
Chapter 3. Banach Spaces

Finite Dimensional Normed Linear Spaces

3.1 Example: Recall, from linear algebra, that when U and V are non-trivial finite
dimensional inner product spaces over R and F : U → V is a linear map, the closed unit
ball in U is compact (so that ‖Fx‖ attains its maximum on the closed unit ball) and we
have

‖F‖ = max
{
‖Fx‖

∣∣∣x ∈ U, ‖x‖ = 1
}

= ‖Fu‖ =
√
λ

where λ is the largest eigenvalue of F ∗F : U → U and u is a unit eigenvector for λ.

3.2 Theorem: Let U be an n-dimensional normed linear space over R. Let {u1, · · · , un}
be any basis for U and let F : Rn → U be the associated vector space isomorphism given

by F (t) =
n∑
k=1

tkuk. Then both F and F−1 are Lipschitz continuous.

Proof: Let M =
( n∑
k=1

‖uk‖2
)1/2

. For t ∈ Rn we have

∣∣∣∣F (t)
∣∣∣∣ =

∣∣∣∣∣∣ n∑
k=1

tkuk

∣∣∣∣∣∣ ≤ n∑
k=1

|tk| ‖uk‖ , by the Triangle Inequality,

≤
( n∑
k=1

tk
2
)1/2( n∑

k=1

‖uk‖2
)1/2

, by the Cauchy-Schwarz Inequality,

= M‖t‖.

For all s, t ∈ Rn,
∣∣∣∣F (s)− F (t)

∣∣∣∣ =
∣∣∣∣F (s− t)

∣∣∣∣ ≤M ‖s− t‖, so F is Lipschitz continuous.

Note that the map N : U → R given by N(x) = ‖x‖ is (uniformly) continuous, indeed
we can take δ = ε in the definition of continuity. Since F and N are both continuous, so is
the composite G = N ◦F : Rn → R, which given by G(t) =

∣∣∣∣F (t)
∣∣∣∣. By the Extreme Value

Theorem, the map G attains its minimum value on the unit sphere
{
t ∈ Rn

∣∣‖t‖ = 1
}

,

which is compact. Let m = min
‖t‖=1

G(t) = min
‖t‖=1

∣∣∣∣F (t)
∣∣∣∣. Note that m > 0 because when

t 6= 0 we have F (t) 6= 0 (since F is a bijective linear map) and hence ‖F (t)‖ 6= 0. For
t ∈ Rn, if ‖t‖ > 1 then we have

∣∣∣∣ t
‖t‖
∣∣∣∣ = 1 so, by the choice of m,∣∣∣∣F (t)

∣∣∣∣ = ‖t‖
∣∣∣∣∣∣F ( t

‖t‖
)∣∣∣∣∣∣ ≥ ‖t‖ ·m > m.

It follows that for all t ∈ Rn, if
∣∣∣∣F (t)

∣∣∣∣ ≤ m then ‖t‖ ≤ 1. Since F is bijective, it follows

that for x ∈ U , if ‖x‖ ≤ m then
∣∣∣∣F−1(x)

∣∣∣∣ ≤ 1. Thus for all x ∈ U , if x = 0 then

‖F−1(x)‖ = 0 = ‖x‖
m and if x 6= 0 then since

∣∣∣∣mx
‖x‖
∣∣∣∣ = m we have∣∣∣∣F−1(x)

∣∣∣∣ = ‖x‖
m

∣∣∣∣F−1(mx‖x‖)∣∣∣∣ ≤ ‖x‖m .

For all x, y ∈ U , we have
∣∣∣∣F−1(x) − F−1(y)

∣∣∣∣ =
∣∣∣∣F−1(x − y)

∣∣∣∣ ≤ 1
m ‖x − y‖, so F−1 is

Lipschitz continuous.

3.3 Corollary: When U and V are normed linear spaces with U finite-dimensional, every
linear map F : U → V is Lipschitz continuous.

3.4 Corollary: When U is a finite-dimensional vector space, any two norms on U induce
the same topology, and a sequence converges in one norm if and only if it converges in the
other, and a sequence is Cauchy in one norm if and only if it is Cauchy in the other.
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3.5 Definition: Let Y be a metric space and let ∅ 6= X ⊆ Y . Recall that for y ∈ Y we
define the distance between y and X to be

d(y,X) = inf
{
d(y, x)

∣∣x ∈ X}.
Recall (or prove) that when X is compact, the minimum value of d(y, x), x ∈ X is attained
and so we can choose x ∈ X such that d(y, x) = d(y,X).

3.6 Theorem: Let W be a normed linear space and let U ⊆ W be a finite-dimensional
subspace. Then for every w ∈W there exists u ∈ U such that d(w, u) = d(w,U).

Proof: Let w ∈ W . If w ∈ U we can take u = w to get d(w, u) = 0 = d(w,U). Suppose
that w /∈ U . Let d = d(w,U) and note that since U is closed we have d > 0 (since we can
choose r > 0 so that B(w, r) ∩ U = ∅ and then d ≥ r). Let K = B(w, d + 1) ∩ U . Note
that d(w,K) = d(w,U). Indeed, since K ⊆ U we have d(w,K) ≥ d(w,U) = d and, on the
other hand, for any 0 < ε < 1 we can choose u ∈ U with d ≤ d(w, u) < d+ ε < d+ 1, and
then we have u ∈ K hence d(w,K) ≤ d(w, u) < d+ε. Since K is closed and bounded in U ,
and U is a finite dimensional vector space (so we have a bijective map F : Rn → U with
F and F−1 both Lipschitz continuous), it follows that K is compact. Since K is compact
we can choose u ∈ K such that d(w, u) = d(w,K) = d(w,U).

3.7 Lemma: Let W be a normed linear space and let U ⊂6= W be a proper closed subspace.

For every 0 < r < 1 there exists an element w ∈W \U with ‖w‖ = 1 such that d(w,U) ≥ r.

Proof: Let 0 < r < 1. Since U ⊂6= W we can choose v ∈ W \ U . Let d = d(v, U) and note

that since U is closed we have d > 0. Since d = inf
{
‖u− v‖

∣∣u ∈ U} we can choose u ∈ U
such that d ≤ ‖v − u‖ < d

r . Let w = v−u
‖v−u‖ . Then we have ‖w‖ = 1 and for all x ∈ U we

have
‖x− w‖ =

∥∥x− v−u
‖v−u‖

∥∥ = 1
‖v−u‖ ·

∥∥‖v − u‖x+ u− v
∥∥ ≥ r

d · d = r.

3.8 Theorem: (Riesz’s Theorem) Let U be a normed linear space. Then U is finite-
dimensional if and only if the closed unit ball in U is compact.

Proof: Suppose that U is finite-dimensional. Let B = {u1, u2, · · · , un} be a basis for U

and let F : Rn → U be the isomorphism given by F (t) =
n∑
k=1

tkuk. By Theorem 3.2, F

and F−1 are continuous. Since F is continuous, F−1
(
B(0, 1)

)
is closed, and since F−1 is

continuous, F−1
(
B(0, 1)

)
is bounded (by Theorem 1.26). Since F−1

(
B(0, 1)

)
is closed and

bounded in Rn, it is compact. Since F is a homeomorphism and F−1
(
B(0, 1)

)
is compact,

it follows that B(0, 1) is also compact.

Suppose that U is infinite dimensional. Choose u1 ∈ U with ‖u1‖ = 1 and let
U1 = Span {u1}. Since U1 is finite-dimensional, it is closed and it is a proper subspace
of U so, by the above lemma, we can choose u2 ∈ U \ U1 with ‖u2‖ = 1 such that
d(u2, U1) ≥ 1

2 , and note that this implies that d(u2, u1) ≥ 1
2 . Let U2 = Span {u1, u2} and

note that U2 is a proper closed subspace of U . By the lemma we can choose u3 ∈ U \ U2

with ‖u3‖ = 1 such that d(u3, U2) ≥ 1
2 , and note that this implies that d(u3, u1) ≥ 1

2 and
d(u3, u2) ≥ 1

2 . Repeat this procedure to obtain a sequence (un)n≥1 such that ‖un‖ = 1 for
all n ∈ Z+ and d(un, uk) ≥ 1

2 for 1 ≤ k < n. Then (un) is a sequence in the closed unit

ball B(0, 1) which has no convergent subsequence, and hence B(0, 1) is not compact.
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The Hahn-Banach Theorem

3.9 Definition: Let W be a vector space over F = R or C and let p : W → R. We say
that p is subadditive when p(x + y) ≤ p(x) + p(y) for all x, y ∈ W , we say that p is
homogeneous when p(tx) = |t| p(x) for all x ∈ W and all t ∈ C, and we say that p is
positively homogeneous when p(tx) = t p(x) for all x ∈ W and all t ∈ R with t ≥ 0.
A seminorm on a vector space W is a subadditive homogeneous map p : W → R.

3.10 Theorem: (The Hahn-Banach Theorem for Real Vector Spaces) Let W be a vector
space over R, let U ⊆ W be a subspace, and let p : W → R be subadditive and positively
homogeneous. Then every linear map f : U → R with f(x) ≤ p(x) for all x ∈ U extends
to a linear map g : W → R with g(x) ≤ p(x) for all x ∈W .

Proof: We claim that when w ∈W \ U and V = U + Span {w} =
{
u+ tw

∣∣u ∈ U, t ∈ R
}

,
every linear map f : U → R with f(x) ≤ p(x) for all x ∈ U extends to a linear map
g : V → R with g(x) ≤ p(x) for all x ∈ V . Note that such an extension g is determined
by the value g(w) ∈ R and must be given by g(u+ tw) = f(u) + t g(w) for all u ∈ U and
t ∈ R. We shall choose r = g(w) ∈ R so that the map g(u + tw) = f(u) + tr satisfies the
requirement that g(v) ≤ p(v) for all v = u+ tw ∈ V . Note that for all x, y ∈ U we have

f(x)− f(y) = f(x− y) ≤ p(x− y) = p
(
(x+ w) + (−y − w)

)
≤ p(x+ w) + p(−y − w)

(by subadditivity) and hence −p(−y − w)− f(y) ≤ p(x+ w)− f(x). It follows that

sup
{
− p(−y − w)− f(y)

∣∣ y ∈ U} ≤ inf
{
p(x+ w)− f(x)

∣∣x ∈ U}
so we can choose r ∈ R such that

−p(−y − w)− f(y) ≤ r ≤ p(x+ w)− f(x) for all x, y ∈ U.
We define g : V → R by g(u + tw) = f(u) + tr for all u ∈ U and t ∈ R. We must
show that g(u + tw) ≤ p(u + tw) for all u ∈ U and t ∈ R. Let u ∈ U and t ∈ R.
If t = 0 then we have g(u + tw) = g(u) = f(u) ≤ p(u) = p(u + tw). If t > 0 then
since r ≤ p

(
u
t + w

)
− f

(
u
t

)
= 1

t

(
p(u + tw) − f(u)

)
(by positive homogeneity) we have

tr ≤ p(u + tw) − f(u) hence g(u + tw) = f(u) + tr ≤ p(u + tw). Finally, if t < 0 then
since r ≥ −p

(
− u

t −w
)
− f
(
u
t

)
= 1

t

(
p(u+ tw)− f(u)

)
(by positive homogeneity) we have

tr ≤ p(utw)− f(u), hence g(u+ tw) = f(u) + tr ≤ p(u+ tw), as required. This completes
the proof of our claim.

We can now complete the proof of Part (1) using Zorn’s Lemma. Let S be the set of all
linear extensions of f dominated by p, that is the set of all linear maps g : V → R, where
V is a subspace of W containing U , such that g(x) = f(x) for all x ∈ U and g(x) ≤ p(x)
for all x ∈ V . Define an order on S by stipulating that g1 ≤ g2 when g2 is an extension of
g1 (or equivalently when the graph of g2 contains the graph of g1). Note that every chain
C =

{
gα : Vα → R

∣∣α ∈ A} in S has an upper bound, namely the map g : V → R, where
V =

⋃
α∈A

Vα, given by g(x) = gα(x) for any α ∈ A for which x ∈ Vα (you should verify,

as an exercise, that the map g is well-defined and linear with g(x) = f(x) for all x ∈ U
and g(x) ≤ p(x) for all x ∈ V , and that g is an upper bound for C). By Zorn’s Lemma,
S has a maximal element g : V → R. By our previous claim, if we had V ⊂6= W we could

choose w ∈ W \ V and extend g to a linear map h defined on V ′ = V + Span {w} with
h(x) ≤ p(x) for all x ∈ V ′, but this would contradict the maximality of g in S. Thus we
must have V = W and so the maximal element g in S is an extension of f to all of W .

3



3.11 Theorem: (The Hahn-Banach Theorem for Real or Complex Vector Spaces) Let W
be a vector space over F = R or C, let U ⊆ W be a subspace, and let p : W → R be a
seminorm. Then every linear map f : U → F with

∣∣f(x)
∣∣ ≤ p(x) for all x ∈ U extends to

a linear map g : W → F with
∣∣g(x)

∣∣ ≤ p(x) for all x ∈W .

Proof: In the case that F = R, this follows immediately from the Hahn-Banach Theorem
for Real Vector Spaces, because we can extend f : U → R to a linear map g : W → R with
g(x) ≤ p(x) for all x ∈ W , and then (since g is linear and p is a seminorm) we also have
−g(x) = g(−x) ≤ p(−x) = p(x), so that

∣∣g(x)
∣∣ ≤ p(x), for all x ∈W .

Suppose that F = C. Let f : U → C be C-linear with
∣∣f(x)

∣∣ ≤ p(x) for all x ∈ W .
Write f(x) = u(x) + i v(x) where u, v : U → R, and note that u and v are R-linear and we
have

u(ix) = Re
(
f(ix)

)
= Re

(
i f(x)

)
= Re

(
i (u(x) + i v(x))

)
= −v(x)

so that v(x) = −u(ix) and f(x) = u(x)+i v(x) = u(x)−i u(ix). Since u(x) ≤
∣∣g(x)

∣∣ ≤ p(x)
for all x ∈ U , using the Hahn-Banach Theorem for Real Vector Spaces, we can extend u
to an R-linear map w : W → R with w(x) ≤ p(x) for all x ∈ W . Define g : W → C
by g(x) = w(x) − i w(ix). Verify that g is C-linear, and note that g extends f because
f(x) = u(x) − i u(ix) for all x ∈ U . It remains to show that

∣∣g(x)
∣∣ ≤ p(x) for all x ∈ W .

Let x ∈ W . Write g(x) = r ei θ with r > 0 so that
∣∣g(x)

∣∣ = r = e−i θ g(x) = g
(
e−i θ x

)
.

Then we have∣∣g(x)
∣∣ = Re

(
|g(x)|

)
= Re

(
g
(
e−i θ x

))
= w

(
e−i θ x

)
≤ p
(
e−i θ x

)
= p(x),

as required.

3.12 Theorem: (The Hahn-Banach Theorem for Bounded Linear Functionals) Let W be
a normed linear space over F = R or C and let U ⊆W be a subspace. Then every bounded
linear map f ∈ U∗ extends to a bounded linear map g ∈W ∗ with ‖g‖ = ‖f‖.

Proof: Let f ∈ U∗, that is let f : U → F be a bounded linear map. Define p : W → R
by p(x) = ‖f‖ ‖x‖. Then p(x + y) = ‖f‖ ‖x + y‖ ≤ ‖f‖

(
‖x‖ + ‖y‖

)
= p(x) + p(y), and

p(tx) = ‖f‖ ‖tx‖ = |t| ‖f‖ ‖x‖ = |t| p(x), so p is a seminorm. By the above theorem,
we can extend f to a linear map g : W → F with

∣∣g(x)
∣∣ ≤ p(x) = ‖f‖ ‖x‖ for all

x ∈ W . Since
∣∣g(x)

∣∣ ≤ ‖f‖ ‖x‖ for all x ∈ W , we have ‖g‖ ≤ ‖f‖ (so in particular, g is
a bounded linear map, that is g ∈ W ∗). And since g(x) = f(x) for all x ∈ U we have
‖g‖ = sup

{
|g(x)|

∣∣x∈W, ‖x‖=1
}
≥ sup

{
|g(x)|

∣∣x∈U, ‖x‖=1
}

= ‖f‖.

3.13 Corollary: Let W be a normed linear space over F = R or C, and let 0 6= w ∈ W .
Then there exists a bounded linear functional g ∈W ∗ with g(w) = ‖w‖ and ‖g‖ = 1.

Proof: Let U = Span {w} and define f : U → F by f(tw) = t ‖w‖. Then f ∈ U∗ with
f(w)=‖w‖ and ‖f‖=1. By the Hahn-Banach Theorem (for Bounded Linear Functionals),
f extends to a bounded linear functional g ∈W ∗ with ‖g‖ = ‖f‖ = 1.
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3.14 Corollary: Let W be a normed linear space over F = R or C, let U ⊂6= W be a

proper closed subspace, and let w ∈W \U . Then there exists a bounded linear functional
g ∈W ∗ with ‖g‖ = 1 such that g(w) = d(w,U) and g(u) = 0 for all u ∈ U .

Proof: Let d = d(w,U) and note that d > 0 because U is closed and w /∈ U . Let
V = U + Span {w} =

{
u+ tw

∣∣u ∈ U, t ∈ F
}

. Define f ∈ V ∗ by f(u+ tw) = td. Note that
f(u) = 0 for all u ∈ U and f(w) = d. We claim that ‖f‖ = 1. Recall (or verify) that for
all t ∈ F we have d(tw, U) = |t| d(w,U). It follows that for all u ∈ U and t ∈ F we have∣∣f(u+tw)

∣∣ = |t| d = |t| d(w,U) = d(tw, U) ≤ d(tw,−u) = ‖u+tw‖ and hence ‖f‖ ≤ 1. On

the other hand, for all 0 < r < 1, since d = d(w,U) = inf
{
d(w, x)

∣∣x ∈ U}, we can choose

u ∈ U so that d ≤ d(w,−u) < d
r and then we have

∣∣f(u+w)
∣∣ = d > r d(w,−u) = r ‖u+w‖

and hence ‖f‖ > r. Thus ‖f‖ = 1, as claimed. By the Hahn-Banach Theorem, we can
extend f ∈ V ∗ to a bounded linear map g ∈W ∗ with ‖g‖ = ‖f‖ = 1.

3.15 Corollary: Let W be a normed linear space over F = R or C. If W ∗ is separable
then W is separable.

Proof: Suppose that W ∗ is separable. Choose a sequence (fn)n≥1 in W ∗ such that the set{
fn
∣∣n ∈ Z+

}
is dense in W ∗. For each n ∈ Z+ choose un ∈ W with ‖un‖ = 1 such that∣∣fn(un)

∣∣ > 1
2‖fn‖. Let U = Span

{
un
∣∣n ∈ Z+

}
. Recall (or verify) that when U ⊆ W is

a subspace of a normed linear space W , the closure U of U in W is also a subspace. We
claim that U = W . Suppose, for a contradiction, that U ⊂6= W . Choose w ∈ W \ U . By

Corollary 3.14, we can choose g ∈W ∗ with ‖g‖ = 1 such that g(w) = d(w,U) and g(v) = 0
for all v ∈ U . In particular, note that g(un) = 0 for all n ∈ Z+. Since

{
fn
∣∣n ∈ Z+

}
is

dense in W ∗ we can choose an index n ∈ Z+ such that ‖fn − g‖ < 1
3 . Then we have

1 = ‖g‖ = ‖g − fn + fn‖ ≤ ‖g − fn‖+ ‖fn‖ < 1
3 + ‖fn‖

hence ‖fn‖ > 2
3 . Since ‖fn‖ > 2

3 ,
∣∣fn(un)

∣∣ > 1
2‖fn‖, g(un) = 0, ‖un‖ = 1 and ‖fn−g‖ < 1

3 ,
we have

1
3 <

1
2‖fn‖ <

∣∣fn(un)
∣∣ =

∣∣fn(un)− g(un)
∣∣ =

∣∣(fn − g)(un)
∣∣ ≤ ‖fn − g‖ < 1

3

which gives the desired contradiction. Thus U = W as claimed.
Finally, note that when F = R, the set Span Q

{
u1, u2, u3, · · ·

}
is countable and dense

in U , hence also dense in U = W , and when F = C, the set Span Q[i]

{
u1, u2, · · ·

}
is

countable and dense in U , hence also in U = W .

3.16 Note: In Part 1 of Theorem 1.28 (the Riesz Representation Theorem for the `p

Spaces), we saw that the map F : `1 → `∞
∗ given by F (b)(a) =

∞∑
k=1

akbk is an injective

norm-preserving linear map. Note that F cannot be surjective because if it was an iso-
morphism of normed linear spaces then, since `1 is separable `∞

∗ would also be separable
and hence, by the above corollary, `∞ would be separable (but it is not). Similarly, when
a, b ∈ R with a < b, the injective norm preserving map F : L1[a, b] → L∞[a, b]∗ given by

F (g)(f) =
∫ b
a
fg (as seen in Theorem 1.31, the Riesz Representation Theorem for the Lp

Spaces) cannot be surjective because L1[a, b] is separable but L∞[a, b] is not.
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The Hahn-Banach Separation Theorem

3.17 Definition: Let U be a real vector space and let A ⊆ U . A point a ∈ A is called an
internal point of A when for every u ∈ U there exists r > 0 such that a+ tu ∈ A for all
t ∈ (−r, r). The set of internal points of A is called the core (or the algebraic interior,
or the radial kernel) of A, and is denoted by Core(A). Note that when U is a normed
linear space, the interior of A is contained in the core of A.

3.18 Definition: Let U be a real vector space. Let A ⊆ U be convex with 0 ∈ Core(A).
We define the Minkowski functional of A to be the map p = pA : U → R given by

p(x) = inf
{
r > 0

∣∣ 1
r x ∈ A

}
.

Note that the set
{
r > 0

∣∣ 1
r x ∈ A

}
is nonempty because 0 ∈ Core(A).

3.19 Theorem: (The Minkowski Functional) Let U be a real vector space and let A ⊆ U
be convex with 0 ∈ Core(A). Then the Minkowski functional of A is positively homoge-
neous and subadditive.

Proof: Let p = pA be the Minkowski functional of A. Then p is positively homogeneous
because for x ∈ U and t > 0 we have

p(x) = inf
{
r>0

∣∣ 1
r tx ∈ A

}
= inf

{
ts
∣∣ s>0, 1s x ∈ A

}
= t · inf

{
s>0

∣∣ 1
s x ∈ A

}
= t p(x).

To show that p is subadditive, let x, y ∈ U and let ε > 0. Choose s ∈ S =
{
r>0

∣∣ 1
r x ∈ A

}
such that p(x) ≤ s < p(x)+ ε

2 and choose t ∈ T =
{
r>0

∣∣ 1
r y ∈ A

}
with p(y) ≤ t < p(y)+ ε

2 .
Since 1

s x ∈ A and 1
t y ∈ A and A is convex, we have

1
s+t (x+ y) = s

s+t ·
1
s x+ t

s+t ·
1
t y ∈ A

so that s+ t ∈ R =
{
r>0 | 1r (x+ y) ∈ A

}
. Thus p(x+ y) = inf R ≤ s+ t < p(x) + p(y) + ε.

Since p(x+ y) < p(x) + p(y) + ε for all ε > 0, it follows that p(x+ y) ≤ p(x) + p(y).

3.20 Theorem: (The Hahn-Banach Separation Theorem) Let U be a real vector space.
Let A and B be disjoint nonempty convex subsets of U , with Core(A) 6= ∅. Then there
exists a nonzero linear map f : U → R such that f(x) ≤ f(y) for every x ∈ A and y ∈ B.

Proof: Let a ∈ Core(A), let b ∈ B, and let C be the convex set C = A−B − a+ b. Since
A ∩B = ∅ we have 0 /∈ A−B so b− a /∈ C. Since a ∈ Core(A) we have 0 ∈ Core(A− a),
and since A − a ⊆ (A − a) − (B − b) = C, we also have 0 ∈ Core(C). Let p : U → R be
the Minkowski functional of C, given by p(x) = inf

{
r > 0

∣∣ 1
r x ∈ C

}
. Since 0 ∈ C and

b− a /∈ C and C is convex, we have t(b− a) /∈ C for all t ≥ 1 and so p(b− a) ≥ 1. On the
other hand, we have p(x) ≤ 1 for all x ∈ C.

Let f : Span {b− a} → R be the linear map given by f
(
t(b− a)

)
= t p(b− a). When

t > 0, since p is positively homogeneous we have f
(
t(b−a)

)
= t p(b−a) = p

(
t(b−a)

)
, and

when t ≤ 0, since p is nonnegative we have f
(
t(b− a)

)
= t p(b− a) ≤ 0 ≤ p

(
t(b− a)

)
, and

so f(x) ≤ p(x) for all x ∈ Span {b − a}. By the Hahn Banach Theorem (for Real Vector
Spaces), we can extend f to a linear map f : U → R with f(x) ≤ p(x) for all x ∈ U . For
all x ∈ A and y ∈ B, since x− y − a+ b ∈ C we have

1 ≥ p(x−y+a− b) ≥ f(x−y−a+b) = f(x)−f(y)+f(b−a) ≥ f(x)−f(y)+1

so that f(x) ≤ f(y).

3.21 Exercise: Let U = R∞, let A =
{
a =

n∑
k=1

akek

∣∣∣n ∈ Z+, an > 0
}

, and let B = {0}.

Show that A and B are disjoint nonempty convex subsets of U , but there is no nonzero
linear map f : U → R with f(x) ≤ f(y) for all x ∈ A and y ∈ B.
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The Riesz Representation Theorem

3.22 Definition: Let a ≤ b and let f : [a, b]→ R. For a partition P = (x0, x1, · · · , xn) of
[a, b] (so we have a = x0 < x1 < · · · < xn = b), the variation of f for the partition P is

V (f, P ) =

n∑
k=1

∣∣f(xk)− f(xk−1
∣∣

and the variation of f on the interval [a, b] is

V
(
f, [a, b]

)
= sup

{
V (f, P )

∣∣∣P is a partition of [a, b]
}
.

We say that f is of bounded variation on [a, b] when V (f, [a, b]
)
<∞, and we write

BV[a, b] =
{
f : [a, b]→ R

∣∣∣ f is of bounded variation
}
.

3.23 Theorem: Let a ≤ b and let f : [a, b]→ R. Then f is of bounded variation on [a, b]
if and only if f is rectifiable (meaning that the graph of f has finite length).

Proof: Recall that the length of the graph of f on [a, b] is defined as follows. For a partition
P = (x0, x1, · · · , xn) of [a, b], we define

L
(
f, P

)
=

n∑
k=1

√(
f(xk)− f(xk−1)

)2
+ (xk − xk−1)2

and then the length of the graph of f on [a, b] is given by

L(f, [a, b]
)

= sup
{
L(f, P )

∣∣∣ P is a partition of [a, b]
}
.

For any partition P = (x0, · · · , xn) of [a, b], since∣∣f(xk)− f(xk−1)
∣∣ ≤√(f(xk)− f(xk−1)

)2
+ (xk − xk−1)2

for all indices k, it follows that V (f, P ) ≤ L(f, P ). Since V (f, P ) ≤ L(f, P ) for all
partitions P , it follows that V (f, [a, b]) ≤ L(f, [a, b]). On the other hand, for all partitions
P = (x0, · · · , xn) of [a, b] we have√(

f(xk)− f(xk−1)
)2

+ (xk − xk−1)2 ≤
∣∣f(xk)− f(xk−1)

∣∣+
(
xk − xk−1

)
for all k, it follows that L(f, P ) ≤ V (f, P ) +

n∑
k=1

(xk − xk−1) = V (f, P ) + (b − a). Since

L(f, P ) ≤ V (f, P ) + (b− a) for all P , it follows that L(f, [a, b]
)
≤ V

(
f, [a, b]

)
+ (b− a).

3.24 Definition: Let g ∈ BV[a, b]. For a partition P = (x0, x1, · · · , xn) of [a, b], write
‖P‖ = max

{
xk−xk−1

∣∣1 ≤ k ≤ n}. For f ∈ C[a, b] = C
(
[a, b],R

)
, we define the Riemann-

Stieltjes integral of f on [a, b] with respect to the weight function g to be∫ b

a

f dg =

∫ b

a

f(x) dg(x) = lim
‖P‖→0

n∑
k=1

f(tk)
(
g(xk)− g(xk−1

)
.

This means that
∫ b
a
f dg is the (unique) real number such that for every ε > 0 there exists

δ > 0 such that for every partition P = (x0, · · · , xn) of [a, b] with ‖P‖ < δ, and for all
t1, t2, · · · , tn with each tk ∈ [xk−1, xk] we have∣∣∣∣ ∫ b

a

f dg −
n∑
k=1

f(tk)
(
g(xk)− g(xk−1)

)∣∣∣∣ < ε.
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3.25 Exercise: Verify, as an exercise, that when g ∈ BV[a, b] and f ∈ C[a, b], the Riemann-

Stieltjes integral

∫ b

a

f dg exists and is uniqe with

∣∣∣∣ ∫ b

a

f dg

∣∣∣∣ ≤ V (g, [a, b]) · ‖f‖∞.

3.26 Theorem: (The Riesz Representation Theorem) For every L ∈
(
C[a, b]

)∗
there exists

g ∈ BV[a, b] with g(a) = 0 and V
(
g, [a, b]

)
= ‖L‖ such that for all f ∈ C[a, b] we have

L(f) =

∫ b

a

f dg.

Proof: Let L ∈
(
C[a, b]

)∗
, that is let L : C[a, b]→ R be a bounded linear functional. By the

Heine-Borel Theorem, we can extend L to a bounded linear map M : B[a, b]→ R, that is
to M ∈

(
B[a, b]

)∗
, with ‖M‖ = ‖L‖. For a < x ≤ b, let sx : [a, b]→ R be the step function

given by sx(t) = 1 for a ≤ t ≤ x and sx(t) = 0 for x < t ≤ b, and let sa(t) = 0 for all
t ∈ [a, b]. Define g : [a, b]→ R by g(x) = M(sx).

We claim that g ∈ BV[a, b] with V
(
g, [a, b]

)
≤ ‖M‖ = ‖L‖. Let P = (x0, x1, · · · , xn)

be any partition of [a, b]. For y ∈ R, let σ(y) be the sign of y, given by σ(y) = y
|y| when

y 6= 0 with σ(0) = 0. For 1 ≤ k ≤ n let εk = σ
(
g(xk) − g(xk−1)

)
so that we have∣∣g(xk)− g(xk−1)

∣∣ = εk
(
g(xk)− g(xk−1

)
. Then

n∑
k=1

∣∣g(xk)− g(xk−1)
∣∣ =

n∑
k=1

εk
(
g(xk)− g(xk−1)

)
=

n∑
k=1

εk
(
M(sxk

)−M(xk−1)
)

= M
( n∑
k=1

εk(sxk
− sxk−1

)
)
≤ ‖M‖

∣∣∣∣∣∣ n∑
k=1

εk(sxk
− sxk−1

)
∣∣∣∣∣∣
∞
≤ ‖L‖

since ‖M‖ = ‖L‖ and
∣∣∣∣∣∣ n∑
k=1

εk(sxk
−sxk−1

)
∣∣∣∣∣∣
∞
≤ 1 because the function

n∑
k=1

εk(sxk
−sxk−1

)

only takes the values 0 and ±1. Thus g ∈ BV[a, b] with V
(
g, [a, b]

)
≤ ‖L‖, as claimed.

Note that if we can show that M(f) =
∫ b
a
f dg for all f ∈ C[a, b] then, from Exercise

3.25, when ‖f‖∞ ≤ 1 we have V
(
g, [a, b]

)
≥
∣∣ ∫ b
a
f dg

∣∣ =
∣∣M(f)

∣∣, and it follows that

V
(
g, [a, b]

)
≥ ‖M‖ = ‖L‖. Thus it remains to show that M(f) =

∫ b
a
f dg for all f ∈ C[a, b].

Let f ∈ C[a, b]. Let n ∈ Z+. Since f is uniformly continuous, we can choose δ > 0 such
that

∣∣f(x) − f(y)
∣∣ < 1

n for all x, y ∈ [a, b] with |x − y| < δ. Choose a partition Pn =
(x0, x1, · · · , x`) of [a, b] with ‖P‖ < δ and ‖P‖ < 1

n . Let I1 = [x0, x1] and Ik = (xk−1, xk]

for 1 < k ≤ `. Let fn =
∑̀
k=1

f(xk)
(
sxk
− sxk−1

)
, so fn is the step function given by

fn(t) = f(xk) for t ∈ Ik. Note that for all t ∈ Ik we have |xk − t| ≤ |xk − xk−1| ≤ ‖P‖ < δ
hence

∣∣f(xk) − f(t)
∣∣ < 1

n , that is
∣∣fn(t) − f(t)

∣∣ < 1
n , and it follows that ‖fn − f‖∞ ≤ 1

n .
Also note that

M(fn) =
∑̀
k=1

f(xk)
(
M(sxk

)−M(sxk−1
)
)

=
∑̀
k=1

f(xk)
(
g(xk)− g(xk−1)

)
which is one of the sums used to approximate the Riemjann-Steiltjes integral

∫ b
a
f dg. We

do this construction for each n ∈ Z+ to obtain a sequence of partitions Pn with ‖Pn‖ → 0,
and a sequence of step functions fn on these partitions with ‖fn−f‖∞ < 1

n for all n ∈ Z+

so that fn → f in B[a, b]. Since M : B[a, b]→ R is continuous, we have

M(f) = M
(

lim
n→∞

fn
)

= lim
n→∞

M(fn) = lim
‖P‖→0

∑̀
k=1

f(xk)
(
g(xk)− g(xk−1)

)
=

∫ b

a

f dg.
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The Open Mapping Theorem and The Closed Graph Theorem

3.27 Theorem: (The Open Mapping Theorem) Let U and V be Banach spaces. Let
F ∈ B(U, V ) be surjective. Then F is open (meaning that the set FA = {Fa | a ∈ A} is
open in V for every open set A in U).

Proof: We claim that for all R > 0 there exists r > 0 such that B(0, r) ⊆ FB(0, R). Note

that U =
∞⋃
k=1

B(0, k). Since F is onto, V = F
( ∞⋃
n=1

B(0, n)
)

=
∞⋃
n=1

FB(0, n). Since V

is complete, the Baire Category Theorem implies that one of the sets FB(0, n) has non-

empty interior. By scaling, FB(0, r) has non-empty interior for all r > 0 so, in particular,

FB(0, 1) has non-empty interior. Choose c ∈ V and r > 0 such that B(c, 2r) ⊆ FB(0, 1).

Since FB(0, 1) is dense in FB(0, 1), we can choose a ∈ B(0, 1) and b = Fa ∈ FB(0, 1)

with ‖b− c‖ < r and then we have B(b, r) ⊆ B(c, 2r) ⊆ FB(0, 1).

Let y ∈ B(0, r) and let ε > 0. Since b + y ∈ B(b, r) ⊆ FB(0, 1), we can choose
z ∈ FB(0, 1) such that ‖Fz − b − y‖ < ε. Since z ∈ FB(0, 1) we can choose x ∈ B(0, 1)
such that Fx = z. Since x ∈ B(0, 1) and a ∈ B(0, 1) we have x − a ∈ B(0, 2), and we

have ‖F (x− a)− y‖ = ‖Fx− Fa− y‖ = ‖z = b− y‖ < ε. This proves that y ∈ FB(0, 2)

hence (since y ∈ B(0, r) was arbitrary) B(0, r) ⊆ FB(0, 2). By scaling, it follows that for

all R > 0 there exists r > 0 such that B(0, r) ⊆ FB(0, R), as claimed.

We claim that for all R > 0 there exists r > 0 such that B(0, r) ⊆ FB(0, R). By

our previous claim, we can choose r > 0 such that B(0, r) ⊆ FB(0, 12 ). By scaling, it

follows that B
(
0, r

2k

)
⊆ FB

(
0, 1

2k+1

)
for all k ≥ 0. Let y ∈ B(0, r) ⊆ FB(0, 12 ). Choose

x1 ∈ B
(
0, 12
)

such that ‖y − Fx1‖ < r
2 . Since y − Fx1 ∈ B

(
0, r2
)
⊆ FB

(
0, 14
)
, we can

choose x2 ∈ B
(
0, 14
)

such that ‖(y − Fx1) − Fx2‖ < r
4 , that is ‖y − F (x1 + x2)‖ < r

4 .

Repeat this procedure obtain elements xk ∈ B
(
0, 1

2k

)
such that ‖y − F (un)‖ < r

2n where

un =
n∑
k=1

xk. Note that for ` > n we have

‖u` − un‖ =
∣∣∣∣∣∣ ∑̀
k=n+1

xk

∣∣∣∣∣∣ ≤ ∑̀
k=n+1

‖xk‖ <
∑̀

k=n+1

1
2k
<

∞∑
k=n+1

1
2k

= 1
2n ,

and it follows that the sequence (un) is Cauchy in U , and hence it converges because U is

complete. Let u = lim
n→∞

un =
∞∑
k=1

xk. Note that

‖un‖ =
∣∣∣∣∣∣ n∑
k=1

xk

∣∣∣∣∣∣ ≤ n∑
k=1

‖xk‖ < ‖x1‖+
n∑
k=2

1
2k
< ‖x1‖+

∞∑
k=2

1
2k

= ‖x1‖+ 1
2

and hence ‖u‖ =
∣∣∣∣ lim
n→∞

un
∣∣∣∣ = lim

n→∞
‖un‖ ≤ ‖x1‖ + 1

2 < 1
2 + 1

2 = 1 so that we have

u ∈ B(0, 1). Since ‖y − Fun‖ < r
2n it follows that Fun → y in V . Since F is bounded,

hence continuous, we have F (u) = F
(

lim
n→∞

un
)

= lim
n→∞

F (un) = y. Thus y ∈ FB(0, 1) and

hence (since y was arbitrary) B(0, r) ⊆ FB(0, 1). By scaling, it follows that for all R > 0
there exists r > 0 such that B(0, r) ⊆ FB(0, R).

Finally, we show that F is open. Let A ⊆ U be open. Let v ∈ FA and choose u ∈ A
such that Fu = v. Since A is open, we can choose R > 0 so that B(u,R) ⊆ A. By our
above claim, we can choose r > 0 such that B(0, r) ⊆ FB(0, R). By linearity, we have

B(v,R) = v +B(0, r) ⊆ v + FB(0, R) = F
(
u+B(0, R)

)
= FB(u,R) ⊆ FA.
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3.28 Definition: Let X be a metric space equipped with two metrics d1 and d2. We say
the two metrics are equivalent when they induce the same topology on X, that is when
every open ball B2(a, ε) contains an open ball B1(a, δ) and vice versa. Equivalently, the two
metrics are equivalent when the identity map I : (X, d1) → (X, d2) is a homeomorphism.
Similarly, when U is a vector space which equipped with two norms ‖ ‖1 and ‖ ‖2, we say
the two norms are equivalent when they induce the same topology on U . By Theorem
1.26, the norms are equivalent when there exist `,m ≥ 0 such that for all x ∈ U we have
‖x‖2 ≤ ` ‖x‖1 and ‖x‖1 ≤ m‖x‖2.

3.29 Corollary: Let U be a vector space equipped with two norms ‖ ‖1 and ‖ ‖2. Suppose
that U is complete under both norms. If there exists ` ≥ 0 such that ‖x‖2 ≤ ` ‖x‖1 for all
x ∈ U then the two norms are equivalent. Equivalently, if the identity map I : (U, d1) →
(U, d2) is continuous then it is a homeomorphism.

Proof: If the identity map I : (U, d1) → (U, d2) is continuous, then it is bounded (by
Theorem 1.26) and surjective (obviously), so it is open (by the Open Mapping Theorem),
and so its inverse I : (U, d2)→ (U, d1) is continuous.

3.30 Definition: When X and Y are topological spaces, the product topology on
X × Y is the topology given by taking the basic open sets to be sets of the form A × B
where A is open in X and B is open in Y (this will be explained in Chapter 4). When X
and Y are metric spaces, there are various ways that one can define a metric on X × Y so
that the induced topology is the product topology. Let us define the product metric on
X × Y by

d
(
(x1, y1), (x2, y2)

)
= d(x1, x2) + d(y1, y2).

Not only does this metric induce the product topology on X×Y , it also behaves as expected
with sequences: if (xn) is a sequence in X and (yn) is a sequence in Y and a ∈ X and
b ∈ Y , then (xn, yn)→ (a, b) in X × Y if and only if xn → a in X and yn → b in Y . Also,
(xn, yn) is Cauchy in X × Y if and only if (xn) is Cauchy in X and (yn) is Cauchy in Y .

3.31 Definition: Let X and Y be metric spaces and let f : A ⊆ X → Y be a function.
The graph of f is the set

Graph (f) =
{

(x, y)
∣∣∣x ∈ A, y = f(x)

}
=
{

(a, f(a)
∣∣∣ a ∈ A}.

We say that f has a closed graph (or simply that f is closed), when the graph of f is
closed in X × Y using the product topology. Note that f has a closed graph when for
every sequence (xn) in A,

if xn → a ∈ X and f(xn)→ b in Y then a ∈ A and b = f(a).

3.32 Theorem: (The Closed Graph Theorem) Let U and V be Banach spaces, and let
F : U → V be a linear operator. If the graph of F is closed then F is continuous.

Proof: Denote the norm on U by ‖ ‖1 and the norm on V by ‖ ‖2. Define a second norm
‖ ‖3 on U by ‖x‖3 = ‖x‖1 +‖Fx‖2. Let (xn) be a Cauchy sequence in (U, ‖ ‖3). Then (xn)
is Cauchy in (U, ‖ ‖1) and (Fxn) is Cauchy in (V, ‖ ‖2) (because ‖x` − xn‖1 ≤ ‖x` − xn‖3
and ‖x` − xn‖2 ≤ ‖x` − xn‖3). Since (U, ‖ ‖1) and (V, ‖ ‖2) are both complete, it follows
that (xn) converges in (U, ‖ ‖1) and (Fxn) converges in (V, ‖ ‖2), say xn → a in (U, ‖ ‖1)
and Fxn → b in (V, ‖ ‖2). Since F has a closed graph, we have b = Fa, and it follows
that xn → a in (U, ‖ ‖3) because ‖xn − a‖3 = ‖xn − a‖1 + ‖Fxn − b‖2. Thus (U, ‖ ‖3) is
complete. Since U is complete under both ‖ ‖1 and ‖ ‖3 and we have ‖x‖1 ≤ ‖x‖3 for all
x ∈ U , it follows from Corollary 3.29 that there exists ` ≥ 0 such that ‖x‖3 ≤ `‖x‖1 for
all x ∈ U . Thus F is bounded, hence continuous.
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