
Chapter 4. Topology

Topological Spaces and Bases

4.1 Definition: A topology on a set X is a set T of subsets of X such that

(1) ∅ ∈ T and X ∈ T ,
(2) if S is any subset of T then

⋃
S ∈ T , and

(3) if S is any finite subset of T then
⋂
S ∈ T .

A set X with a topology T is called a topological space. When X is a topological space
with topology T , for a set A ⊆ X, we say that A is open (in X, with respect to T ) when
A ∈ T and we say that A is closed (in X, with respect to T ) when Ac = X \A ∈ T .

When X is a topological space and A ⊆ X, the interior of A (in X), denoted by
Ao or IntX(A), is the smallest open set contained in A (that is the union of the set of all
open sets in X which are contained in A) and the closure of A (in X), denoted by A or
ClX(A), is the largest closed set which contains A (that is the intersection of the set of all
closed sets in X which contain A).

When S and T are two topologies of X, we say that S is coarser than T , or that T
is finer than S, when S ⊆ T . We say that S is strictly coarser than T , or that T is
strictly finer than S, when S ⊂6= T .

Recall (or verify) that the intersection of a nonempty set of topologies on X is also a
topology on X. Because of this, when X is a set and S is any set of subsets of X, there
is a unique coarsest topology T on X with S ⊆ T (namely the intersection of the set of
all topologies on X which contain S) which we call the topology on X generated by S.
As an exercise, you can verify that this topology is equal to the set of arbitrary unions
of finite intersections of elements in S (where an empty intersection is equal to X and an
empty union is equal to ∅).

A basis for a topology on a set X is a set B of subsets of X such that
(1) X =

⋃
B, and

(2) for all U, V ∈ B and a ∈ U ∩ V , there exists W ∈ B with a ∈W ⊆ U ∩ V .

When B is a basis for a topology on X and T is the topology on X generated by B (so the
elements of B are open in X with respect to T ), we say that B is a basis for the topology T ,
and the elements in B are called basic open sets in X (or in T ).

4.2 Theorem: Let X be a set, let B be a basis for a topology on X, and let T be the
topology generated by B on X. Then for all A ⊆ X we have

(1) A ∈ T if and only if for every a ∈ A there exists U ∈ B such that a ∈ U ⊆ A, and

(2) A ∈ T if and only if A is a union of elements of B.

Proof: Let S =
{
A⊆X

∣∣∣∀a∈A ∃U ∈B a∈U⊆A
}
. We claim that S is a topology on X.

Note that ∅ ∈ S (vacuously) and X ∈ S (because X =
⋃
B, so given a ∈ X we can choose

U ∈ B with a ∈ U). When R is any subset of S, given a ∈
⋃
R we can choose U ∈ R

with a ∈ U and then we have a ∈ U ∈ R showing that
⋃
R ∈ S. It remains to show that⋂

R ∈ S for every finite set R ⊆ S. By induction, it suffices to show that for all A,B ∈ S
we have A ∩ B ∈ S. Let A,B ∈ S. Let a ∈ A ∩ B. Since a ∈ A and A ∈ S we can
choose U ∈ B with a ∈ U ⊆ A. Since a ∈ V and V ∈ S, we can choose V ∈ B such that
b ∈ V ⊆ B. Since B is a basis, we can choose W ∈ B with a ∈W ⊆ U ∩ V . Then we have
a ∈W ⊆ U ∩ V ⊆ A ∩B, and so A ∩B ∈ S. Thus S is a topology on X, as claimed.
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We claim that for A ⊆ X, we have A ∈ S if and only if A is a union of elements in B.
If A ∈ S then for each a ∈ A we can choose Ua ∈ B such that a ∈ Ua ⊆ A, and then we
have A =

⋃
a∈A Ua, which is a union of elements of B. If, on the other hand, A is a union

of elements of B, say A =
⋃
R where R ⊆ B, then given a ∈ A we can choose U ∈ R such

that a ∈ U , and then we have a ∈ U ⊆ A, showing that A ∈ S.
Finally, we claim that S = T . Note that when U ∈ B we have U ∈ S (for the deep

reason that when a ∈ U we have a ∈ U ⊆ U). Since S is a topology which contains B and
T is the coarsest topology which contains B, we have T ⊆ S. Since every topology which
contains B also contains all possible unions of elements in B, it follows that T contains all
such unions, and so S ⊆ T . Thus we have S = T , as claimed, and we have proven both
parts of the theorem.

4.3 Example: In a metric space X, the set B =
{
B(a, r)

∣∣ a ∈ X, r > 0
}

is a basis for the
metric topology on X.

4.4 Theorem: Let X be a topological space with basis B, and let A ⊆ X. Then for
a ∈ X we have a ∈ A if and only if A ∩ U 6= ∅ for every U ∈ B with a ∈ U .

Proof: For K ⊆ X, K is closed with A ⊆ K if and only if Kc is open with A∩Kc = ∅. Since
A =

⋂{
K⊆X

∣∣K is closed , A ⊆ K
}

, we have A
c

=
⋃{

V ⊆X
∣∣V is open , A ∩ V = ∅

}
.

Thus a /∈ A if and only if there exists an open set V ⊆ X with A∩V = ∅ such that a ∈ V .
Equivalently, a ∈ A if and only if for every open set V ⊆ X with a ∈ V we have A∩V 6= ∅.

When a ∈ A so that A∩ V 6= ∅ for every open set V ⊆ X with a ∈ V , it is immediate
that A∩U 6= ∅ for every U ∈ B with a ∈ U . Suppose that A∩U 6= ∅ for every U ∈ B with
a ∈ U . Given an open set V ⊆ X with a ∈ V , we can choose a basic open set U ∈ B with
a ∈ U ⊆ V and then we have A ∩ U 6= ∅ hence also A ∩ V 6= ∅. Thus a ∈ A, as required.

4.5 Example: When Y is a topological space with topology T and X ⊆ Y , the subspace
topology on X is the topology S =

{
V ∩ X

∣∣V ∈ T }. Verify that a subset A ⊆ X is
closed in X if and only if there exists a closed set B in Y such that A = B ∩ X. Verify
that if C is a basis for the topology T on Y , then B =

{
V ∩X

∣∣V ∈ B} is a basis for the
subspace topology S on X. Also, recall (or verify as an exercise) that in the case that Y is
a metric space and T is the metric topology on Y , the subspace topology on X is equal to
the topology on X induced by the metric on X obtained by restricting the metric on Y .

4.6 Example: When X and Y are topological spaces with topologies S and T , the
product topology on X × Y is the topology with basis E =

{
U × V

∣∣U ∈ S, V ∈ T }.
Verify that E is in fact a basis for a topology on X × Y , and verify that when B and C
are bases for the topologies on X and Y , the set D =

{
U × V

∣∣U ∈ B, V ∈ C} is another
basis for the product topology on X × Y . Also verify, as an exercise, that when A ⊆ X
and B ⊆ Y , the subspace topology on A × B, as a subspace of X × Y using the product
topology, is equal to the product topology on A × B where A and B use the subspace
topologies, as subspaces of X and Y .

4.7 Example: When X is a set and ∼ is an equivalence relation on X, recall that the
quotient of X by ∼ is the set of equivalence classes

X
/
∼=

{
[a]
∣∣ a ∈ X} where [a] =

{
x ∈ X

∣∣x ∼ a}
and the quotient map q : X → X

/
∼ is the map given by q(a) = [a]. When X is a

topological space with topology T , the quotient topology on X
/
∼ is the topology

S =
{
V ⊆ X

/
∼
∣∣∣ q−1(V ) ∈ T

}
=
{
V ⊆ X

/
∼
∣∣∣ ⋃V ∈ T }.
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Continuous Functions and Compact Sets

4.8 Definition: A topological space X is called Hausdorff when it has the property that
for all a, b ∈ X with a 6= b there exist disjoint open sets U, V ⊆ X wigth a ∈ U and b ∈ V .
Note that when X is Hausdorff and a ∈ X, the set {a} is closed.

4.9 Example: All metric spaces are Hausdorff because given a 6= b we can let r = d(a, b)
and take U = B

(
a, r2

)
and V = B

(
b, r2
)
.

4.10 Definition: Let X and Y be topological spaces. A function f : X → Y is called
continuous when f−1(V ) is open in X for every open set V ⊆ Y . Equivalently, f is
continuous if and only if f−1(B) is closed in X for every closed set B ⊆ Y .

4.11 Definition: Let X be a topological space and let A ⊆ X. An open cover for A (in
X) is a set S of open sets in X such that A ⊆

⋃
S. When S is an open cover for A in X,

a subcover of S for A is a subset T ⊆ S such that A ⊆
⋃
T . We say that A is compact

(in X) when every open cover for A has a finite subcover.

4.12 Theorem: Let A ⊆ X ⊆ Y where Y is a topological space. Then A is compact in X
(where X uses the subspace topology inherited from Y ) if and only if A is compact in Y .

Proof: Suppose that A is compact inX. Let T be an open cover for A in Y . For each V ∈ T ,
let UV = V ∩X and note that UV is open in X, using the subspace topology. Since A ⊆ X
and A ⊆

⋃
V ∈T V , we also have A ⊆

⋃
V ∈T (V ∩X) =

⋃
V ∈T UV . Thus S =

{
UV
∣∣V ∈ T}

is an open cover for A in X. Since A is compact in X we can choose a finite subcover, say{
UV1

, · · ·UVn

}
of S, where each Vi ∈ T . Since A ⊆

⋃n
i=1 UVi

=
⋃n
i=1(Vi ∩X), we also have

A ⊆
⋃n
i=1 Vi and so {V1, · · · , Vn} is a finite subcover of T .

Suppose, conversely, that A is compact in Y . Let S be an open cover for A in X. For
each U ∈ S, since X is using the subspace topology we can choose an open set VU in Y
such that U = VU ∩ X. Then T =

{
VU
∣∣U ∈ S} is an open cover of A in Y . Since A is

compact in Y we can choose a finite subcover, say
{
VU1 , · · · , VUn

}
of T , where each Ui ∈ S.

Then we have A ⊆
⋃n
i=1(VUi ∩X) =

⋃n
i=1 Ui and so {U1, · · · , Un} is a finite subcover of S.

4.13 Remark: Let A ⊆ X where X is a topological space. By the above theorem, note
that A is compact in X if and only if A is compact in itself. For this reason, we do not
usually say that A is compact in X, we simply say that A is compact.

4.14 Definition: Let X be a topological space. We say that X has the finite intersec-
tion property on closed sets when for every set T of closed sets in X, if every finite
subset of T has non-empty intersection, then T has non-empty intersection.

4.15 Theorem: Let X be a topological space. Then X is compact if and only if X has
the finite intersection property on closed sets.

Proof: Suppose that X is compact. Let T be a set of closed sets in X. Suppose that
T has empty intersection, that is suppose

⋂
A∈T A = ∅. Then

⋃
A∈T A

c = X so the set

S =
{
Ac
∣∣A ∈ T

}
is an open cover for X. Since X is compact, we can choose a finite

subcover, say
{
A1

c, · · · , Anc
}

of S for X. Then we have A1 ∩ A2 ∩ · · · ∩ An = ∅, showing
that some finite subset of T has empty intersection.

Suppose, conversely, that X has the finite intersection property on closed sets. Let S
be an open cover of X. Let T =

{
U c
∣∣U ∈ S}. Since

⋃
S = X we have

⋂
T =

(⋃
S
)c

= ∅.
Since X has the finite intersection on closed sets, there exists a finite subset of T with empty
intersection. so we can choose U1, U2, · · ·Un ∈ S such that U1

c ∩ · · · ∩ Unc = ∅. It follows
that U1 ∪ · · · ∪ Un = X, so S has a finite subcover.
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4.16 Theorem: Every closed subspace of a compact space is compact.

Proof: Suppose that X is compact and A ⊆ X is closed. Let S be an open cover for A.
Then S∪{Ac} is an open cover for X. Since X is compact, we can choose a finite subcover
T of S∪{Ac}. Note that T may or may not contain the set Ac but, in either case, T \{Ac}
is an open cover for A with T \ {Ac} ⊆ S, so that T \ {Ac} is a finite subcover of S.

4.17 Theorem: Every compact subspace of a Hausdorff space is closed.

Proof: Suppose X is Hausdorff and A ⊆ X is compact. Let b ∈ Ac = X \ A. For each
a ∈ A, since X is Hausdorff we can choose disjoint open sets Ua, Va ⊆ X with a ∈ Ua and
b ∈ Va. Since S =

{
Ua
∣∣ a ∈ A} is an open cover of A, and A is compact, we can choose a

finite subcover of X, so we can choose a1, a2, · · · , an ∈ A such that A ⊆ Ua1 ∪ · · · ∪ Uan .
The sets U = Ua1 ∪ · · · ∪ Uan and V = Va1 ∩ · · · ∩ Van are disjoint open sets with A ⊆ U
and b ∈ V . This shows that for every b ∈ Ac there is an open set V = Vb with b ∈ Vb ⊆ Ac.
Thus Ac is open (it is the union of the open sets Vb) and hence A is closed.

4.18 Theorem: The image of a compact space under a continuous map is compact.

Proof: Suppose that X is compact and f : X → Y is continuous. Let T be an open cover
for f(X) in Y . Since f is continuous, so that f−1(V ) is open in X for each V ∈ T , the
set S =

{
f−1(V )

∣∣V ∈ T} is an open cover for X. Since X is compact, we can choose a

finite subcover, say {f−1(V1), f−1(V2), · · · , f−1(Vn)
}

of S, with each Vi ∈ T . Then the set
{V1, V2, · · · , Vn} is a finite subcover of T for f(X).

4.19 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f : R→ R given by f(x) = 2

π tan−1(x) sends the closed set R
homeomorphically to the open interval (−1, 1).

4.20 Theorem: (The Extreme Value Theorem) A continuous map f : X → R defined on
a compact space X attains its maximum and minimum values.

Proof: Suppose X is compact and f : X → R is continuous. Since f(X) is compact, it is
closed and bounded in R. Since f(X) is bounded in R, it follows that m = inf f(X) and
M = sup f(X) are both finite real numbers, and since f(X) is closed in R it follows that
m ∈ f(X) and M ∈ f(X) so that we can choose a, b ∈ X such that f(a) = m = inf f(X)
and f(b) = M = sup f(X).

4.21 Theorem: Let X and Y be topological spaces with X compact and Y Hausdorff.
Let f : X → Y be continuous and bijective. Then f is a homeomorphism.

Proof: Let g = f−1 : Y → X. We need to prove that g is continuous. Let A ⊆ X be
closed in X. Since X is compact and A ⊆ X is closed, it follows (from Theorem 4.12) that
A is compact. Since the map f : A→ Y is continuous and A is compact, it follows (from
Theorem 4.14) that f(A) is compact. Since f(A) is compact and Y is Hausdorff, it follows
(from Theorem 4.13) that f(A) is closed. Since g = f−1 we have g−1(A) = f(A), which
is closed. Since g−1(A) is closed in Y for every closed set A in X, it follows (by taking
complements) that g−1(U) is open in Y for every open set U in X. Thus g is continuous.

4.22 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0, 2π) and Y is the unit circle Y = {z ∈ C

∣∣‖z‖ = 1
}

,
then the map f : X → Y given by f(t) = ei t is continuous and bijective, but the inverse
map is not continuous at 1.
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Urysohn’s Lemma and The Tietze Extension Theorem

4.23 Definition: A topological space X is called normal when all one-point sets are
closed in X, and for all disjoint closed sets A,B ⊆ X there exist disjoint open sets U, V ⊆ X
with A ⊆ U and B ⊆ V .

4.24 Example: Recall (or verify) that all metric spaces are normal.

4.25 Theorem: (Urysohn’s Lemma) Let X be a normal topological space. For any
disjoint closed sets A,B ⊆ X there exists a continuous map f : X → [0, 1] with f(x) = 0
for all x ∈ A and f(x) = 1 for all x ∈ B.

Proof: Let A,B ⊆ X be closed. Say [0, 1]∩Q = {a0, a1, a2, a3, · · ·} where the terms ak are
distinct with a0 = 0 and a1 = 1. Choose disjoint open sets U0, V0 ⊆ X with A ⊆ U0 and
B ⊆ V0. Note that

U0 ∩ V0 = ∅ =⇒ U0 ⊆ V0c =⇒ U0 ⊆ V0c =⇒ U0 ⊆ Bc.
Let U1 = Bc so that A ⊆ U0 ⊆ U0 ⊆ U1 = Bc. Let n ≥ 2 and suppose, inductively, that
we have defined open sets Ua0 , Ua1 , · · ·Uan−1 such that when ak < a` we have Uak ⊆ Ua` .
Define Uan as follows. Rearrange the terms in the set {a0, a1, · · · , an} in increasing order

and say ak < an < a` are consecutive. Since Uak ⊆ Ua` , we have Uak ∩ Ua`
c = ∅, so we

can choose disjoint open sets Uan , Van ⊆ X with Uak ⊆ Uan and U ca` ⊆ Van , and then

Uan ∩ Van = ∅ =⇒ Uan ⊆ Van
c =⇒ Uan ⊆ V can ⊆ Ua` .

Recursively, we have defined Uan for all n ≥ 0, so we have defined Ur for all r ∈ [0, 1]∩Q.
For r ∈ Q with r < 0 we define Ur = ∅, and for r ∈ Q with r > 1 we define Ur = X, and
then we have defined Ur for all r ∈ Q so that whenever r < s we have Ur ⊆ Us.

Define f : X → [0, 1] by

f(x) = inf
{
r∈Q

∣∣x∈Ur}
Note that f does take values in [0, 1]: indeed for all x ∈ X, we have f(x) ≥ 0 because
r < 0 =⇒ Ur = ∅ =⇒ x /∈ Ur, and we have f(x) ≤ 1 because r > 1 =⇒ Ur = X =⇒ x ∈ Ur.
Also note that when x ∈ A we have x ∈ U0 so that f(x) = 0 and when x ∈ B and r ≤ 1
we have Ur ⊆ U1 = Bc so that x /∈ Ur, and so f(x) = 1.

It remains to show that f is continuous. We shall show that the inverse image of every
open interval is open. Let c, d ∈ R with c < d. Let a ∈ f−1(c, d) so we have c < f(a) < d.

Choose r, s ∈ Q with c < r < f(a) < s < d. We claim that a ∈ Us \ Ur ⊆ f−1(c, d). First
we make two observations: for x ∈ X and p ∈ Q,

(1) if x ∈ Up then x ∈ Ur for all r > p and so f(x) ≤ p, and
(2) if x /∈ Up then x /∈ Ur for any r ≤ p and so f(x) ≥ p.
Since r < f(a) it follows from the first observation that a /∈ Ur, and since f(a) < s it

follows from the second observation that a ∈ Us, and this shows that a ∈ Us \ Ur. On

the other hand, when x ∈ Us \ Ur, since x ∈ Us it follows from the first observation that

f(x) ≤ s, and since x /∈ Ur it follows from the second observation that f(x) ≥ r, and so

we have f(x) ∈ [r, s] ⊆ (c, d). Thus we have a ∈ Us \ Ur ⊆ f−1(c, d), as claimed. Since

Us \Ur is open, we can choose a basic open set V with a ∈ V ⊆ Us \Ur ⊆ f−1(c, d). Since
for every a ∈ f−1(c, d) there is a basic open set V with a ∈ V ⊆ f−1(c, d), it follows that
f−1(c, d) is open, so that f is continuous, as required.
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4.26 Theorem: (The Tietze Extension Theorem) Let X be a normal topological space,
let A ⊆ X be closed, and let a, b ∈ R with a < b.

(1) Every continuous map f :A→ [a, b] can be extended to a continuous map g :X→ [a, b].
(2) Every continuous map f :A→(a, b) can be extended to a continuous map g :X→(a, b).

Proof: Note that since [a, b] is homeomorphic to the interval [−1, 1], we may replace [a, b]
by [−1, 1]. Suppose that f : A→ [−1, 1] is continuous.

We begin with an observation. If h : A → [−r, r] is continuous, then h−1
([
− r,− r3

])
and h−1

([
r
3 , r
])

are disjoint closed sets in X, so by scaling and translating the map given

by Urysohn’s Lemma, we can construct a map g : X →
[
− r

3 ,
r
3

]
with g(x) = − r3 for all

x ∈ h−1
([
− r,− r3

])
and g(x) = r

3 for all x ∈ h−1
([
r
3 , r
])

. We then have
∣∣g(x)

∣∣ ≤ r
3 for all

x ∈ X, and we have
∣∣h(x)− g(x)

∣∣ ≤ 2r
3 for all x ∈ A.

Since f : A → [−1, 1] is continuous, by the above observation we can construct a
continuous map g1 : X →

[
− 1

3 ,
1
3

]
such that

∣∣f(x) − g1(x)
∣∣ ≤ 2

3 for all x ∈ A. Since

(f − g1) : A →
[
− 2

3 ,
2
3

]
is continuous, we can apply the obove observation again to con-

struct a continuous map g2 : X →
[
− 2

9 ,
2
9

]
such that

∣∣f(x) − g1(x) − g2(x)
∣∣ ≤ 4

9 for all

x ∈ A. Repeating this procedure, we construct maps gk : X →
[
− 2k−1

3k
, 2

k−1

3k

]
such that∣∣f(x) −

n∑
k=1

gk(x)
∣∣ ≤ 2n

3n for all x ∈ A. Since
∣∣gk(x)

∣∣ ≤ 2k−1

3k
for all x ∈ X, the series

∞∑
k=1

gk converges uniformly on X by the Weierstrass M-Test. Define g(x) =
∞∑
k=1

gk(x) for

all x ∈ X. Note that g is continuous by uniform convergence, note that for all x ∈ X we

have
∣∣g(x)

∣∣ ≤ ∞∑
k=1

|gk(x)| ≤
∞∑
k=1

2n−1

3n = 1 so that g : X → [−1, 1], and note that for all

x ∈ A, since
∣∣f(x)−

n∑
k=1

gk(x)
∣∣ ≤ 2n

3n we have f(x) =
∞∑
k=1

gk(x) = g(x), and so g extends f .

This completes the proof of Part 1.

To prove Part 2, suppose that f : A → (a, b) is continuous. Note that f is also
continuous as a map f : A → [a, b] so, by Part 1, we can extend f to a continuous map
h : X → [a, b]. Let B = h−1(a) ∪ h−1(b) and note that B is closed in X and B is disjoint
from A. By Urysohn’s Lemma, we can construct a continuous map k : X → [0, 1] with
k(x) = 0 for all x ∈ B and k(x) = 1 for all x ∈ A. Then g = kh : X → (a, b) is continuous
on X with g(x) = h(x) = f(x) for all x ∈ A.
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Infinite Products and Tychanoff’s Theorem

4.27 Definition: Let (Xk)k∈K be an indexed set of sets. The cartesian product of this
indexed set is the set∏

k∈K
Xk =

{
a : K →

⋃
k∈K

Xk

∣∣∣ a(k)∈Xk for all k∈K
}

=
{

(ak)k∈K
∣∣ ak∈Xk for all k∈K

}
.

For each ` ∈ K we have the projection map p` :
∏
k∈K

Xk → X` given by p`
(
(ak)k∈K

)
= a`.

When K = {1, 2, · · · , n} we write

(ak)k∈K = (a1, a2, · · · , an) and
∏
k∈K

Xk =
n∏
k=1

Xk = X1 ×X2 × · · · ×Xn.

When K = Z+ we write

(ak)k∈K = (ak)k≥1 = (a1, a2, a3, · · ·) and
∏
k∈K

Xk =
∞∏
k=1

Xk = X1 ×X2 ×X3 × · · · .

When each Xk is a topological space with topology Tk, the box topology on the cartesian
product is the topology with basis

B =
{ ∏
k∈K

Uk

∣∣∣Uk ∈ Tk}
and the product topology on the cartesian product is the topology with basis

P =
{ ∏
k∈K

Uk

∣∣∣Uk ∈ Tk with Uk = Xk for all but finitely many k ∈ K
}
.

Unless otherwise stated, we shall always assume that
∏
k∈K

Xk is given the product topology.

Note that when the index set K is finite, the box and product topologies are the same,
and when K is infinite, the box topology is finer than the product topology.

4.28 Theorem: Let Xk be a topological space and let A ⊆ Xk be a subspace for each
k ∈ K, and let

∏
k∈K

Xk be given the product topology.

(1) If each Xk is Hausdorff then so is
∏
k∈K

Xk.

(2) On
∏
k∈K

Ak ⊆
∏
k∈K

Xk, the product topology is equal to the subspace topology.

(3) We have
∏
k∈K

Ak =
∏
k∈K

Ak.

Analogous results hold when
∏
k∈K

Xk and
∏
k∈K

Ak are given the box topology.

Proof: The proof is left as an exercise.

4.29 Theorem: Let Xk be a topological space for each k ∈ K, and let
∏
k∈K

Xk be given the

product topology. For every topological space A and for every function f : A →
∏
k∈K

Xk,

f is continuous if and only if f` :A→Xk given by f`(x) = f(x)` is continuous for all `∈K.

Proof: For each ` ∈ K, the projection map p` :
∏
k∈K Xk → X` is continuous because when

U ⊆ X` is open, p`
−1(U) =

{
(xk)k∈K

∣∣x` ∈ U`}, which is a basic open set in
∏
k∈K Xk.

Thus if f is continuous then so is each component map f` : A→ X` because f` = p` ◦ f .
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Suppose that each component map f` : A→ X` is continuous. Note that since every
open set in

∏
k∈K Xk is a union of basic open sets, in order to prove that f is continuous

it suffices to prove that the inverse image of every basic open set is open. Let V be any
basic open set in

∏
k∈K

Xk, say V =
∏
k∈K

Uk where each Uk ⊆ Xk is open with Uk = Xk for

all but finitely many k ∈ K. Say Uk = Xk for all k /∈ F where F is a finite subset of K.
Then we have

f−1(V ) =
{
a∈A

∣∣ f(a)`∈U` for all `∈F
}

=
⋂
`∈F

f`
−1(U`)

which is open in A.

4.30 Example: When Rω =
∏∞
k=1 R is given the box topology, and f : R→ Rω is given

by f(t) = (t, t, t, · · ·), the component maps, given by f`(t) = t, are all continuous, but the
function f is not: indeed for the basic open set V =

∏∞
k=1

(
− 1
k ,

1
k

)
, we have f−1(V ) = {0}.

4.31 Theorem: (Tychanoff’s Theorem) The product of any indexed set of compact spaces
is compact, using the product topology.

Proof: Let Xk be compact for each k ∈ K. We shall prove that
∏
Xk has the finite

intersection property on closed sets. Let T be a set of closed sets in
∏
Xk such that every

finite subset of T has non-empty intersection. We need to show that
⋂
T 6= ∅. By Zorn’s

Lemma, we can choose a maximal set S of subsets of
∏
Xk with T ⊆ S such that every

finite subset of S has non-empty intersection
(
let R be the set of all such sets S and note

that for every chain C in R we have
⋃
C ∈ R

)
. Note that the maximality of S implies that

S is closed under finite intersection (since if A1, · · · , An ∈ S then every intersection of a
finite subset of S ∪ {A1 ∩ · · · ∩An} is also an intersection of a finite subset of S

)
.

We shall show that
⋂{

A
∣∣A∈S} 6= ∅, hence

⋂
T 6= ∅ since if A ∈ T then A = A ∈ S.

Let k ∈ K. Note that finite subsets of
{
pk(A)

∣∣A ∈ S} have non-empty intersection(
because if A1, · · · , An ∈ S then pk(A1)∩ · · ·∩pk(An) = pk(A1∩ · · ·∩An) 6= ∅

)
, and hence

finite subsets of
{
pk(A)

∣∣A∈S} also have nonempty intersection. Since Xk is compact, so

Xk has the finite intersection property on closed sets, it follows that
⋂{

pk(A)
∣∣A∈S} 6= ∅,

so we can choose ak ∈ Xk such that ak ∈ pk(A) for every A ∈ S. We do this for each
k ∈ K, that is for each k ∈ K we choose ak ∈ Xk with ak ∈ pk(A) for every A ∈ S, then
we let a = (ak)k∈K ∈

∏
k∈K

Xk.

We claim that a ∈ A for every A ∈ S. Let k ∈ K. Let Uk be an open set in Xk with
ak ∈ Uk. Then for every A ∈ S, we have ak ∈ pk(A) ∩ Uk so that pk(A) ∩ Uk 6= ∅ hence

pk(A) ∩ Uk 6= ∅
(
if we had pk(A) ∩ Uk = ∅ then pk(A) ⊆ Uk

c hence pk(A) ⊆ Uk
c so that

pk(A) ∩ Uk = ∅
)
. For each A ∈ S, since pk(A) ∩ Uk 6= ∅, we can choose b ∈ A such that

pk(b) ∈ Uk, that is b ∈ pk−1(Uk), and hence pk
−1(Uk) ∩ A 6= ∅. Since S is closed under

finite intersection and pk
−1(Uk)∩A 6= ∅ for every A ∈ S, the maximality of S implies that

pk
−1(Uk) ∈ S. Let V be any basic open set in

∏
Xk with a ∈ V , say V =

∏
Uk where

each Uk ⊆ Xk is open with ak ∈ Uk, and with Uk = Xk for all k ∈ F where F is a finite
subset of K. Since pk

−1(Uk) ∈ S for every k ∈ K and S is closed under finite intersection,
we have

V =
{

(xk)k∈K
∣∣xk ∈ Uk for all k ∈ F

}
=
⋂
k∈F

pk
−1(Uk) ∈ S.

Since V ∈ S and every finite subset of S has non-empty intersection, we have A ∩ V 6= ∅
for all A ∈ S. Given A ∈ S, since A ∩ V 6= ∅ for every basic open set V in

∏
Xk with

a ∈ V , it follows that a ∈ A. Thus a ∈ A for all A ∈ S, so
⋂{

A
∣∣A∈S} 6= ∅, as required.
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Nets

4.32 Definition: A directed set is a set K together with a binary relation ≤ such that

(1) for all a ∈ X we have a ≤ a,
(2) for all a, b, c ∈ X, if a ≤ b and b ≤ c then a ≤ c, and
(3) for all a, b ∈ X there exists c ∈ X such that a ≤ c and b ≤ c.
When a ≤ b we also write b ≥ a. A net in a topological space X is an indexed set (xk)k∈K
in X whose index set K is a directed set. When (xk)k∈K is a net in X and a ∈ X, we say
that (xk)k≥K converges to a (in X), and we write xk → a (in X), when for every open
set U ⊆ X with a ∈ U there exists m ∈ K such that for all k ∈ K, if k ≥ m then xk ∈ U .

4.33 Theorem: In a Hausdorff topological space, the limit of a convergent net is unique.

Proof: The proof is left as an exercise.

4.34 Theorem: Let X be a topological space, let A ⊆ X, and let a ∈ X. Then a ∈ A if
and only if there is a net (xk)k∈K in A with xk → a in X.

Proof: Let B be any basis for the topology on X (for example, we could let B be the
topology on X) and let Ba =

{
U ∈ B

∣∣ a∈U} (the set of basic open neighbourhoods of a).

Suppose that a ∈ A. Note that, by Property 2 in the definition of a basis, Ba is a
directed set under reverse inclusion (that is U ≤ V ⇐⇒ V ⊆ U). By Theorem 4.4, since
a ∈ A we have A ∩ U 6= ∅ for every U ∈ Ba, so we can choose an element x

U
∈ A ∩ U for

every U ∈ Ba to obtain a net (x
U

)U∈Ba
in A. Then we have x

U
→ a in X because for

every open set W in X with a ∈ W we can choose a basic open set U ∈ Ba with U ⊆ W ,
and then for all V ∈ Ba with V ≥ U we have xV ∈ V ⊆ U ⊆W .

Suppose, conversely, that there is a net (xk)k∈K in A with xk → a in X. Then for
every basic open set U ∈ Ba we can choose k ∈ K with xk ∈ U , and so we have A∩U 6= ∅.
Thus a ∈ A by Theorem 4.4.

4.35 Theorem: Let X and Y be topological spaces, let A ⊆ X, and let f : A ⊆ X → Y .
Then f is continuous on A (using the subspace topology in X) if and only if for every
a ∈ A and every net (xk)k∈K in A, if xk → a in X then f(xk)→ f(a) in Y .

Proof: Suppose f is continuous on A. Let a ∈ A and let (xk)k∈K be a net in A with xk → a
in X. Let V ⊆ Y be open with f(a) ∈ V . Since f is continuous on A, f−1(V ) is open in A.
Choose an open set U ⊆ X such that f−1(V ) = U ∩A. Since xk → a in X, we can choose
m ∈ K so that k ≥ m =⇒ xk ∈ U . Then when k ≥ m we have xk ∈ U ∩ A = f−1(V ) so
that f(xk) ∈ V . This shows that f(xk)→ f(a) in Y , as required.

Suppose, conversely, that f is not continuous on A. Choose an open set V ⊆ Y such
that f−1(V ) is not open in A. Then the set B = A \ f−1(V ) is not closed in A, so we have

B ⊂6= ClA(B) ⊆ ClX(B) = B.

Choose an element a ∈ ClA(B) \B. Since a ∈ ClA(B) ⊆ A and a /∈ B = A \ f−1(V ), we
have a ∈ f−1(V ) so that f(a) ∈ V . Since a ∈ B, by Theorem 4.34 we can choose a net
(xk)k∈K in B with xk → a in X. Note that for each k ∈ K, since xk ∈ B = A \ f−1(V ) we
have xk /∈ f−1(V ) so that f(xk) /∈ V . Since V is open in Y , its complement V c = Y \V is
closed in Y so that V c = V c in Y . Since

(
f(xk)

)
k∈K is a net in V c and f(a) /∈ V c = V c,

it follows from Theorem 4.34 that f(xk) /−→ f(a) in Y .
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Strong and Weak Topologies and The Banach-Alaoglu Theorem

4.36 Definition: Let Y be a topological space and let (fk)k∈K be an indexed set of
functions fk : Xk → Y where each Xk is a topological space. The final topology (or the
srong topology) on Y (with respect to the indexed set (fk)k∈K) is the finest topology on
Y such that each of the functions fk is continuous. A subset U ⊆ Y is open in the strong
topology if and only if fk

−1(V ) is open in Xk for every open set V ⊆ X and every k ∈ K.

4.37 Example: When X is a topological space and ∼ is an equivalence relation on X
and q : X → X

/
∼ is the quotient map given by q(a) = [a] =

{
x∈X

∣∣x ∼ a}, the quotient

topology on X
/
∼ is equal to the final topology with respect to the quotient map (so the

indexed set of maps consists of a single map).

4.38 Definition: Let X be a topological space and let (fk)k∈K be an indexed set of
functions fk : X → Yk where each Yk is a topological space. The initial topology (or the
weak topology) on X (with respect to the indexed set (fk)k∈K) is the coarsest topology
on X such that each of the functions fk is continuous, that is the topology on X generated
by the set

{
fk
−1(U)

∣∣ k∈K,U ∈Yk}.

4.39 Example: When Y is a topological space and X ⊆ Y , the subspace topology on X
is equal to the initial topology on X with respect to the inclusion map.

4.40 Example: When Xk is a topological space for each k ∈ K, the product topology on
the cartesian product

∏
j∈K Xj is equal to the initial topology with respect to (pk)k≥K ,

where pk :
∏
j∈K Xj → Xk is the projection map given by pk(x) = xk.

4.41 Definition: Let U be a normed linear space over F = R or C. The weak topology
on U is the initial topology on U with respect to U∗

(
that is with respect to the indexed

set (f)f∈U∗
)
, that is the topology generated by the sets of the form f−1(V ) where f ∈ U∗

and V is an open set in F.
The weak-star topology (written as the weak∗ topology) on U∗ is the initial topology

on U∗ with respect to the indexed set (Fu)u∈U where Fu ∈ U∗∗ is given by Fu(f) = f(u),
that is the topology generated by the sets of the form Fu

−1(V ) =
{
f ∈ U∗

∣∣ f(u) ∈ V
}

where u ∈ U and V is an open set in F.

4.42 Theorem: Let U be a normed linear space.

(1) For every a ∈ U and every net (xk)k∈K in U , we have xk → a in U using the weak
topology if and only if f(xk)→ f(a) in F for every f ∈ U∗.
(2) For every g ∈ U∗ and every net (fk)k∈K in U∗, we have fk → g in U∗ using the weak∗

topology if and only if fk(x)→ g(x) in F for every x ∈ U .

Proof: We prove Part 1 (the proof of Part 2 is similar). Let a ∈ U and let (xk)k∈K be
a net in U , and suppose that xk → a in U , using the weak toplogy. For every f ∈ U∗,
since xk → a in U using the weak topology, and since f : U → F is continuous when U is
using the weak topology, it follows (from Theorem 4.35) that f(xk)→ f(a) in F. Suppose,
conversely, that f(xk) → f(a) in F for every f ∈ U∗. Let W ⊆ U be open in U , using
the weak topology, with a ∈ W . Since the weak topology on U is generated by sets of
the form f−1(V ) with f ∈ U∗ and V open in F, it follows that W is an arbitrary union
of finite intersections of elements of this form. Since a ∈ W , a is contained in a finite
intersection of elements of this form, say a ∈ f1−1(V1) ∩ · · · ∩ fn−1(Vn). For each j, since
fj(xk) → fj(a) in F and a ∈ fj−1(Vj) so that fj(a) ∈ Vj , we can choose mj ∈ K so that
k ≥ mj =⇒ fj(xk) ⊆ Vj =⇒ xk ∈ fj−1(Vj). We then choose m ∈ K with m ≥ mj for all j,
and then k ≥ m =⇒ xk ∈

⋂
fj
−1(Vj) ⊆W . Thus xk → a in U , as required.
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4.43 Remark: Note that when U is an infinite-dimensional normed linear space, and
U∗ is an infinite dimensional Banach space using the operator norm, the closed unit ball
BU∗(0, 1) =

{
f ∈U∗

∣∣ ‖f‖ ≤ 1
}

is not compact in U∗ by Riesz’s Theorem (Theorem 3.8).

4.44 Theorem: (The Banach-Alaoglu Theorem) For a normed linear space U , the closed
unit ball BU∗(0, 1) =

{
f ∈U∗

∣∣ ‖f‖ ≤ 1
}

is compact in U∗ using the weak∗ topology.

Proof: LetB = BU (0, 1) =
{
x∈U

∣∣ ‖x‖ ≤ 1
}

and letB∗ = BU∗(0, 1) =
{
f ∈U∗

∣∣ ‖f‖ ≤ 1
}

.

Let D = BF(0, 1) =
{
t∈F

∣∣ ‖t‖ ≤ 1
}

and let P = DB =
∏
u∈B

D using the product topology.

Let R : B∗ → P be the restriction map (an element f ∈ B∗ is a linear map f : U → F with
‖f‖ ≤ 1, and R(f) is the restriction of f to B, that is R(f)(x) = f(x) for x ∈ B). Note
that when f ∈ B∗, the restriction R(f) is in fact an element of P because when x ∈ B we
have ‖f‖ ≤ 1 and ‖x‖ ≤ 1 so that

∣∣f(x)
∣∣ ≤ ‖f‖ ‖x‖ ≤ 1 hence R(f)(x) = f(x) ∈ D, and

so R(f) : B → D (and P = DB is the set of all functions from B to D).
Note that R is injective because given f, g ∈ B∗, if R(f) = R(g) then f(x) = g(x)

for all x ∈ B (that is for all x ∈ U with ‖x‖ ≤ 1) and hence f(x) = g(x) for all x ∈ U
(because f and g are linear) so that f = g.

We claim that R is continuous. Recall that a map from a topological space to a
cartesian product (using the product topology) is continuous if and only if each of its
component functions is continuous, so it suffice to show that Ru is continuous for all
u ∈ B, where Ru : B∗ → D is given by Ru(f) = R(f)u = R(f)(u) = f(u). Let u ∈ B.
To show that Ru : B∗ ⊆ U∗ → D ⊆ F is continuous, we shall use Theorem 4.35 (the
characterization of continuity by nets). Let (fk)k∈K be a net in B∗, let g ∈ B∗, and
suppose fk → g in B∗ using the weak∗ topology. Then we have fk(x) → g(x) in F for all
x ∈ U , and hence Ru(fk) = fk(u)→ g(u) = Ru(g) for all u ∈ B. Thus Ru is continuous.

We claim that R(B∗) is closed in P . Let p ∈ R(B∗). We need to show that p ∈ R(B∗.
By Theorem 4.34 (the characterization of closure by nets) we can choose a net in R(B∗)
which converges to p in P , so we can choose a net (fk)k∈K in B∗ such that R(fk) → p
in P . Since each coordinate projection on P is continuous, we have R(fk)(u) → p(u) in
D, that is fk(u) → p(u) in D, for each u ∈ B. Since each fk : U → F is linear, it follows
that the map p : B → D ⊆ F is locally linear, meaning that for all x, y ∈ U and all t ∈ F,
if x, y, x + y ∈ B then p(x + y) = p(x) + p(y) and if x, tx ∈ B then p(tx) = tx. Since
p : B → F is locally linear, we can extend p (uniquely) to a linear map g : U → F

(
given

x ∈ U we choose 0 6= r ∈ F so that rx ∈ B and define g(x) = 1
r g(rx)

)
. Since the restriction

of g to B is equal to the map p, and p : B → D, we have ‖g‖ ≤ 1 so that g ∈ B∗, and we
have R(g) = p so that p ∈ R(B∗), as required.

Since R : B∗ → P is injective, it gives a bijective map R : B∗ → R(B∗). We claim
that the inverse map R−1 : R(B∗) → B∗ is continuous. Let (qk)k∈K be a net in R(B∗)
and let p ∈ R(B∗) with qk → p in R(B∗). Let fk = R−1(qk) ∈ B∗ so that qk = R(fk).
Then we have R(fk) → p in R(B∗) ⊆ P . As above, we have fk(u) → p(u) for all u ∈ B,
and p : B → F extends (uniquely) to a linear map g : U → F, and then g ∈ B∗ and we
have R(g) = p so that p = R−1(g). Since fk, g : U → F are linear and fk(u) → g(u)
for all u ∈ B, it follows that fk(x) → g(x) for all x ∈ U . Since fk, g ∈ B∗ ⊆ U∗ and
fk(x)→ g(x) for all x ∈ U , it follows that fk → g in U∗ using the weak∗ topology, that is
R−1(qk)→ R−1(p) in U∗ using the weak∗ topology. Thus R−1 is continuous, as claimed.

Since P is compact by Tychonoff’s Theorem and R(B∗) is closed in P , it follows that
R(B∗) is compact. Since R : B∗ → R(B∗) is a homeomorphism, B∗ is also compact.
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Locally Convex Topological Vector Spaces

4.45 Definition: A topological vector space over F = R or C is a vector space with a
Hausdorff topology such that the product and sum maps p : F×U → U and s : U×U → U ,
given by p(t, x) = tx and s(x, y) = x + y, are both continuous (where F × U and U × U
use the product topology). When U is a topological vector space, the linear dual of U
and the continuous dual of U are the spaces

U# =
{
f : U → F

∣∣ f is linear
}
,

U∗ =
{
f : U → F

∣∣ f is linear and continuous
}
.

A topological vector space is said to be locally convex when its topology has a basis
which consists of convex sets.

4.46 Example: When U is a normed linear space, U , (U,wk) and (U∗,wk∗) are locally
convex topological vector spaces. The metric topology on U has a basis consisting of open
balls, which are convex, and it is Hausdorff as are all metric spaces. The weak topology
on U is generated by sets of the form f−1(V ) where f ∈ U∗ and V is an open ball in
F, and these sets are convex. A basis for the weak topology is given by the set of finite
intersections of such sets f−1(V ), and all such finite intersections are convex. To see that
the weak topology is Hausdorff, let u, v ∈ U with u 6= v. Define f : Span {v − u} → F by
f
(
t(v − u)

)
= t. By the Hahn-Banach Theorem we can extend f to obtain a continuous

linear map f ∈ U∗ with f(v)− f(u) = f(v − u) = 1. Then the sets U = f−1
(
B
(
f(u), 12

))
and V = f−1

(
B
(
f(v), 12

))
are disjoint basic open sets in (U,wk) with u ∈ U and v ∈ V .

We leave it as an exercise to verify that (U∗,wk∗) is locally convex.

4.47 Note: Let X and Y be topological spaces and let a ∈ X and b ∈ Y . Using the
product topology in X × Y , the inclusion maps j : X → X × Y and k : Y → X × Y given
by j(x) = (x, b) and k(y) = (a, y) are continuous.

Proof: We show that j is continuous (the proof that k is continuous is the same). Let
V ⊆ X × Y be open (in the product topology). For each p ∈ V , choose open sets Ip ⊆ X
and Jp ∈ Y such that p ∈ Ip × Jp ⊆ V . Then V =

⋃
p∈V Ip × Jp so

j−1(V ) =
⋃
p∈V

j−1
(
Ip × Jp

)
=
⋃
p∈V

{
x ∈ X

∣∣x ∈ Ip, b ∈ Jp} =
⋃

p∈V,b∈Jp
Ip

which is open in X, so j is continuous, as required.

4.48 Note: Let U be a topological vector space over F = R or C, let a ∈ U and let
0 6= r ∈ F. The translation τa : U → U given by τa(x) = x+ a and the scaling σr : U → U
given by σr(x) = rx are homeomorphisms.

Proof: The translation τa : U → U is the composite τa = s ◦ j, where j : U → F×U is the
inclusion j(x) = (x, a) and s : U × U → U is the summation map s(x, y) = x + y, and so
every translation τa is continuous, and the inverse of the translation τa is the translation
τ−a, which is also continuous. Similarly, the scaling map σr : U → U is the composite
σr = p ◦ k where k : U → F × U is the inclusion k(x) = (r, x) and p : F × U → U is the
product map p(t, x) = tx, so every scaling map σr with r ∈ F is continuous, and when
r 6= 0, σr is invertible and the inverse of σr is the scaling map σ1/r, which is continuous.
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4.49 Note: When U is a real topological vector space and A⊆U , we have Ao⊆Core(A).

Proof: Let a ∈ Ao and choose an open set V in U with a ∈ V ⊆ A. Recall that a ∈ Core(A)
when for every u ∈ U there exists r > 0 such that a + tu ∈ A for all t ∈ (−r, r). Let
u ∈ U . Since the inclusion map j : R → R × U given by j(t) = (t, u) is continuous,
and the product map p : R × U → U given by p(t, x) = tx is continuous, the composite
f = p◦j : R→ U , given by f(t) = tu, is continuous. Since the inclusion map k : U → U×U
given by k(y) = (a, y) is continuous, and the summation map s : U × U → U given by
s(x, y) = x + y is continuous, the composite g = s ◦ k : U → U given by g(u) = a + u is
continuous. Thus the composite h = g ◦ f : R → U given by h(t) = a + tu is continuous.
Since V ⊆ U is open and h is continuous, h−1(V ) is open in R. Since g(0) = a ∈ V
so that 0 ∈ g−1(V ), we can choose r > 0 such that (−r, r) ⊆ g−1(V ). Then we have
a+ tu = g(t) ∈ V ⊆ A for all t ∈ (−r, r), and so a ∈ Core(A), as required.

4.50 Theorem: (Hahn-Banach Separation Theorem for Real Topological Vector Spaces)
Let U be a topological vector space over R and let ∅ 6= A,B ⊆ U be disjoint convex subsets.

(1) If A is open then there exists 0 6= f ∈ U∗ and c ∈ R such that f(x) < c ≤ f(y) for all
x ∈ A and y ∈ B.
(2) If U is locally convex and A is compact and B is closed then there exists 0 6= f ∈ U∗
and c ∈ R such that f(x) < c < f(y) for all x ∈ A and y ∈ B.

Proof: To prove Part 1, suppose that A is open. As in the proof of the Hahn-Banach
Separation Theorem (Theorem 3.20), let a ∈ A, let b ∈ B and let C = A−B−a+ b. Note
that C is convex (because sums of convex sets are convex) and C is open (because C is
the union of the open sets A− y − a+ b with y ∈ B) and 0 ∈ C and b−a /∈ C (because A
and B are disjoint so that 0 /∈ A − B). Note that 0 ∈ Co ⊆ Core(C) by the above note.
Let p be the Minkowski functional of C, given by p(x) = inf

{
r> 0

∣∣ 1
r x ∈ C

}
, and recall

that p(x) ≤ 1 for all x ∈ C and p(b−a) ≥ 1. Let f : U → R be the linear map constructed
in the proof of Theorem 3.20 with f(b−a) = p(b−a) and f(x) ≤ p(x) for all x ∈ U , and
recall that f(x) ≤ f(y) for all x ∈ A and y ∈ B. Let c = sup

{
f(x)

∣∣x ∈ A
}

so that
f(x) ≤ c ≤ f(y) for all x ∈ A and y ∈ B.

We claim that the map f : U → R is continuous (so that f ∈ U∗). Let V ⊆ R be
open. Let a ∈ f−1(V ). Chose r > 0 so that B

(
f(a), r

)
⊆ V . The set C ∩ −C is open

in U with 0 ∈ C ∩ −C. By translating and scaling, the set a + r(C ∩ −C) is open in U
with a ∈ a+ r(C ∩ −C). For all x ∈ a+ r(C ∩ −C), we have 1

r (x− a) ∈ C ∩ −C, so that
± 1
r (x − a) ∈ C, and hence ±f

(
1
r (x − a)

)
= f

(
± 1

r (x − a)
)
≤ p

(
± 1

r (x − a)
)
≤ 1 so that∣∣ 1

rf(x−a)
∣∣ ≤ 1, and hence

∣∣f(x)−f(a)
∣∣ ≤ r so that f(x) ∈ B

(
f(a), r

)
⊆ V . Thus f−1(V )

is open, and hence f is continuous, as claimed.
We claim that since A is open and f 6= 0 and f(x) ≤ c for all x ∈ A, we must have

f(x) < c for all x ∈ A. Suppose, for a contradiction, that x ∈ A with f(x) = c. Since f 6= 0
we can choose u ∈ U so that f(u) 6= 0 and, by replacing u by −u if necessary, we can choose
u so that f(u) > 0 (to be specific, we can choose u = b−a so that f(b−a) = p(b−a) ≥ 1).
Since A is open, we have x ∈ Ao ⊆ Core(A) so we can choose r > 0 so that x + tu ∈ A
for all t ∈ (−r, r). Then we have x+ r

2u ∈ A and f
(
x+ r

2u
)

= f(x) + r
2f(u) > f(x) = c,

giving the desired contradiction. Thus f(x) < c for all x ∈ A, as claimed.
We remark that if B is also open, we have f(x) < c < f(y) for all x ∈ A and y ∈ B.
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To prove Part 2, suppose that U is locally convex and A is compact and B is closed.
We claim that there exists an open convex set C with 0 ∈ C such that A + C ⊆ Bc. For
each a ∈ A, since Bc is open and U is locally convex we can choose an open convex set Ca
with 0 ∈ Ca such that a+2Ca ⊆ Bc. The set

{
a+Ca

∣∣ a∈A} is an open cover of A, which is
compact, so we can choose a1, · · · , an ∈ A so that A ⊆

⋃n
k=1(ak+Cak). Let C =

⋂n
k=1 Cak

and note that C is an open convex set with 0 ∈ C. For each a ∈ A we can choose an index
k such that a ∈ ak+ Cak and then we have a+ C ∈ ak+Cak+C ⊆ ak+2Cak ⊆ Bc. Since
a+C ⊆ Bc for all a ∈ A, we have A + C ⊆ Bc, as required. Since A + C ∩ B = ∅ we
have A+ 1

2C ∩ B−
1
2C = ∅. Since A+ 1

2C and B− 1
2C are nonempty disjoint open convex

sets, it follows from Part 1 (and the final remark at the end of its proof) that there exists
0 6= f ∈ U∗ and c ∈ R such that f(x) < c < f(y) for all x ∈ A + 1

2C, y ∈ B − 1
2C, hence

also for all x ∈ A, y ∈ B.

4.51 Theorem: (The Hahn-Banach Separation Theorem for Topological Vector Spaces)
Let U be a topological vector space over F = R or C and let ∅ 6= A,B ⊆ U be nonempty
disjoint convex subsets.

(1) If A is open then there exists 0 6= g ∈ U∗ and c ∈ R such that Re
(
g(x)

)
< c ≤ Re

(
g(y)

)
for all x∈A, y∈B.
(2) If U is locally convex and A is compact and B is closed then there exists 0 6= g ∈ U∗
and c ∈ R such that Re

(
g(x)

)
< c < Re

(
g(y)

)
for all x ∈ A and y ∈ B

Proof: This follows immediately from the real version (Theorem 4.50) because given a
continuous real-linear function f : U → R we can define g : U → C by g(x) = f(x)−i f(ix)
and then g is a continuous complex-linear function with Re

(
g(x)

)
= f(x) for all x ∈ U .

We leave it as an easy exercise to verify that g is complex-linear, but let us explain why
g is continuous. The map k : U → U given by k(x) = −if(ix) is continuous by Note 4.48
because it is the composite k = σ−i ◦ f ◦ σi where σi and σ−i are scaling maps. The map
h : U → U × U given by h(x) =

(
f(x), k(x)

)
is continuous by Theorem 4.29 (a function

into a product space is continuous when its component maps are continuous). Our map
g : U → U given by g(x) = f(x)− if(ix) is continuous because it is the composite g = s◦h
where s : U × U → U is the sum map s(x, y) = x+ y.
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Reflexive Spaces

4.52 Theorem: Let U be a normed linear space. The map I : U → U∗∗ given by
I(u)(f) = f(u) is a norm preserving (hence injective) linear map.

Proof: It is easy to see that I is linear. Let us show that I is norm-preserving. Let
u ∈ U . For all f ∈ U∗ with ‖f‖ ≤ 1 we have

∣∣I(u)(f)
∣∣ =

∣∣f(u)
∣∣ ≤ ‖f‖ ‖u‖ ≤ ‖u‖, and

it follows that ‖I(u)‖ ≤ ‖u‖. On the other hand, by Corollary 3.13 to the Heine-Banach
Theorem, we can choose f ∈ U∗ with ‖f‖ = 1 such that f(u) = ‖u‖, and then we have∣∣I(u)(f)

∣∣ =
∣∣f(u)

∣∣ = ‖u‖, and it follows that ‖I(u)‖ ≥ ‖u‖. Thus I preserves norm.

4.53 Definition: When U is a normed linear space, the injective norm-preserving linear
map I : U → U∗∗ given by I(u)(f) = f(u) is called the canonical map from U to U∗∗.
We say that U is reflexive when I is also surjective, so that I is a norm-preserving
isomorphism from U to U∗∗.

4.54 Example: Here are a few examples.

(1) Every finite-dimensional normed linear space is reflexive. Indeed the canonical map
I : U → U∗∗ is an injective linear map on finite-dimensional vector spaces, and we have
dim I(U) = dimU = dimU∗ = dimU∗∗ so that I must be bijective.
(2) Every Hilbert space is reflexive. Indeed when H is a Hilbert space, by the Riesz
Representation Theorem for Hilbert Spaces and the definition of the inner product on H∗

(Theorem 2.41 and Definition 2.42) we have a bijective linear (or conjugate-linear) map
φ : H → H∗ given by φ(u)(x) = 〈x, u〉, and a bijective linear (or conjugate-linear) map
ψ : H∗ → H∗∗ given by ψ(f)(g) = 〈f, g〉 = 〈φ−1(g), φ−1(f)〉, and then the composite
ψφ : H → H∗∗ is the bijective linear map given by

(ψφ)(u)(f) = ψ
(
φ(u)

)
(f) = 〈f, φ(u)〉 = 〈u, φ−1(f)〉 = φ

(
φ−1(f)

)
(u) = f(u).

So the canonical map I is equal to the composite ψφ, which is bijective.
(3) For 1 < p < ∞, the space `p is reflexive. Indeed, given p with 1 < p < ∞, let q be
the conjugate of p so we have 1

p + 1
q = 1. By the Riesz Representation Theorem for the `p

Spaces (Theorem 1.28), we have isomorphisms φ : `q → `p
∗ and ψ : `p → `q

∗ given by

φ(b)(a) =
∞∑
k=1

akbk and ψ(a)(b) =
∞∑
k=1

akbk

where a ∈ `p and b ∈ `q, and the isomorphism φ−1 : `p
∗ → `q gives the isomorphism

(φ−1)T : `q
∗ → `p

∗∗ given by (φ−1)T (g) = g ◦ φ. The composite (φ−1)Tψ : `p → `p
∗∗ is a

bijective linear map. For a ∈ `p and f ∈ `p∗, we have(
(φ−1)Tψ

)
(a)(f) = (φ−1)T

(
ψ(a)

)
(f) =

(
ψ(a) ◦ φ−1

)
(f) = ψ(a)

(
φ−1(f)

)
=
∞∑
k=1

ak
(
φ−1(f)

)
k

= φ
(
φ−1(f)

)
(a) = f(a).

So the canonical map I is equal to the composite (φ−1)Tψ, which is bijective.
(4) `1 is not reflexive. Indeed we know, from the Riesz Representation Theorem for the
`p spaces (Theorem 1.28), that `1

∗ ∼= `∞ hence `1
∗∗ ∼= `∞

∗. If we had `1 ∼= `1
∗∗ then

`1
∗∗ would be separable (because `1 is separable) so `∞

∗ would be separable (because
`∞
∗ ∼= `1

∗∗) and hence `∞ would be separable by Corollary 3.15, but `∞ is not separable.
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4.55 Theorem: Let U be a locally convex space. Let I : U → U∗∗ be the canonical map.

(1)
(
U,wk

)∗
= U∗.

(2)
(
U∗,wk∗

)∗
= I(U).

Proof: To prove Part 1, let f : U → F be a linear map. If f ∈ U∗ then f is continuous on(
U,wk

)
because the weak topology, by definition, is the coarsest topology on U for which

every element f ∈ U∗ is continuous. If f ∈
(
U,wk

)∗
, then for every open set V ⊆ F,

the set f−1(V ) is open in
(
U,wk

)
, so f−1(V ) is also open in U (using the norm topology,

which is finer than the weak topology), and hence f is continuous on U (using the norm
topology).

To prove Part 2, let ϕ : U∗ → F be a linear map. If ϕ = I(u) for some u ∈ U , then ϕ is
continuous on

(
U∗,wk∗

)
because the weak* topology, by definition, is the coarsest topology

for which every map of the form I(u) with u ∈ U is continuous. Suppose ϕ ∈
(
U∗,wk∗

)∗
.

Then ϕ−1
(
B(0, 1)

)
is open in

(
U∗,wk∗

)
, and so ϕ−1

(
B(0, 1)

)
is an arbitrary union of

finite intersections of sets of the form
{
f ∈ U∗

∣∣f(u) ∈ V
}

where u ∈ U and V ⊆ F is
open. In particular, the element 0 ∈ U∗ lies in one of those finite intersections, so we
can choose elements u1, · · · , un ∈ U and open sets V1, · · · , Vn ⊆ F (all containing 0) such
that

⋂n
k=1

{
f ∈ U∗

∣∣ f(uk) ⊆ Vk
}
⊆ ϕ−1

(
B(0, 1)

)
. Choosing r > 0 small enough so that

B(0, r) ⊆ Vk for every k, we have
n⋂
k=1

{
f ∈ U∗

∣∣ ∣∣f(uk)
∣∣ < r

}
⊆ ϕ−1

(
B(0, 1)

)
.

Thus for all f ∈ U∗, if
∣∣f(uk)

∣∣ < r for all 1 ≤ k ≤ n then
∣∣ϕ(f)

∣∣ < 1. It follows that
if f(uk) = 0 for all 1 ≤ k ≤ n then ϕ(f) = 0: indeed if f(uk) = 0 for all k then for
all n ∈ Z+ we have

∣∣(nf)(uk)
∣∣ = 0 so that

∣∣ϕ(nf)
∣∣ < 1 and hence

∣∣ϕ(f)
∣∣ < 1

n . Letting
ϕk = I(uk) so that ϕk(f) = f(uk), we have

⋂n
k=1 ker(ϕn) ⊆ kerϕ, and it follows from

linear algebra that ϕ ∈ Span {ϕ1, · · · , ϕn}, say ϕ =
∑
ckϕk. Then for all f ∈ U∗ we have

ϕ(f) =
∑
ckϕk(f) =

∑
ckf(uk) = f

(∑
ckuk

)
and hence ϕ = I(u) where u =

∑
ckuk.

4.56 Theorem: (Goldstine’s Theorem) Let U be a normed linear space. Let I : U → U∗∗

be the canonical map. Then I
(
BU (0, 1)

)
is dense in BU∗∗(0, 1) in the space

(
U∗∗,wk∗

)
.

Proof: Let B = BU (0, 1) ⊆ U and B∗∗ = BU∗∗(0, 1) ⊆ U∗∗, and let I(B) denote the closure
of I(B) in

(
U∗∗,wk∗

)
. Let J : U∗ → U∗∗∗ be the canonical map given by J(f)(ϕ) = ϕ(f)

where f ∈ U∗ and ϕ ∈ U∗∗. Suppose, for a contradiction, that B∗∗ \ I(B) 6= ∅ and choose
ϕ ∈ B∗∗ \ I(B). Then {ϕ} and I(B) are disjoint nonempty convex sets in

(
U∗∗,wk∗

)
with

{ϕ} compact. By the Hahn-Banach Theorem for Topological Vector Spaces, applied to
the locally convex space

(
U∗∗,wk∗

)∗
= J(U∗) ⊆ U∗∗∗, we can choose g ∈ U∗ and c ∈ R

such that
Re
(
(Jg)(ψ)

)
< c < Re

(
(Jg)(ϕ)

)
for all ψ ∈ I(B).

This implies that Re
(
ψ(g)

)
< c < Re

(
ϕ(g)

)
for all ψ = I(u) ∈ I(B), that is

Re
(
g(u)

)
< c < Re

(
ϕ(g)

)
for all u ∈ B.

In particular, since 0 ∈ B we have 0 = Re
(
g(0)

)
< c. Let h = 1

c g ∈ U
∗, so we have

Re
(
h(u)

)
< 1 < Re

(
ϕ(h)

)
for all u ∈ B.

Given u ∈ B (that is given u ∈ U with ‖u‖ ≤ 1) we choose θ ∈ R such that h(u) = |h(u)|eiθ
and then we have

∣∣h(u)
∣∣ = Re

(
|h(u)|

)
= Re

(
e−iθh(u)

)
= Re

(
h(e−iθu)

)
< 1. This shows

that ‖h‖ ≤ 1. But then we have 1 < Re
(
ϕ(h)

)
≤
∣∣ϕ(h)

∣∣ ≤ ‖ϕ‖ ‖h‖ ≤ 1 which is impossible.
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4.57 Theorem: Let U be a Banach space. Then the following are equivalent:

(1) U is reflexive.
(2) U∗ is reflexive.
(3) The weak topology on U∗ is equal to the weak∗ topology on U∗.
(4) The unit ball BU (0, 1) =

{
x∈U

∣∣ ‖x‖ ≤ 1
}

is compact in U using the weak topology.

Proof: Let B = BU (0, 1) ⊆ U , B∗ = BU∗(0, 1) ⊆ U∗ and B∗∗ = BU∗∗(0, 1) ⊆ U∗∗, and let
I : U → U∗∗ be the canonical embedding given by I(u)(f) = f(u).

To prove that (1) =⇒ (4), suppose that U is reflexive, that is suppose that I : U → U∗∗

is bijective. The weak topology in U is generated by sets of the form {u∈U
∣∣ f(u)∈ V

}
with f ∈U∗ and V ⊆ F open, and the weak* topology in U∗∗ is generated by the sets of
the form

{
ϕ∈U∗∗

∣∣ϕ(f)∈V
}

with f ∈U∗ and V ⊆F is open. Since every ϕ ∈ U∗∗ is of the
form ϕ = ϕu = I(u), so ϕu(f) = f(u), we have{

ϕ∈U∗∗
∣∣ϕ(f)∈V

}
=
{
ϕu∈U∗∗

∣∣f(u)∈V
}

= I
(
{u∈U | f(u)∈V }

)
and so the canonical map I : U → U∗∗ is a homeomorphism from (U,wk) to (U∗∗,wk∗).
Also note that since I : U → U∗∗ is a norm-preserving isomorphism, we have IB = B∗∗.
By the Banach-Alaoglu Theorem, IB = B∗∗ is compact in

(
U∗∗,wk∗

)
and hence, since

I : (U,wk)→ (U∗∗,wk∗) is a homeomorphism, it follows that B is compact in
(
U,wk

)
.

To prove (4) =⇒ (1), suppose that B is compact in (U,wk). The open sets in
(U∗∗,wk∗) are generated by sets of the form

{
ϕ∈U∗∗

∣∣ϕ(f(∈ V
}

with f ∈U∗ and V ⊆ F
open. The open sets in the subspace I(U) (using the subspace topology) are generated by
the sets of the form{

ϕ∈U∗∗
∣∣ϕ(f)∈V

}
∩ I(U) =

{
ϕu∈U∗∗

∣∣ f(u)∈V
}

= I
(
{u∈U

∣∣ f(u)∈V
}

and so the canonical map I : U → U∗∗ is a homeomorphism from (U,wk) to the image
I(U) ⊆ (U∗∗,wk∗) using the subspace topology. Since B is compact in (U,wk), I(B) is
compact in I(U) ⊆ (U∗∗,wk∗) using the subspace topology, and hence I(B) is compact in
(U∗∗,wk∗) (by Theorem 4.12), and hence closed in (U∗∗,wk∗) (by Theorem 4.17). Since
I : U → U∗∗ is norm-preserving, we have I(B) ⊆ B∗∗. Since I(B) ⊆ B∗∗ and I(B)
is closed in (U∗∗,wk∗) and I(B) is dense in B∗∗ in (U∗∗,wk∗) by Goldstine’s Theorem,
it follows that I(B) = B∗∗. Since I(B) = B∗∗, the map I is surjective: indeed given
0 6= ϕ ∈ U∗∗ we have ϕ

‖ϕ‖ ∈ B
∗∗ so we can choose u ∈ B such that I(u) = ϕ

‖ϕ‖ and then

we have I
(
‖ϕ‖u

)
= ϕ.

To prove (1) =⇒ (3), suppose U is reflexive. The weak topology on U∗ is generated
by the sets of the form ϕ−1(V ) with ϕ ∈ U∗∗ and V ⊆ F open, and the weak* topology on
U∗ is generated by the sets ϕu

−1(V ) with u ∈ U and V ⊆ F open, and these are exactly
the same generating sets because I is bijective so the elements ϕ ∈ U∗∗ are the same as
the elements ϕu with u ∈ U .

To prove that (3) =⇒ (2), suppose that (U∗,wk) = (U∗,wk∗). By the Banach-Alaoglu
Theorem, B∗ is compact in (U∗,wk∗), hence in (U∗,wk). By our proof that (4) =⇒ (1),
it follows that U∗ is reflexive.

To prove (2) =⇒ (1), suppose that U∗ is reflexive. Since I : U → U∗∗ preserves norm,
it preserves Cauchy sequences and limits in the norm topology, and so I(B) ⊆ B∗∗ is
closed in U∗∗ (using the norm topology). Since I(B) is convex and closed in U∗∗ (in the
norm topology), it is closed in (U∗∗,wk) by Question 2(c) on Assignment 4. Since U∗ is
reflexive, by our proof that (1) =⇒ (3) we have (U∗∗,wk) = (U∗∗,wk∗), so I(B) is closed
in (U∗∗,wk∗). Since I(B) ⊆ B∗∗, I(B) is closed in (U∗∗,wk∗) and I(B) is dense in B∗∗ in
(U∗∗,wk∗) by Goldstine’s Theorem, we have I(B) = B∗∗ hence I(U) = U∗∗ (as above).
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