Chapter 3. Banach Spaces

Finite Dimensional Normed Linear Spaces

3.1 Example: Recall, from linear algebra, that when U and V are non-trivial finite
dimensional inner product spaces over R and F': U — V is a linear map, the closed unit
ball in U is compact (so that ||Fz|| attains its maximum on the closed unit ball) and we
have

|FIl = max {||Fall | = € U, |}z = 1} = | Full = VX
where A is the largest eigenvalue of F*F' : U — U and u is a unit eigenvector for .

3.2 Theorem: Let U be an n-dimensional normed linear space over R. Let {uy, -+, u,}
be any basis for U and let F' : R™ — U be the associated vector space isomorphism given

by F(t) = > tgus. Then both F and F~! are Lipschitz continuous.
k=1

n 1/2
Proof: Let M = ( Z ||uk||2> . For t € R™ we have

|E@®)| = H Z tkukH < Z |tk| [Juk|| , by the Triangle Inequality,
n 1/2
< ( >tk ) ( > HukH2> , by the Cauchy-Schwarz Inequality,
k=1 k=1
= Mjt].

For all 5,t € R, ||F(s) — F(t)|| = [|[F(s — t)|| < M ||s — t]|, so F is Lipschitz continuous.

Note that the map N : U — R given by N(z) = ||x|| is (uniformly) continuous, indeed
we can take = € in the definition of continuity. Since F and N are both continuous, so is

the composite G = NoF : R™ — R, which given by G(t) = HF H By the Extreme Value
Theorem, the map G attains its minimum value on the unit sphere {¢t € R"|||t| = 1},
which is compact. Let m = ||Hﬁm1 G(t) = ”rrﬁm HF H Note that m > 0 because when
t ¢
t # 0 we have F(t) # 0 (since F' is a bijective linear map) and hence [|F(t)| # 0. For
t € R, if ||t|| > 1 then we have H T | =1 so, by the choice of m,
HF ‘ = |l HF Tell H > [t -m > m.
It follows that for all t € R™, if HF H < m then ||t|| < 1. Since F' is bijective, it follows
that for € U, if ||z|| < m then ||[F~*(z)|| < 1. Thus for all # € U, if z = 0 then
|F~1(z)]| =0= % and if x # 0 then since Hﬁ” = m we have
-1 _ =] [lz]
HF (x)H = m H ||m|| H > 7-
For all z,y € U, we have ||[F~'(z) — F~'(y)|| = [|[F 'z —y)|| < L [lz =y, so F~*

Lipschitz continuous.

3.3 Corollary: When U and V are normed linear spaces with U finite-dimensional, every
linear map F' : U — V' is Lipschitz continuous.

3.4 Corollary: When U is a finite-dimensional vector space, any two norms on U induce
the same topology, and a sequence converges in one norm if and only if it converges in the
other, and a sequence is Cauchy in one norm if and only if it is Cauchy in the other.
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3.5 Definition: Let Y be a metric space and let () # X C Y. Recall that for y € Y we
define the distance between y and X to be

d(y, X) = inf {d(y,z)|z € X }.

Recall (or prove) that when X is compact, the minimum value of d(y, x), € X is attained
and so we can choose x € X such that d(y,z) = d(y, X).

3.6 Theorem: Let W be a normed linear space and let U C W be a finite-dimensional
subspace. Then for every w € W there exists u € U such that d(w,u) = d(w,U).

Proof: Let w € W. If w € U we can take u = w to get d(w,u) = 0 = d(w,U). Suppose
that w ¢ U. Let d = d(w,U) and note that since U is closed we have d > 0 (since we can
choose 7 > 0 so that B(w,7) NU = @ and then d > r). Let K = B(w,d + 1) N U. Note
that d(w, K) = d(w,U). Indeed, since K C U we have d(w, K) > d(w,U) = d and, on the
other hand, for any 0 < € < 1 we can choose u € U with d < d(w,u) < d+ € < d+ 1, and
then we have u € K hence d(w, K) < d(w,u) < d+e¢. Since K is closed and bounded in U,
and U is a finite dimensional vector space (so we have a bijective map F' : R"™ — U with
F and F~! both Lipschitz continuous), it follows that K is compact. Since K is compact
we can choose u € K such that d(w,u) = d(w, K) = d(w,U).

3.7 Lemma: Let W be a normed linear space and let U & W be a proper closed subspace.
For every 0 < r < 1 there exists an element w € W\U with |w|| = 1 such that d(w,U) > r.

Proof: Let 0 < r < 1. Since U % W we can choose v € W\ U. Let d = d(v,U) and note

that since U is closed we have d > 0. Since d = inf {|lu — v|| |u € U} we can choose u € U
such that d < [|v —u| < 4. Let w = To—uy- Then we have |lw|| = 1 and for all x € U we

have
V—U
lv—ull

-d=r.

|z —wl| = Hx — } = ”Uiu” . HHU —ul|lr+u— v|| >

ISW i

3.8 Theorem: (Riesz’s Theorem) Let U be a normed linear space. Then U is finite-
dimensional if and only if the closed unit ball in U is compact.

Proof: Suppose that U is finite-dimensional. Let B = {uj,us,--,u,} be a basis for U

and let F' : R™ — U be the isomorphism given by F(t) = > txug. By Theorem 3.2, F
k=1

and F~! are continuous. Since F' is continuous, F~! (E(O, 1)) is closed, and since F~! is
continuous, F~*(B(0,1)) is bounded (by Theorem 1.26). Since F~!(B(0,1)) is closed and
bounded in R”, it is compact. Since F is a homeomorphism and F~! (E(O, 1)) is compact,
it follows that B(0,1) is also compact.

Suppose that U is infinite dimensional. Choose uy € U with |Jui|| = 1 and let
U, = Span{u;}. Since U; is finite-dimensional, it is closed and it is a proper subspace
of U so, by the above lemma, we can choose us € U \ Uy with |luz]| = 1 such that

d(ug,Uy) > %, and note that this implies that d(ug,u;) > % Let Us = Span {u1,us} and
note that Us is a proper closed subspace of U. By the lemma we can choose uz € U \ Us
with ||us|| = 1 such that d(us,Uz) > 1, and note that this implies that d(uz,u1) > % and
d(us,uz) > 3. Repeat this procedure to obtain a sequence (u,),>1 such that ||u,| =1 for
all n € Z and d(uy,,uy) > 4 for 1 <k < n. Then (u,) is a sequence in the closed unit
ball B(0,1) which has no convergent subsequence, and hence B(0,1) is not compact.



The Hahn-Banach Theorem

3.9 Definition: Let W be a vector space over F = R or C and let p : W — R. We say
that p is subadditive when p(z + y) < p(x) + p(y) for all z,y € W, we say that p is
homogeneous when p(tx) = |t|p(z) for all z € W and all ¢t € C, and we say that p is
positively homogeneous when p(tx) = t p(x) for all z € W and all t € R with ¢ > 0.
A seminorm on a vector space W is a subadditive homogeneous map p : W — R.

3.10 Theorem: (The Hahn-Banach Theorem for Real Vector Spaces) Let W be a vector
space over R, let U C W be a subspace, and let p: W — R be subadditive and positively
homogeneous. Then every linear map f : U — R with f(z) < p(x) for all x € U extends
to a linear map g : W — R with g(x) < p(z) for allx € W.

Proof: We claim that when w € W\ U and V = U + Span {w} = {u+ tw|u € U,t € R},
every linear map f : U — R with f(z) < p(x) for all z € U extends to a linear map
g:V — R with g(z) < p(z) for all x € V. Note that such an extension ¢ is determined
by the value g(w) € R and must be given by g(u + tw) = f(u) +t g(w) for all u € U and
t € R. We shall choose r = g(w) € R so that the map g(u + tw) = f(u) + tr satisfies the
requirement that g(v) < p(v) for all v = u + tw € V. Note that for all z,y € U we have

f@)=fy) = flz—y) <plz—y) =p(@@+w) +(-y—w) <pla+w)+p(-y —w)
(by subadditivity) and hence —p(—y — w) — f(y) < p(x + w) — f(x). It follows that

sup{ —p(—y —w) — f(y) |y € U} < inf {p(z +w) — f(z) |z € U}

so we can choose r € R such that

—p(—y—w)— fly) <r <plx+w)— f(x) forall z,yeU.

We define g : V. — R by g(u + tw) = f(u) + tr for all w € U and ¢t € R. We must
show that g(u + tw) < p(u + tw) for all w € U and t € R. Let u € U and t € R.
If t = 0 then we have g(u + tw) = g(u) = f(u) < p(u) = p(u + tw). If ¢ > 0 then
since r < p(% + w) — f(%) = %(p(u + tw) — f(u)) (by positive homogeneity) we have
tr < p(u+ tw) — f(u) hence g(u + tw) = f(u) + tr < p(u + tw). Finally, if t < 0 then
since r > —p(— % —w) — f(%) = 1 (p(u+tw) — f(u)) (by positive homogeneity) we have
tr < p(uw) — f(u), hence g(u + tw) = f(u) +tr < p(u + tw), as required. This completes

the proof of our claim.

We can now complete the proof of Part (1) using Zorn’s Lemma. Let S be the set of all
linear extensions of f dominated by p, that is the set of all linear maps g : V' — R, where
V is a subspace of W containing U, such that g(z) = f(z) for all x € U and g(z) < p(x)
for all x € V. Define an order on S by stipulating that g; < go when g, is an extension of
g1 (or equivalently when the graph of g, contains the graph of g;). Note that every chain
C = {ga Ve — R } a € A} in S has an upper bound, namely the map g : V — R, where

V = |J Va, given by g(z) = go(x) for any a € A for which z € V,, (you should verify,
a€cA
as an exercise, that the map g is well-defined and linear with g(z) = f(z) for all z € U

and g(x) < p(z) for all x € V, and that ¢ is an upper bound for C'). By Zorn’s Lemma,
S has a maximal element g : V' — R. By our previous claim, if we had V' % W we could
choose w € W\ V and extend g to a linear map h defined on V' = V + Span {w} with
h(z) < p(z) for all z € V', but this would contradict the maximality of g in S. Thus we
must have V' = W and so the maximal element g in S is an extension of f to all of W.



3.11 Theorem: (The Hahn-Banach Theorem for Real or Complex Vector Spaces) Let W
be a vector space over F = R or C, let U C W be a subspace, and let p : W — R be a
seminorm. Then every linear map f : U — F with ’f(:v)| < p(z) for all x € U extends to
a linear map g : W — F with |g(z)| < p(z) for all z € W.

Proof: In the case that F = R, this follows immediately from the Hahn-Banach Theorem
for Real Vector Spaces, because we can extend f : U — R to a linear map g : W — R with
g(x) < p(x) for all z € W, and then (since g is linear and p is a seminorm) we also have
—g(z) = g(—z) < p(—x) = p(z), so that |g(z)| < p(z), for all z € W.

Suppose that F = C. Let f : U — C be C-linear with ‘f(:c)! < p(x) for all x € W.
Write f(z) = u(x) +iv(z) where u,v : U — R, and note that u and v are R-linear and we
have

u(iz) = Re (f(iz)) = Re (i f(z)) = Re (i (u(z) +iv(2))) = —v(z)

so that v(z) = — u(iz) and f(z) = u(z)+iv(z) = u(z)—iu(iz). Since u(z) < |g(z)| < p(z)
for all x € U, using the Hahn-Banach Theorem for Real Vector Spaces, we can extend u
to an R-linear map w : W — R with w(z) < p(z) for all x € W. Define g : W — C
by g(z) = w(x) — iw(ix). Verify that g is C-linear, and note that g extends f because
f(z) = u(x) — iu(iz) for all € U. It remains to show that |g(x)| < p(z) for all z € W.
Let 2 € W. Write g(z) = re’? with » > 0 so that ‘g(az)} =r=e0g(x)=g(ex).
Then we have

‘g(:ﬁ)| = Re (|g(x)]) = Re (g(e_i19 :c)) = w(e_w:c) < p(e‘ie ac) = p(x),
as required.

3.12 Theorem: (The Hahn-Banach Theorem for Bounded Linear Functionals) Let W be
a normed linear space over F = R or C and let U C W be a subspace. Then every bounded
linear map f € U* extends to a bounded linear map g € W* with ||g|| = || f]l-

Proof: Let f € U*, that islet f : U — F be a bounded linear map. Define p : W — R

by p(x) = | fllllz]. Then p(z +y) = [If|l =+ y| < [I£I(l=ll + lyl) = p(z) + p(y), and
p(tz) = ||fll lItz|| = |t|||f] l|lz]] = |t| p(z), so p is a seminorm. By the above theorem,
we can extend f to a linear map g : W — F with ‘g(a:)‘ < p(x) = ||f]l||z] for all
x € W. Since |g(z)| < [|f| [|#]| for all z € W, we have ||g|| < ||f]| (so in particular, g is
a bounded linear map, that is ¢ € W*). And since g(z) = f(z) for all z € U we have

lgll = sup {lg()| |z €W, ||lzl|=1} > sup {|g()| |z €U, [z =1} = [I/]]

3.13 Corollary: Let W be a normed linear space over F = R or C, and let 0 £ w € W.
Then there exists a bounded linear functional g € W* with g(w) = ||w|| and ||g| = 1.

Proof: Let U = Span{w} and define f : U — F by f(tw) = t||w|. Then f € U* with
f(w)=]|lwl|| and ||f||]=1. By the Hahn-Banach Theorem (for Bounded Linear Functionals),
f extends to a bounded linear functional g € W* with ||g|| = || f|| = 1.



3.14 Corollary: Let W be a normed linear space over F = R or C, let U % W be a

proper closed subspace, and let w € W \ U. Then there exists a bounded linear functional
g € W* with ||g|| = 1 such that g(w) = d(w,U) and g(u) =0 for all u € U.

Proof: Let d = d(w,U) and note that d > 0 because U is closed and w ¢ U. Let
V =U +Span{w} = {u+tw|u € U,t € F}. Define f € V* by f(u+ tw) = td. Note that
f(u) =0 for all w € U and f(w) = d. We claim that ||f|| = 1. Recall (or verify) that for
all t € F we have d(tw,U) = |t|d(w,U). It follows that for all u € U and t € F we have
|fluttw)| = |t|d = |t| d(w,U) = d(tw,U) < d(tw, —u) = ||u+tw]|| and hence || f|| < 1. On
the other hand, for all 0 < r < 1, since d = d(w,U) = inf {d(w, :c)|.r € U}, we can choose
u € U so that d < d(w, —u) < £ and then we have |f(u+w)| =d > rd(w, —u) =7 ||u+w]|
and hence || f|| > r. Thus ||f|| = 1, as claimed. By the Hahn-Banach Theorem, we can
extend f € V* to a bounded linear map g € W* with ||g|| = || f|| = 1.

3.15 Corollary: Let W be a normed linear space over F = R or C. If W* is separable
then W is separable.

Proof: Suppose that W* is separable. Choose a sequence (f,),>1 in W* such that the set
{fn ‘ n e Z+} is dense in W*. For each n € ZT choose u,, € W with ||un|| = 1 such that
| fa(un)| > 3| fall. Let U = Span{u, |n € ZT}. Recall (or verify) that when U C W is
a subspace of a normed linear space W, the closure U of U in W is also a subspace. We
claim that U = W. Suppose, for a contradiction, that U % W. Choose w € W\ U. By

Corollary 3.14, we can choose g € W* with [|g|| = 1 such that g(w) = d(w,U) and g(v) =0
for all v € U. In particular, note that g(u,) = 0 for all n € Z*. Since {f, |n € Z7} is
dense in W* we can choose an index n € Z" such that || f, — g|| < 3. Then we have

1= ||g|| - ||g_ fn +fn|| S ||g_ fn” + “fn” < % + an”

hence || f,|| > 3. Since || full > 3, | fn(un)| > 31 fnll, gun) = 0, [|un|l = Land || fn—gl < 3,
we have

% < %an” < ‘fn(un)l = |fn(un) _g(un)| = ‘(fn _g)(un)l < ”fn _g” < %

which gives the desired contradiction. Thus U = W as claimed.
Finally, note that when F = R, the set SpanQ{ul, U, U3, " - - } is countable and dense

in U, hence also dense in U = W, and when F = C, the set SpanQ[i]{ul,uQ,---} is

countable and dense in U, hence also in U = W.
3.16 Note: In Part 1 of Theorem 1.28 (the Riesz Representation Theorem for the ¢,

o0

Spaces), we saw that the map F : {1 — £." given by F(b)(a) = > arby is an injective
k=1

norm-preserving linear map. Note that F' cannot be surjective because if it was an iso-

morphism of normed linear spaces then, since ¢; is separable /.,* would also be separable
and hence, by the above corollary, ¢, would be separable (but it is not). Similarly, when
a,b € R with a < b, the injective norm preserving map F : Li[a,b] — Lso|a,b]* given by
F(g)(f) = f; fg (as seen in Theorem 1.31, the Riesz Representation Theorem for the L,
Spaces) cannot be surjective because L1 [a,b] is separable but L.[a,b] is not.



The Hahn-Banach Separation Theorem

3.17 Definition: Let U be a real vector space and let A C U. A point a € A is called an
internal point of A when for every u € U there exists r > 0 such that a + tu € A for all
t € (—r,r). The set of internal points of A is called the core (or the algebraic interior,
or the radial kernel) of A, and is denoted by Core(A). Note that when U is a normed
linear space, the interior of A is contained in the core of A.

3.18 Definition: Let U be a real vector space. Let A C U be convex with 0 € Core(A).
We define the Minkowski functional of A to be the map p =pa : U — R given by

p(z) =inf{r > 0|1z e A}.
Note that the set {r >0 { 1z € A} is nonempty because 0 € Core(A).

3.19 Theorem: (The Minkowski Functional) Let U be a real vector space and let A C U
be convex with 0 € Core(A). Then the Minkowski functional of A is positively homoge-
neous and subadditive.

Proof: Let p = pa be the Minkowski functional of A. Then p is positively homogeneous
because for x € U and t > 0 we have

px) =inf {r>0| Ltz € A} =inf {ts|s>0,22€ A} =t-inf {s>0|2 2 € A} =tp(x).
To show that p is subadditive, let x,y € U and let € > 0. Choose s € S = {r>0| %x € A}

such that p(z) < s < p(z)+5 and chooset € T = {r>0| 1y € A} withp(y) <t < p(y)+5.
Since %:1: € A and %y € A and A is convex, we have

@ty =gh ity tyed

sothat s+t € R={r>0|(z+y) € A}. Thus p(z+y) =inf R < s+t < p(x) +p(y) +e
Since p(z +y) < p(z) + p(y) + € for all € > 0, it follows that p(z + y) < p(z) + p(y).

3.20 Theorem: (The Hahn-Banach Separation Theorem) Let U be a real vector space.
Let A and B be disjoint nonempty convex subsets of U, with Core(A) # (). Then there
exists a nonzero linear map f : U — R such that f(x) < f(y) for every x € A and y € B.

Proof: Let a € Core(A), let b € B, and let C be the convex set C' = A — B —a + b. Since
ANB =0 wehave 0 ¢ A— B sob—a¢ C. Since a € Core(A) we have 0 € Core(A — a),
and since A —a C (A —a) — (B —b) = C, we also have 0 € Core(C). Let p: U — R be
the Minkowski functional of C, given by p(z) = inf {r > O‘ 1z € C}. Since 0 € C and
b—a ¢ C and C is convex, we have t(b—a) ¢ C for all t > 1 and so p(b —a) > 1. On the
other hand, we have p(z) <1 for all x € C..

Let f : Span{b—a} — R be the linear map given by f(t(b—a)) = tp(b — a). When
t > 0, since p is positively homogeneous we have f(t(b — a)) =tp(b—a) = p(t(b — a)), and
when ¢ < 0, since p is nonnegative we have f(t(b—a)) =tp(b—a) <0< p(t(b—a)), and
so f(z) < p(x) for all x € Span{b — a}. By the Hahn Banach Theorem (for Real Vector
Spaces), we can extend f to a linear map f : U — R with f(x) < p(z) for all z € U. For
all x € Aand y € B, since z —y —a + b € C we have

12 ple—y+a—b) = flz—y—a+b) = f(z)=f(y)+f(b—a) = f(x)—f(y)+1
so that f(z) < f(y).
3.21 Exercise: Let U =R>, let A = {a = Zn: ager |n € Z1 a, > 0}, and let B = {0}.

k=1
Show that A and B are disjoint nonempty convex subsets of U, but there is no nonzero

linear map f: U — R with f(z) < f(y) for all z € A and y € B.
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The Riesz Representation Theorem

3.22 Definition: Let a < b and let f : [a,b] — R. For a partition P = (zg,z1," -, Z,) of
[a,b] (so we have a = g < 21 < --- < z, = b), the variation of f for the partition P is

= Z ‘f(@“k) - f($1<;—1‘
k=1

and the variation of f on the interval [a,b] is
V(f,]a,b]) = sup {V(f, P) ‘ P is a partition of [a, b]}.

We say that f is of bounded variation on [a,b] when V(f,[a,b]) < oo, and we write
BV[a,b] = {f :a, b)) = R ‘ f is of bounded Variation}.

3.23 Theorem: Let a < b and let f : [a,b] — R. Then f is of bounded variation on [a, b
if and only if f is rectifiable (meaning that the graph of f has finite length).

Proof: Recall that the length of the graph of f on [a, b] is defined as follows. For a partition
P = (zg,z1, -+, x,) of [a,b], we define

=SV (Flan) = Flar ) + (o — 201)?
k=1
and then the length of the graph of f on [a,b] is given by
L(f,[a,b]) = sup {L(f, P) ‘ P is a partition of [a, b]}
For any partition P = (zg,---,x,) of |a,b], since

Flan) = Flarmn)| <\ () = Fan1)) + (o — 41)?

for all indices k, it follows that V(f,P) < L(f,P). Since V(f,P) < L(f,P) for all
partitions P, it follows that V'(f,[a,b]) < L(f,[a,b]). On the other hand, for all partitions
P = (zg, -, xy,) of [a,b] we have

\/(f(xk:) - f(ﬂfk—l))z + (Tr — 2)-1)? < |f Ty) — f(xk—l)‘ + (Jlk - !Ek—1)

for all k, it follows that L(f, P) < V(f,P)+ Z (xx — xp—1) = V(f,P) + (b —a). Since

L(f,P) <V(f,P)+ (b—a) for all P, it follows that L(f,[a,b]) < V(f,[a,b]) + (b —a).
3.24 Definition: Let g € BV|a,b]. For a partition P = (xg,x1,---,2zy) of [a,b], write
|P|| = max {@ —zp_1|1 < k; <n}. For f € Cla,b] = C([a,b],R), we define the Riemann-
Stieltjes integral of f on [a, b] with respect to the weight function g to be

n

/fdg—/ fx)dg(z) = lim > f(te)(g(zk) — g(za-1).

|| P||—0
I1P][—=0 &=

This means that fab f dg is the (unique) real number such that for every e > 0 there exists
d > 0 such that for every partition P = (zg,---,xy) of [a,b] with ||P|| < ¢, and for all
ti,ta, -+, t, with each t € [x)_1,x%] we have

‘ /ab fdg— ; f(tr) (9(zr) — g(xk_l))’ e



3.25 Exercise: Verify, as an exercise, that when g € BV[a, b] and f € C|a, b], the Riemann-
b b
Stieltjes integral / f dg exists and is uniqe with ‘ / fdg‘ <V(g,[a,b]) - | floc-

3.26 Theorem: (The Riesz Representation Theorem) For every L € (C [a, b]) " there exists
g € BV[a,b] with g(a) = 0 and V (g, [a,b]) = || L|| such that for all f € C[a,b] we have

:/abfdg.

Proof: Let L € (C la, b])*, that is let L : Cla,b] — R be a bounded linear functional. By the
Heine-Borel Theorem, we can extend L to a bounded linear map M : Bla,b] — R, that is
to M € (Bla, b])*, with ||M|| = ||L]]. For a < z < b, let s, : [a,b] — R be the step function
given by s,(t) = 1 for a <t < z and s,(t) = 0 for z < t < b, and let s,(t) = 0 for all
t € [a,b]. Define g : [a,b] — R by g(z) = M(s,).

We claim that g € BV[a,b] with V(g,[a,b]) < M| = ||L||. Let P = (zo,z1,- -+, zy)
be any partition of [a,b]. For y € R, let o(y) be the sign of y, given by o(y) = % when
y # 0 with ¢(0) = 0. For 1 < k < nlet ¢, = o(g(xx) — g(@k—1)) so that we have
\9(zk) — g(zk—1)| = ex(9(xk) — g(@k—1). Then

n n n
Z |g(xr) — g(xr—1) Z €x(9g 9(Tx—1) Z ex (M (sy,) — M (zx-1))
k=1 k=1 k=1
n

_ M( S (5, — st)) < ||M|\)

k=1

n
Z Ek(sl‘k - Sl‘k—1)
k=1

=<zl

’ < 1 because the function > €x(Sz, — Sz)_;)
o0 k=1
only takes the values 0 and +1. Thus g € BV[a, b] with V (g, [a,b]) < |L]], as claimed.

n
since || M) = | 2] and || 3 €x(ss, — s0,_.)
k=1

Note that if we can show that M(f) = f; fdg for all f € Cla,b] then, from Exercise
3.25, when | f|lcc < 1 we have V(g, [a,b]) > ’f;fdg’ = ’M(f)’, and it follows that

V(g,la,b]) > |[M]| = ||L||. Thus it remains to show that M(f) = f; fdg for all f € Cla,b.
Let f € C[a b]. Let n € ZT. Since f is uniformly continuous, we can choose § > 0 such
that |f(z) — f(y)| < L for all z,y € [a,b] with |x —y| < §. Choose a partition P, =
(xo, 21, -, xp) of [a,b] "with HPH <6 and ||P| < . Let Iy = [zo,21] and Iy = (zp_1, 24

for 1 < k < (. Let f, = Z f(xk)(sxk — sm,ﬁl), so fn is the step function given by
k=1

fn(t) = f(xy) for t € Ij,. Note that for all ¢t € I}, we have |z —t| < |z —xp—1| < ||P|| < 0
hence |f(zx) — f(t)| < %, that is | f,(¢) — f(t)| < L, and it follows that [|f,, — f|lec < +.
Also note that

M) = 3 fo0) (M(s,) — Mlsa,_,)) = 32 Flon)alan) — glan)

which is one of the sums used to approximate the Riemjann-Steiltjes integral f; fdg. We
do this construction for each n € Z* to obtain a sequence of partitions P, with ||P,| — 0,
and a sequence of step functions f,, on these partitions with || f, — flcc < 2 for allmn € Z*
so that f,, — f in Bla,b]. Since M : Bla,b] — R is continuous, we have

M(f) = M( lim f,) = lim M(f,) = lim > fa)(g(en) — glan)) / £ dg.

n— 00 n— 00 ||P||_>0k 1



The Open Mapping Theorem and The Closed Graph Theorem

3.27 Theorem: (The Open Mapping Theorem) Let U and V be Banach spaces. Let
F € B(U,V) be surjective. Then F' is open (meaning that the set FA = {Fa|a € A} is
open in 'V for every open set A in U).

Proof: We claim that for all R > 0 there exists r > 0 such that B(0,r) C FB(0, R). Note
that U = |J B(0,k). Since F is onto, V = F( |J B(0,n)) = U FB(0,n). Since V
k=1 n=1 n=1

is complete, the Baire Category Theorem implies that one of the sets F'B(0,n) has non-
empty interior. By scaling, F'B(0,r) has non-empty interior for all » > 0 so, in particular,
FB(0,1) has non-empty interior. Choose ¢ € V and r > 0 such that B(c,2r) C FB(0,1).
Since F'B(0,1) is dense in F'B(0,1), we can choose a € B(0,1) and b = Fa € FB(0,1)
with ||b — ¢|| < r and then we have B(b,r) C B(c,2r) C FB(0,1).

Let y € B(0,r) and let ¢ > 0. Since b+ y € B(b,r) C FB(0,1), we can choose

z € FB(0,1) such that ||F'z —b— y|| < e. Since z € F'B(0,1) we can choose x € B(0,1)
such that Fx = z. Since x € B(0,1) and a € B(0,1) we have z — a € B(0,2), and we

have ||F(z —a) —y|| = |Fz — Fa —y|| = ||z = b — y|| < e. This proves that y € FB(0,2)
hence (since y € B(0,r) was arbitrary) B(0,7) C FB(0,2). By scaling, it follows that for
all R > 0 there exists r > 0 such that B(0,r) C FB(0, R), as claimed.

We claim that for all R > 0 there exists » > 0 such that B(0,7) € FB(0,R). By
our previous claim, we can choose r > 0 such that B(0,r) C FB(0, %) By scaling, it

follows that B(0, 5z) € FB(0, 5 ) for all k > 0. Let y € B(0,r) € FB(0,3). Choose

z1 € B(0, 1) such that ||y — Fz1| < . Since y — Fzy1 € B(0,%) C FB(0,1), we can

choose zy € B(0, 1) such that ||(y — Fz1) — Fao| < %, that is |ly — F(2 +a:2)|| < 7

Repeat this procedure obtain elements z;, € B(0, 5% ) such that ||y — F(u,)|| < 2 where

Uy, = Z x. Note that for E > n we have
k=1 ¢

[o.@]
-l =] X wmf< O i< ¥ &< ¥ =g
k=n+1 k=n+1 k=n+1 k=n+1

and it follows that the sequence (u,) is Cauchy in U, and hence it converges because U is

[ee)
complete. Let u = hm u, = », x. Note that

n n n 1 o.@] 1 1
lunll = || 32 || < 32 oell < ol + 5 5 < ol + 3 o = lloll + 4
k=1 k=1 k=2 k=2
and hence |Ju| = H lim unH = lim lun| < [lz1]l + 3 < 3+ 2 = 1 so that we have

u € B(0,1). Since ||y — Fun|| < 3w 1t follows that Fu,, — y in V. Since F is bounded,

hence continuous, we have F(u) = F( lim u,) = lim F(u,)=y. Thusy € FB(0,1) and
n— o0 n—oo

hence (since y was arbitrary) B(0,r) C FB(0,1). By scaling, it follows that for all R > 0

there exists r > 0 such that B(0,7) C FB(0, R).

Finally, we show that F' is open. Let A C U be open. Let v € FFA and choose u € A
such that Fu = v. Since A is open, we can choose R > 0 so that B(u, R) C A. By our
above claim, we can choose r > 0 such that B(0,7) C F'B(0, R). By linearity, we have

B(v,R) =v+ B(0,r) Cv+ FB(0,R) = F(u+ B(0,R)) = FB(u,R) C FA.



3.28 Definition: Let X be a metric space equipped with two metrics d; and do. We say
the two metrics are equivalent when they induce the same topology on X, that is when
every open ball By(a, €) contains an open ball By (a,d) and vice versa. Equivalently, the two
metrics are equivalent when the identity map I : (X, d;) — (X, ds) is a homeomorphism.
Similarly, when U is a vector space which equipped with two norms || ||; and || ||2, we say
the two norms are equivalent when they induce the same topology on U. By Theorem
1.26, the norms are equivalent when there exist £, m > 0 such that for all x € U we have
[zllz < £lz]ly and [[z([y < m]lz]2.

3.29 Corollary: Let U be a vector space equipped with two norms || || and || ||2. Suppose
that U is complete under both norms. If there exists £ > 0 such that ||x|2 < ¢ ||x||; for all
x € U then the two norms are equivalent. Equivalently, if the identity map I : (U,dy) —
(U,ds) is continuous then it is a homeomorphism.

Proof: If the identity map I : (U,dy) — (U,d2) is continuous, then it is bounded (by
Theorem 1.26) and surjective (obviously), so it is open (by the Open Mapping Theorem),
and so its inverse I : (U,ds) — (U, d1) is continuous.

3.30 Definition: When X and Y are topological spaces, the product topology on
X x Y is the topology given by taking the basic open sets to be sets of the form A x B
where A is open in X and B is open in Y (this will be explained in Chapter 4). When X
and Y are metric spaces, there are various ways that one can define a metric on X x Y so
that the induced topology is the product topology. Let us define the product metric on
X xY by
d((z1,91), (T2, 92)) = d(x1,22) + d(y1, y2).

Not only does this metric induce the product topology on X XY, it also behaves as expected
with sequences: if (x,,) is a sequence in X and (y,) is a sequence in Y and a € X and
beY, then (z,,y,) = (a,b) in X x Y if and only if x,, - a in X and y, — b in Y. Also,
(Zn,yn) is Cauchy in X x Y if and only if (z,) is Cauchy in X and (y,) is Cauchy in Y.

3.31 Definition: Let X and Y be metric spaces and let f: A C X — Y be a function.
The graph of f is the set

Graph (f) = {(a:,y)‘x cAy= f(a:)} = {(a,f(a)’a € A}.

We say that f has a closed graph (or simply that f is closed), when the graph of f is
closed in X x Y using the product topology. Note that f has a closed graph when for
every sequence (z,) in A,

if z, >a€ X and f(x,) > binY then a € A and b = f(a).

3.32 Theorem: (The Closed Graph Theorem) Let U and V' be Banach spaces, and let
F :U — V be a linear operator. If the graph of F is closed then F' is continuous.

Proof: Denote the norm on U by || ||; and the norm on V' by || ||2. Define a second norm
| [|ls on U by ||z||3 = ||x||1 + || Fz||2. Let (z,) be a Cauchy sequence in (U, || ||3). Then ()
is Cauchy in (U, || ||1) and (Fx,) is Cauchy in (V, || ||2) (because ||xy — xn||1 < ||xe — nl3
and ||z — z,]l2 < ||xg — xn]|3). Since (U, || ||1) and (V]| ||2) are both complete, it follows
that (x,) converges in (U, || ||1) and (F'z,,) converges in (V|| ||2), say x, — a in (U, | |l1)
and Fx, — bin (V,|| ||]2). Since F' has a closed graph, we have b = Fa, and it follows
that z, — a in (U, || ||3) because ||z, — al|s = ||xn — a||1 + ||Fx, — b||2. Thus (U, || ||3) is
complete. Since U is complete under both || ||; and || ||3 and we have ||z||; < ||z||s for all
x € U, it follows from Corollary 3.29 that there exists £ > 0 such that ||z||s < ¢||z||; for
all x € U. Thus F is bounded, hence continuous.
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