S. Thus (S is open, as required.

2.21 Theorem: (Basic Properties of Closed Sets) Let X be a metric space.

(1) The sets () and X are closed in X.

(2) If S is a set of closed sets in X then the intersection (S = () K is closed in X.
Kes

(3) If S is a finite set of closed sets in X then the union |JS = |J K is closed in X.
KeS

Proof: The proof is left as an exercise

2.22 Definition: A topology on a set X is a set T of subsets of X such that

(1) eT and X €T,
(2) for every set S C T we have |JS € T, and
(3) for every finite subset S C T we have (S € T.

A topological space is a set X with a topology T. When X is a metric space, the set of
all open sets in X is a topology on X, which we call the metric topology (or the topology
induced by the metric). When X is any topological space, the sets in the topology 1" are
called the open sets in X and their complements are called the closed sets in X. When
S and T are both topologies on a set X with S C T', we say that the topology T is finer
than the topology S, and that the topology S is coarser than the topology 7.

2.23 Example: Show that in R", the metrics dy, d2 and d, all induce the same topology.
Solution: For a,z € R™ we have

w o 1/2
max |z; —a;| < (X |z —ai?)7 <
i=1

n
i, — Qy n s
1<i<n Z |z; — a;] <n maxi; |z; — a4

i=1
doo(a,x) < ds(a,z) < di(a,z) < nds(a, ).
It follows that for all ¢ € R™ and r > 0 we have

Boo(aur) 2 BQ(CL,’I“) 2 Bl(aar) 2 Boo (a, %)

Thus for U C R", if U is open in R" using d, then it is open using do, and if U is open
using ds then it is open using dy, and if U is open using d; then it is open using d.

and so
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2.24 Example: Show that on the space Cla, b], the topology induced by the metric do, is
strictly finer than the topology induced by the metric d;.

Solution: For f,g € Cla,b] we have

9= [ o< [ mas 11w 90| = 0 )l 0)
It follows that for f € Cla,b] and r > 0 we have

B (f,r) € By (f, (b— a)r).
Thus for U C Cla,b|, if U is open using d; then U is also open using d,, and so the
topology induced by the metric d, is finer (or equal to) the topology induced by d;.

On the other hand, we claim that for f € Cla,b] and r > 0, the set Boo(f,r) is not open
in the topology induced by d;. Fix g € Boo(f,r) and let s > 0. Choose a bump function
h € Cla,b] with h > 0, f:h < s and max,<gz<p h(x) > 2r. Then we have g + h € By(g, s)
but g+ h ¢ Boo(f, 7). It follows that B (f,r) is not open in the topology induced by d,
as claimed.

2.25 Example: For any set X, the trivial topology on X is the the topology in which
the only open sets in X are the sets () and X, and the discrete topology on X is the
topology in which every subset of X is open. Note that the discrete metric on a nonempty
set X induces the discrete topology on X.

2.26 Definition: Let X be a metric space (or a topological space) and let A C X. The
interior and the closure of A (in X) are the sets

:U{UQX‘Uisopen, andUgA},
Z:ﬂ{K§X|KiS closed andAgK}.
We say that A is dense in X when A = X.
2.27 Theorem: Let X be a metric space (or a topological space) and let A C X.

(1) The interior of A is the largest open set which is contained in A. In other words,
A° C A and A° is open, and for every open set U with U C A we have U C A°.

(2) The closure of A is the smallest closed set which contains A. In other words, A C A
and A is closed, and for every closed set K with A C K we have A C K.

Proof: Let § = {U cX ‘ U is open, and U C A}. Note that A° is open (by Part 2 of
Theorem 2.20 or by Part 2 of Definition 2.22) because A° is equal to the union of S, which
is a set of open sets. Also note that A° C A because A° is equal to the union of S, which
is a set of subsets of A. Finally note that for any open set U with U C A we have U € S
so that U C |JS = A°. This completes the proof of Part 1, and the proof of Part 2 is
similar.

2.28 Corollary: Let X be a metric space (or a topological space) and let A C X.
(1) (A°)° = A° and A = A.

(2) A is open if and only if A = A°

(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.
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2.29 Definition: Let X be a metric space and let A C X. An interior point of A is a
point a € A such that for some r > 0 we have B(a,r) C A. A limit point of A is a point
a € X such that for every r > 0 we have B*(a,r) N A # (). An isolated point of A4 is a
point a € A which is not a limit point of A. A boundary point of A is a point a € X
such that for every r > 0 we have B(a,r)N A # 0 and B(a,r)NA® # (). The set of all limit
points of A is denoted by A’. The boundary of A, is the set of all boundary points of A.

2.30 Theorem: (Properties of Interior, Limit and Boundary Points) Let X be a metric
space and let A C X.
(1) A° is equal to the set of all interior points of A.
(2) A is closed if and only if A" C A.
(3) A=AUA"
(4) 0A = A\ A°.
Proof: We leave the proofs of Parts 1 and 4 as exercises. To prove Part 2, note that when
a ¢ A we have B(a,r)N A= B*(a,r)N A and so
A is closed <= A€ is open
VYa€ A Ir >0 B(a,r) C A€
VaceR" (a¢ A = Ir>0 B(a,r) C A°
VaeR" (a¢ A = 3r>0 B(a,r)NA=10)
VaeR" (a¢ A = Ir>0 B*(a,r) N A =0)
VacR" (Vr>0 B*(a,r) N A# () = acA)
VaeR" (a € A’ = a € A)
A C A

o N R

regrreny

To prove Part 3 we shall prove that A U A’ is the smallest closed set which contains A.
It is clear that A U A’ contains A. We claim that A U A" is closed, that is (AU A’)¢ is
open. Let a € (AU A")¢, that is let a € X with a ¢ A and a ¢ A’. Since a ¢ A" we
can choose r > 0 so that B(a,r) N A = (. We claim that because B(a,r) N A = 0 it
follows that B(a,r) N A’ = (). Suppose, for a contradiction, that B(a,r) N A’ # (). Choose
b € B(a,r) N A’. Since b € B(a,r) and B(a,r) is open, we can choose s > 0 so that
B(b,s) C B(a,r). Since b € A’ it follows that B(b,s) N A # (. Choose x € B(b,s) N A.
Then we have x € B(b,s) C B(a,r) and z € A and so « € B(a,r) N A, which contradicts
the fact that B(a,r) N A = (. Thus B(a,r) N A’ = (), as claimed. Since B(a,r)NA =10
and B(a,r)NA" = () it follows that B(a,r)N(AUA") =0 hence B(a,r) C (AUA’)¢. Thus
proves that (AU A’)¢ is open, and hence AU A’ is closed.

It remains to show that for every closed set K in X with A C K we have AUA’ C K.
Let K be a closed set in X with A C K. Note that since A C K it follows that A’ C K’
because if a € A’ then for all » > 0 we have B(a,r) N A # () hence B(a,r) N K # () and
so a € K'. Since K is closed we have K’ C K by Part 2. Since A’ C K’ and K’ C K we
have A’ C K. Since A C K and A’ C K we have AU A’ C K, as required. This completes
the proof of Part 3.

2.31 Remark: Let X be a topological space and let A C X. An interior point of A is
a point a € A°. A limit point of A is a point a € X such that for every open set U in X
with a € U there exists a point b € U N A with b # a. The boundary of A in X is the set
OA = A\ A° and a boundary point of A is a point a € 9A.
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2.32 Note: Let X be a metric space and let P C X. Note that P is also a metric space
using (the restriction of) the metric used in X. For a € P and 0 < r € R, note that the
open and closed balls in P, centred at a and of radius r, are related to the open and closed
balls in X by

Bp(a,r) ={z € P|d(z,a) <r} = Bx(a,r) NP,

Bp(a,r) = {x ep | d(z,a) < r} = Bx(a,r)NP.

2.33 Theorem: Let X be a metric space and let A C P C X.

(1) A is open in P if and only if there exists an open set U in X such that A=UN P.
(2) A is closed in P if and only if there exists a closed set K in X such that A= K N P.

Proof: To prove Part 1, suppose first that A is open in P. For each a € A, choose
rq > 0 so that Bp(a,r,) C A, that is Bx(a,7q) NP C A, and let U = [J,c 4 Bx(a,7a).
Since U is equal to the union of a set of open sets in X, it follows that U is open in
X. Note that A C U N P and, since Bx(a,r,) N P C A for every a € A, we also have
Unp = (Uan Bx(a,ra)> NP =U,c, (Bx(a,ra) N P) C A Thus A = UN P, as
required.

Suppose, conversely, that A = U N P with U open in X. Let a € A. Since we
have a € A = U N P, we also have a € U. Since a € U and U is open in X we can
choose r > 0 so that Bx(a,r) € U. Since Bx(a,r) C U and U N P = A we have
Bp(a,r) = Bx(a,r)N P CUNP = A. Thus A is open, as required.

To prove Part 2, suppose first that A is closed in P. Let B be the complement of A
in P, that is B = P\ A. Then B is open in P. Choose an open set U in X such that
B =UnNP. Let K be the complement of U in X, that is K = X \U. Then A= KNP
since for € X we havez € A < (v € Pandz ¢ B) <= (z€ Pandz ¢ UNP)
< (rePandz¢U) < (r€Pandz € K) < z€ KNP.

Suppose, conversely, that K is a closed set in P with A = K N P. Let B be the
complement of A in P, that is B = P\ A, and let U be the complement of K in P,
that is U = P\ K, and note that U is open in P. Then we have B = U N P since
forz € Pwehavez € B < (v € Panda ¢ A) < (v € Pandaz ¢ KN P)
< (r€ePandz¢ K) < (r€Pandz€U) < z€UnNP. Since U is open in
P and B = U N P we know that B is open in P. Since B is open in P, its complement
A =P\ B is closed in P.

2.34 Remark: Let X be a topological space and let P C X. Verify, as an exercise, that
we can use the topology on X to define a topology on P as follows. Given a set A C P,
we define A to be open in P when A = U N P for some open set U in X. The resulting
topology on P is called the subspace topology.
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Chapter 3. Limits and Continuity

3.1 Definition: Let (x,),>, be a sequence in a metric space X. We say that the sequence
(Zn)n>p is bounded when the set {z,},>p is bounded, that is when there exists a € X
and r > 0 such that z,, € B(a,r) for all indices n > p.

For a € X, we say that the sequence (z,),>, converges to a (or that the limit of

Z, is equal to a) and we write lim z, = a (or we write x,, — a) when for every ¢ > 0
n— oo

there exists an index m > p such that d(z,,a) < € for all indices n > m. We say that the
sequence (T, )n>p converges (in X)) when it converges to some point a € X, and otherwise
we say that (z,,)n>p, diverges (in X).

We say that the sequence (x,,)n>p is Cauchy when for every € > 0 there exists an
index m > p such that d(xy,z,) < € for all indices k, ¢ > m.

3.2 Remark: When (z,),>, is a sequence in a topological space X and a € X, we say
that (z,,)n>, converges to a (or we say that the limit of (x,),>, is equal to a) and we

write lim z, = a (or we write x,, — a) when for every open set U in X with a € U there
n—r o0

exists an index m > p such that x,, € U for every index n > m.

3.3 Theorem: (Basic Properties of Limits of Sequences) Let (x,,),>p be a sequence in a
metric space X, and let a € X.

(1) If (xy)n>p converges then its limit is unique.
(2) If ¢ > p and y, = x, for all n > q, then (xy),>, converges if and only if (yn)n>4

converges and, in this case, lim y, = lim x,.
n—oo n— oo

(3) If (xy,, )k>q Is a subsequence of (x,,)n>p, and lim x,, = a, then klim T, = Q.
- - n—r00 — 00

(4) If (xy,)n>p converges then it is bounded.

(5) If (xy,)n>p converges then it is Cauchy.

(6) We have lim z, = a in X if and only if lim d(z,,a) =0 in R.
n—oo n— oo

(7) We have lim x,, = a if and only if for every open set U in X with a € U there exists
n—oo

an index m > p such that x,, € U for every index n > m.
Proof: The proof is left as an exercise.

3.4 Note: Because of Part 2 of the above theorem, the initial index p of a sequence
(n)n>p does not effect whether or not the sequence converges and it does not effect the
limit. For this reason, we often omit the initial index p from our notation and write (z,,)
for the sequence (x,,)n>p. Also, we often choose a specific value of p, usually p = 1, in the
statements or the proofs of various theorems with the understanding that any other initial
value would work just as well.

3.5 Exercise: For each n € Z™, let x,, € R* be the sequence given by z,, = % > ek,
k=1

that is by (zpx)r>1 = (%, %, cee %,0,0,0, . ) with n non-zero terms. Show that (x,,)

converges in (R, ds) but diverges in (R, dy).

3.6 Exercise: For each n € ZT let f,, € C[0,1] be given by f,(x) = /nz™. Show that

(fn)n>1 converges in (C[O, 1], dl) but diverges in (C[O, 1], d2).
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3.7 Note: Recall that Ba,b] denotes the space of bounded functions f : [a,b] — R.
Let (f) be a sequence of bounded functions in Bla,b] and let g € Bla,b]. Note that (f,)
converges in the metric space (B[a, b}, ds ), if and only if (f,,) converges uniformly on [a, b].
Indeed for € > 0 we have doo(fn,g) < € if and only if sup }fn - g(x)‘ < e if and only if

| fa(z) — g(z)| < € for all x € [a,b]. The same is true for a sequence (f,) in Cla,b]: (fy)
converges in the metric space (C[a, b], d) if and only if (f,) converges uniformly on [a, b).

3.8 Theorem: (The Sequential Characterization of Limit Points and Closed Sets) Let X
be a metric space, let a € X, and let A C X.

(1) a € A’ if and only if there exists a sequence (x,) in A\ {a} with lim x, = a.
n—oo

(2) a € A if and only if there exists a sequence (x,) in A with lim z,, = a.
n— oo

(3) A is closed in X if and only if for every sequence (x,) in A which converges in X, we

have lim z,, € A.
n—oo

Proof: We prove Parts 1 and 3 and leave the proof of Part 2 as an exercise. Suppose that
a € A’ (which means that for every r > 0 we have B*(a,r) N A # 0). For each n € Z*,
choose z,, € B*(a, 1) N A, that is choose z,, € A\ {a} with d(z,,,a) < 2. Then (z,)n>1
is a sequence in A\ {a} with lim z, = a.
n— oo
Suppose, conversely, that (z,),>1 is a sequence in A\ {a} with lim z,, = a. Let
- n— o0

r > 0. Choose m € Z* such that d(z,,a) < r for all n > m. Since z,, € A\ {a} with
d(xm,a) < r, we have x,,, € B*(a,r) N A and so B*(a,r) N A # (). This proves Part 1.

To prove Part 3, suppose that A is closed in X. Let (x,),>1 be a sequence in A which

converges in X, and let a = lim z, € X. Suppose, for a contradiction, that a ¢ A. Since
n—oo

a ¢ A wehave A= A\{a} soin fact (x,) is a sequence in A\ {a}. Since (z,) is a sequence
in A\ {a} with lim z, = a, it follows from Part 1 that a € A’. Since A is closed we have
n—oo
A’ C A and so a € A giving the desired contradiction.
Suppose, conversely, that for every sequence in A which converges in X, the limit of
the sequence lies in A. Let a € A’. By Part 1, we can choose a sequence (z,) in A\ {a}

with lim x, = a. Then (z,) is a sequence in A which converges in X, so its limit lies in
n—oo

A, that is a € A. Since a € A’ was arbitrary, this shows that A’ C A, and so A is closed.
This proves Part 3.

3.9 Example: Note that Cla,b] is closed in the metric space (Bla,b],ds). We can see
this using Note 3.7 together with the above theorem. Indeed, given a sequence (f,) with
each f, € Cla,b], if the sequence (f,,) converges in (Bla,b],dw) to the function g € Bla, b],
then (f,) converges uniformly to g on [a,b], and so (from MATH 148) we know that ¢
must be continuous, hence g € Cla, b].
3.10 Exercise: Let
Rla,b] = { f € Bla,b] ‘ f is Riemann mtegrable}
Pla,b] = {f € Bla,b] ’flsapolynomlal}
C'la, b] { f € Bla,b] ‘ f is continuously dlfferentlable}

Determine which of the above spaces are closed in the metric space B[a,b|, using the
supremum metric d..
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3.11 Example: Recall that R> denotes the set of sequences with only finitely many
non-zero terms. Show that R* is dense in the metric space (¢1,d;).

Solution: Since the closure of R* in ¢; is contained in ¢; (by the definition of closure), it

_ oo
suffices to show that ¢; C R>*. Let a = (an)n>1 € 41, so we have ) |a,| < co. For each
n=1
ncZtletz, = (n.k)k>1 be the sequence given by x,, , = a for 1 <k <nand z,, =0
for k > n, that is

(xn,k)kZZL - (xn,laxnﬂ? o Tnns Tnynt1s ) = (al,GQ, e 7an707070a t )

Then each x,, € R* and, in the metric space ¢1, we have x,, — a because given ¢ > 0 we

can choose an index m so that Y |ax| < € and then for all n > m we have
k>m

0
lzn —ally = X2 [2n, —arl = 22 lag| £ X2 ak| <e.
k=1 k>n k>m

It follows, from Part 2 of Theorem 3.8, that a € R and so we have £; C R, as claimed.

3.12 Exercise: Find the closure of R* in the metric space {5 using the metric do, and
find the closure of R in the metric space /4, using the metric d.

3.13 Definition: Let (X,dx) and (Y,dy) be metric spaces. Let A C X let f: A=Y,
let a € A’, and let b € Y. We say that the limit of f(z) as x tends to a is equal to b,
when for every e > 0 there exists § > 0 such that for all z € A, if 0 < dx(x,a) < J then

dy (f(x),b) <e.

3.14 Theorem: (The Sequential Characterization of Limits) Let X and Y be metric
spaces, let AC X, let f: A—Y,leta€ A C X, and let b € Y. Then lim f(x) = b if

Tr—a
and only if for every sequence (z,) in A\ {a} with z, — a we have lim f(x,)="0.
n— oo

Proof: Suppose that hni‘ f(x) =b. Let (x,) be a sequence in A\ {a} with z,, — a. Let
xT—r
€ > 0. Since lim f(z) = b we can choose § > 0 such that 0 < d(z,a) < § = d(f(z),b) < e.
r—a
Since x,, — a we can choose m € Z* such that n > m = d(z,,a) < §. For n > m we
have d(zn,a) < § and we have z, # a (since (z,) is a sequence in A\ {a}), so that
0 < d(zn,a) < 4, and hence d(f(z,),b) <e. Thus lim f(z,) = b, as required.
n— oo
Suppose, conversely, that lim f(x) # b. Choose € > 0 such that for every ¢ > 0 there
T—a

exists © € A such that 0 < d(z,a) < 6 and d(f(z),b) > e. For each n € ZT, choose z,, € A
such that 0 < d(zp,a) < = and d(f(z,),b) > e. For each n, since 0 < d(z,,,a) we have
T, # a so the sequence (z,,) lies in A\ {a}. Since d(z,,a) < L for all n € Z™, it follows
that , — a. Since d(f(z,),b) > € for all n € Z*, it follows that nh—>HOlO f(x) #b. Thus we

have found a sequence (z,) in A\ {a} with x,, — a such that lim f(z,) # b.
n—oo

3.15 Definition: Let (X,dx) and (Y,dy) be metric spaces, and let f : X — Y. For
a € X, we say that f is continuous at a when for every € > 0 there exists § > 0 such that
for all x € X, if dx(z,a) < 0 then dy (f(:z:), f(a)) < e. We say that f is continuous (on
X) when f is continuous at every point a € X. We say that f is uniformly continuous
(on X) when for every € > 0 there exists 6 > 0 such that for all z,y € X, if dx(x,y) <9
then dy (f(z), f(y)) < e. We say that f is Lipschitz continuous (on X) when there is
a constant ¢ > 0, called a Lipschitz constant for f, such that for all x,y € X we. have
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d( flx), f (y)) < /¢ -d(xz,y). Note that if f is Lipschitz continuous then f is also uniformly

continuous (indeed we can take § = £ in the definition of uniform continuity).
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3.16 Note: Let X and Y be metric spaces and let a € X. If a is a limit point of X then
f is continuous at a if and only if lim f(x) = f(a). If a is an isolated point of X then f
Tr—a

is necessarily continuous at a, vacuously.

3.17 Theorem: (The Sequential Characterization of Continuity) Let X and Y be metric
spaces using metrics dx and dy, let f : X — Y, and let a € X. Then f is continuous at a
if and only if for every sequence (x,,) in X with x,, — a we have lim f(x,)= f(a).

n—oo

Proof: The proof is left as an exercise.

3.18 Theorem: (Composition of Continuous Functions) Let X, Y and Z be metric spaces,
let f: X =Y, letg:Y — Z. If f is continuous at the point a € X and g is continuous
at the point f(a) € Y then the composite function g o f is continuous at a.

Proof: The proof is left as an exercise.

3.19 Theorem: (The Topological Characterization of Continuity) Let X andY be metric
spaces and let f : X — Y. Then f is continuous (on X ) if an only if f~1(V') is open in X
for every open set V inY.

Proof: Suppose that f is continuous in X. Let V be open in Y. Let a € f~1(V) and let
f(a) € V. Since V is open, we can choose € > 0 such that B(f(a),e) C V. Since f is
continuous at a we can choose § > 0 such that for all x € X with d(z,a) < § we have
d(f(x), f(a)) < e. Then we have f(B(a,d)) C B(f(a),e) CV and so B(a,d) C f~1(V).
Thus f~1(V) is open in X, as required.

Suppose, conversely, that f~(V) is open in X for every open set V in Y. Let a € X
and let € > 0. Taking V = B(f(a),e), which is open in Y, we see that ffl(B(f(a),e))
is open in X. Since a € f_l(B(f(a), e) and f_l(B(f(a), e)) is open in X, we can choose
6 > 0 such that B(a,d) C f~!(B(f(a),€)). Then we have f(B(a,d)) C B(f(a),€) or, in
other words, for all z € X, if d(z,a) < & then d(f(z), f(a)) < e. Thus f is continuous at
a hence, since a was arbitrary, f is continuous on X.

3.20 Definition: Let X and Y be topological spaces and let f : X — Y. We say that f
is continuous (on X) when f~1(V) is open in X for every open set V in Y. A bijective
map f : X — Y such that both f and f~! are continuous is called a homeomorphism.

3.21 Note: If U and V are inner product spaces and L : U — V is an inner product
space isomorphism, then L and its inverse preserve distance so they are both continuous
(we can take = € in the definition of continuity), hence L is a homeomorphism.

If U and V are finite-dimensional inner product spaces with say dimU = n and
dimV =m, and if ¢ : U — R™ and ¢ : V — R™ are inner product space isomorphisms
(obtained by choosing orthonormal bases for U and V') then amap F : U — V is continuous
if and only if the composite map ¥ F¢~! : R* — R™ is continuous. In particular, if F is
linear then F is continuous (since ¢y F¢~! : R® — R™ is linear, hence continuous).

We shall see below that the same is true for finite dimensional normed linear spaces:
every linear map between finite dimensional normed linear spaces is continuous. But this
is not always true for infinite dimensional spaces.

3.22 Example: Recall from Example 2.24 that every set U C Cla, b] which is open using
the metric d; is also open using the metric do,, but not vice versa. It follows that the
identity map I : C — Cla,b] given by I(f) = f is continuous as a map from the metric
space (Cla,b], d) to the metric space (Cla,b],d;), but not vice versa.
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3.23 Theorem: Let U and V be normed linear spaces and let F' : U — V be a linear
map. Then the following are equivalent:

(1) F is Lipschitz continuous on U,

(2) F is continuous at some point a € U,

(3) F is continuous at 0, and

(4) F(B(0,1)) is bounded.

In this case, if m > 0 with F(B(0,1)) C B(0,m) then m is a Lipschitz constant for F.
Proof: It is clear that if F' is Lipschitz continuous on U then F' is continuous at some point
a € U (indeed F is continuous at every point a € U). Let us show that if F' is continuous

at some point a € U then F' is continuous at 0. Suppose that F' is continuous at a € U.
Let € > 0. Since F is continuous at a € U, we can choose d; > 0 such that for all u € U we

have ||u —a| < 6 = HF (a)|| < 1. Choose § = d1e. Let « € U with ||z — OH < 6.
If z = 0 then ||F(z) - H = H0|| = 0. Suppose that z 3& 0. Then for u = a + § ‘T‘ we
have ||u—al| = Hﬁ;—ﬁ” = 51 and so ||F(u—a)|| = || F(v) (a)|| <1, that is HF(ﬁ”ﬁ)H <1
hence, by the linearity of F' and the scaling property of the norm, we have

1F@) = FO = [F@l = FUFEH] < 5 < e =e

Thus F' is continuous at 0, as required o
Next we show that if F' is continuous at 0 then F'( B(0,1)) is bounded. Suppose that
F is continuous at 0. Choose § > 0 so that for all u € U we have ||u|]| < § = ||[F(u)] < 1.
Let m = . For « € U, when z = 0 we have ||[F(z)|| =0 < m and when 0 < |[z]| <1 we
el p (2 )

have
IF@)) = || ()| = L

Thus F(E(O, 1)) is bounded, as required.

Finally we show that if I’ ( B(0, 1)) is bounded then F'is Lipschitz continuous. Suppose
that F( B(0,1)) is bounded. Choose m > O so that || F(u)|| < m for allu € U with [Jul| < 1.
Let z,y € U. If x = y then HF H = 0. Suppose that z # y. Then we have
| =1 so that HF(Hx y”)H <m and SO

1F(x) = F)ll = | F@@ =)l = = =yl 7 (Z=5p) | < mllz =]l

5

P ()| < 5= miel < m

H =l yll

Thus F' is Lipschitz continuous with Lipschitz constant m, as required.

3.24 Example: Define L : (Cla,b],ds) — (Cla, b], do) by L(f) :/ f(t)dt. Show that
L is Lipschitz continuous. “

Solution: Let f € Cla,b] with || f]| ., < 1, that is with max, |f(x)] < 1. Then

/f dt‘< max/ 1dt = max |z —al=|b—al.
<z<b /, a<z<b

Thus F( B(0, 1)) is bounded and so F' is uniformly continuous.
3.25 Example: Define D : (C'[0,1],ds) — C[0,1],ds) by D(f) = f’. Show that D is

not continuous.

Solution: For n € ZT, define f,, : [0,1] — R by f,(z) = 2. Then f, € C![a,b], and

1 folloo = Orgaiclnnl = 1 so that f, € B(0,1), and ||D(fn) H = Oglaé{l Inz"~'| = n. Thus

D(B(0,1)) is not bounded, so D is not continuous (at any point g € C[0,1]).

|F(H)|, = max
a<lx<b
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3.26 Example: Let X be a metric space and let ) # A C X. Define F : X — R by
F(z) = dist(z, A) = inf {d(z,a)|a € A}.
Show that F' is uniformly continuous.

Solution: Given € > 0, chose § = §. Let z,y € X with d(z,y) < = §. Slnce dist(y, A) =
inf {d(y,a)|a € A} we can Choose a € A such that d(y,a) < dist(y, A) + 5. Then we have
A) +

5
dist(z, A) < d(z,a) < d(z,y) +d(y,a) < § +dist(y, A) + 5
so that dist(z, A) — dist(y, A) < e. Similarly, we have dist(y, A) — dist(z, A) < € and so
|F(y) — F(z)| = |dist(z, A) — dist(y, 4)| < e.

3.27 Theorem: Let U be an n-dimensional normed linear space over R. Let {uy,- -, u,}
be any basis for U and let F' : R — U be the associated vector space isomorphism given

by F(t) = > tgus. Then both F and F~! are Lipschitz continuous.
k=1

n 1/2
Proof: Let M = < > Huk|\2> . For t € R™ we have

|F@)| = H Z tkukH < Z |tk| [Juk]| , by the Triangle Inequality,
n 1/2
< ( >tk > ( Z [lul > , by the Cauchy-Schwarz Inequality,
k=1 k=1
= M|t].

For all 5,t € R™, ||F(s) — F(t)|| = ||[F(s — t)|| < M ||s — t]|, so F is Lipschitz continuous.

Note that the map N : U — R given by N(z) = ||z is (uniformly) continuous, indeed
we can take § = € in the definition of continuity. Since F and N are both continuous, so is

the composite G = NoF : R" — R, which given by G(t) = HF H By the Extreme Value
Theorem, the map G attains its minimum value on the unit sphere {¢t € R"|||t|| = 1},
which is compact. Let m = min G(t) = mln HF H Note that m > 0 because when

=1 litl=
t # 0 we have F(t) # 0 (since F' is a bljectlve linear map) and hence [|F(t)| # 0. For
t € R”, if ||t|| > 1 then we have HI | =1 so, by the choice of m,

PN = 1t |7 (i) | = el - m > m.

It follows that for all ¢t € R", if HF H < m then ||t|| < 1. Since F is bijective, it follows

that for # € U, if ||z]| < m then ||[F~'(z)|| < 1. Thus for all z € U, if # = 0 then
|F~Y(z)||=0= % and if x # 0 then since H ol H = m we have

1=t @l = B ()l < 5
For all z,y € U, we have |[F~ (z) — F~ X (y)|| = [[F ' (z —y)|| < L[|z =y, so F~

Lipschitz continuous.

3.28 Corollary: When U and V are finite-dimensional normed linear spaces, every linear
map F': U — V is Lipschitz continuous.

3.29 Corollary: Any two norms on a finite-dimensional vector space U induce the same
topology on U.
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Chapter 4. Separability and Completeness

4.1 Note: Let X be a metric space. Recall that for A C X we say that A is dense in X
when A = X. Also recall that by Part 3 of Theorem 2.30 we have A = AU A’ where A’
is the set of limit points of A and so, by the definition of limit points, it follows that A is
dense in X if and only if every open ball in X contains a point in A. By the sequential
characterization of the closure (Part 2 of Therem 3.8) we can also say that A is dense in
X if and only if for every a € X there exists a sequence (z,,) in A with x,, — a in X.

4.2 Definition: Let X be a metric space (or a topological space). We say that X is
separable when it has a finite or countable dense subset.

4.3 Definition: Let X be a topological space. A basis (or a base) for the topology on
X is a set B of open sets in X with the property that for every subset A C X, A is open
if and only if for every point a € A there exists a basic set U € B with a € U C A.

4.4 Example: In a metric space X, the set of open balls B = {B(a, r)’a e X,0<re R}
is a basis for the metric topology on X.

4.5 Theorem: Let X be a metric space.

(1) If X is separable then there is a finite or countable basis for the metric topology on X.
(2) If every infinite subset of X has a limit point then X is separable.
(3) If X is separable then every subspace of X is separable.

Proof: The proof is left as an exercise.

4.6 Example: Euclidean space (R”, dg) is separable with Q™ as a countable dense subset.
Every subspace of Euclidean space is also separable.

4.7 Example: As an exercise, show that (Eoo, doo) is not separable (consider characteristic
functions x4 for subsets A C N.

4.8 Example: As an exercise, show that the set (c, doo) of convergent sequences of real
(or complex) numbers is separable. Every subspace of ¢ is also separable, for example the
space c¢g of sequences which converge to 0.

4.9 Example: As an exercise, show that the space (B[a, b], doo) of bounded functions on

the interval [a, b] is not separable (consider characteristic functions x 4 for appropriate sets
A C [a,b]).

4.10 Example: Later (see Corollary 6.21 after the Weierstrass Approximation Theorem)
we will show that the space (C a, b], doo) of continuous real valued functions on the interval
[a, b] is separable. Once we have proven this, it will follow that every subspace of Cla, b] is
separable.
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4.11 Definition: Recall that a sequence (z,,),>1 in a metric space X is called a Cauchy
sequence when it has the property that for all € > 0 there exists an index m € Z™ such
that for all indices k, ¢ > m we have d(xk,xp) < €.

4.12 Theorem: Let X be a metric space.

(1) Every Cauchy sequence in X is bounded.
(2) Every convergent sequence in X is Cauchy.
(3) If some subsequence of a Cauchy sequence (x,,) converges, then (x,) converges.

Proof: To prove Part 1, let (z,,)n,>1 be a Cauchy sequence in X. Choose m € Z* such
that k,¢ > m = d(xk,z¢) < 1 and note that, in particular, we have d(zy, x,,) < 1 for all
k > m. Let a = x,, and choose r > max{d(acl,a),d(xg,a), o d(Tp—1,a), 1}. Then for
all n € Z™ we have d(z,,a) < r so the sequence (z,) is bounded, as required.

We remark that Part 2 of this theorem was stated earlier, without proof, as Part 5 of
Theorem 3.2. We give the proof here. Let (z,,),>1 be a convergent sequence in X and let
a = lim x,. Let ¢ > 0. Choose m € Z" such that n > m = d(zy,a) < §. Then for all

n—roo
k,¢ > m we have

d(xg,ze) < d(zg,a) +d(a,zp) < g + g =¢,

so the sequence (z,,) is Cauchy, as required.
To prove Part 3, let (x,,),>1 be a Cauchy sequence in X, let (x,, )x>1 be a subsequence

of (xn)n>1, suppose tha (z,, )r>1 converges, and let a = klim Zn, . Let € > 0. Since (x,,)
- - — 00

is Cauchy we can choose m € Z™ so that k, £ > m = d(zg,z¢) < g Since klim ny = 00
—00
and lim z,, = a, we can choose an index ¢ such that ny, > m and d(z,,,a) < g Then

k— o0
for all £ > m we have

d(:l?k,a) < d(xk’xm) + d(xne’a) < g + g =¢

4.13 Definition: A metric space X is called complete when every Cauchy sequence in
X converges in X. A complete inner product space is called a Hilbert space, and a
complete normed linear space is called a Banach space.

4.14 Theorem: Let X be a complete metric space and let A C X. Then A is complete
if and only if A is closed in X

Proof: Suppose that A is closed in X. Let (z,) be a Cauchy sequence in A. Since X is
complete, (z,) converges in X. Since A is closed in X and (z,) is a sequence in A which

converges in X, we have lim z, € A by Theorem 3.5 (The Sequential Characterization of
n—oo

Closed Sets). Thus every Cauchy sequence in A converges in A, so A is complete.

Suppose, conversely, that A is complete. Let a € A’, that is let a € X be a limit point
of A. Since a € A’, by Theorem 3.5 (The Sequential Characterization of Limit Points) we
can choose a sequence (z,,) in A (indeed in A\ {a}) with limn — cox,, = a. Since (x,)
converges in X, it is Cauchy. Since (z,,) is Cauchy and A is complete, (z,) converges in
A, that is a = nli_)n;o Ty € A.

4.15 Example: Recall, from MATH 247 or PMATH 333, that (R",d2) is complete. It
follows that every closed subset A C R" is complete (using the standard metric ds).

4.16 Example: Note that completeness is not invariant under homeomorphism. For
example, R is homeomorphic to (0,1) C R, but R is complete while (0, 1) is not.
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4.17 Theorem: Every finite-dimensional normed linear space is complete.

Proof: Let U be an n-dimensional normed linear space. Let {uj,---,u,} be a basis for
the vector space U and let F' : R™ — U be the associated vector space isomorphism

given by F(t) = Y tpug. Recall, from Theorem 3.25, that both F' and F~! are Lipschitz
k=1

continuous. Let L be a Lipshitz constant for ' and let M be a Lipschitz constant for F'~1.
Let (z,,)n>1 be a Cauchy sequence in U. For each n € Z™T, let ¢, = F~!(z,) € R". Note
that (¢,) is a Cauchy sequence in R™ because

[ty — tell = [|[F~ (zx) = F~H(zo)|| < Mz — .

Since (t,) is a Cauchy sequence in R™ and R" is complete, (¢,) converges in R™. Let

s = lim ¢, € R" and let a = F(s) € U. Then we have lim x, = a because
n—o0 n—oo

2 — all = | F(ta) = F(s)]| < Llitw s
4.18 Corollary: The metric spaces (R"™,d;y), (R",d3) and (R",ds) are all complete.
4.19 Theorem: The metric spaces ({1,d1), ({2,d2) and (£, d~) are all complete.

Proof: We prove that (¢1,d;) is complete and we leave the proof that (2, ds) and ({oo, doo)
are complete as an exercise. Let (a,),>1 be a Cauchy sequence in ¢,. For each n € Z™,

oo

write an = (nk)k>1 = (An,1,0n,2,An 3, --). Since a, € ¢1 we have ) |a, x| < co. Since
k=1

(@n)n>1 is Cauchy, for every e > 0 we can choose N € Z™ such that for all n,m > N we

[o.@]
have |la, — amll; < € that is > |ank — am k| < €. For each fixed k € Z™, note that for
k=1

[e.@]

n,m > N we have |ap i, —am k| < D |an,; — am, j| < €, and so the sequence (an k)n>1 is
j=1

Cauchy in R, so it converges. For each k € Z*, let by, = lim a,, € R and let b = (by)p>1.

n—oo

We claim that b € ¢;. Since (ay,),>1 is Cauchy, for every € > 0 we can choose N € Z*

oo
such that for all n,m > N we have ||a, — a1 < €, that is Y |ank — am k| < €. By
k=1

the Triangle Inequality, for n,m > N we have |[lan|; — lamll;| < llan — am|; < €It
follows that the sequence (HCLnH)n>1 is a Cauchy sequence in R, so it converges. Let
M = lim |la,||; € R. For each fixed K € Z* we have

n—oo

K K K [ee)
p— 1 pu— 1 < 1 pu— 1 pu— .
2 1o = 3 | Jim ane] = T 32 Jansl < lim 32 Jani| = i flan]ly = M

K 00
Since Y. |bg| < M for all K € ZT it follows that Y |bgx| < M, so b € {1, as claimed.
k=1 k=1

Finally, we claim that lim a, = b in ;. Let ¢ > 0. Choose N € Z™ such that for all

n— oo
n,m > N we have ||a, — an,||; < €. Then for each K € Z" we have

K K ‘ ‘ K
Yo lanke — bkl = > ’an,k — lim am’k| = lim ) |ank — am.kl

o0

< Jim 3% lans = amel =l flan — ony <

K =)
Since Y |ank — bg| < e for all K € Z™ it follows that ||a, —b||; = > |ank — bi| <e.
k=1 k=1
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4.20 Exercise: Show that (¢1,d) and (f3,ds) are not closed in (o, ds) and so they
are not complete.

4.21 Exercise: Show that the metric spaces (C [a,b],dy) and (C [a, b], d2) are not complete.
]

Hint: in the case [a,b] = [~1,1], consider f, : [~1,1] — R given by f,(z) = z/?"~ for
n € Z*. Show that if (f,,) did converge, either in (C[—l, 1], dl) or in (C[—l, 1], dg), then it
would necessarily converge to a function g with g(z) = 1 when x > 0 and g(x) = —1 when

x < 0, but such a function g cannot be continuous.

4.22 Definition: Let F = R or C. For a metric space X, we define
F(X,F)=F*={f: X > F}

B(X,F)={f:X — F| f is bounded }

C(X,F)={f:X — F| f is continuous},
Co(X,F) = {f X — F‘ f is bounded and continuous}.

Since we usually take F = R we write

F(X)=FX,R), B(X)=B(X,R), C(X)=C(X,R) and Cy(X) =Cp(X,R).
Note that B(X,F) is a normed linear space using the supremum norm given by

1£llo = sup | f ()]
zeX

and a metric space using the supremum metric given by d.(f,g) = sup !f(x) — g(x)‘
zeX
These do not determine a well-defined norm and metric on C(X, F) since || f|| . = sup | f(x)|
zeX
might not be finite, but they do determine a well-defined norm and metric on Cy(X, F).

4.23 Definition: For a sequence (f,) in F(X) and for ¢ € F(X), we say that (f,)
converges uniformly to g on X, and write f,, — ¢ uniformly on X, when for every ¢ > 0
there exists m € Z*1 such that |f,(z) — g(z)| < € for every n > m and every z € X.

4.24 Note: For a sequence (f,) € B(X) and for g € B(X), note that |f,(x) — g| < € for
every z € X if and only if || f, — g||,, < e. It follows that f,, — ¢ uniformly on X if and
only if f,, — ¢ in the metric space (B(X), doo).
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4.25 Theorem: Let X be a metric space. Then the metric spaces (B(X),doo) and
(Co(X),ds) are complete.

Proof: Let (f,)n>1 be a Cauchy sequence in (B(X),ds). Note that for each z € X,
we have ’fn(ac) — fm(:c)| < supyex |fn(y) — fm(y)’ = ||fn — fmllo, and so the sequence
( fn(x))n>1 is a Cauchy sequence in R, so it converges. Thus we can define a function
g: X - Rbyg(xr)= lim f,(z) and then we have f,, — ¢ pointwise in X.
n— oo

We claim that g € B(X), that is we claim that g is bounded. Since (f,,) is a Cauchy
sequence in B(X), it is bounded (by Part 1 of Theorem 4.12) so we can choose M > 0
such that || f,||,, < M for all indices n. Then for all x € X we have |f, ()| < || full,, <M
and hence |g(z)| = lim |f,(x)| < M. Thus g is a bounded function, that is g € B(X).

n—oo
We know that f,, — ¢ pointwise on X. We must show that f,, — g uniformly on X.

Let € > 0. Since (f,) is Cauchy we can choose m € Z" such that ||fy — fe||, < € for all
k,¢ > m. Then for all K > m and for all x € X we have

|fk:($) —g(iﬂ)‘ = Zli{folo |fk(a:) — fe(aj)‘ <e.

It follows that f,, — ¢ uniformly on X, that is f,, — ¢ in the metric space (B(X ),doo).
Thus (B(X),dw) is complete.

To show that (Cy(X),dw) is complete, it suffices (by Theorem 4.14) to show that
Cp(X) is closed in B(X). Let (f,) be a sequence in Cy(X) which converges in (B(X), doo).
Let g = nan;O fn € B(X). We need to show that g is continuous. Let ¢ > 0 and let
a € X. Since f, — g in (B(X),ds) we know that f, — g uniformly on X, so we can
choose m € ZT such that |fp(z) — g(z)| < § for all n > m and all z € X. Since fp, is

continuous at a we can choose § > 0 such that for all x € X with d(z,a) < § we have
| fm(2) = fm(a)| < & Then for all z € X with d(z,a) < § we have

9(z) = 9(a)| < |g(x) = fn(@)| + | (@) = fn(@)| + | fnla) —g(a)| < §+§+ §=¢
Thus ¢ is continuous at a. Since a was arbitrary, ¢ is continuous on X, hence g € Cp(X).

By the Sequential Characterization of Closed Sets (Part 3 of Theorem 3.8) it follows that
Cp(X) is closed in B(X), as required.

4.26 Corollary: The metric space (C[a,b],doo) is complete.
Proof: Since every continuous function f : [a,b] — R is bounded, we have C[a, b] = C|a, b].

4.27 Example: In the metric space (C[a, b], doo), the space R|a, b] of Riemann integrable
functions is closed, hence complete, and the spaces Pla,b] of polynomial functions, and
C!{a, b] of continuously differentiable functions, are not closed, and hence not complete.
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4.28 Theorem: (Metric Completion) Every metric space X is isometric to a dense sub-
space of a complete metric space.

Proof: Let X be a metric space. Fix a € X. For each x € X, define f, : X - R
by f.(t) = d(t,x) — d(t,a). Note that f, is bounded since, by the Triangle Inequality,
}fx(t)‘ = ‘d(a:,t) — d(a,t)‘ < d(a,z). Note that f, is continuous (indeed f, Lipschitz
continuous) because for s,t € X we have
’fz(s) — fx(t)‘ = ‘d(s, x) —d(s,a) — d(t,x) + d(t, a)‘

< ‘d(s,x) — d(t,:v)| + ‘d(s,a) — d(t,a)‘

< d(s,t) +d(s,t) = 2d(s,t).
Define F' : X — Cy(X) by F(z) = f,. We claim that F preserves distance, using the du
metric on Cp(X). For all z,y,t € X we have

£o(6) = £, (0] = |d(e,0) — da,t) — d(y, ) + d(a, )] = |d(z,t) — d(y,1)] < ()

hence for all x,y € X we have
1fe = full o = sup [ fo(t) = fy(9)] < d(,y).
teX
On the other hand, for all z,y € X we also have
Ifo = fylloo = sup [fo(t) = £y (O] = [ fo(y) = fu(v)| = |d(2,y) — d(y.y)| = d(z,y),

and so F' preserves distance, as claimed. Thus X is isometric to the image F'(X) C Cy(X),
which is dense in its closure F'(X), which is complete because it is a closed subspace of
the complete metric space Cp(X).

4.29 Remark: When X is a metric space and F': X — Cp(X) is the distance preserving
map in the proof of the above theorem, we often identify X with its isometric image F'(X)
and think of X as a dense subspace of the complete metric space Y = F(X). Alternatively
we can do some cutting and pasting operations on sets to obtain a complete metric space
Y which actually contains X as a dense subspace. Here is an outline of one possible way
of constructing such a set Y. Choose a set Z which is disjoint from X and has the same
cardinality as Cp(X) (a bit of set theory is required to prove that such a set Z exists).
Choose a bijection G : Cp(X) — Z and give Z the metric which makes G an isometry.
Then Z is complete and the composite H = Go F': X — Z is distance preserving so that
X is isometric to the image H(X), and H(X) is dense in the complete space H(X), and

H(X) is disjoint from X. Then let Y = (H(X)\ H(X)) U X so that we have X C Y. Let

K : Y — H(X) be the bijection given by K(z) = h(z) if z € X and K(y) =y if h ¢ X,
and give Y the metric for which K is an isometry. Then Y is complete and X is dense in Y.

4.30 Definition: When X and Y are metric spaces with X C Y such that X is dense
in Y and Y is complete, we say that Y is the metric completion of X. The metric
completion of X is unique in the sense of the following theorem.
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4.31 Theorem: (Uniqueness of the Metric Comlietion) Let X, Y and Z be metric spaces
with Y and Z complete such that X CY with X =Y and X C Z with X = Z. Then
there is a (unique) isometry F :Y — Z with F(x) = x for all x € X.

Proof: Let a € Y. Since X = Y we can choose a sequence (r,,) in X with z,, — a in Y.
Then (x,) is Cauchy in Y, hence also in X, hence also in Z. Since (z,,) is Cauchy in Z,
it converges in Z, say x,, — b in Z. In order for a map F : Y — Z to be continuous with
F(x) =z for every x € X, we must have

F(a)=F( lim z,) = lim F(z,) = lim z, =b.

n— 00 n— 00 n—o0
This shows that if such a map F exists, it is unique, and it must be given by the following
procedure: given a € Y we choose a sequence (z,,) in X with x,, — a and then we define
F(a) = lim z, € Z.
n—oo

We claim that the above procedure does determine a well-defined map whose value
F(a) does not depend on the choice of the sequence (z,). Let a € Y and let (z,) and
(yn) be two sequences in X with z,, > aand y,, > ain Y. Let b= lim z, in Z and let

n— oo

¢ = lim in Z. We need to show that b = ¢. Let € > 0. Choose m € Z1 such that for all

indige_s)o;; > m we have dy (zn,a) < 5, dy (yn,a) < %, dz(z,,b) < §. and dz(yn,c) < .
Then since dz(xn, yn) = dx (Tn,Yn) = dy (Tn, yn) we have
dz(b,c) <dz(b,xn) +dz(xn,yn) + dz(Yn,c)
=dz(b, ) + dy (Tn,yn) + dz(Yn, )
<dgz(b,zy) + dy(xn,a) + dy(a,yn) + dz(yn, )
<f+5+5+5=¢
Since dz (b, c) < € for every € > 0 we must have dz(b,c=0 hence b = ¢, as required.

Note that F'is bijective with its inverse GG given by the same construction: given c € Z

we choose a sequence (z,,) in X with z,, — b in Z and define G(¢) =b = lim z, in Y.
n—oo

It remains to prove that F' preserves distance. Let a,b € Y. Chooose sequences (z;,)
and (y,) in X with z, > a and y, > bin Y. Let ¢,d € Z with z,, - c and y, — d in Z.
We need to show that dy (a,b) = dz(c,d). Since

dy (a,b) < dy(a,zp) + dy (Tn,yn) + dy (yn,b) , and
dy (Tn,yn) < dy (zy,a) + dy(a,b) + dy (b, yn)
it follows that
‘dy(a,b) — dy(:cn,yn)‘ <dy(a,z,) + dy (Yn,b).

Taking the limit as n — oo gives |dy (a,b) — lim dy (zn,y,)| = 0 so that
n—oo
dy(a,b) = lim dy (2, yn) = lim dx(zn,yn).

Similarly, we have dz(c,d) = lim dx(x,,y,) and hence dy (a,b) = dz(c,d), as required.
n—oo
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Chapter 5. Compactness

5.1 Definition: Let X be a metric space (or a topological space) and let A C X. An

open cover for A (in X) is a set S of open sets in X such that A C (JS = [ U.
ves
When S is an open cover for A in X, a subcover of S for A is a subset T" C S such that

ACUT =UyerU. We say that A is compact (in X) when every open cover for A has
a finite subcover.

5.2 Example: Recall (from MATH 247 or PMATH 333) that for A C R"”, the Heine-Borel
Theorem states that A is compact if and only if A is closed and bounded.

5.3 Example: When X is a metric space and A C X is closed and bounded, it is not
always the case that A is compact. For example, if X is any infinite set and d is the discrete
metric on X, then every infinite subset A C X is closed and bounded but not compact. In
particular, closed unit balls are not compact, indeed for all a € X we have B(a,1) = X.

5.4 Theorem: Let A C X CY whereY is a metric space (or a topological space). Then
A is compact in X if and only if A is compact in'Y .

Proof: Suppose that A is compact in X. Let T be an open cover for Ain Y. Foreach V € T,
let Uy = V N X. Note that each set Uy is open in X by Theorem 2.33 (or by Remark
2.34). Since A C X and A C [Jy¢pV, we also have A C {Jy,cr(VNX) = Uyer Uv.
Thus the set S = {UV‘V € T} is an open cover for A in X. Since A is compact in
X we can choose a finite subcover, say {le, e Uvn} of S, where each V; € T. Since
ACU, Uy, =U,(ViNX), we also have A C |J]_, V; and so {Vi,---,V,,} is a finite
subcover of T

Suppose, conversely, that A is compact in Y. Let S be an open cover for A in X. For
each U € S, by Theorem 2.33 (or by Remark 2.34) we can choose an open set V; in Y such
that U = VyNX. Then T = {VU|U € S} is an open cover of A in Y. Since A is compact
in Y we con choose a finite subcover, say {VUI, cee VUn} of T', where each U; € S. Then
we have A C |, (Vy, N X) = U;_, U; and so {Uy,---,U,} is a finite subcover of S.

5.5 Remark: Let A C X where X is a metric space (or a topological space). By the
above theorem, note that A is compact in X if and only if A is compact in itself. For this
reason, we do not usually say that A is compact in X, we simply say that A is compact.

5.6 Theorem: Let X be a metric space and let A C X. If A is compact then A is closed
and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let a € A¢. For each

x € A, let 7, = d(a,z) > 0, let U, = B(a, %”), and let V, = B(:Jc,%) so that U, and

V. are disjoint. Note that the set § = {Vx’x € A} is an open cover for A. Since A
is compact we can choose a finite subcover, say {V;,,---,V,, } where each z; € A. Let
r=min{ry,, -, 7y, } so that B(a,5) C U,, for all i, and hence B(a,%) is disjoint from

each set V,. Since B(a, %) is disjoint from each set V,,, and the sets V,, cover A, it follows

that B(OL7 g) is disjoint from A, hence B(a, g) C A°. Thus A€ is open, hence A is closed.

We claim that A is bounded. Let a € A. For each n € Z™, let U, = B(a,n). Then the
set S = {Uy,Us,Us,- -} is an open cover for A. Since A is compact, we can choose a finite
subcover, say {U,,,Up,,  +,Une} C S, with each n; € Z7. Let m = max{ni,no, -+, ne}
so that U,, C U, for all indices . Then we have A C Ule Un, = Up, = B(a,m) and so
A is bounded.
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5.7 Theorem: Let X be a metric space (or a topological space) and let A C X. If X is
compact and A is closed in X, then A is compact.

Proof: Suppose that X is compact and A is closed in X. Let S be an open cover for A.
Then SU{A°} is an open cover for X. Since X is compact, we can choose a finite subcover
T of SU{A}. Note that 7" may or may not contain the set A¢ but, in either case, T'\ {A°}
is an open cover for A with 7"\ {A°} C S, so that T\ {A°} is a finite subcover of S.

5.8 Corollary: Let X be a metric space (or a topological space), let A C X be closed,
and let K C X be compact. Then AN K is compact.

5.9 Theorem: Let X and Y be metric spaces (or topological spaces) and let f: X — Y.
If X is compact and f is continuous then f(X) is compact.

Proof: Suppose that X is compact and f is continuous. Let T be an open cover for
f(X) in Y. Since f is continuous, so that f~1(V) is open in X for each V € T, the set
S = {f_l(V)}V € T} is an open cover for X. Since X is compact, we can choose a
finite subcover, say {f~*(V1), f~*(Va), -+, f~* (V) } of S, with each V; € T. Then the set
{V1,Va,---,V,} is a finite subcover of T for f(X).

5.10 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f: R — R given by f(z) = %tan_l(x) sends the closed set R
homeomorphically to the open interval (—1,1).

5.11 Theorem: (The Extreme Value Theorem) Let X be a compact metric space (or
topological space) and let f : X — R be continuous. Then there exist a,b € X such that
fla) < f(x) < f(b) for all x € X.

Proof: Since X is compact and f is continuous, it follows that f(X) is compact in R.
Since f(X) is compact, it is closed and bounded in R. Since f(X) is bounded in R, it
follows that m = inf f(X) and M = sup f(X) are both finite real numbers, and since f(X)
is closed in R it follows that m € f(X) and M € f(X) so that we can choose a,b € X
such that f(a) =m =inf f(X) and f(b) = M = sup f(X).

5.12 Theorem: Let X and Y be metric spaces with X compact. Let f : X — Y be
continuous and bijective. Then f is a homeomorphism.

Proof: Let ¢ = f~! : Y — X. We need to prove that g is continuous. Let A C X be
closed in X. Since X is compact and A C X is closed, it follows (from Theorem 5.7)
that A is compact. Since the map f : A — Y is continuous and A is compact, it follows
(from Theorem 5.9) that f(A) is compact. Since f(A) is compact it follows (from Theorem
5.6) that f(A) is closed. Since g = f~1 we have g!(A4) = f(A), which is closed. Since
g 1(A) is closed in Y for every closed set A in X, it follows (by taking complements) that
g~ 1(U) is open in Y for every open set U in X. Thus g is continuous, by the Topological
Characterization of Continuity (Theorem 3.19).

5.13 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0, 27) and Y is the unit circle Y = {z € C|||z|| = 1},
then the map f : X — Y given by f(t) = e'! is continuous and bijective, but the inverse
map is not continuous at 1.
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5.14 Theorem: (The Lebesgue Number) Let X be a compact metric space and let S
be an open cover for X. Then there exists a number A > 0, which is called a Lebesgue
number for the cover S, such that for all a € X there exists U € S such that B(a,\) C U.

Proof: For each x € X, since S is an open cover for X we can choose U, € S with x € U,
and then, since U, is open we can choose r, > 0 so that B(a,2r,) C U,. Note that the
set T' = {B(:Jc,rm)‘m € X} is an open cover for X. Since X is compact, we can choose
a finite subcover, say {B(z1,75,), -, B(2pn,7s,)} of T for X, with each z; € X. Let
A =min{ry,, -+, 7, }. We claim that X is a Lebesgue number for S. Let a € X. Choose
an index ¢ such that a € B(z;,r,,), and let U = U,, € S. For all y € B(a,\) we have
d(y,z;) < d(y,a) +d(a,z;) < A+ 71z, < 2r,, and hence y € B(z;,2r,,) C U,, = U. This
shows that B(a,\) C U, as required.

5.15 Theorem: Let X and Y be metric spaces with X compact and let f : X — Y be
continuous. Then f is uniformly continuous.

Proof: We leave the proof as an exercise.

5.16 Definition: Let X be a metric space. We say that X is totally bounded when for
n
every € > 0 there exists a finite subset {ai,as,---,a,} C X such that X = |J B(a,¢€).
i=1
We say that X has the finite intersection property on closed sets when for every set
T of closed sets in X, if every finite subset of T has non-empty intersection, then 7' has
non-empty intersection.

5.17 Theorem: Let X be a metric space. Then the following are equivalent.

(1) X is compact.

(2) X has the finite intersection property on closed sets.

(3) Every sequence (x,) in X has a convergent subsequence.
(4) Every infinite subset A C X has a limit point.

(5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set
of closed sets in X. Suppose that T' has empty intersection, that is suppose (4.7 A = 0.
Then |Jyep A° = X so the set S = {AC‘A € T} is an open cover for X. Since X is
compact, we can choose a finite subcover, say {Alc, cee Anc} of S for X. Then we have
A1NAynN---NA, =0, showing that some finite subset of T has empty intersection.
Next we prove that (2) implies (3). Suppose X has the finite intersection property on
closed sets. Let (x,,)n>1 be a sequence in X. For each m € Z%, let A,,, = {z,|n > m} and
note that each A,, is closed with A1 D Ay D A3 D ---. Let T = {A,,|m € ZT}. Note that
every finite subset of T' has non-empty intersection because given A,,,,---, A4, € T we
can let m = max{mq,---, my} and then we have ﬂle Am, = A, and we have x,, € A,,.
Since X has the finite intersection property on closed sets, it follows that T" has non-empty
intersection. Choose a point a € () ~_; A,,. We construct a subsequence (x,, )r>1 of

(Tn)n>1 With klim Zn, = a as follows. Since a € A; = {z,|n > 1} we can choose n; > 1
- —>00

such that d(z,,,a) < 1. Since a € A,, = {z,|n >n1} we can choose ny > n; such
that d(z,,,a) < 3. Since a € A,, = {z,|n > n2} we can choose n3 > ny such that
d(xp,,a) < % Repeating this procedure, we can choose 1 < nj; < ng < ng < --- such that
d(zn,,a) < 3 for all indices k, and then we have constructed a subsequence (z,,) such
that lim z,, = a.

— 00
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Next we prove that (3) implies (4). Suppose that every sequence (z,) in X has a
convergent subsequence. Let A C X be an infinite subset. Choose a sequence (z,) in A
with the terms z,, all distinct. Choose a convergent subsequence (z,,) of (x,) and let

a = lim z,,. Then a is a limit point of the set A.
k—o00

Now let us prove that (4) implies (5). Suppose that every infinite subset A C X has a
limit point. We claim that X is complete. Let (z,) be a Cauchy sequence in X. We claim
that (z,) has a convergent subsequence. If the set {x,,|n € Z*} is finite, then some term in
the sequence occurs infinitely often, so we can choose indices n; < ngy < ng < --- such that
1 =9 = x3 = ---, and so in this case (z,) has a constant subsequence. Suppose the set
{zn|n € Z*} is infinite. Let a be a limit point of the infinite set A = {x,|n € ZT}. Since a
is a limit point of the set {z,} we can choose indices ny with ny < ns < ng < --- such that
0 < d(2n,,a) < 1 for each index k. Then (z,, ) is a subsequence of (z,,) with kl;ngo Ty, = a.

Since the sequence (x,,) Cauchy and has a convergent subsequence, it follows, from Part 3
of Theorem 5.11, that the sequence (z,) converges. Thus X is complete, as claimed.

Continuing our proof that (4) implies (5), suppose that X is not totally bounded.
Choose € > 0 such that there do not exist finitely many points aq,---,a, € X for which
X = U, B(a;,¢). Let a1 € X. Since X # B(aj,e€) we can choose az € X with a; ¢
B(ay,¢€). Since X # B(ay,€)UB(ag,€) we can choose ag € X with ag ¢ B(ay,€)UB(asg,¢€).
Repeat this procedure to choose points a1, az, as, - - - with a,41 ¢ Uy_; B(ak,€). Then the
set A = {a,|n € Z* is an infinite subset of X which has no limit point.

Finally we prove that prove that (5) implies (1). Suppose that X is complete and
totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open
cover S for X which has no finite subcover for X. Since X is totally bounded, we can
cover X by finitely many balls of radius 1. Choose one of the balls, say U; = B(aq,1)
such that there is no finite subcover of S for U; (if there was a finite subcover for each
ball, then the union of all these subcovers would be a finite subcover for X). Since X
is totally bounded, we can cover X (hence also U;) by finitely many balls of radius %
Choose one of these balls, say Uy = B(as, %) such that there is no finite subcover of S
for U; N Us. Repeat the procedure to obtain balls U,, = B(an, %) such that, for each n,
there is no finite subcover of S for ();_; Ux. In particular, each intersection (;_, Uy is
nonempty so we can choose an element z,, € (),_, Uy. Since for all k,¢ > m we have
Tp,xy € Uy, = B(am, %) it follows that (x,) is Cauchy. Since X is complete, it follows

that (x,) converges in X. Let a = lim z,. Since S covers X we can choose U € S with
n—oo

a € U. Since U is open we can choose r > 0 such that B(a,r) C U. Since z,, — a we
can choose m > % such that d(z,,,a) < 5. Then for all x € U,, = B(am, %) we have
d(z,a) < d(z,am) + d(am, Tm) + d(Tm,a) < =+ L + % <7 and so U, C Bla,r) CU.
But then S has a finite subcover for U,,, namely the singleton {U}, which contradicts the

fact that S has no finite subcover for (-, Uy.

5.18 Example: Show that in the metric space (C[0,1],ds), the closed unit ball B(0,1)
is not compact.

Solution: Let f,(z) = 2™ for n € Z*. Note that | f,| ., = 1 so that each f,, € B(0,1).
Note that the pointwise limit of the sequence (f,) is the function g : [0,1] — R given by
g(z) =0 when z < 1 and g(1) = 1, which is not continuous. If some subsequence (f,, ) of
(fn) were to converge in (C 0, 1], doo) then it would need to converge uniformly on [0, 1] to
the function g. But this is not possible since the uniform limit of a sequence of continuous
functions is always continuous. Thus (f,) has no convergent subsequence and so B(0,1)
is not compact.

36



Chapter 6. Some Applications

Contraction Maps and Picard’s Theorem

6.1 Definition: Let X be a metric space. A map f : X — X is called a contraction
map on X when there exists a constant ¢ € [0,1) such thatt for all z,y € X we have

d(f(2), f(y)) < cd(z,y).
Such a constant c is called a contraction constant for f. Note that every contraction

map is uniformly continuous.

6.2 Definition: For a map f : X — X (where X is any set), a point a € X such that
f(a) = a is called a fixed point of f.

6.3 Theorem: (The Banach Fixed-Point Theorem) Every contraction map on a complete
metric space has a unique fixed point.

Proof: Let X be a complete metric space and let f : X — X be a contraction map on
X with contraction constant ¢ € [0,1). Let g € X be any point. Let 1 = f(xg) and
xo = f(z1) = f%(x0) and so on, so that for n > 1 we have x,, = f(z,_1) = f™(x0). Note
that the sequence (z,,),>0 is Cauchy because for n < m we have
d(l'nv mm) = d(fn<x0>7 fn(xm—n)) < c" d(l‘o, xm—n)
< M (d(wo, 1) + d(z1,m2) + -+ + d(Tm—n—1,Tm—n))
< *d(zo, 1) (1+c+ 4+

< "d(zo,x1) —0asc—0t.

1
1—c

Since X is complete, the sequence (x,),>0 converges, so we can let a = li_)m z,. Note
n o

that f(a) = a because f is continuous at a so that
fla) = £( lim @) = lim f(@a) = lim @ =a.
Finally note that for a,b € X, if f(a) = a and f(b) = b then since

d(a,b) = d(f(a), f(b)) < cd(a,b)
with 0 < ¢ < 1, it follows that d(a,b) = 0 so that a = b.
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6.4 Definition: Let A C R? and let f : A — R. We say that f satisfies a Lipschitz
condition on A when there exists a constant £ > 0 such that for all x, y1,y2 € R for which
(x,y1) € A and (x,y2) € A, we have

|f(a:,y2) - f(xayl)‘ </ ’yZ - y1|'
Such a constant ¢ is called a Lipschitz constant for f.
6.5 Theorem: (Picard) Let U be an open set in R?, let (a,b) € U, and let F : U — R
satisfy a Lipschitz condition on U. Then there exists 6 > 0 such that the differential
equation g—z = F(z,y) has a unique solution y = f(x) with f(a) = b, defined for all
x € [a—9,a+4].
Proof: First note that y = f(z) is a solution to the differential equation g—g = F(z,y) with
f(a) = b if and only if f(z) satisfies the integral equation

flx)=b+ /m F(t, f(t))dt

for all + € [a—6,a+0d]. Let ¢ be a Lipschitz constant for F.. Choose r > 0 such that

B((a,b),r) C U and let k = max ’F(m,y)’ Choose § with 0 < § < % small
(z,y)€B((a;b),r)
enough such that the rectangle

R =[a—0,a+6] x [b—kd, b+kd|

is contained in B((a,b),r). Verify as an exercise (Using the Mean Value Theorem) that if
f(z) is any solution to the given differential equation with f(a) = b then the graph of f
must be contained in the rectangle R. Let

X = {f €Cla—6,a+0d]| Graph(f) C R}.

Verify that X is a closed subspace of the metric space Cla—d,a+4] (using the supremum
metric) and so X is complete. Define G : X — Cla—J,a+46] by

G(f)(z)=b+ /m F(t, f(t)dt

a

Note that G(X) C X because for all f € X and x € [a—§, a+] we have

|G(f)(z) —b| = ’/jF(t,f(t))dt < /jkdt

Note that GG is a contraction map on X, with contraction constant ¢ = ¢6 < 1 because, for
all f,g € X and all z € [a—0¢, a+9], we have

G(f)(x) - Cla) ()] = ] [ Fesn-r (t)))dt] < ] [ 1F @) - Pegto]ar

<|[ Klf(t)—g(t)\dt‘ <| [[ehr =gl

=z —al[lf —gllec <L5[f — gllo-

By the Banach Fixed-Point Theorem, the map G has a unique fixed point f € X, and this
function f € X is the unique solution to the above integral equation, which is equivalent
to the given differential equation.

= k|lx — a| < k6.
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The Arzela-Ascoli Theorem and Peano’s Theorem

6.6 Definition: Let X beaset and let S C F(X) = F(X,R). Wesay that S is pointwise
bounded when for every z € X there exists m = m(xz) > 0 such that |f(x)| < m for every
function f € §. We say that S is uniformly bounded when there exists m > 0 such that
|f(x)] <m for every x € X and every f € S.

Let X be a metric space and let S C C(X) = C(X,R). We say that S is equicon-
tinuous when for every ¢ > 0 there exists § > 0 such that for every f € S and for all
z,y € X, if d(z,y) < 0 then d(f(z), f(y)) <e

6.7 Note: When X is a compact metric space, by the Extreme Value Theorem, every
continuous function f : X — R is also bounded, so we have C(X) = Cy(X), which is a
complete metric space using the supremum norm. Unless otherwise stated, when we refer
to the metric space C(X) it is understood that we are using the supremum metric.

6.8 Note: When X is a compact metric space and S C C(X), note that S is uniformly
bounded if and only if S is bounded as a subspace of the metric space C(X).

6.9 Theorem: Let X be a compact metric space and let (f,,) be a sequence in C(X). If
the sequence (f,) converges in the metric space C(X) (equivalently, if the sequence (fy,)
converges uniformly on X ) then the set {f,} is equicontinuous.

Proof: Suppose (f,,) converges in C(X). Let € > 0. Since (f,) converges in C(X) we
can choose ¢ € Z* such that for all n,m > ¢ we have [|fp, — fimlloo < §. Since X is
compact, each of the functions f,, is uniformly continuous on X. Choose § > 0 such that
for all z,y € X with d(z,y) < & we have |f,(z) — fu(y)| < € for each n < ¢ and we have

| fe(z) = fe(y)| < §. Then for all n > £ and all z,y € X with d(z,y) < & we have

| fu(@) = o) < | fu(®) = fel@)| + | fe(@) = few)| + | fe(y) — faw)| <e.

6.10 Corollary: Let X be a compact metric space. Then every compact set S C C(X) is
equicontinuous.

Proof: Let S C C(X). Suppose that S is not equicontinuous. Choose € > 0 such that

for all 6 > 0 there exists f € S and there exist z,y € X with d(z,y) < ¢ such that

}f(:c) — f(y)! > €. For each n € Z™T, choose f,, € S such that there exist x,y € X with
1

d(z,y) < 5= such that ’fn(ac) - fn(y)‘ > ¢. Then no subsequence of (f,) can possibly

converge in S (using the supremum metric) and so S cannot be compact.

6.11 Theorem: Let X be a compact metric space and let (f,) be a sequence in C(X).
If the set {f,} is pointwise bounded and equicontinuous then the set {f,} is uniformly
bounded and the sequence (f,,) has a convergent subsequence in C(X).

Proof: Suppose that the set {f,} is pointwise bounded and equicontinuous. We claim that
the set { f,,} is uniformly bounded. Since {f,} is equicontinuous, we can choose § > 0 such
that for all n € ZT and for all z,y € X with d(z,y) < § we have | f,(z) — fu(y)| < 1. Since
X is compact, we can choose aj,as,--+,a; € X such that X = B(a;,0) U---U B(ay, ).
Since {f,} is pointwise bounded, we can choose m > 0 such that for each index k with
1 < k < ¢ we have ‘fn(ak)| <m . Let n € ZT and x € X. Choose an index k with
1 <k < ¢ such that z € B(ag,d). Since d(z,a) < 0 we have |fn(.CL‘) - fn(ak)} < 1 and so
|fa(@)| < |falz) = falar)| + | fnlar)| < 1+ m. Thus the set {f,} is uniformly bounded,
as claimed.
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It remains to show that the sequence (f,) has a convergent subsequence in C(X).
Since X is compact, and hence separable, we can choose a countable dense subset A C X,
say A = {a1,a2,as,---}. We claim that the sequence (f,,),>1 has a subsequence (f,, )r>1

which converges pointwise on A. Since the real-valued sequence ( fn(al))n>1 is bounded,

we can choose a subsequence, which we shall write as (fl,k)k>1 = (fl,l,fLQ,fl’g, . --),

of the sequence of functions (f,)n>1 such that the real-valued sequence (fix(a1)) b1

converges. Since the real-valued sequence ( fl,k(ag)) is bounded, we can choose a sub-

k>1
sequence (fzk) of the sequence of functions (f 1,k) such that the real-valued sequence
( fzvk(az)) converges. Note that since ( fgvk(al)) is a subsequence of the convergent se-
quence ( fl,k(al)), it also converges. By recursively repeating this procedure, we construct

sequences ( f, )r>1 for each n > 1, such that (fn+17k)k>1 is a subsequence of (fn7k)k>1 and

the real-valued sequences ( fn,k(aj)) converge for all j with 1 < 5 < n. Let ( fnk)

k>1 k>1
denote the sequence ( fi1,f2,2,, 33, e ), note that this is a subsequence of the origin_al
sequence (f,), and the real-valued sequences ( fr (aj)) >, converge for all indices j € 7",
so the subsequence (f,, ) converges pointwise on A, as required.

Finally, we claim that the above subsequence (f,,) converges in C(X). Let ¢ > 0.
Since the set {f,} is equicontinuous we can choose § > 0 such that for all n € Z* and all
z,y € X with d(z,y) < § we have |fn(m) - fn(y)| < §. Since A is dense in X, the set
U= {B(an, 5)|n e]Z*} is an open cover of X. Since X is compact, we can choose a finite
subcover of U, so we can choose a1, asg, -+, a, € X such that X = B(ay,0)U---UB(ap,9).

Since the sequences ( I (aj))k>1 all converge, we can choose m € Z* such that for all

jE€Z" with1<j<pandallk,{ecZ" with k,¢ > m we have ‘fnk(aj) - fne(aj)| < £
Let z € X and let k,/ € Z* with k,¢ > m. Choose an index j with 1 < j < p such that

x € B(a;,d). Then we have
‘fnk(x) - fne(x)‘ < ‘fnk(x> - fnk(aﬂ)} + ’fnk(aj) - fne<aj)| + ‘fne<aj) - fne(x)| <€

6.12 Theorem: (The Arzela-Ascoli Theorem) Let X be a compact metric space and
let S C C(X). Then S is compact if and only if S is closed, pointwise bounded, and
equicontinuous.

Proof: Suppose that S is compact. Then we know that S is closed and bounded and
we know (from Corollary 6.9) that S is equicontinuous. Since S is bounded, using the
supremum metric, it follows that S is uniformly bounded, hence also pointwise bounded.

Suppose, conversely, that S is closed, pointwise bounded, and equicontinuous. Let
(fn) be a sequence in S. Since S is pointwise bounded and equicontinuous, the subset
{fn} is also pointwise bounded and equicontinuous. By the above theorem, the sequence
(fn) has a convergent subsequence (f,,) in C(X). Since S is closed, the limit of this
subsequence lies in S. This proves that every sequence in S has a subsequence which
converges in S, and so S is compact.

6.13 Theorem: (Peano) Let U € R? be open, let (a,b) € U, and let F : U — R be
continuous. Then there exists 6 > 0 such that the differential equation g—g = F(x,y) has a
solution y = f(x) which is defined for all x € [a—0,a+0].

Proof: T may include a proof later.
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The Stone-Weierstrass Theorem and Polynomial Approximation

6.14 Definition: A (commutative) algebra over a field F' is a vector space U with
a binary multiplication operation such that for all u,v,w € U and all ¢t € F' we have
uwv = vu, u(v +w) = wv + vw, and (tu)v = t(uv). A subspace A C U is a subalgebra of
U when it is an algebra using (the restriction of) the same operations used in U. Verify
that a subset A C U is a subalgebra of U when 0 € A and for all u,v € A and all t € F
we have tu € A, u+v € A and uv € A.

6.15 Example: When X is a metric space, F(X) is an algebra over R and B(X), C(X),
and Cp(X) are all subalgebras.

6.16 Example: When a < b, the space P|a, b] of polynomial maps f : [a,b] — R and the
space C![a,b] of continuously differentiable maps are subalgebras of the algebra Cla, b] of
continuous maps f : [a,b] — R, and the space R]a, b] of Riemann integrable functions is a
subalgebra of the algebra B[a, b] of bounded functions f : [a,b] — R.

6.17 Example: Show that f(x) = |z| lies in the closure of P[—1,1] in C[—1, 1] (using the
supremum metric).
Solution: Let a € R with 0 < a < 1 and let g(z) = V& + a2. Then ¢'(z) = 3(z +a?)~1/2,

g"(x) = —%(x +a?) 732, g"(z) = L3¢ (z + a®)~%/? and in general

g™ (z) = (*1)"“1-2?»1;5---(2”*3) (€ + a2)~Cn=1/2,

Let p,, () be the n*! Taylor polynomial for g(x) centred at 1 (We centre at 1 so the Taylor

series converges in an open interval containing [0, 1]) For all z € [0, 1], since (2:) < 22n
we have

(n+1)
l9(2) — pn(2)| = g(n+1)(!t) (x — 1)”“‘ for some t € [z, 1]
1.3...(271_1).&2”*1 B a2n—1 n 1
= 27+1(n+1)! T 22nt1(n41) ( n ) < 2(n+1) "

For all z € [—1,1] we have 2 € [0, 1] so
[Va? +a? = pu(2?)| = [9(2*) = pa(2?)] < 55577
Also note that for all x we have

‘|a§|—\/x2+a2‘ :\/m2+a2— x? =

2

a
< a.

1/x2 +CL2+‘/I2

Given € > 0 we can choose a > 0 with a < 1 and a < g and we can choose n € ZT so that

m < £ and then for all 2 € [-1, 1] we have

|]x| —pn(xQ)’ < ’|x| - \/x2+a2| —1—‘ x2+a2—pn(:v2)| Sa—f—m <e.

Thus for f,, : [-1,1] — R given by f,,(z) = p,(2?), we have each f,, € P[-1,1] and f,, — f
uniformly on [—1, 1], that is f,, — f in the metric space (C[—l, 1], doo).

6.18 Definition: Let A C C(X). We say that A separates points when for all z,y € X
with o # y there exist f € A with f(z) # f(y). We say that A vanishes nowhere when
for all @ € X there exists f € A such that f(z) # 0. Note that if 1 € A (where 1 denotes
the constant function) the A vanishes nowhere.
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6.19 Theorem: (The Stone-Weierstrass Theorem) Let X be a compact metric space and
let A C C(X) be an algebra. If A separates points and vanishes nowhere then A = C(X).

Proof: Note first that A is also a subalgebra of C(X). Indeed given f,g € A and ¢ € R,
we can choose sequences (f,) and (g,) in A such that f,, — f and g, — g in C(X) (that
is f, — f and g, — ¢ uniformly on X), and then we have cf,, — cf, fn+ 9, — f+ g and
frngn — fg uniformly on X, and hence ¢f € A, f+¢g € A and fg € A. Also note that A
separates points and vanishes nowhere, and so we may assume, without loss of generality,
that A is closed.

Next we claim that if f € A then we also have |f| € A. Let f € A C C(X). Choose
m > 0 with m > ||f||.. Let g = L f and note that g € A with [|g||,, < 1, that is
g(x) € [-1,1] for all x € X. Let € > 0. By Example 6.17, we can choose a polynomial
po(z) = ao + a1z + -+ + a,a™ such that |po(u) — |u|| < § for all w € [-1,1]. Let
p(x) = po(z) — ag and note that |p(u) — |u|| < € for all w € [~1,1]. For all z € X, we
have g(z) € [—1, 1] and so |p(g(a:)) — ]g(a:)H < e. Note that the function h(z) = p(g(z)) =
a1g(z) + azg(x)® + - - ang(z)™ lies in A (because g € A and A is an algebra). This shows
that for every e > 0 we can find h € A with |h — [g|| < ¢, and (since A is closed) it follows
that |g| € A and hence |f| = m|g| € A.

Next we note that if f,g € A then we also have max{f, g} € A and min{f, g} € A

because

max{f,g}:f;g—}—lf;—gl f;g_\f;g\

and it follows, inductively, that if fi1, fo, -+, fn, € A then we have max{f, -+, f,} € 4
and min{ fy,---, fn} € A.

We claim that for all 7, s € R and for all a,b € X with a # b, there is a function g € A
with g(a) = r and g(b) = s. Let r,s € R and let a,b € X with a # b. Since A separates
points, we can choose h € A with h(a) # h(b). Since A vanishes nowhere, we can choose
k,l € A with k(a) # 0 and ¢(b) # 0. Define u,v € A by

u(z) = (h(z) — h(b))k(z) and v(z) = (h(a) — h(z))l(z)
and note that u(a) # 0 and u(b) = 0 while v(a) = 0 and v(b) # 0. Then define g € A by

_ ul@) (@)
9@ =r o T 0w

to obtain g(a) = r and g(b) = s, as required.

and min{f, g} =

We claim that for every f € C(X), for every a € X and for every € > 0, there is a
function h € A such that h(a) = f(a) and h(z) < f(x) + € for all z € X. Let f € C(X),
let a € X and let € > 0. For each b € X, by the previous claim we can choose g, € A such
that gy(a) = f(a) and gy(b) = f(b). For each b € X, since f and g; are continuous at b,
we can choose 7, > 0 such that for all z € B(b,7,) we have

@)~ f®)] < 5 and |g(e) — g(B)] < § . hence |gy(x) — f(2)] <
Since X is compact and the set {B(b, Tp) ‘ beX} covers X, we can choose by,by,---,b, € X

such that X = |J B(bk, s, ), and then we let
k=1

h = min{gbpgbz:"'7gbn} €A

For all z € X we can choose an index k such that x € B(bg,7,,) and then we have
h(z) < gp, () < f(x) + €, as required.
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Finally, we complete the proof by showing that for every f € C[0, 1] and every ¢ > 0
there exists g € A such that |g(z) — f(z)| < e for all z € X. Let f € C(X) and let € > 0.
For each a € X, by the previous claim we can choose h, € A such that h,(a) = f(a) and
he(x) < f(z) + € for all z € X. For each a € X, since f and h, iare continuous at a, we
can choose s, > 0 such that for all x € B(a, s,) we have

|f(z) = fla)| < § and |he(z) — ha(a)| < § hence |hq(z)— f(z)] <e.
Since X is compact and {B(ak,sk) | a € X} covers X, we can choose ai,as, -+, a, € X

such that X = |J B(ag, Sq, ), and then we chose
k=1

g:max{hal,ha2,~~,ham} c A.

For all z € X we can choose an index k such that x € B(ay, S,, ) and we can choose an
index ¢ such that g(x) = h,,(z) and then we have

9(x) = ha, () > f(z) —€ and g(x) = hq,(z) < f(2) +€

6.20 Corollary: (The Weierstrass Approximation Theorem) Let X C R™ be compact
and let f € C(X). Then for all ¢ > 0 there exists a polynomial p in n variables such that
Ip(z) — f(z)| < eforalzecX.

Proof: Each polynomial p in n-variables determines a continuous function p : X — R.
The set P(X) of such polynomial functions is a subalgebra of C(X) which separates points
(for a,b € X, if a # b then ay # by for some index k, and then the polynomial p(x) =
separates a and b) and vanishes nowhere (because 1 € P(X)), so P(X) is dense in C(X).

6.21 Corollary: The space (C[a, b], doo) is separable, where a,b € R with a < b.

Proof: Let P be the set of polynomials with coefficients in Q. Note that P is countable by
Theorem 1.20 (indeed, Q is countable by Part 4 of Theorem 1.20, hence Q?,Q3,---, Q"
are all countable by Part 1 of Theorem 1.20 and by induction, hence the space P, of
polynomials over Q of degree at most n is countable since the map F:Q"t! — P, given

by F(ag, a1, "+, ant1) = Z arx” is bijective, and hence P = U P, is countable by Part 3
=0 n=0

of Theorem 1.20). We clalm that P is dense in C[a, b]. Let f € C[a, b] and let € > 0. By the
Weierstrass Approximation Theorem we can choose a polynomial p with coefficients in R

n
such that [|p — f||, < &, say p(z) = Y cxa® with each ¢, € R. Let m = max{|al,[b|, 1},
k=0

and let g(z) = 3 apz®. Then
k=0

for all = € [a,b] we have |z| < m (since m > max{|al,|b|}) and hence for all 0 < k < n we

have |z|¥ < mF < m" (since m > 1). Thus for all = € [a, b] we have

for each index k, choose ar € Q with |ax — ¢x| < W

n

n n
> (an — ee)zt| < 3 Jag — el ol < 3 iy mt = 5.
k=0 k=0 k=0

Thus [lg = pll,, < 5 and hence [lg = fllo <llg —pllc +llp = fllc <5+ 5=

9(z) — p(z)| =

6.22 Exercise: Let A = {bo + 3 (ag sin(kz) + by cos(kx)) |n € Z1, ay, by, € R}. Show
k=1
that A is dense in C[0, 7] but A is not dense in C[0, 27].
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Chapter 7. The Baire Category Theorem

7.1 Definition: When [ is the bounded open interval I = (a,b), where a,b € R with
a < b, the diameter of I is d(I) = b — a. For a subset A C R, we define the Lebesgue
outer measure of A to be

AMA) = mf{ E d(Iy) ‘ each Ij is a bounded open interval in R and A C Ik}
k=1

with 0 < A(A4) < co. We say that A has (Lebesgue) measure zero when \(A) = 0.

7.2 Note: Every finite or countable set A C R has measure zero. Indeed, if A is finite,
say A = {aj,a9,---,a,}, then given € > 0 then we can take I, = (ak 2n,a;ﬁ—%) for

k < n, and we can take I, = () for k > n, to get A C UIkand Zd([k) Zﬁ:e
k=1 k=1

And if A is infinite, say A = {a1,az,as3,- -}, then we can take [, = (a 2k+1,ak+2,€%)
forall k > 1toget AC | I and > d(Ix) = 5% = €. Perhaps surprisingly, it is not
k=1 k=1 k=1
the case that every set of measure is at most countable.
7.3 Example: The (standard) Cantor set is the set C' C [0, 1] constructed as follows.
Let Co = [0,1]. Let I; be the open middle third of Cy, that is let I; = (3, 3) and let
= Ap\U; = [ , 3] U [3, } Let I, and I3 be the open middle thirds of the two component

mtervals of Cq, that is let I, = (9, 9) and I3 = (9, 9) and let Co = C1 \ (Io U I3). Havmg
constructed the set C,,, which is the disjoint union of 2" closed intervals each of length = 35
let Ign, Ioniq,---, Ion+1_1 be the open middle thirds of these 2" component intervals and
let Cpop1 = Cp \ (Ign, Ignyq, -+, Iyn+1_1). Note that C,, is the set of all numbers x € [0, 1]
which can be written in base 3 such that the the first n digits of x are not equal to 1.

The Cantor set is the set -

C=NC,
n=0

or equivalently, C' is the set of all numbers = € [0, 1] which can be written in base 3 with
none of the digits of x equal to 1.

Since C = () C, with Cy 2 C; D Cy D ---, it follows that C' C C,, for all n € N.

n=0

Since C), is the (disjoint) union of 2" closed intervals each of size 3—n, it follows that we
can cover (), (hence also C) by a union of 2” open intervals each of size and so we
have A\(C) < 2" 2 = 2;:1. Since A\(C) < 2n
follows that A(C') = 0.

On the other hand, since C is the set of all real numbers x € [0, 1] which can be
written in base 3 using only the digits 0 and 2, it follows that |C| = 2%,

fo1rallneNand2 —>0asn—>oo it

7.4 Remark: Note that the set C' of numbers = € [0, 1] which can be written in base 3
without using the digit 1, is not equal to the complement of the set B of numbers z € [0, 1]
which can be written in base 3 using the digit 1 (at least once). For example, the number
T = % can be written in base 3 as x = 0.1 so we have x € B, but it can also be written in

base 3 as x = 0.0222- - -, so we also have z € C.

7.5 Exercise: Show that the set of all real numbers = € [0, 1], which can be written in
base 5 without using the digit 2, has measure zero.
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7.6 Definition: Let X be a metric space and let A C X. Recall that A is dense (in X)
when for every nonempty open ball B C X we have BN A # (), equivalently when A = X.
We say A is nowhere dense (in X) when for every nonempty open ball B C R there

exists a nonempty open ball C' C B with C' N A = (), or equivalently when A= 0.
7.7 Exercise: Show that the Cantor set is nowhere dense in [0, 1] (or in R).

7.8 Note: When A C B C X, note that if A is dense in X then so is B and, on the other
hand, if B is nowhere dense in X then so is A.

7.9 Note: When A, B C X with B = A° = X \ A, note that A is nowhere dense <=
A°=) < BY=X <= the interior of B is dense.

7.10 Definition: Let A C X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when A€ is first category.

7.11 Note: Every countable set in R is first category since if A = {a1,as,as, -} then
we have A = |J {ax}. In particular Q is first category and Q° = R\ Q is residual.
k=1

7.12 Note: If A C X is first category then so is every subset of A.

7.13 Note: If Ay, Ay, As,--- C X are are all first category then so is |J Ag.
k=1

7.14 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.

(2) Every residual set in X is dense.

(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.
Let A C X be first category, say A = |J C,, where each C, is nowhere dense. Suppose,

n=1
for a contradiction, that A has nonempty interior, and choose an open ball By = B(ag, 7o)

with 0 < 79 < 1 such that By C A . Since each C,, is nowhere dense, ‘we can chose a
nested sequence of open balls B,, = B(ay,,r,) with 0 < r, < 2% such that B,, € B,,_1 and
B, NC, = 0. Because r,, — 0, it folows that the sequence {a,} is Cauchy. Because X

is complete, it follows that {a,} converges in X, say a = lim a,. Note that a € B, for
n— o0

all n since a € B, for all k¥ > n. Since a € By and By C A we have a € A. But since
a € Byforaln >1,and B, NC, =0, we have a ¢ C,, for allmn > 1 hence a ¢ |J C,, that

n=1
isa ¢ A.

7.15 Example: Recall that Q is first category and Q¢ is residual. The Baire Category
Theorem shows that Q¢ cannot be first category because if Q and Q¢ were both first
category then R = Q U Q¢ would also be first category, but this is not possible since R
does not have empty interior.
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7.16 Example: Let f € C>°(R) and suppose that for all z € R there exists n, € Z™ such
that f("=)(z) = 0. Show that there exists a nonempty open interval (a,b) C R such that
the restriction of f to (a,b) is a polynomial.

Solution: For each n € Z*, let A,, = {x € R|f(”)(x) = O}. Since we are assuming that for

all z € R there exists n, such that f()(z) = 0, it follows that |J A, = R. Note that
n=1

each set A, is closed because f € C>(R) so that f(™ is continuous, and A,, is the inverse

image under f(™) of the closed set {0}. Since R = |J A, and each A, is closed, it follows
n=1
from the Baire Category Theorem that at least one of the sets A,, must have a nonempty

interior. Choose n such that A, has a nonempty interior, and choose a nonempty open
interval (a,b) C A,. Then we have f(™(z) =0 for all € (a,b), and so the restriction of
f to (a,b) is a polynomial of degree at most n.

7.17 Exercise: For each n € Z*, let f,, : R — R be continuous. Suppose that for all
x € R there exists n € Z* such that f,,(x) € Q. Prove that there exists n € Z* such that
fn is constant in some nondegenerate interval.

7.18 Remark: Let C; = {A C R‘ A is finite or countable}, CQ{A C R‘ AMA) = O} and
C3 = {A C R| A is first category}. Note that if C = Cj, for some k € {1,2,3}, then C has
the following properties:

(1)if AC B and B € C then A € C,
(2) if Ay, Ag, As,--- € C then |J Ag €C, and
k=1
(3) if A € C then A° = ().
Because of this, it seems reasonable to consider each set Cj to be, in some sense, “small”.

Perhaps surprisingly, the following theorem states that every set in R is the union of two
such small sets.

7.19 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1,a2,as,---}. For k, 0 € ZT, let I, = (ag — ﬁ» ap + ﬁ) and

for k € Z%, let U, = | I, ¢. Note that each Uy is open with Q C Uy, so each Uy is
=1

a dense open set. Also note that for each k € ZT we have A(Uy) < > d(Iie) = 55t
=1

o

Let B = () Ui and note that B is residual, since it is a countable intersection of dense
k=1

open sets. Since B = (| Uy and Uy D Uy D Us D ---, we have B C Uy, for all k, hence

k=1
A(B) < AUy) < 5= for all k € Z*, and it follows that A(B) = 0. Thus R is the disjoint
union of the set B, which has measure zero, and its complement B¢ which is first category
(since B is residual). Finally note that any set A C R is equal to the disjoint union
A= (ANB)U (AN B°), and we have A\(AN B) = 0 and the set AN B¢ is first category.

7.20 Remark: At first glance, it might appear that the set B constructed in the above
proof might simply be equal to Q. But in fact, B must be uncountable, because if B was
countable then B would be first category, but then B and B¢ would both be first category,
and hence R = B U B¢ would also be first category. But R is not first category by the
Baire Category Theorem.
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7.21 Example: Most students will have seen that it is possible to construct a continuous
function f : [0,1] — R such that f is nowhere differentiable. Show that the set of nowhere
differentiable functions is residual (hence dense) in C[0, 1].

Solution: Let A be the complement of the set of nowhere differentiable functions in C[0, 1],
that is

= {f € Cl0,1] ‘ f is differentiable at some point a € [0, 1]}

For each k,/ € Z™T, let
Ao ={fec1]|3aef0.1] vae0,1] 0< o —a] < L = [HE=f@)] </}

We shall show that A = |J Ak, and that each Ay, is closed in C[0, 1] with an empty
k€
interior and so A is first category. Thus the set of nowhere differentiable functions is

residual, and hence dense by the Baire Category Theorem.
We claim that A = |J A . Let f € A. Choose a € [0,1] such that f is differentiable
k¢

at a. Choose ¢ € Z* such that ‘f | < ¢. Choose § > 0 such that for all z € [0, 1] we
have 0 < |z —a| < 0 = ‘M f/(a)‘ < £ —|f'(a)]. Choose k € Z* with + < 4.

Then for all z € [0,1], if 0 < |z —a| < 4 then we have ’% — f'(a)| < £—1f'(a)| and
hence

Homl| < B - r@f + 1 @) < (0= 17@) + 1 (@) =
so that f € Ay . Thus A = |J Ak, as claimed.
k.t
We claim that each set Ay is closed in C[0,1]. Let (f,),>1 be a sequence in Ay 4
which converges in C[0, 1], and let g = lim f,, in C[0,1]. Then f,, — ¢ uniformly in [0, 1],
n—oo

and we need to show that g € Ay . For each n € Z7", since f, € Ay ¢ we can choose

€ [0,1] such that for all z € [0,1] we have 0 < |z — a,| < 1 = ‘M| < /.
Smce [0,1] is compact, we can choose a convergent subsequence (a,, )g>1 of the sequence
(an)n>1 and let a = khm an, € [0,1]. Note that the corresponding subsequence (fy, )rk>1

> e >

of (fn)n>1 converges in C[0, 1] with the same limit g = lim fn,, in C[0, 1]. Note that when

0 < |z—a| < 1, since a,, — a it follows that we also have 0 < |z —ay,| < 1 for sufficiently
large k € Z*. Since f,, — g uniformly on [0,1] and a,, — a in [0,1], recall (or verify)
that lim f,, (an,) = g(a) and so, for all z € [0,1] with 0 < |z —a| < 1

k—o0

fnk(x) — fnk (a”nk:)

T — Qp,

< /.

‘g(l‘) —9(a@)| _ .
r—a k— o0

This proves that g € Ay » and so Ay ¢ is closed in C|0, 1], as claimed.

We claim that each set Ay ¢ has empty interior in C[0,1]. Let f € Ay . We need to
show that for all > 0 there there is a function g € B(f,r) with g ¢ Ay . Our strategy
is to first find a piecewise linear function p with ||p — f||,, < § and then to add a rapidly
oscillating sine function to obtain a function g = p + § sin(wz) with g ¢ Ag, and with
lg — fllo < 7. Letr > 0. Since f is uniformly continuous on [0, 1] we can choose d>0
such that [z — y| < 6 = |f(z) — f(y)| < 4. we can choose n € Z* such that 1 < §. Let

T; = % for 0 <i < n and let p € C[0, 1] be the piecewise linear function whose graph has
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vertices at (:vz-, f(xl)) for 0 <i < mn. Then for all ¢ and for all z € [x;_1, z;], we have
|f(x) = p(a)] < |f(z) - f(xi)\ + [f(2i) = p(@)| = |f(2) = f(z)] + |p(z:) — p(2)]
<|f(@) = fl@)| + |p(xs) — plaica)| < §+5 =5
and hence ||f —pl|,, < 5. Let m = max /()| = Jmax n|f(x;) — f(xi—1)|. Choose w € R
such that 27” < % and 21: 2(€+m)’

g = flls < lg = plloo + Ip = fllo < 5+ % =1, so it remains only to show that g ¢ Ay ,.
Let a € [0,1]. By our choice of w we can choose = € [0,1] with 0 < |z — a| < ¢ such that

and consider the function g = p+ % sin(wz). Note that

|z —al < 5 my and such that sin(wz) = +1 with sin(wz) =1 <= sin(wa) < 0 so that
| sin(wz) — sin(wa)| > 1. Then we have
5 | sin(wz) —sin(wa)| = |(g(z) — g(a)) — (p(zx) — p(a))| < [g(z) = g(a)| + |p(z) — p(a)|
|9(z) — g(a)| > §sin(wa) - Sllfl(w&)| p(z) = pla)| > § — |p(x) — pla)|
g(x)—g(a r p p(a) _
(g—a() Z2|:z:—a|_’ 4 —2_2(€+m)_m_£

so that g ¢ Ay ¢, as required.

7.22 Notation: Let X be a set. For any set C of subsets of X we write
CU:{ U Ak‘eaChAREC} and C(;:{ N Ak‘eachAkGC}.
k=1 k=1

Note that C,, = C, and Css5 = Cs.

7.23 Definition: Let X be a set. A o-algebra in X is a set C of subsets of X such that

(1) 0 ec,
(2)if A €C then A°= X\ A €, and
(3) if Al,AQ,Ag,"' S C then U Ak € C.
k=1
Note that when C is a o-algebra in X we have C, = C and C5 = C.

7.24 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that G, =G
and F5 = F.

7.25 Example: For any set X, the set {@, X} and the set P(X) of all subsets of X are
o-algebras in X,

7.26 Note: Note that given any set C of subsets of a set X there exists a unique smallest
o-algebra in X which contains C, namely the intersection of all o-algebras in X which
contain C.

7.27 Definition: In a metric space (or topological space) X, the Borel o-algebra B is
the smallest o-algebra in X which contains G (hence also F). The elements of B are called
Borel sets. Note that B contains all of the sets G, Gs, Gso, Gos0, -+ and all of the sets
fafoafaéafaéaa"'

7.28 Exercise: Using the Baire Category Theorem, show that in R we have F C Gs
(equivalently G C F,), F, # Gs, and Gs U F, % Gso N Fos.
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