Chapter 4. Topology

Topological Spaces and Bases

4.1 Definition: A topology on a set X is a set 7 of subsets of X such that

(H)PeTand X €T,
(2) if S is any subset of 7 then |JS € T, and
(3) if S is any finite subset of 7 then (S € T.

A set X with a topology T is called a topological space. When X is a topological space
with topology T, for a set A C X, we say that A is open (in X, with respect to 7)) when
A € T and we say that A is closed (in X, with respect to 7) when A= X\ A e T.

When X is a topological space and A C X, the interior of A (in X), denoted by
A° or Intx (A), is the smallest open set contained in A (that is the union of the set of all
open sets in X which are contained in A) and the closure of A (in X), denoted by A or
Clx (A), is the largest closed set which contains A (that is the intersection of the set of all
closed sets in X which contain A).

When S and T are two topologies of X, we say that S is coarser than 7', or that T
is finer than S, when S C T. We say that S is strictly coarser than 7', or that T is
strictly finer than S, when § % T.

Recall (or verify) that the intersection of a nonempty set of topologies on X is also a
topology on X. Because of this, when X is a set and S is any set of subsets of X, there
is a unique coarsest topology 7 on X with & C 7 (namely the intersection of the set of
all topologies on X which contain &) which we call the topology on X generated by S.
As an exercise, you can verify that this topology is equal to the set of arbitrary unions
of finite intersections of elements in S (where an empty intersection is equal to X and an
empty union is equal to ().

A basis for a topology on a set X is a set B of subsets of X such that
(1) X =UB, and
(2) forall U,V € Band a € UNV, there exists W € Bwithae W CUNV.

When B is a basis for a topology on X and 7 is the topology on X generated by B (so the
elements of B are open in X with respect to 7'), we say that B is a basis for the topology T,
and the elements in B are called basic open sets in X (or in 7).

4.2 Theorem: Let X be a set, let B be a basis for a topology on X, and let T' be the
topology generated by B on X. Then for all A C X we have

(1) A € T if and only if for every a € A there exists U € B such that a € U C A, and
(2) A €T if and only if A is a union of elements of B.

Proof: Let § = {AQX‘VCLEA dUeB aEUQA}. We claim that S is a topology on X.

Note that () € S (vacuously) and X € S (because X = |JB, so given a € X we can choose
U € B with a € U). When R is any subset of S, given a € |JR we can choose U € R
with a € U and then we have a € U € R showing that |JR € S. It remains to show that
(R € S for every finite set R C S. By induction, it suffices to show that for all A, B € S
we have ANB € S. Let ABe€S. Let a € ANB. Since a € A and A € § we can
choose U € B with a € U C A. Since a € V and V € S, we can choose V' € B such that
b eV C B. Since B is a basis, we can choose W € B with a €¢ W C U NV. Then we have
aceWCUNV CANB,andso ANB €S. Thus S is a topology on X, as claimed.



We claim that for A C X, we have A € S if and only if A is a union of elements in 5.
If A € S then for each a € A we can choose U, € B such that a € U, C A, and then we
have A = |J,c 4 Ua, which is a union of elements of B. If, on the other hand, A is a union
of elements of B, say A = |JR where R C B, then given a € A we can choose U € R such
that a € U, and then we have a € U C A, showing that A € S.

Finally, we claim that S = 7. Note that when U € B we have U € S (for the deep
reason that when a € U we have a € U C U). Since S is a topology which contains B and
T is the coarsest topology which contains B, we have 7 C S. Since every topology which
contains B also contains all possible unions of elements in B, it follows that 7 contains all
such unions, and so & C 7. Thus we have S = T, as claimed, and we have proven both
parts of the theorem.

4.3 Example: In a metric space X, the set B = {B(a, T) ‘ acX,r> O} is a basis for the
metric topology on X.

4.4 Theorem: Let X be a topological space with basis B, and let A C X. Then for
a € X we have a € A if and only if ANU # () for every U € B with a € U.

Proof: For K C X, K is closed with A C K if and only if K¢ is open with ANK®¢ = (). Since
A= ﬂ{K§X|K is closed , A C K}, we have 4 = U{V§X|V isopen, ANV = (Z)}.
Thus a ¢ A if and only if there exists an open set V C X with ANV = () such that a € V.
Equivalently, a € A if and only if for every open set V C X with a € V we have ANV # .
When a € A so that ANV # () for every open set V C X with a € V, it is immediate
that ANU # () for every U € B with a € U. Suppose that ANU # () for every U € B with
a € U. Given an open set V C X with a € V, we can choose a basic open set U € B with
a € U CV and then we have ANU # 0 hence also ANV # (. Thus a € A, as required.

4.5 Example: When Y is a topological space with topology 7 and X C Y, the subspace
topology on X is the topology S = {V NnxX | Ve T}. Verify that a subset A C X is
closed in X if and only if there exists a closed set B in Y such that A = BN X. Verify
that if C is a basis for the topology 7 on Y, then B = {V NnX ‘ Ve B} is a basis for the
subspace topology S on X. Also, recall (or verify as an exercise) that in the case that Y is
a metric space and 7 is the metric topology on Y, the subspace topology on X is equal to
the topology on X induced by the metric on X obtained by restricting the metric on Y.

4.6 Example: When X and Y are topological spaces with topologies & and T, the
product topology on X x Y is the topology with basis & = {U xV ‘ UeS, Ve ’T}.
Verify that £ is in fact a basis for a topology on X x Y, and verify that when B and C
are bases for the topologies on X and Y, the set D = {U xV } UeB, Ve C} is another
basis for the product topology on X x Y. Also verify, as an exercise, that when A C X
and B C Y, the subspace topology on A x B, as a subspace of X x Y using the product
topology, is equal to the product topology on A x B where A and B use the subspace
topologies, as subspaces of X and Y.

4.7 Example: When X is a set and ~ is an equivalence relation on X, recall that the
quotient of X by ~ is the set of equivalence classes

X/~={la]|a€ X} where [a] ={z € X |z~a}

and the quotient map ¢ : X — X/~ is the map given by ¢(a) = [a]. When X is a
topological space with topology 7T, the quotient topology on X / ~ is the topology

3:{Vgx/~ ‘q‘l(V)eT}:{VQX/N‘UVGT}.



Continuous Functions and Compact Sets

4.8 Definition: A topological space X is called Hausdorff when it has the property that
for all a,b € X with a # b there exist disjoint open sets U,V C X wigtha € U and be V.
Note that when X is Hausdorff and a € X, the set {a} is closed.

4.9 Example: All metric spaces are Hausdorff because given a # b we can let r = d(a, b)

and take U = B(a, %) and V = B(b, g)

4.10 Definition: Let X and Y be topological spaces. A function f : X — Y is called
continuous when f~(V) is open in X for every open set V C Y. Equivalently, f is
continuous if and only if f~!(B) is closed in X for every closed set B C Y.

4.11 Definition: Let X be a topological space and let A C X. An open cover for A (in
X) is a set S of open sets in X such that A C (JS. When S is an open cover for A in X,
a subcover of S for A is a subset 7' C S such that A C JT. We say that A is compact
(in X)) when every open cover for A has a finite subcover.

4.12 Theorem: Let A C X CY whereY is a topological space. Then A is compact in X
(where X uses the subspace topology inherited from Y') if and only if A is compact in Y.

Proof: Suppose that A is compact in X. Let T be an open cover for Ain Y. ForeachV € T,
let Uy = VN X and note that Uy is open in X, using the subspace topology. Since A C X
and A C Uy cq V, we also have A C Uy er(VNX) =Uyer Uv. Thus S = {Uy|V € T}
is an open cover for A in X. Since A is compact in X we can choose a finite subcover, say
{Uv,,-- Uy, } of S, where each V; € T Since A C J;_, Uy, = U;_; (Vi N X), we also have
ACUi_,V;and so {Vi,---,V,} is a finite subcover of T

Suppose, conversely, that A is compact in Y. Let S be an open cover for A in X. For
each U € S, since X is using the subspace topology we can choose an open set Vi in Y
such that U = Vy N X. Then T = {VU|U € S} is an open cover of A in Y. Since A is
compact in Y we can choose a finite subcover, say {VUl, cee VUn} of T', where each U; € S.
Then we have A C J'_,(Vy, N X) =, U; and so {Uy,---,U,} is a finite subcover of S.

4.13 Remark: Let A C X where X is a topological space. By the above theorem, note
that A is compact in X if and only if A is compact in itself. For this reason, we do not
usually say that A is compact in X, we simply say that A is compact.

4.14 Definition: Let X be a topological space. We say that X has the finite intersec-
tion property on closed sets when for every set T' of closed sets in X, if every finite
subset of 7" has non-empty intersection, then 7' has non-empty intersection.

4.15 Theorem: Let X be a topological space. Then X is compact if and only if X has
the finite intersection property on closed sets.

Proof: Suppose that X is compact. Let T be a set of closed sets in X. Suppose that
T has empty intersection, that is suppose () cp A = 0. Then |J,cp A° = X so the set
S = {AC}A € T} is an open cover for X. Since X is compact, we can choose a finite
subcover, say {Alc, e ,Anc} of S for X. Then we have A; N AsN---N A, = (), showing
that some finite subset of T" has empty intersection.

Suppose, conversely, that X has the finite intersection property on closed sets. Let S
be an open cover of X. Let T'= {U¢|U € S}. Since [JS = X we have T = (US)C = 0.
Since X has the finite intersection on closed sets, there exists a finite subset of T' with empty
intersection. so we can choose Uy, Us, ---U, € S such that U;°N---NU,° = 0. It follows
that Uy U---UU, = X, so S has a finite subcover.



4.16 Theorem: Every closed subspace of a compact space is compact.

Proof: Suppose that X is compact and A C X is closed. Let S be an open cover for A.
Then SU{A°} is an open cover for X. Since X is compact, we can choose a finite subcover
T of SU{A°}. Note that 7" may or may not contain the set A° but, in either case, T'\ {A°}
is an open cover for A with 7'\ {A°} C S, so that T\ {A°} is a finite subcover of S.

4.17 Theorem: Every compact subspace of a Hausdorff space is closed.

Proof: Suppose X is Hausdorff and A C X is compact. Let b € A° = X \ A. For each
a € A, since X is Hausdorff we can choose disjoint open sets U,, V, C X with a € U, and
beV,. Since S = {Ua ! a € A} is an open cover of A, and A is compact, we can choose a
finite subcover of X, so we can choose a1, as,---,a, € A such that A CU,, U---UU,,.
The sets U = Uy, U---UU,, and V =V,, N---NV, are disjoint open sets with A C U
and b € V. This shows that for every b € A° there is an open set V =V}, with b € V}, C A°.
Thus A€ is open (it is the union of the open sets V4) and hence A is closed.

4.18 Theorem: The image of a compact space under a continuous map is compact.

Proof: Suppose that X is compact and f: X — Y is continuous. Let T be an open cover
for f(X) in Y. Since f is continuous, so that f~1(V) is open in X for each V € T, the
set S = {f_l(V)|V € T} is an open cover for X. Since X is compact, we can choose a
finite subcover, say {f~*(V1), f~*(Va), -+, f~* (Vi) } of S, with each V; € T. Then the set
{V1,Va,---,V,} is a finite subcover of T for f(X).

4.19 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f : R — R given by f(z) = %tan_l(aﬁ) sends the closed set R
homeomorphically to the open interval (—1,1).

4.20 Theorem: (The Extreme Value Theorem) A continuous map f : X — R defined on
a compact space X attains its maximum and minimum values.

Proof: Suppose X is compact and f : X — R is continuous. Since f(X) is compact, it is
closed and bounded in R. Since f(X) is bounded in R, it follows that m = inf f(X) and
M = sup f(X) are both finite real numbers, and since f(X) is closed in R it follows that
m € f(X)and M € f(X) so that we can choose a,b € X such that f(a) =m = inf f(X)
and f(b) = M = sup f(X).

4.21 Theorem: Let X and Y be topological spaces with X compact and Y Hausdorff.
Let f : X — Y be continuous and bijective. Then f is a homeomorphism.

Proof: Let ¢ = f~! : Y — X. We need to prove that g is continuous. Let A C X be
closed in X. Since X is compact and A C X is closed, it follows (from Theorem 4.12) that
A is compact. Since the map f: A — Y is continuous and A is compact, it follows (from
Theorem 4.14) that f(A) is compact. Since f(A) is compact and Y is Hausdorff, it follows
(from Theorem 4.13) that f(A) is closed. Since g = f~! we have g~ 1(A) = f(A), which
is closed. Since g71(A) is closed in Y for every closed set A in X, it follows (by taking
complements) that g=1(U) is open in Y for every open set U in X. Thus g is continuous.

4.22 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0,27) and Y is the unit circle Y = {z € C|||z|| = 1},
then the map f : X — Y given by f(t) = e'? is continuous and bijective, but the inverse
map is not continuous at 1.



Urysohn’s Lemma and The Tietze Extension Theorem

4.23 Definition: A topological space X is called normal when all one-point sets are
closed in X, and for all disjoint closed sets A, B C X there exist disjoint open sets U,V C X
with A CU and BC V.

4.24 Example: Recall (or verify) that all metric spaces are normal.

4.25 Theorem: (Urysohn’s Lemma) Let X be a normal topological space. For any
disjoint closed sets A, B C X there exists a continuous map f : X — [0,1] with f(z) =0
for all x € A and f(x) =1 for all z € B.

Proof: Let A, B C X be closed. Say [0,1]NQ = {ag, a1, as, az, - - -} where the terms aj are
distinct with ag = 0 and a; = 1. Choose disjoint open sets Uy, Vo C X with A C Uy and
B C Vj. Note that

UoﬂVo=®:>U0gVoc:>ﬁogVOCZ>ﬁoch.

Let U; = B¢ so that A C Uy C ﬁo C Uy = B°. Let n > 2 and suppose, inductively, that
we have defined open sets Ug,,U,,, - - U,, , such that when a, < a; we have U,, C U,,.
Define U, as follows. Rearrange the terms in the set {ag, a1, -+, a,} in increasing order
and say ar < a, < ay are consecutive. Since Uak C U,,, we have ﬁak NU,° =0, so we
can choose disjoint open sets U, ,V,, C X with ﬁak C U,, and U;, CV,,,, and then

U, NV, =0 = U,, CV,.© = Uy, CVE CU,.

Recursively, we have defined U, for all n > 0, so we have defined U, for all r € [0,1] N Q.
For r € Q with » < 0 we define U, = 0, and for r € Q with » > 1 we define U, = X, and
then we have defined U, for all » € Q so that whenever r < s we have U, C Us.

Define f: X — [0,1] by

f(z) =inf {reqQ ‘ zeU,}
Note that f does take values in [0,1]: indeed for all z € X, we have f(x) > 0 because
r<0=U,=0= z ¢ U, and we have f(x) < 1becauser >1= U, = X =z € U,.
Also note that when z € A we have x € Uy so that f(z) =0 and when z € B and r <1
we have U, C Uy = B¢ so that « ¢ U,., and so f(x) = 1.

It remains to show that f is continuous. We shall show that the inverse image of every
open interval is open. Let ¢,d € R with ¢ < d. Let a € f~!(c,d) so we have ¢ < f(a) < d.
Choose 7,8 € Q with ¢ < r < f(a) < s < d. We claim that a € Us \ U, C f~!(c,d). First
we make two observations: for x € X and p € Q,

(1)ifz € ﬁp then = € U, for all r > p and so f(z) < p, and
(2) if z ¢ U, then x ¢ U, for any r < p and so f(z) > p.

Since r < f(a) it follows from the first observation that a ¢ U, and since f(a) < s it
follows from the second observation that a € U, and this shows that a € U \ET On
the other hand, when x € U, \ET, since x € U it follows from the first observation that
f(z) < s, and since z ¢ U, it follows from the second observation that f(z) > r, and so
we have f(xz) € [r,s] C (¢,d). Thus we have a € U, \ U, C f~(c,d), as claimed. Since
U, \ET is open, we can choose a basic open set V witha € V C U \5T - f_l(c, d). Since
for every a € f~1(c,d) there is a basic open set V with a € V' C f~!(c,d), it follows that
f~Y(e,d) is open, so that f is continuous, as required.



4.26 Theorem: (The Tietze Extension Theorem) Let X be a normal topological space,
let A C X be closed, and let a,b € R with a < b.

(1) Every continuous map f:A— |a,b] can be extended to a continuous map g: X — [a, b].
(2) Every continuous map f:A— (a,b) can be extended to a continuous map g: X — (a,b).

Proof: Note that since [a, b] is homeomorphic to the interval [—1, 1], we may replace [a, b|
by [—1,1]. Suppose that f: A — [—1,1] is continuous.
We begin with an observation. If h : A — [—r,r| is continuous, then h_l([— T, —ED

and h™~ ([ , D are disjoint closed sets in X, so by scaling and translating the map gix?;en
by Urysohn’s Lemma, we can construct a map g : X — [— 3 %} with g(z) = —% for all
zeh([-r,—%]) and g( ) =% forall z € A1 ([%,7]). We then have |g(z)| < ’" for all
z € X, and we have |h(z) — g(z)| < % for all z € A.

Since f : A — [—1,1] is continuous, by the above observation we can construct a
continuous map g1 : X — [— 3, 5] such that |f(z) — gi(x)| < 2 for all z € A. Since

313
(f—g1): A— [— %, %] is continuous, we can apply the obove observation again to con-
struct a continuous map g2 : X — [— 2, 2] such that |f(z) — g1(z) — gg(x)} < 3 for all

2k:—1 2k—1

xr € A. Repeating this procedure we construct maps g : X — [— = 3—,€} such that

flx) — gr(x)| < %; ~ for all z € A. Since gr(z)| < zk—;l for all z € X, the series
= 3 3

> gr converges uniformly on X by the Weierstrass M-Test. Define g(x) = 2 gk (x) for
k=1
all x € X. Note that g is contmuous by uniform convergence, note that for all r e X we

have |g(z)| < Z lgr ()] < Z 2nn = 1 so that g : X — [—1,1], and note that for all
k=

x € A, since ‘f Z gr(x )} < 3n we have f(z) = ioz gr(x) = g(x), and so g extends f.
k=1

This completes the proof of Part 1.

To prove Part 2, suppose that f : A — (a,b) is continuous. Note that f is also
continuous as a map f : A — [a,b] so, by Part 1, we can extend f to a continuous map
h:X — [a,b]. Let B=h7'(a) Uh~!(b) and note that B is closed in X and B is disjoint
from A. By Urysohn’s Lemma, we can construct a continuous map k : X — [0,1] with
k(x) =0 for all x € B and k(x) =1 for all z € A. Then g = kh : X — (a,b) is continuous
on X with g(x) = h(z) = f(z) for all z € A.



Infinite Products and Tychanoff’s Theorem

4.27 Definition: Let (Xj)rex be an indexed set of sets. The cartesian product of this
indexed set is the set

II Xk:{a:K—> U Xk‘a(k:)eXk for allkeK}
keK keK

= {(ak)keK‘akeXk for all /{?EK}

For each ¢ € K we have the projection map py : [[ Xj — X given by ps((ak)rex) = ar
keK
When K = {1,2,---,n} we write

(a’k’)kEK = (a17a27"'7an) and H Xk = H Xk :Xl X XQ X X Xn'
keK k=1

When K = Z1 we write

(e.)
(ax)rex = (ap)r>1 = (a1,az2,a3,---) and J] Xp = [] Xp = X1 x X x X3 x---.
kEK k=1
When each X} is a topological space with topology 7T, the box topology on the cartesian
product is the topology with basis

B:{ H Uk‘UkGﬁ}

keK

and the product topology on the cartesian product is the topology with basis

P = { 1 Us ) Uy, € Tr with Uy, = X, for all but finitely many & € K}.
kEK
Unless otherwise stated, we shall always assume that [[ X is given the product topology.

keK
Note that when the index set K is finite, the box and product topologies are the same,

and when K is infinite, the box topology is finer than the product topology.

4.28 Theorem: Let X be a topological space and let A C X} be a subspace for each
k € K, and let [[ Xi be given the product topology.
keK
(1) If each X}, is Hausdorff then so is [[ Xk.
keK
(2) On [] Ax € ][ Xk, the product topology is equal to the subspace topology.
keK keK
(3) We have ] Ar = [] Ax.
keK kEK

Analogous results hold when []| Xy and [] Ay are given the box topology.
keK keK

Proof: The proof is left as an exercise.

4.29 Theorem: Let X}, be a topological space for each k € K, and let || X} be given the
kEK
product topology. For every topological space A and for every function f : A — [] Xk,
keK
f is continuous if and only if fy: A— X}, given by fo(x) = f(z), is continuous for all € K.

Proof: For each ¢ € K, the projection map py : erK X — Xy is continuous because when
U C X, is open, p, Y (U) = {(.%’k)ke[( ’ Ty € Ug}, which is a basic open set in [], o, X.
Thus if f is continuous then so is each component map f, : A — X, because f; = ps o f.



Suppose that each component map f, : A — X, is continuous. Note that since every
open set in [, cx X is a union of basic open sets, in order to prove that f is continuous
it suffices to prove that the inverse image of every basic open set is open. Let V be any

basic open set in [[ Xi, say V = [[ U where each Uy C X}, is open with Uy = X}, for
keK kEK
all but finitely many k € K. Say U, = X, for all k ¢ F where F is a finite subset of K.

Then we have

FHV) = {acA| f(a) €Uy for all L€ F} = () fo= H(Uy)
teF
which is open in A. ©

4.30 Example: When R¥ = [];2, R is given the box topology, and f : R — R¥ is given
by f(t) = (t,t,t,---), the component maps, given by f,(t) = t, are all continuous, but the
function f is not: indeed for the basic open set V =[], (— %, %), we have f~1(V) = {0}.

4.31 Theorem: (Tychanoff’s Theorem) The product of any indexed set of compact spaces
is compact, using the product topology.

Proof: Let Xj be compact for each k € K. We shall prove that [[ X; has the finite
intersection property on closed sets. Let T be a set of closed sets in [[ X} such that every
finite subset of T has non-empty intersection. We need to show that (7T # . By Zorn’s
Lemma, we can choose a maximal set S of subsets of [[ X with 7' C S such that every
finite subset of S has non-empty intersection (let R be the set of all such sets S and note
that for every chain C in R we have | JC € R) Note that the maximality of S implies that
S is closed under finite intersection (since if A,---, A, € S then every intersection of a
finite subset of SU{A; N---NA,} is also an intersection of a finite subset of S).

We shall show that () {A| A€ S} # 0, hence (T # 0 since if A € T then A=A € S.
Let k € K. Note that finite subsets of {pj(A) | A € S} have non-empty intersection
(because if Ay, -+, A, € Sthen pi(A1)N---Npr(A4y,) =pe(A1N---NA,) # (Z)), and hence

finite subsets of { pr(A) ‘ AeS } also have nonempty intersection. Since X} is compact, so
X}, has the finite intersection property on closed sets, it follows that {pk(A) |A €S } # ),

so we can choose ap € X such that ax € pi(A) for every A € S. We do this for each
k € K, that is for each k € K we choose a, € X with ay € pi(A) for every A € S, then

we let a = (ag)kex € [ Xk-
kEK

We claim that a € A for every A € S. Let k € K. Let U, be an open set in X, with
ar € Ug. Then for every A € S, we have ap € pr(A) N Uy so that pr(A) N Uy # () hence
pr(A)NUL £ 0 (if we had pg(A) N U, = () then pr(A) C Ux® hence pr(A) C Ux® so that
pe(A) N U, = @). For each A € S, since pi(A) N Uy # 0, we can choose b € A such that
pr(b) € Uy, that is b € pp~1(Ux), and hence p, =1 (Ux) N A # 0. Since S is closed under
finite intersection and pp ~1(Ur) N A # () for every A € S, the maximality of S implies that
pr 1 (Ug) € S. Let V be any basic open set in [ Xz with a € V, say V = [[ U where
each U, C X}, is open with ai € Uy, and with U, = X, for all k € F' where F' is a finite
subset of K. Since p, 1 (Uy) € S for every k € K and S is closed under finite intersection,
we have

V= {(xk)keK ‘ xy € Uy for all k € F} = n pk_l(Uk) e s.
keF

Since V € S and every finite subset of S has non-empty intersection, we have ANV # ()
for all A € S. Given A € S, since ANV # () for every basic open set V' in [[ X} with
a € V, it follows that a € A. Thus a € A for all A € S, so[) {A | AES} # (), as required.
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Nets

4.32 Definition: A directed set is a set K together with a binary relation < such that

(1) for all @ € X we have a < q,
(2) for all a,b,c € X, if a <band b < ¢ then a < ¢, and
(3) for all a,b € X there exists ¢ € X such that a < ¢ and b < c.

When a < b we also write b > a. A net in a topological space X is an indexed set (xx)kex
in X whose index set K is a directed set. When (x)reck is a net in X and a € X, we say
that (xx)r>x converges to a (in X), and we write x; — a (in X), when for every open
set U C X with a € U there exists m € K such that for all kK € K, if k > m then z € U.

4.33 Theorem: In a Hausdorff topological space, the limit of a convergent net is unique.
Proof: The proof is left as an exercise.

4.34 Theorem: Let X be a topological space, let A C X, and let a € X. Then a € A if
and only if there is a net (xg)rer in A with z;, — a in X.

Proof: Let B be any basis for the topology on X (for example, we could let B be the
topology on X) and let B, = {U € B ‘ acU} (the set of basic open neighbourhoods of a).

Suppose that a € A. Note that, by Property 2 in the definition of a basis, B, is a
directed set under reverse inclusion (that is U <V <= V C U). By Theorem 4.4, since
a € A we have ANU # () for every U € B,, so we can choose an element z, € ANU for
every U € B, to obtain a net (Z'U)UGBQ in A. Then we have z,; — a in X because for
every open set W in X with a € W we can choose a basic open set U € B, with U C W,
and then for all V' € B, with V' > U we have z,, € V. CU C W.

Suppose, conversely, that there is a net (xp)gex in A with x5 — a in X. Then for
every basic open set U € B, we can choose k € K with 23, € U, and so we have ANU # 0.
Thus a € A by Theorem 4.4.

4.35 Theorem: Let X and Y be topological spaces, let A C X, andlet f : AC X — Y.
Then f is continuous on A (using the subspace topology in X ) if and only if for every
a € A and every net (xg)rex in A, if x, — a in X then f(zy) — f(a) inY.

Proof: Suppose f is continuous on A. Let a € A and let (xx)rex be anet in A with z;, — a
in X. Let V C Y be open with f(a) € V. Since f is continuous on A, f~1(V) is open in A.
Choose an open set U C X such that f~1(V) = U N A. Since 2 — a in X, we can choose
m € K so that k > m = x5, € U. Then when k > m we have 2, c UN A = f~1(V) so
that f(z) € V. This shows that f(zr) — f(a) in Y, as required.

Suppose, conversely, that f is not continuous on A. Choose an open set V C Y such
that f~(V) is not open in A. Then the set B = A\ f~(V) is not closed in A, so we have

B G Cla(B) C Clx(B) = B.

Choose an element a € Cl 4(B) \ B. Since a € Cl4(B) C Aanda ¢ B=A\ f~1(V), we
have a € f~1(V) so that f(a) € V. Since a € B, by Theorem 4.34 we can choose a net
(1 )kex in B with 7, — a in X. Note that for each k € K, since 7, € B = A\ f~1(V) we
have z ¢ f~1(V) so that f(x)) ¢ V. Since V is open in Y, its complement V¢ =Y \ V is
closed in Y so that V¢ = V¢ in Y. Since (ﬂxk))keK is a net in V¢ and f(a) ¢ V¢ = Ve,
it follows from Theorem 4.34 that f(xx) - f(a) in Y.



Strong and Weak Topologies and The Banach-Alaoglu Theorem

4.36 Definition: Let Y be a topological space and let (fi)rex be an indexed set of
functions fi : X — Y where each X}, is a topological space. The final topology (or the
srong topology) on Y (with respect to the indexed set (fx)rex) is the finest topology on
Y such that each of the functions f is continuous. A subset U C Y is open in the strong
topology if and only if fk_l(V) is open in X}, for every open set V C X and every k € K.

4.37 Example: When X is a topological space and ~ is an equivalence relation on X
and g : X — X/N is the quotient map given by ¢(a) = [a] = {xeX | x ~ a}, the quotient
topology on X / ~ is equal to the final topology with respect to the quotient map (so the
indexed set of maps consists of a single map).

4.38 Definition: Let X be a topological space and let (fi)rcx be an indexed set of
functions fi : X — Y), where each Y} is a topological space. The initial topology (or the
weak topology) on X (with respect to the indexed set (fx)rex) is the coarsest topology
on X such that each of the functions fj is continuous, that is the topology on X generated
by the set {fi, ' (U) | k€ K,U€Y}}.

4.39 Example: When Y is a topological space and X C Y, the subspace topology on X
is equal to the initial topology on X with respect to the inclusion map.

4.40 Example: When X, is a topological space for each k£ € K, the product topology on
the cartesian product HjeK X, is equal to the initial topology with respect to (px)r>xk,
where py, : H]EK X,; — X}, is the projection map given by p(z) = xx.

4.41 Definition: Let U be a normed linear space over F = R or C. The weak topology
on U is the initial topology on U with respect to U* (that is with respect to the indexed
set (f)er*), that is the topology generated by the sets of the form f~1(V) where f € U*
and V is an open set in F.

The weak-star topology (written as the weak™ topology) on U* is the initial topology
on U* with respect to the indexed set (F,)uey where F,, € U** is given by F,(f) = f(u),
that is the topology generated by the sets of the form F, (V) = {reur | f(w) e V}
where v € U and V is an open set in F.

4.42 Theorem: Let U be a normed linear space.

(1) For every a € U and every net (xy)kex in U, we have x, — a in U using the weak
topology if and only if f(xy) — f(a) in F for every f € U*.

(2) For every g € U* and every net (fi)rex in U*, we have fi — g in U* using the weak”
topology if and only if fy(z) — g(x) in F for every x € U.

Proof: We prove Part 1 (the proof of Part 2 is similar). Let a € U and let (zy)rex be
a net in U, and suppose that xy — a in U, using the weak toplogy. For every f € U™,
since x; — a in U using the weak topology, and since f : U — F is continuous when U is
using the weak topology, it follows (from Theorem 4.35) that f(zr) — f(a) in F. Suppose,
conversely, that f(xx) — f(a) in F for every f € U*. Let W C U be open in U, using
the weak topology, with a € W. Since the weak topology on U is generated by sets of
the form f=1(V) with f € U* and V open in F, it follows that W is an arbitrary union
of finite intersections of elements of this form. Since a € W, a is contained in a finite
intersection of elements of this form, say a € fi (Vi) N---N £, *(V,,). For each j, since
fi(zr) — fi(a) in F and a € f;7'(V;) so that f;(a) € V}, we can choose m; € K so that
k>mj = fij(zx) CV; = xx € f; 1(V;). We then choose m € K with m > m; for all 4,
and then £k > m = x5, € ﬂfj_l(Vj) C W. Thus x} — a in U, as required.
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4.43 Remark: Note that when U is an infinite-dimensional normed linear space, and
U* is an infinite dimensional Banach space using the operator norm, the closed unit ball
By (0,1) = {feU* || f|l <1} is not compact in U* by Riesz’s Theorem (Theorem 3.8).

4.44 Theorem: (The Banach-Alaoglu Theorem) For a normed linear space U, the closed
unit ball By~«(0,1) = {fEU* ! IfIl < 1} is compact in U* using the weak™ topology.

Proof: Let B = By/(0,1) = {z€U | ||lz|| < 1} and let B* = By (0,1) = {feU* || f|| < 1}.

Let D = Bp(0,1) = {t€F|[|¢t] <1} and let P = D = ] D using the product topology.
ueB
Let R : B* — P be the restriction map (an element f € B* is a linear map f : U — F with

|fIl <1, and R(f) is the restriction of f to B, that is R(f)(z) = f(z) for x € B). Note
that when f € B*, the restriction R(f) is in fact an element of P because when x € B we
have [|f|| <1 and |lz|| < 1 so that |f(z)| <[ f|[lz]| <1 hence R(f)(z) = f(z) € D, and
so R(f): B — D (and P = D? is the set of all functions from B to D).

Note that R is injective because given f,g € B*, if R(f) = R(g) then f(x) = g(x)
for all x € B (that is for all x € U with ||z|| < 1) and hence f(z) = g(z) for all z € U
(because f and g are linear) so that f = g.

We claim that R is continuous. Recall that a map from a topological space to a
cartesian product (using the product topology) is continuous if and only if each of its
component functions is continuous, so it suffice to show that R, is continuous for all
u € B, where R, : B* — D is given by R,(f) = R(f)y = R(f)(u) = f(u). Let u € B.
To show that R, : B* C U* — D C F is continuous, we shall use Theorem 4.35 (the
characterization of continuity by nets). Let (fx)kex be a net in B*, let ¢ € B*, and
suppose fr — ¢ in B* using the weak™ topology. Then we have fi(x) — g(z) in F for all
x € U, and hence R, (fx) = fx(u) — g(u) = R, (g) for all u € B. Thus R, is continuous.

We claim that R(B*) is closed in P. Let p € R(B*). We need to show that p € R(B*.
By Theorem 4.34 (the characterization of closure by nets) we can choose a net in R(B*)
which converges to p in P, so we can choose a net (fx)rex in B* such that R(fx) — p
in P. Since each coordinate projection on P is continuous, we have R(f;)(u) — p(u) in
D, that is frx(u) — p(u) in D, for each u € B. Since each fi : U — F is linear, it follows
that the map p: B — D C F is locally linear, meaning that for all z,y € U and all t € F,
if z,y,x +y € B then p(z +y) = p(z) + p(y) and if z,tx € B then p(txr) = tx. Since
p: B — F is locally linear, we can extend p (uniquely) to a linear map g : U — F (given
z € U we choose 0 # r € F so that rz € B and define g(z) = 1g(rz)). Since the restriction
of g to B is equal to the map p, and p: B — D, we have ||g|| < 1 so that g € B*, and we
have R(g) = p so that p € R(B*), as required.

Since R : B* — P is injective, it gives a bijective map R : B* — R(B*). We claim
that the inverse map R™! : R(B*) — B* is continuous. Let (qx)rex be a net in R(B*)
and let p € R(B*) with g, — p in R(B*). Let fr = R™'(qx) € B* so that qx = R(f).
Then we have R(fr) — p in R(B*) C P. As above, we have fx(u) — p(u) for all u € B,
and p : B — I extends (uniquely) to a linear map ¢g : U — F, and then g € B* and we
have R(g) = p so that p = R71(g). Since fy,g : U — F are linear and fi(u) — g(u)
for all u € B, it follows that fi(x) — g(x) for all x € U. Since fr,g € B* C U* and
fr(z) = g(x) for all z € U, it follows that fr — g in U* using the weak™ topology, that is
R7Y(qx) — R7(p) in U* using the weak™ topology. Thus R~! is continuous, as claimed.

Since P is compact by Tychonoff’s Theorem and R(B*) is closed in P, it follows that
R(B*) is compact. Since R : B* — R(B*) is a homeomorphism, B* is also compact.
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Locally Convex Topological Vector Spaces

4.45 Definition: A topological vector space over F = R or C is a vector space with a
Hausdorff topology such that the product and sum maps p: FxU — U and s : UxU — U,
given by p(t,z) = tx and s(x,y) = x + y, are both continuous (where F x U and U x U
use the product topology). When U is a topological vector space, the linear dual of U
and the continuous dual of U are the spaces

U#:{f:U—>F|fislinear},
Ur = {f U —F | f is linear and Continuous}.

A topological vector space is said to be locally convex when its topology has a basis
which consists of convex sets.

4.46 Example: When U is a normed linear space, U, (U,wk) and (U*, wk™) are locally
convex topological vector spaces. The metric topology on U has a basis consisting of open
balls, which are convex, and it is Hausdorff as are all metric spaces. The weak topology
on U is generated by sets of the form f~1(V) where f € U* and V is an open ball in
F, and these sets are convex. A basis for the weak topology is given by the set of finite
intersections of such sets f~1(V), and all such finite intersections are convex. To see that
the weak topology is Hausdorff, let u,v € U with u # v. Define f : Span{v — u} — F by
f (t(v — u)) = t. By the Hahn-Banach Theorem we can extend f to obtain a continuous
linear map f € U* with f(v) — f(u) = f(v — u) = 1. Then the sets U = f~*(B(f(u), 3))
and V = ffl(B(f(v), %)) are disjoint basic open sets in (U, wk) with v € U and v € V.
We leave it as an exercise to verify that (U*,wk") is locally convex.

4.47 Note: Let X and Y be topological spaces and let a € X and b € Y. Using the
product topology in X X Y, the inclusion maps j: X - X xY and k:Y — X X Y given
by j(z) = (z,b) and k(y) = (a,y) are continuous.

Proof: We show that j is continuous (the proof that k is continuous is the same). Let
V C X x Y be open (in the product topology). For each p € V, choose open sets I, C X
and J, € Y such that pe I, x J, CV. Then V = Upev I, x Jp, so

iV = Ui (L xJ)=U {x€X|x€Ip7b€Jp}: U L
peV peV peV,beJ,

which is open in X, so j is continuous, as required.

4.48 Note: Let U be a topological vector space over F = R or C, let a € U and let
0 # r € F. The translation 7, : U — U given by 7,(x) = x + a and the scaling . : U — U
given by o,(z) = rz are homeomorphisms.

Proof: The translation 7, : U — U is the composite 7, = so j, where j : U — F x U is the
inclusion j(z) = (z,a) and s : U x U — U is the summation map s(z,y) = = + y, and so
every translation 7, is continuous, and the inverse of the translation 7, is the translation
T_q, which is also continuous. Similarly, the scaling map o, : U — U is the composite
o, =pok where k: U — F x U is the inclusion k(z) = (r,z) and p : F x U — U is the
product map p(t,x) = tz, so every scaling map o, with r € F is continuous, and when
r # 0, o, is invertible and the inverse of o, is the scaling map /., which is continuous.
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4.49 Note: When U is a real topological vector space and ACU, we have A° C Core(A).

Proof: Let a € A° and choose an open set V in U with a € V' C A. Recall that a € Core(A)
when for every u € U there exists r > 0 such that a + tu € A for all t € (—r,r). Let
u € U. Since the inclusion map j : R — R x U given by j(t) = (t,u) is continuous,
and the product map p : R x U — U given by p(t,x) = tx is continuous, the composite
f=poj:R — U, given by f(t) = tu, is continuous. Since the inclusion map k : U — U xU
given by k(y) = (a,y) is continuous, and the summation map s : U x U — U given by
s(z,y) = x + y is continuous, the composite g = sok : U — U given by g(u) = a + u is
continuous. Thus the composite h = go f : R — U given by h(t) = a + tu is continuous.
Since V' C U is open and h is continuous, h~1(V) is open in R. Since g(0) = a € V
so that 0 € g~ 1(V), we can choose r > 0 such that (—r,7) C ¢g=1(V). Then we have
a+tu=g(t) eV C Aforallte (—rr),andsoac Core(A), as required.

4.50 Theorem: (Hahn-Banach Separation Theorem for Real Topological Vector Spaces)
Let U be a topological vector space over R and let ) # A, B C U be disjoint convex subsets.

(1) If A is open then there exists 0 # f € U* and ¢ € R such that f(x) < ¢ < f(y) for all
r € Aandy € B.

(2) If U is locally convex and A is compact and B is closed then there exists 0 # f € U*
and c € R such that f(z) < c¢ < f(y) forallz € A and y € B.

Proof: To prove Part 1, suppose that A is open. As in the proof of the Hahn-Banach
Separation Theorem (Theorem 3.20), let a € A, let b € B and let C = A— B —a+b. Note
that C' is convex (because sums of convex sets are convex) and C' is open (because C is
the union of the open sets A —y —a+ b with y € B) and 0 € C and b—a ¢ C (because A
and B are disjoint so that 0 ¢ A — B). Note that 0 € C° C Core(C) by the above note.
Let p be the Minkowski functional of C, given by p(z) = inf {7“ >0 ‘ %x eC }, and recall
that p(z) <1 for all x € C and p(b—a) > 1. Let f : U — R be the linear map constructed
in the proof of Theorem 3.20 with f(b—a) = p(b—a) and f(x) < p(x) for all x € U, and
recall that f(z) < f(y) for all z € A and y € B. Let ¢ = sup{f(z)|z € A} so that
f(z) <ec< f(y) forall z € A and y € B.

We claim that the map f : U — R is continuous (so that f € U*). Let V C R be
open. Let a € f~(V). Chose r > 0 so that B(f(a),r) € V. The set C N —C is open
in U with 0 € C' N —C. By translating and scaling, the set a + r(C' N —C) is open in U
with a € a+r(CN—C). For all z € a+ r(C N —C), we have 1(z —a) € CN —C, so that
+1(z —a) € C, and hence £f (3 (z —a)) = f(+ L(z —a)) <p(+ L(z—a)) <1 so that
|1 f(z—a)| <1, and hence |f(:1:) — f(a)| < rsothat f(z) € B(f(a),r) CV. Thus f~*(V)
is open, and hence f is continuous, as claimed.

We claim that since A is open and f # 0 and f(x) < ¢ for all x € A, we must have
f(z) < cforall x € A. Suppose, for a contradiction, that z € A with f(z) = ¢. Since f # 0
we can choose u € U so that f(u) # 0 and, by replacing u by —u if necessary, we can choose
u so that f(u) > 0 (to be specific, we can choose u = b—a so that f(b—a) =p(b—a) > 1).
Since A is open, we have z € A° C Core(A) so we can choose r > 0 so that v +tu € A
for all t € (—r,7). Then we have z + u € A and f(z + Su) = f(z) + 5 f(v) > f(z) =c,
giving the desired contradiction. Thus f(z) < ¢ for all x € A, as claimed.

We remark that if B is also open, we have f(z) < ¢ < f(y) for all x € A and y € B.
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To prove Part 2, suppose that U is locally convex and A is compact and B is closed.
We claim that there exists an open convex set C' with 0 € C such that A+ C C B¢. For
each a € A, since B¢ is open and U is locally convex we can choose an open convex set C,
with 0 € C, such that a+2C, C B¢. The set {a—i— Ca| aeA} is an open cover of A, which is
compact, so we can choose ay, -+, a, € A so that A C |J;_,(ax+ C,). Let C =;_; Ca,
and note that C is an open convex set with 0 € C. For each a € A we can choose an index
k such that a € ar+ C,, and then we have a + C € arp+C,, +C C a,+2C,, C B€. Since
a+C C B¢ for all a € A, we have A + C C B¢, as required. Since A+ CNB = () we
have A—f—%C’ NnB-— %C’ = (). Since A—f—%C’ and B— %C are nonempty disjoint open convex
sets, it follows from Part 1 (and the final remark at the end of its proof) that there exists
0# f € U* and ¢ € R such that f(z) < ¢ < f(y) for all x € A—l—%C’, yeB-— %C, hence
also for allz € A, y € B.

4.51 Theorem: (The Hahn-Banach Separation Theorem for Topological Vector Spaces)
Let U be a topological vector space over F = R or C and let ) # A, B C U be nonempty
disjoint convex subsets.

(1) If A is open then there exists 0 # g € U* and ¢ € R such that Re (g(z)) < ¢ < Re (g(y))
for allx€ A, ye B.

(2) If U is locally convex and A is compact and B is closed then there exists 0 # g € U*
and c € R such that Re (g(z)) < ¢ < Re(g(y)) forallz € A and y € B

Proof: This follows immediately from the real version (Theorem 4.50) because given a
continuous real-linear function f : U — R we can define g : U — C by g(z) = f(z)—i f(iz)
and then g is a continuous complex-linear function with Re (g(z)) = f(x) for all z € U.
We leave it as an easy exercise to verify that g is complex-linear, but let us explain why
g is continuous. The map k : U — U given by k(x) = —if(ix) is continuous by Note 4.48
because it is the composite k = 0_; o f o 0; where o; and o_; are scaling maps. The map
h:U — U x U given by h(z) = (f(x),k(z)) is continuous by Theorem 4.29 (a function
into a product space is continuous when its component maps are continuous). Our map
g:U — U given by g(z) = f(x)—if(ix) is continuous because it is the composite g = soh
where s : U x U — U is the sum map s(z,y) =z + y.
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Reflexive Spaces

4.52 Theorem: Let U be a normed linear space. The map I : U — U** given by
I(u)(f) = f(u) is a norm preserving (hence injective) linear map.

Proof: It is easy to see that I is linear. Let us show that I is norm-preserving. Let
w e U. Forall f €U with | f|| <1 we have [I(u)(f)| = |f(u)] < ||f]l|ull < ||lul|, and
it follows that ||I(u)|| < ||u||. On the other hand, by Corollary 3.13 to the Heine-Banach
Theorem, we can choose f € U* with || f|| = 1 such that f(u) = ||u||, and then we have
[T(w)(f)| = | f(w)| = ||u|l, and it follows that ||I(w)|| > |lul|. Thus I preserves norm.

4.53 Definition: When U is a normed linear space, the injective norm-preserving linear
map [ : U — U** given by I(u)(f) = f(u) is called the canonical map from U to U**
We say that U is reflexive when I is also surjective, so that [ is a norm-preserving
isomorphism from U to U**.

4.54 Example: Here are a few examples.

(1) Every finite-dimensional normed linear space is reflexive. Indeed the canonical map
I :U — U* is an injective linear map on finite-dimensional vector spaces, and we have
dim [(U) =dimU = dim U* = dim U** so that I must be bijective.

(2) Every Hilbert space is reflexive. Indeed when H is a Hilbert space, by the Riesz
Representation Theorem for Hilbert Spaces and the definition of the inner product on H*
(Theorem 2.41 and Definition 2.42) we have a bijective linear (or conjugate-linear) map
¢ H — H* given by ¢(u)(x) = (z,u), and a bijective linear (or conjugate-linear) map
U1 B — H™ given by ¢(£)(g) = (f,9) = (¢ '(9);¢~'(f)}, and then the composite
Yo H — H** is the bijective linear map given by

W) (w)(f) = ¥ (6(w)(f) = (f. (u) = (u, ¢ () = &(¢~ () (w) = f(w).
So the canonical map [ is equal to the composite ¥ ¢, which is bijective.
(3) For 1 < p < oo, the space ¢, is reflexive. Indeed, given p with 1 < p < oo, let ¢ be
the conjugate of p so we have % + % = 1. By the Riesz Representation Theorem for the ¢,
Spaces (Theorem 1.28), we have isomorphisms ¢ : £, — £," and v : £, — £," given by

o0 oo

P(b)(a) = > arby and Y(a)(b) = > apby

k=1 k=1
where a € ¢, and b € {,, and the isomorphism ¢! : £," — /, gives the isomorphism
(=T 0, — £, given by (¢~1)T(g) = g o ¢. The composite (¢~ )T : £, — £, is a
bijective linear map. For a € £, and f € £,", we have

(6~ T)(@)(f) = (6T (1) (f) = (¥(a) 0 6~1)(f) = ¥(a) (6~ (f))
= S a(67(f), = é(¢ (1) (a) = f(a).

k=1
So the canonical map I is equal to the composite (¢~1)T4, which is bijective.
(4) ¢1 is not reflexive. Indeed we know, from the Riesz Representation Theorem for the
¢, spaces (Theorem 1.28), that ¢;" = (o, hence ;™" = (..*. If we had ¢; = ¢, then
¢, would be separable (because £ is separable) so £.,* would be separable (because
(o™ = 01™") and hence £, would be separable by Corollary 3.15, but £, is not separable.
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4.55 Theorem: Let U be a locally convex space. Let I : U — U** be the canonical map.
(1) (U, wk)" =U".

(2) (U*, wk*)" = I(U).

Proof: To prove Part 1, let f : U — [F be a linear map. If f € U* then f is continuous on
(U, Wk) because the weak topology, by definition, is the coarsest topology on U for which
every element f € U* is continuous. If f € (U, Wk)*, then for every open set V C F,
the set f~1(V) is open in (U, Wk), so f~1(V) is also open in U (using the norm topology,
which is finer than the weak topology), and hence f is continuous on U (using the norm
topology).

To prove Part 2, let ¢ : U* — F be a linear map. If ¢ = I(u) for some u € U, then ¢ is
continuous on (U * Wk*) because the weak™® topology, by definition, is the coarsest topology
for which every map of the form I(u) with v € U is continuous. Suppose ¢ € (U*, Wk*)*.
Then go_l(B(O, 1)) is open in (U*,Wk*), and so ¢! (B(O,l)) is an arbitrary union of
finite intersections of sets of the form {f € U*|f(u) € V} where u € U and V C F is
open. In particular, the element 0 € U™ lies in one of those finite intersections, so we
can choose elements uy,---,u, € U and open sets Vi,---,V,, CF (all containing 0) such
that (,_, {f € U* | f(ug) € Vi} € 71 (B(0,1)). Choosing r > 0 small enough so that
B(0,r) C Vj, for every k, we have

N {revu||fw)] <r} Se ' (BO,1).
k=1

Thus for all f € U*, if |f(ug)| < r for all 1 < k < n then |¢(f)| < 1. It follows that
if f(ug) = 0 for all 1 < k < n then ¢(f) = 0: indeed if f(ux) = 0 for all k£ then for
all n € ZT we have |(nf)(ur)| = 0 so that |p(nf)| < 1 and hence |p(f)| < L. Letting
or = I(ug) so that i(f) = f(ug), we have ,_, ker(p,) C kerp, and it follows from
linear algebra that ¢ € Span{p1,---,¢n}, say ¢ = > cxpk. Then for all f € U* we have
o(f) = cror(f) = erflug) = f(chuk) and hence ¢ = I(u) where u = cpug.
4.56 Theorem: (Goldstine’s Theorem) Let U be a normed linear space. Let I : U — U**
be the canonical map. Then I(By(0,1)) is dense in By« (0,1) in the space (U**, wk*).

Proof: Let B = By;(0,1) C U and B** = By+~(0,1) C U**, and let I(B) denote the closure
of I(B) in (U**,wk™). Let J : U* — U*** be the canonical map given by J(f)(¢) = ¢(f)

where f € U* and ¢ € U**. Suppose, for a contradiction, that B**\ I(B) # () and choose
¢ € B*\ I(B). Then {p} and I(B) are disjoint nonempty convex sets in (U**, wk*) with
{¢} compact. By the Hahn-Banach Theorem for Topological Vector Spaces, applied to
the locally convex space (U**,Wk*)* = J(U*) C U**, we can choose g € U* and ¢ € R
such that

Re ((Jg)(1)) < c < Re((Jg)(p)) for all ¢ € I(B).
This implies that Re (¢/(g)) < ¢ < Re (¢(g)) for all ¢ = I(u) € I(B), that is
Re (g(u)) < ¢ <Re(p(g)) forall ue B.
In particular, since 0 € B we have 0 = Re ( (0)) <c. Let h= %g € U*, so we have
Re (h(u)) <1 < Re (p(h)) forall ue B.

(
Given u € B (that is given v € U with ||u|| < 1) we choose § € R such that h(u) = |h(u)|e?
and then we have |h(u)| = Re (|h(u)|) = Re (e7*h(u)) = Re (h(e~"u)) < 1. This shows
that ||h|| < 1. But then we have 1 < Re (¢(h)) < |¢(h)| < ¢l [|2]] < 1 which is impossible.
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4.57 Theorem: Let U be a Banach space. Then the following are equivalent:

(1) U is reflexive.

(2) U* is reflexive.

(3) The weak topology on U* is equal to the weak™ topology on U*.

(4) The unit ball By (0,1) = {z €U | ||z|| < 1} is compact in U using the weak topology.

Proof: Let B = By(0,1) CU, B* = By-(0,1) C U* and B** = By«-(0,1) C U**, and let
I:U — U™ be the canonical embedding given by I(u)(f) = f(u).

To prove that (1) = (4), suppose that U is reflexive, that is suppose that I : U — U**
is bijective. The weak topology in U is generated by sets of the form {u e U } flu) eV}
with feU* and V CTF open, and the weak™ topology in U** is generated by the sets of
the form {gpéU**! o(f) EV} with feU* and V CF is open. Since every ¢ € U** is of the

form ¢ = ¢, = I(u), so v, (f) = f(u), we have
{oeU™|pe(f) eV} ={p.cU™|f(w) eV} =I({uelU]| f(u)eV})

and so the canonical map I : U — U** is a homeomorphism from (U, wk) to (U**, wk™).
Also note that since I : U — U** is a norm-preserving isomorphism, we have IB = B**.
By the Banach-Alaoglu Theorem, IB = B** is compact in (U**,Wk*) and hence, since
I: (U,wk) — (U**,wk") is a homeomorphism, it follows that B is compact in (U, Wk).

To prove (4) = (1), suppose that B is compact in (U,wk). The open sets in
(U**,wk™) are generated by sets of the form {o € U**|o(f(€V} with f€U* and V CF
open. The open sets in the subspace I(U) (using the subspace topology) are generated by
the sets of the form

{oeU™ (/) eVinI(U) ={o,ecU™| flu)eV} =I({uelU|flu) eV}

and so the canonical map I : U — U** is a homeomorphism from (U, wk) to the image
I(U) C (U**,wk") using the subspace topology. Since B is compact in (U, wk), I(B) is
compact in I(U) C (U**, wk™) using the subspace topology, and hence I(B) is compact in
(U**,wk™) (by Theorem 4.12), and hence closed in (U**, wk™) (by Theorem 4.17). Since
I : U — U*" is norm-preserving, we have I(B) C B**. Since I(B) C B** and I(B)
is closed in (U**,wk") and I(B) is dense in B** in (U**,wk") by Goldstine’s Theorem,
it follows that I(B) = B**. Since I(B) = B**, the map I is surjective: indeed given

0 # ¢ € U** we have mf—H € B** so we can choose u € B such that I(u) = m and then

we have I([jo]|u) = ¢.

To prove (1) = (3), suppose U is reflexive. The weak topology on U* is generated
by the sets of the form o~1(V) with ¢ € U** and V C F open, and the weak* topology on
U* is generated by the sets ¢, ~1(V) with u € U and V C FF open, and these are exactly
the same generating sets because I is bijective so the elements ¢ € U** are the same as
the elements ¢,, with u € U.

To prove that (3) = (2), suppose that (U*, wk) = (U*, wk™). By the Banach-Alaoglu
Theorem, B* is compact in (U*, wk™), hence in (U*, wk). By our proof that (4) = (1),
it follows that U* is reflexive.

To prove (2) = (1), suppose that U* is reflexive. Since I : U — U** preserves norm,
it preserves Cauchy sequences and limits in the norm topology, and so I(B) C B** is
closed in U** (using the norm topology). Since I(B) is convex and closed in U** (in the
norm topology), it is closed in (U**,wk) by Question 2(c) on Assignment 4. Since U* is
reflexive, by our proof that (1) = (3) we have (U**, wk) = (U**,wk™), so I(B) is closed
in (U**,wk™). Since I(B) C B**, I(B) is closed in (U**,wk™) and I(B) is dense in B** in
(U**,wk™) by Goldstine’s Theorem, we have I(B) = B** hence I(U) = U** (as above).
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