

Chapter 3. Banach Spaces

Finite Dimensional Normed Linear Spaces

3.1 Example: Recall, from linear algebra, that when U and V are non-trivial finite dimensional inner product spaces over \mathbb{R} and $F : U \rightarrow V$ is a linear map, the closed unit ball in U is compact (so that $\|Fx\|$ attains its maximum on the closed unit ball) and we have

$$\|F\| = \max \left\{ \|Fx\| \mid x \in U, \|x\| = 1 \right\} = \|Fu\| = \sqrt{\lambda}$$

where λ is the largest eigenvalue of $F^*F : U \rightarrow U$ and u is a unit eigenvector for λ .

3.2 Theorem: Let U be an n -dimensional normed linear space over \mathbb{R} . Let $\{u_1, \dots, u_n\}$ be any basis for U and let $F : \mathbb{R}^n \rightarrow U$ be the associated vector space isomorphism given by $F(t) = \sum_{k=1}^n t_k u_k$. Then both F and F^{-1} are Lipschitz continuous.

Proof: Let $M = \left(\sum_{k=1}^n \|u_k\|^2 \right)^{1/2}$. For $t \in \mathbb{R}^n$ we have

$$\begin{aligned} \|F(t)\| &= \left\| \sum_{k=1}^n t_k u_k \right\| \leq \sum_{k=1}^n |t_k| \|u_k\|, \text{ by the Triangle Inequality,} \\ &\leq \left(\sum_{k=1}^n t_k^2 \right)^{1/2} \left(\sum_{k=1}^n \|u_k\|^2 \right)^{1/2}, \text{ by the Cauchy-Schwarz Inequality,} \\ &= M\|t\|. \end{aligned}$$

For all $s, t \in \mathbb{R}^n$, $\|F(s) - F(t)\| = \|F(s - t)\| \leq M\|s - t\|$, so F is Lipschitz continuous.

Note that the map $N : U \rightarrow \mathbb{R}$ given by $N(x) = \|x\|$ is (uniformly) continuous, indeed we can take $\delta = \epsilon$ in the definition of continuity. Since F and N are both continuous, so is the composite $G = N \circ F : \mathbb{R}^n \rightarrow \mathbb{R}$, which given by $G(t) = \|F(t)\|$. By the Extreme Value Theorem, the map G attains its minimum value on the unit sphere $\{t \in \mathbb{R}^n \mid \|t\| = 1\}$, which is compact. Let $m = \min_{\|t\|=1} G(t) = \min_{\|t\|=1} \|F(t)\|$. Note that $m > 0$ because when $t \neq 0$ we have $F(t) \neq 0$ (since F is a bijective linear map) and hence $\|F(t)\| \neq 0$. For $t \in \mathbb{R}^n$, if $\|t\| > 1$ then we have $\left\| \frac{t}{\|t\|} \right\| = 1$ so, by the choice of m ,

$$\|F(t)\| = \|t\| \left\| F\left(\frac{t}{\|t\|}\right) \right\| \geq \|t\| \cdot m > m.$$

It follows that for all $t \in \mathbb{R}^n$, if $\|F(t)\| \leq m$ then $\|t\| \leq 1$. Since F is bijective, it follows that for $x \in U$, if $\|x\| \leq m$ then $\|F^{-1}(x)\| \leq 1$. Thus for all $x \in U$, if $x = 0$ then $\|F^{-1}(x)\| = 0 = \frac{\|x\|}{m}$ and if $x \neq 0$ then since $\left\| \frac{mx}{\|x\|} \right\| = m$ we have

$$\|F^{-1}(x)\| = \frac{\|x\|}{m} \left\| F^{-1}\left(\frac{mx}{\|x\|}\right) \right\| \leq \frac{\|x\|}{m}.$$

For all $x, y \in U$, we have $\|F^{-1}(x) - F^{-1}(y)\| = \|F^{-1}(x - y)\| \leq \frac{1}{m} \|x - y\|$, so F^{-1} is Lipschitz continuous.

3.3 Corollary: When U and V are normed linear spaces with U finite-dimensional, every linear map $F : U \rightarrow V$ is Lipschitz continuous.

3.4 Corollary: When U is a finite-dimensional vector space, any two norms on U induce the same topology, and a sequence converges in one norm if and only if it converges in the other, and a sequence is Cauchy in one norm if and only if it is Cauchy in the other.

3.5 Definition: Let Y be a metric space and let $\emptyset \neq X \subseteq Y$. Recall that for $y \in Y$ we define the **distance** between y and X to be

$$d(y, X) = \inf \{d(y, x) \mid x \in X\}.$$

Recall (or prove) that when X is compact, the minimum value of $d(y, x)$, $x \in X$ is attained and so we can choose $x \in X$ such that $d(y, x) = d(y, X)$.

3.6 Theorem: Let W be a normed linear space and let $U \subseteq W$ be a finite-dimensional subspace. Then for every $w \in W$ there exists $u \in U$ such that $d(w, u) = d(w, U)$.

Proof: Let $w \in W$. If $w \in U$ we can take $u = w$ to get $d(w, u) = 0 = d(w, U)$. Suppose that $w \notin U$. Let $d = d(w, U)$ and note that since U is closed we have $d > 0$ (since we can choose $r > 0$ so that $B(w, r) \cap U = \emptyset$ and then $d \geq r$). Let $K = \overline{B}(w, d+1) \cap U$. Note that $d(w, K) = d(w, U)$. Indeed, since $K \subseteq U$ we have $d(w, K) \geq d(w, U) = d$ and, on the other hand, for any $0 < \epsilon < 1$ we can choose $u \in U$ with $d \leq d(w, u) < d + \epsilon < d + 1$, and then we have $u \in K$ hence $d(w, K) \leq d(w, u) < d + \epsilon$. Since K is closed and bounded in U , and U is a finite dimensional vector space (so we have a bijective map $F : \mathbb{R}^n \rightarrow U$ with F and F^{-1} both Lipschitz continuous), it follows that K is compact. Since K is compact we can choose $u \in K$ such that $d(w, u) = d(w, K) = d(w, U)$.

3.7 Lemma: Let W be a normed linear space and let $U \subsetneq W$ be a proper closed subspace. For every $0 < r < 1$ there exists an element $w \in W \setminus U$ with $\|w\| = 1$ such that $d(w, U) \geq r$.

Proof: Let $0 < r < 1$. Since $U \subsetneq W$ we can choose $v \in W \setminus U$. Let $d = d(v, U)$ and note that since U is closed we have $d > 0$. Since $d = \inf \{\|v - u\| \mid u \in U\}$ we can choose $u \in U$ such that $d \leq \|v - u\| < \frac{d}{r}$. Let $w = \frac{v-u}{\|v-u\|}$. Then we have $\|w\| = 1$ and for all $x \in U$ we have

$$\|x - w\| = \left\|x - \frac{v-u}{\|v-u\|}\right\| = \frac{1}{\|v-u\|} \cdot \|(v-u)x + u - v\| \geq \frac{r}{d} \cdot d = r.$$

3.8 Theorem: (Riesz's Theorem) Let U be a normed linear space. Then U is finite-dimensional if and only if the closed unit ball in U is compact.

Proof: Suppose that U is finite-dimensional. Let $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ be a basis for U and let $F : \mathbb{R}^n \rightarrow U$ be the isomorphism given by $F(t) = \sum_{k=1}^n t_k u_k$. By Theorem 3.2, F and F^{-1} are continuous. Since F is continuous, $F^{-1}(\overline{B}(0, 1))$ is closed, and since F^{-1} is continuous, $F^{-1}(\overline{B}(0, 1))$ is bounded (by Theorem 1.26). Since $F^{-1}(\overline{B}(0, 1))$ is closed and bounded in \mathbb{R}^n , it is compact. Since F is a homeomorphism and $F^{-1}(\overline{B}(0, 1))$ is compact, it follows that $\overline{B}(0, 1)$ is also compact.

Suppose that U is infinite dimensional. Choose $u_1 \in U$ with $\|u_1\| = 1$ and let $U_1 = \text{Span}\{u_1\}$. Since U_1 is finite-dimensional, it is closed and it is a proper subspace of U so, by the above lemma, we can choose $u_2 \in U \setminus U_1$ with $\|u_2\| = 1$ such that $d(u_2, U_1) \geq \frac{1}{2}$, and note that this implies that $d(u_2, u_1) \geq \frac{1}{2}$. Let $U_2 = \text{Span}\{u_1, u_2\}$ and note that U_2 is a proper closed subspace of U . By the lemma we can choose $u_3 \in U \setminus U_2$ with $\|u_3\| = 1$ such that $d(u_3, U_2) \geq \frac{1}{2}$, and note that this implies that $d(u_3, u_1) \geq \frac{1}{2}$ and $d(u_3, u_2) \geq \frac{1}{2}$. Repeat this procedure to obtain a sequence $(u_n)_{n \geq 1}$ such that $\|u_n\| = 1$ for all $n \in \mathbb{Z}^+$ and $d(u_n, u_k) \geq \frac{1}{2}$ for $1 \leq k < n$. Then (u_n) is a sequence in the closed unit ball $\overline{B}(0, 1)$ which has no convergent subsequence, and hence $\overline{B}(0, 1)$ is not compact.

The Hahn-Banach Theorem

3.9 Definition: Let W be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $p : W \rightarrow \mathbb{R}$. We say that p is **subadditive** when $p(x + y) \leq p(x) + p(y)$ for all $x, y \in W$, we say that p is **homogeneous** when $p(tx) = |t|p(x)$ for all $x \in W$ and all $t \in \mathbb{C}$, and we say that p is **positively homogeneous** when $p(tx) = t p(x)$ for all $x \in W$ and all $t \in \mathbb{R}$ with $t \geq 0$. A **seminorm** on a vector space W is a subadditive homogeneous map $p : W \rightarrow \mathbb{R}$.

3.10 Theorem: (The Hahn-Banach Theorem for Real Vector Spaces) Let W be a vector space over \mathbb{R} , let $U \subseteq W$ be a subspace, and let $p : W \rightarrow \mathbb{R}$ be subadditive and positively homogeneous. Then every linear map $f : U \rightarrow \mathbb{R}$ with $f(x) \leq p(x)$ for all $x \in U$ extends to a linear map $g : W \rightarrow \mathbb{R}$ with $g(x) \leq p(x)$ for all $x \in W$.

Proof: We claim that when $w \in W \setminus U$ and $V = U + \text{Span}\{w\} = \{u + tw \mid u \in U, t \in \mathbb{R}\}$, every linear map $f : U \rightarrow \mathbb{R}$ with $f(x) \leq p(x)$ for all $x \in U$ extends to a linear map $g : V \rightarrow \mathbb{R}$ with $g(x) \leq p(x)$ for all $x \in V$. Note that such an extension g is determined by the value $g(w) \in \mathbb{R}$ and must be given by $g(u + tw) = f(u) + t g(w)$ for all $u \in U$ and $t \in \mathbb{R}$. We shall choose $r = g(w) \in \mathbb{R}$ so that the map $g(u + tw) = f(u) + tr$ satisfies the requirement that $g(v) \leq p(v)$ for all $v = u + tw \in V$. Note that for all $x, y \in U$ we have

$$f(x) - f(y) = f(x - y) \leq p(x - y) = p((x + w) + (-y - w)) \leq p(x + w) + p(-y - w)$$

(by subadditivity) and hence $-p(-y - w) - f(y) \leq p(x + w) - f(x)$. It follows that

$$\sup \{ -p(-y - w) - f(y) \mid y \in U \} \leq \inf \{ p(x + w) - f(x) \mid x \in U \}$$

so we can choose $r \in \mathbb{R}$ such that

$$-p(-y - w) - f(y) \leq r \leq p(x + w) - f(x) \text{ for all } x, y \in U.$$

We define $g : V \rightarrow \mathbb{R}$ by $g(u + tw) = f(u) + tr$ for all $u \in U$ and $t \in \mathbb{R}$. We must show that $g(u + tw) \leq p(u + tw)$ for all $u \in U$ and $t \in \mathbb{R}$. Let $u \in U$ and $t \in \mathbb{R}$. If $t = 0$ then we have $g(u + tw) = g(u) = f(u) \leq p(u) = p(u + tw)$. If $t > 0$ then since $r \leq p\left(\frac{u}{t} + w\right) - f\left(\frac{u}{t}\right) = \frac{1}{t}(p(u + tw) - f(u))$ (by positive homogeneity) we have $tr \leq p(u + tw) - f(u)$ hence $g(u + tw) = f(u) + tr \leq p(u + tw)$. Finally, if $t < 0$ then since $r \geq -p\left(-\frac{u}{t} - w\right) - f\left(\frac{u}{t}\right) = \frac{1}{t}(p(u + tw) - f(u))$ (by positive homogeneity) we have $tr \leq p(u + tw) - f(u)$, hence $g(u + tw) = f(u) + tr \leq p(u + tw)$, as required. This completes the proof of our claim.

We can now complete the proof of Part (1) using Zorn's Lemma. Let S be the set of all linear extensions of f dominated by p , that is the set of all linear maps $g : V \rightarrow \mathbb{R}$, where V is a subspace of W containing U , such that $g(x) = f(x)$ for all $x \in U$ and $g(x) \leq p(x)$ for all $x \in V$. Define an order on S by stipulating that $g_1 \leq g_2$ when g_2 is an extension of g_1 (or equivalently when the graph of g_2 contains the graph of g_1). Note that every chain $C = \{g_\alpha : V_\alpha \rightarrow \mathbb{R} \mid \alpha \in A\}$ in S has an upper bound, namely the map $g : V \rightarrow \mathbb{R}$, where $V = \bigcup_{\alpha \in A} V_\alpha$, given by $g(x) = g_\alpha(x)$ for any $\alpha \in A$ for which $x \in V_\alpha$ (you should verify,

as an exercise, that the map g is well-defined and linear with $g(x) = f(x)$ for all $x \in U$ and $g(x) \leq p(x)$ for all $x \in V$, and that g is an upper bound for C). By Zorn's Lemma, S has a maximal element $g : V \rightarrow \mathbb{R}$. By our previous claim, if we had $V \subsetneq W$ we could choose $w \in W \setminus V$ and extend g to a linear map h defined on $V' = V + \text{Span}\{w\}$ with $h(x) \leq p(x)$ for all $x \in V'$, but this would contradict the maximality of g in S . Thus we must have $V = W$ and so the maximal element g in S is an extension of f to all of W .

3.11 Theorem: (*The Hahn-Banach Theorem for Real or Complex Vector Spaces*) Let W be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , let $U \subseteq W$ be a subspace, and let $p : W \rightarrow \mathbb{R}$ be a seminorm. Then every linear map $f : U \rightarrow \mathbb{F}$ with $|f(x)| \leq p(x)$ for all $x \in U$ extends to a linear map $g : W \rightarrow \mathbb{F}$ with $|g(x)| \leq p(x)$ for all $x \in W$.

Proof: In the case that $\mathbb{F} = \mathbb{R}$, this follows immediately from the Hahn-Banach Theorem for Real Vector Spaces, because we can extend $f : U \rightarrow \mathbb{R}$ to a linear map $g : W \rightarrow \mathbb{R}$ with $g(x) \leq p(x)$ for all $x \in W$, and then (since g is linear and p is a seminorm) we also have $-g(x) = g(-x) \leq p(-x) = p(x)$, so that $|g(x)| \leq p(x)$, for all $x \in W$.

Suppose that $\mathbb{F} = \mathbb{C}$. Let $f : U \rightarrow \mathbb{C}$ be \mathbb{C} -linear with $|f(x)| \leq p(x)$ for all $x \in W$. Write $f(x) = u(x) + i v(x)$ where $u, v : U \rightarrow \mathbb{R}$, and note that u and v are \mathbb{R} -linear and we have

$$u(ix) = \operatorname{Re}(f(ix)) = \operatorname{Re}(i f(x)) = \operatorname{Re}(i(u(x) + i v(x))) = -v(x)$$

so that $v(x) = -u(ix)$ and $f(x) = u(x) + i v(x) = u(x) - i u(ix)$. Since $u(x) \leq |g(x)| \leq p(x)$ for all $x \in U$, using the Hahn-Banach Theorem for Real Vector Spaces, we can extend u to an \mathbb{R} -linear map $w : W \rightarrow \mathbb{R}$ with $w(x) \leq p(x)$ for all $x \in W$. Define $g : W \rightarrow \mathbb{C}$ by $g(x) = w(x) - i w(ix)$. Verify that g is \mathbb{C} -linear, and note that g extends f because $f(x) = u(x) - i u(ix)$ for all $x \in U$. It remains to show that $|g(x)| \leq p(x)$ for all $x \in W$. Let $x \in W$. Write $g(x) = r e^{i\theta}$ with $r > 0$ so that $|g(x)| = r = e^{-i\theta} g(x) = g(e^{-i\theta} x)$. Then we have

$$|g(x)| = \operatorname{Re}(|g(x)|) = \operatorname{Re}(g(e^{-i\theta} x)) = w(e^{-i\theta} x) \leq p(e^{-i\theta} x) = p(x),$$

as required.

3.12 Theorem: (*The Hahn-Banach Theorem for Bounded Linear Functionals*) Let W be a normed linear space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $U \subseteq W$ be a subspace. Then every bounded linear map $f \in U^*$ extends to a bounded linear map $g \in W^*$ with $\|g\| = \|f\|$.

Proof: Let $f \in U^*$, that is let $f : U \rightarrow \mathbb{F}$ be a bounded linear map. Define $p : W \rightarrow \mathbb{R}$ by $p(x) = \|f\| \|x\|$. Then $p(x+y) = \|f\| \|x+y\| \leq \|f\| (\|x\| + \|y\|) = p(x) + p(y)$, and $p(tx) = \|f\| \|tx\| = |t| \|f\| \|x\| = |t| p(x)$, so p is a seminorm. By the above theorem, we can extend f to a linear map $g : W \rightarrow \mathbb{F}$ with $|g(x)| \leq p(x) = \|f\| \|x\|$ for all $x \in W$. Since $|g(x)| \leq \|f\| \|x\|$ for all $x \in W$, we have $\|g\| \leq \|f\|$ (so in particular, g is a bounded linear map, that is $g \in W^*$). And since $g(x) = f(x)$ for all $x \in U$ we have $\|g\| = \sup \{|g(x)| \mid x \in W, \|x\|=1\} \geq \sup \{|g(x)| \mid x \in U, \|x\|=1\} = \|f\|$.

3.13 Corollary: Let W be a normed linear space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and let $0 \neq w \in W$. Then there exists a bounded linear functional $g \in W^*$ with $g(w) = \|w\|$ and $\|g\| = 1$.

Proof: Let $U = \operatorname{Span}\{w\}$ and define $f : U \rightarrow \mathbb{F}$ by $f(tw) = t\|w\|$. Then $f \in U^*$ with $f(w) = \|w\|$ and $\|f\| = 1$. By the Hahn-Banach Theorem (for Bounded Linear Functionals), f extends to a bounded linear functional $g \in W^*$ with $\|g\| = \|f\| = 1$.

3.14 Corollary: Let W be a normed linear space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , let $U \subsetneq W$ be a proper closed subspace, and let $w \in W \setminus U$. Then there exists a bounded linear functional $g \in W^*$ with $\|g\| = 1$ such that $g(w) = d(w, U)$ and $g(u) = 0$ for all $u \in U$.

Proof: Let $d = d(w, U)$ and note that $d > 0$ because U is closed and $w \notin U$. Let $V = U + \text{Span}\{w\} = \{u + tw \mid u \in U, t \in \mathbb{F}\}$. Define $f \in V^*$ by $f(u + tw) = td$. Note that $f(u) = 0$ for all $u \in U$ and $f(w) = d$. We claim that $\|f\| = 1$. Recall (or verify) that for all $t \in \mathbb{F}$ we have $d(tw, U) = |t|d(w, U)$. It follows that for all $u \in U$ and $t \in \mathbb{F}$ we have $|f(u + tw)| = |t|d(w, U) = d(tw, U) \leq d(tw, -u) = \|u + tw\|$ and hence $\|f\| \leq 1$. On the other hand, for all $0 < r < 1$, since $d = d(w, U) = \inf\{d(w, x) \mid x \in U\}$, we can choose $u \in U$ so that $d \leq d(w, -u) < \frac{d}{r}$ and then we have $|f(u + w)| = d > r d(w, -u) = r \|u + w\|$ and hence $\|f\| > r$. Thus $\|f\| = 1$, as claimed. By the Hahn-Banach Theorem, we can extend $f \in V^*$ to a bounded linear map $g \in W^*$ with $\|g\| = \|f\| = 1$.

3.15 Corollary: Let W be a normed linear space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . If W^* is separable then W is separable.

Proof: Suppose that W^* is separable. Choose a sequence $(f_n)_{n \geq 1}$ in W^* such that the set $\{f_n \mid n \in \mathbb{Z}^+\}$ is dense in W^* . For each $n \in \mathbb{Z}^+$ choose $u_n \in W$ with $\|u_n\| = 1$ such that $|f_n(u_n)| > \frac{1}{2}\|f_n\|$. Let $U = \text{Span}\{u_n \mid n \in \mathbb{Z}^+\}$. Recall (or verify) that when $U \subseteq W$ is a subspace of a normed linear space W , the closure \bar{U} of U in W is also a subspace. We claim that $\bar{U} = W$. Suppose, for a contradiction, that $\bar{U} \neq W$. Choose $w \in W \setminus \bar{U}$. By Corollary 3.14, we can choose $g \in W^*$ with $\|g\| = 1$ such that $g(w) = d(w, \bar{U})$ and $g(v) = 0$ for all $v \in \bar{U}$. In particular, note that $g(u_n) = 0$ for all $n \in \mathbb{Z}^+$. Since $\{f_n \mid n \in \mathbb{Z}^+\}$ is dense in W^* we can choose an index $n \in \mathbb{Z}^+$ such that $\|f_n - g\| < \frac{1}{3}$. Then we have

$$1 = \|g\| = \|g - f_n + f_n\| \leq \|g - f_n\| + \|f_n\| < \frac{1}{3} + \|f_n\|$$

hence $\|f_n\| > \frac{2}{3}$. Since $\|f_n\| > \frac{2}{3}$, $|f_n(u_n)| > \frac{1}{2}\|f_n\|$, $g(u_n) = 0$, $\|u_n\| = 1$ and $\|f_n - g\| < \frac{1}{3}$, we have

$$\frac{1}{3} < \frac{1}{2}\|f_n\| < |f_n(u_n)| = |f_n(u_n) - g(u_n)| = |(f_n - g)(u_n)| \leq \|f_n - g\| < \frac{1}{3}$$

which gives the desired contradiction. Thus $\bar{U} = W$ as claimed.

Finally, note that when $\mathbb{F} = \mathbb{R}$, the set $\text{Span}_{\mathbb{Q}}\{u_1, u_2, u_3, \dots\}$ is countable and dense in U , hence also dense in $\bar{U} = W$, and when $\mathbb{F} = \mathbb{C}$, the set $\text{Span}_{\mathbb{Q}[i]}\{u_1, u_2, \dots\}$ is countable and dense in U , hence also in $\bar{U} = W$.

3.16 Note: In Part 1 of Theorem 1.28 (the Riesz Representation Theorem for the ℓ_p Spaces), we saw that the map $F : \ell_1 \rightarrow \ell_\infty^*$ given by $F(b)(a) = \sum_{k=1}^{\infty} a_k b_k$ is an injective norm-preserving linear map. Note that F cannot be surjective because if it was an isomorphism of normed linear spaces then, since ℓ_1 is separable ℓ_∞^* would also be separable and hence, by the above corollary, ℓ_∞ would be separable (but it is not). Similarly, when $a, b \in \mathbb{R}$ with $a < b$, the injective norm preserving map $F : L_1[a, b] \rightarrow L_\infty[a, b]^*$ given by $F(g)(f) = \int_a^b fg$ (as seen in Theorem 1.31, the Riesz Representation Theorem for the L_p Spaces) cannot be surjective because $L_1[a, b]$ is separable but $L_\infty[a, b]$ is not.

The Hahn-Banach Separation Theorem

3.17 Definition: Let U be a real vector space and let $A \subseteq U$. A point $a \in A$ is called an **internal point** of A when for every $u \in U$ there exists $r > 0$ such that $a + tu \in A$ for all $t \in (-r, r)$. The set of internal points of A is called the **core** (or the **algebraic interior**, or the **radial kernel**) of A , and is denoted by $\text{Core}(A)$. Note that when U is a normed linear space, the interior of A is contained in the core of A .

3.18 Definition: Let U be a real vector space. Let $A \subseteq U$ be convex with $0 \in \text{Core}(A)$. We define the **Minkowski functional** of A to be the map $p = p_A : U \rightarrow \mathbb{R}$ given by

$$p(x) = \inf \{r > 0 \mid \frac{1}{r}x \in A\}.$$

Note that the set $\{r > 0 \mid \frac{1}{r}x \in A\}$ is nonempty because $0 \in \text{Core}(A)$.

3.19 Theorem: (The Minkowski Functional) Let U be a real vector space and let $A \subseteq U$ be convex with $0 \in \text{Core}(A)$. Then the Minkowski functional of A is positively homogeneous and subadditive.

Proof: Let $p = p_A$ be the Minkowski functional of A . Then p is positively homogeneous because for $x \in U$ and $t > 0$ we have

$$p(x) = \inf \{r > 0 \mid \frac{1}{r}tx \in A\} = \inf \{ts \mid s > 0, \frac{1}{s}x \in A\} = t \cdot \inf \{s > 0 \mid \frac{1}{s}x \in A\} = tp(x).$$

To show that p is subadditive, let $x, y \in U$ and let $\epsilon > 0$. Choose $s \in S = \{r > 0 \mid \frac{1}{r}x \in A\}$ such that $p(x) \leq s < p(x) + \frac{\epsilon}{2}$ and choose $t \in T = \{r > 0 \mid \frac{1}{r}y \in A\}$ with $p(y) \leq t < p(y) + \frac{\epsilon}{2}$. Since $\frac{1}{s}x \in A$ and $\frac{1}{t}y \in A$ and A is convex, we have

$$\frac{1}{s+t}(x+y) = \frac{s}{s+t} \cdot \frac{1}{s}x + \frac{t}{s+t} \cdot \frac{1}{t}y \in A$$

so that $s+t \in R = \{r > 0 \mid \frac{1}{r}(x+y) \in A\}$. Thus $p(x+y) = \inf R \leq s+t < p(x) + p(y) + \epsilon$. Since $p(x+y) < p(x) + p(y) + \epsilon$ for all $\epsilon > 0$, it follows that $p(x+y) \leq p(x) + p(y)$.

3.20 Theorem: (The Hahn-Banach Separation Theorem) Let U be a real vector space. Let A and B be disjoint nonempty convex subsets of U , with $\text{Core}(A) \neq \emptyset$. Then there exists a nonzero linear map $f : U \rightarrow \mathbb{R}$ such that $f(x) \leq f(y)$ for every $x \in A$ and $y \in B$.

Proof: Let $a \in \text{Core}(A)$, let $b \in B$, and let C be the convex set $C = A - B - a + b$. Since $A \cap B = \emptyset$ we have $0 \notin A - B$ so $b - a \notin C$. Since $a \in \text{Core}(A)$ we have $0 \in \text{Core}(A - a)$, and since $A - a \subseteq (A - a) - (B - b) = C$, we also have $0 \in \text{Core}(C)$. Let $p : U \rightarrow \mathbb{R}$ be the Minkowski functional of C , given by $p(x) = \inf \{r > 0 \mid \frac{1}{r}x \in C\}$. Since $0 \in C$ and $b - a \notin C$ and C is convex, we have $t(b - a) \notin C$ for all $t \geq 1$ and so $p(b - a) \geq 1$. On the other hand, we have $p(x) \leq 1$ for all $x \in C$.

Let $f : \text{Span}\{b - a\} \rightarrow \mathbb{R}$ be the linear map given by $f(t(b - a)) = tp(b - a)$. When $t > 0$, since p is positively homogeneous we have $f(t(b - a)) = tp(b - a) = p(t(b - a))$, and when $t \leq 0$, since p is nonnegative we have $f(t(b - a)) = tp(b - a) \leq 0 \leq p(t(b - a))$, and so $f(x) \leq p(x)$ for all $x \in \text{Span}\{b - a\}$. By the Hahn-Banach Theorem (for Real Vector Spaces), we can extend f to a linear map $f : U \rightarrow \mathbb{R}$ with $f(x) \leq p(x)$ for all $x \in U$. For all $x \in A$ and $y \in B$, since $x - y - a + b \in C$ we have

$$1 \geq p(x - y - a + b) \geq f(x - y - a + b) = f(x) - f(y) + f(b - a) \geq f(x) - f(y) + 1$$

so that $f(x) \leq f(y)$.

3.21 Exercise: Let $U = \mathbb{R}^\infty$, let $A = \left\{ a = \sum_{k=1}^n a_k e_k \mid n \in \mathbb{Z}^+, a_n > 0 \right\}$, and let $B = \{0\}$.

Show that A and B are disjoint nonempty convex subsets of U , but there is no nonzero linear map $f : U \rightarrow \mathbb{R}$ with $f(x) \leq f(y)$ for all $x \in A$ and $y \in B$.

The Riesz Representation Theorem

3.22 Definition: Let $a \leq b$ and let $f : [a, b] \rightarrow \mathbb{R}$. For a partition $P = (x_0, x_1, \dots, x_n)$ of $[a, b]$ (so we have $a = x_0 < x_1 < \dots < x_n = b$), the **variation** of f for the partition P is

$$V(f, P) = \sum_{k=1}^n |f(x_k) - f(x_{k-1})|$$

and the **variation** of f on the interval $[a, b]$ is

$$V(f, [a, b]) = \sup \left\{ V(f, P) \mid P \text{ is a partition of } [a, b] \right\}.$$

We say that f is of **bounded variation** on $[a, b]$ when $V(f, [a, b]) < \infty$, and we write

$$\mathcal{BV}[a, b] = \left\{ f : [a, b] \rightarrow \mathbb{R} \mid f \text{ is of bounded variation} \right\}.$$

3.23 Theorem: Let $a \leq b$ and let $f : [a, b] \rightarrow \mathbb{R}$. Then f is of bounded variation on $[a, b]$ if and only if f is rectifiable (meaning that the graph of f has finite length).

Proof: Recall that the length of the graph of f on $[a, b]$ is defined as follows. For a partition $P = (x_0, x_1, \dots, x_n)$ of $[a, b]$, we define

$$L(f, P) = \sum_{k=1}^n \sqrt{(f(x_k) - f(x_{k-1}))^2 + (x_k - x_{k-1})^2}$$

and then the length of the graph of f on $[a, b]$ is given by

$$L(f, [a, b]) = \sup \left\{ L(f, P) \mid P \text{ is a partition of } [a, b] \right\}.$$

For any partition $P = (x_0, \dots, x_n)$ of $[a, b]$, since

$$|f(x_k) - f(x_{k-1})| \leq \sqrt{(f(x_k) - f(x_{k-1}))^2 + (x_k - x_{k-1})^2}$$

for all indices k , it follows that $V(f, P) \leq L(f, P)$. Since $V(f, P) \leq L(f, P)$ for all partitions P , it follows that $V(f, [a, b]) \leq L(f, [a, b])$. On the other hand, for all partitions $P = (x_0, \dots, x_n)$ of $[a, b]$ we have

$$\sqrt{(f(x_k) - f(x_{k-1}))^2 + (x_k - x_{k-1})^2} \leq |f(x_k) - f(x_{k-1})| + (x_k - x_{k-1})$$

for all k , it follows that $L(f, P) \leq V(f, P) + \sum_{k=1}^n (x_k - x_{k-1}) = V(f, P) + (b - a)$. Since $L(f, P) \leq V(f, P) + (b - a)$ for all P , it follows that $L(f, [a, b]) \leq V(f, [a, b]) + (b - a)$.

3.24 Definition: Let $g \in \mathcal{BV}[a, b]$. For a partition $P = (x_0, x_1, \dots, x_n)$ of $[a, b]$, write $\|P\| = \max \{x_k - x_{k-1} \mid 1 \leq k \leq n\}$. For $f \in \mathcal{C}[a, b] = \mathcal{C}([a, b], \mathbb{R})$, we define the **Riemann-Stieltjes integral** of f on $[a, b]$ with respect to the weight function g to be

$$\int_a^b f \, dg = \int_a^b f(x) \, dg(x) = \lim_{\|P\| \rightarrow 0} \sum_{k=1}^n f(t_k)(g(x_k) - g(x_{k-1})).$$

This means that $\int_a^b f \, dg$ is the (unique) real number such that for every $\epsilon > 0$ there exists $\delta > 0$ such that for every partition $P = (x_0, \dots, x_n)$ of $[a, b]$ with $\|P\| < \delta$, and for all t_1, t_2, \dots, t_n with each $t_k \in [x_{k-1}, x_k]$ we have

$$\left| \int_a^b f \, dg - \sum_{k=1}^n f(t_k)(g(x_k) - g(x_{k-1})) \right| < \epsilon.$$

3.25 Exercise: Verify, as an exercise, that when $g \in \mathcal{BV}[a, b]$ and $f \in \mathcal{C}[a, b]$, the Riemann-Stieltjes integral $\int_a^b f dg$ exists and is unique with $\left| \int_a^b f dg \right| \leq V(g, [a, b]) \cdot \|f\|_\infty$.

3.26 Theorem: (The Riesz Representation Theorem) For every $L \in (\mathcal{C}[a, b])^*$ there exists $g \in \mathcal{BV}[a, b]$ with $g(a) = 0$ and $V(g, [a, b]) = \|L\|$ such that for all $f \in \mathcal{C}[a, b]$ we have

$$L(f) = \int_a^b f dg.$$

Proof: Let $L \in (\mathcal{C}[a, b])^*$, that is let $L : \mathcal{C}[a, b] \rightarrow \mathbb{R}$ be a bounded linear functional. By the Heine-Borel Theorem, we can extend L to a bounded linear map $M : \mathcal{B}[a, b] \rightarrow \mathbb{R}$, that is to $M \in (\mathcal{B}[a, b])^*$, with $\|M\| = \|L\|$. For $a < x \leq b$, let $s_x : [a, b] \rightarrow \mathbb{R}$ be the step function given by $s_x(t) = 1$ for $a \leq t \leq x$ and $s_x(t) = 0$ for $x < t \leq b$, and let $s_a(t) = 0$ for all $t \in [a, b]$. Define $g : [a, b] \rightarrow \mathbb{R}$ by $g(x) = M(s_x)$.

We claim that $g \in \mathcal{BV}[a, b]$ with $V(g, [a, b]) \leq \|M\| = \|L\|$. Let $P = (x_0, x_1, \dots, x_n)$ be any partition of $[a, b]$. For $y \in \mathbb{R}$, let $\sigma(y)$ be the sign of y , given by $\sigma(y) = \frac{y}{|y|}$ when $y \neq 0$ with $\sigma(0) = 0$. For $1 \leq k \leq n$ let $\epsilon_k = \sigma(g(x_k) - g(x_{k-1}))$ so that we have $|g(x_k) - g(x_{k-1})| = \epsilon_k(g(x_k) - g(x_{k-1}))$. Then

$$\begin{aligned} \sum_{k=1}^n |g(x_k) - g(x_{k-1})| &= \sum_{k=1}^n \epsilon_k(g(x_k) - g(x_{k-1})) = \sum_{k=1}^n \epsilon_k(M(s_{x_k}) - M(s_{x_{k-1}})) \\ &= M\left(\sum_{k=1}^n \epsilon_k(s_{x_k} - s_{x_{k-1}})\right) \leq \|M\| \left\| \sum_{k=1}^n \epsilon_k(s_{x_k} - s_{x_{k-1}}) \right\|_\infty \leq \|L\| \end{aligned}$$

since $\|M\| = \|L\|$ and $\left\| \sum_{k=1}^n \epsilon_k(s_{x_k} - s_{x_{k-1}}) \right\|_\infty \leq 1$ because the function $\sum_{k=1}^n \epsilon_k(s_{x_k} - s_{x_{k-1}})$ only takes the values 0 and ± 1 . Thus $g \in \mathcal{BV}[a, b]$ with $V(g, [a, b]) \leq \|L\|$, as claimed.

Note that if we can show that $M(f) = \int_a^b f dg$ for all $f \in \mathcal{C}[a, b]$ then, from Exercise 3.25, when $\|f\|_\infty \leq 1$ we have $V(g, [a, b]) \geq \left| \int_a^b f dg \right| = |M(f)|$, and it follows that $V(g, [a, b]) \geq \|M\| = \|L\|$. Thus it remains to show that $M(f) = \int_a^b f dg$ for all $f \in \mathcal{C}[a, b]$. Let $f \in \mathcal{C}[a, b]$. Let $n \in \mathbb{Z}^+$. Since f is uniformly continuous, we can choose $\delta > 0$ such that $|f(x) - f(y)| < \frac{1}{n}$ for all $x, y \in [a, b]$ with $|x - y| < \delta$. Choose a partition $P_n = (x_0, x_1, \dots, x_\ell)$ of $[a, b]$ with $\|P\| < \delta$ and $\|P\| < \frac{1}{n}$. Let $I_1 = [x_0, x_1]$ and $I_k = (x_{k-1}, x_k]$ for $1 < k \leq \ell$. Let $f_n = \sum_{k=1}^\ell f(x_k)(s_{x_k} - s_{x_{k-1}})$, so f_n is the step function given by $f_n(t) = f(x_k)$ for $t \in I_k$. Note that for all $t \in I_k$ we have $|x_k - t| \leq |x_k - x_{k-1}| \leq \|P\| < \delta$ hence $|f(x_k) - f(t)| < \frac{1}{n}$, that is $|f_n(t) - f(t)| < \frac{1}{n}$, and it follows that $\|f_n - f\|_\infty \leq \frac{1}{n}$. Also note that

$$M(f_n) = \sum_{k=1}^\ell f(x_k)(M(s_{x_k}) - M(s_{x_{k-1}})) = \sum_{k=1}^\ell f(x_k)(g(x_k) - g(x_{k-1}))$$

which is one of the sums used to approximate the Riemann-Stieltjes integral $\int_a^b f dg$. We do this construction for each $n \in \mathbb{Z}^+$ to obtain a sequence of partitions P_n with $\|P_n\| \rightarrow 0$, and a sequence of step functions f_n on these partitions with $\|f_n - f\|_\infty < \frac{1}{n}$ for all $n \in \mathbb{Z}^+$ so that $f_n \rightarrow f$ in $\mathcal{B}[a, b]$. Since $M : \mathcal{B}[a, b] \rightarrow \mathbb{R}$ is continuous, we have

$$M(f) = M\left(\lim_{n \rightarrow \infty} f_n\right) = \lim_{n \rightarrow \infty} M(f_n) = \lim_{\|P\| \rightarrow 0} \sum_{k=1}^\ell f(x_k)(g(x_k) - g(x_{k-1})) = \int_a^b f dg.$$

The Open Mapping Theorem and The Closed Graph Theorem

3.27 Theorem: *(The Open Mapping Theorem) Let U and V be Banach spaces. Let $F \in \mathcal{B}(U, V)$ be surjective. Then F is open (meaning that the set $FA = \{Fa \mid a \in A\}$ is open in V for every open set A in U).*

Proof: We claim that for all $R > 0$ there exists $r > 0$ such that $B(0, r) \subseteq \overline{FB(0, R)}$. Note that $U = \bigcup_{k=1}^{\infty} B(0, k)$. Since F is onto, $V = F\left(\bigcup_{n=1}^{\infty} B(0, n)\right) = \bigcup_{n=1}^{\infty} FB(0, n)$. Since V is complete, the Baire Category Theorem implies that one of the sets $\overline{FB(0, n)}$ has non-empty interior. By scaling, $\overline{FB(0, r)}$ has non-empty interior for all $r > 0$ so, in particular, $\overline{FB(0, 1)}$ has non-empty interior. Choose $c \in V$ and $r > 0$ such that $B(c, 2r) \subseteq \overline{FB(0, 1)}$. Since $FB(0, 1)$ is dense in $\overline{FB(0, 1)}$, we can choose $a \in B(0, 1)$ and $b = Fa \in FB(0, 1)$ with $\|b - c\| < r$ and then we have $B(b, r) \subseteq B(c, 2r) \subseteq \overline{FB(0, 1)}$.

Let $y \in B(0, r)$ and let $\epsilon > 0$. Since $b + y \in B(b, r) \subseteq \overline{FB(0, 1)}$, we can choose $z \in FB(0, 1)$ such that $\|Fz - b - y\| < \epsilon$. Since $z \in FB(0, 1)$ we can choose $x \in B(0, 1)$ such that $Fx = z$. Since $x \in B(0, 1)$ and $a \in B(0, 1)$ we have $x - a \in B(0, 2)$, and we have $\|F(x - a) - y\| = \|Fx - Fa - y\| = \|z - b - y\| < \epsilon$. This proves that $y \in \overline{FB(0, 2)}$ hence (since $y \in B(0, r)$ was arbitrary) $B(0, r) \subseteq \overline{FB(0, 2)}$. By scaling, it follows that for all $R > 0$ there exists $r > 0$ such that $B(0, r) \subseteq \overline{FB(0, R)}$, as claimed.

We claim that for all $R > 0$ there exists $r > 0$ such that $B(0, r) \subseteq FB(0, R)$. By our previous claim, we can choose $r > 0$ such that $B(0, r) \subseteq \overline{FB(0, \frac{1}{2})}$. By scaling, it follows that $B(0, \frac{r}{2^k}) \subseteq \overline{FB(0, \frac{1}{2^{k+1}})}$ for all $k \geq 0$. Let $y \in B(0, r) \subseteq \overline{FB(0, \frac{1}{2})}$. Choose $x_1 \in B(0, \frac{1}{2})$ such that $\|y - Fx_1\| < \frac{r}{2}$. Since $y - Fx_1 \in B(0, \frac{r}{2}) \subseteq \overline{FB(0, \frac{1}{4})}$, we can choose $x_2 \in B(0, \frac{1}{4})$ such that $\|(y - Fx_1) - Fx_2\| < \frac{r}{4}$, that is $\|y - F(x_1 + x_2)\| < \frac{r}{4}$. Repeat this procedure obtain elements $x_k \in B(0, \frac{1}{2^k})$ such that $\|y - F(x_1 + x_2 + \dots + x_n)\| < \frac{r}{2^n}$ where

$u_n = \sum_{k=1}^n x_k$. Note that for $\ell > n$ we have

$$\|u_\ell - u_n\| = \left\| \sum_{k=n+1}^{\ell} x_k \right\| \leq \sum_{k=n+1}^{\ell} \|x_k\| < \sum_{k=n+1}^{\ell} \frac{1}{2^k} < \sum_{k=n+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^n},$$

and it follows that the sequence (u_n) is Cauchy in U , and hence it converges because U is

complete. Let $u = \lim_{n \rightarrow \infty} u_n = \sum_{k=1}^{\infty} x_k$. Note that

$$\|u_n\| = \left\| \sum_{k=1}^n x_k \right\| \leq \sum_{k=1}^n \|x_k\| < \|x_1\| + \sum_{k=2}^n \frac{1}{2^k} < \|x_1\| + \sum_{k=2}^{\infty} \frac{1}{2^k} = \|x_1\| + \frac{1}{2}$$

and hence $\|u\| = \left\| \lim_{n \rightarrow \infty} u_n \right\| = \lim_{n \rightarrow \infty} \|u_n\| \leq \|x_1\| + \frac{1}{2} < \frac{1}{2} + \frac{1}{2} = 1$ so that we have $u \in B(0, 1)$. Since $\|y - Fu_n\| < \frac{r}{2^n}$ it follows that $Fu_n \rightarrow y$ in V . Since F is bounded, hence continuous, we have $F(u) = F\left(\lim_{n \rightarrow \infty} u_n\right) = \lim_{n \rightarrow \infty} F(u_n) = y$. Thus $y \in FB(0, 1)$ and hence (since y was arbitrary) $B(0, r) \subseteq FB(0, 1)$. By scaling, it follows that for all $R > 0$ there exists $r > 0$ such that $B(0, r) \subseteq FB(0, R)$.

Finally, we show that F is open. Let $A \subseteq U$ be open. Let $v \in FA$ and choose $u \in A$ such that $Fu = v$. Since A is open, we can choose $R > 0$ so that $B(u, R) \subseteq A$. By our above claim, we can choose $r > 0$ such that $B(0, r) \subseteq FB(0, R)$. By linearity, we have

$$B(v, R) = v + B(0, r) \subseteq v + FB(0, R) = F(u + B(0, R)) = FB(u, R) \subseteq FA.$$

3.28 Definition: Let X be a metric space equipped with two metrics d_1 and d_2 . We say the two metrics are **equivalent** when they induce the same topology on X , that is when every open ball $B_2(a, \epsilon)$ contains an open ball $B_1(a, \delta)$ and vice versa. Equivalently, the two metrics are equivalent when the identity map $I : (X, d_1) \rightarrow (X, d_2)$ is a homeomorphism. Similarly, when U is a vector space which equipped with two norms $\| \cdot \|_1$ and $\| \cdot \|_2$, we say the two norms are **equivalent** when they induce the same topology on U . By Theorem 1.26, the norms are equivalent when there exist $\ell, m \geq 0$ such that for all $x \in U$ we have $\|x\|_2 \leq \ell \|x\|_1$ and $\|x\|_1 \leq m \|x\|_2$.

3.29 Corollary: Let U be a vector space equipped with two norms $\| \cdot \|_1$ and $\| \cdot \|_2$. Suppose that U is complete under both norms. If there exists $\ell \geq 0$ such that $\|x\|_2 \leq \ell \|x\|_1$ for all $x \in U$ then the two norms are equivalent. Equivalently, if the identity map $I : (U, d_1) \rightarrow (U, d_2)$ is continuous then it is a homeomorphism.

Proof: If the identity map $I : (U, d_1) \rightarrow (U, d_2)$ is continuous, then it is bounded (by Theorem 1.26) and surjective (obviously), so it is open (by the Open Mapping Theorem), and so its inverse $I : (U, d_2) \rightarrow (U, d_1)$ is continuous.

3.30 Definition: When X and Y are topological spaces, the **product topology** on $X \times Y$ is the topology given by taking the basic open sets to be sets of the form $A \times B$ where A is open in X and B is open in Y (this will be explained in Chapter 4). When X and Y are metric spaces, there are various ways that one can define a metric on $X \times Y$ so that the induced topology is the product topology. Let us define the **product metric** on $X \times Y$ by

$$d((x_1, y_1), (x_2, y_2)) = d(x_1, x_2) + d(y_1, y_2).$$

Not only does this metric induce the product topology on $X \times Y$, it also behaves as expected with sequences: if (x_n) is a sequence in X and (y_n) is a sequence in Y and $a \in X$ and $b \in Y$, then $(x_n, y_n) \rightarrow (a, b)$ in $X \times Y$ if and only if $x_n \rightarrow a$ in X and $y_n \rightarrow b$ in Y . Also, (x_n, y_n) is Cauchy in $X \times Y$ if and only if (x_n) is Cauchy in X and (y_n) is Cauchy in Y .

3.31 Definition: Let X and Y be metric spaces and let $f : A \subseteq X \rightarrow Y$ be a function. The **graph** of f is the set

$$\text{Graph}(f) = \left\{ (x, y) \mid x \in A, y = f(x) \right\} = \left\{ (a, f(a)) \mid a \in A \right\}.$$

We say that f has a **closed graph** (or simply that f is **closed**), when the graph of f is closed in $X \times Y$ using the product topology. Note that f has a closed graph when for every sequence (x_n) in A ,

$$\text{if } x_n \rightarrow a \in X \text{ and } f(x_n) \rightarrow b \text{ in } Y \text{ then } a \in A \text{ and } b = f(a).$$

3.32 Theorem: (The Closed Graph Theorem) Let U and V be Banach spaces, and let $F : U \rightarrow V$ be a linear operator. If the graph of F is closed then F is continuous.

Proof: Denote the norm on U by $\| \cdot \|_1$ and the norm on V by $\| \cdot \|_2$. Define a second norm $\| \cdot \|_3$ on U by $\|x\|_3 = \|x\|_1 + \|Fx\|_2$. Let (x_n) be a Cauchy sequence in $(U, \| \cdot \|_3)$. Then (x_n) is Cauchy in $(U, \| \cdot \|_1)$ and (Fx_n) is Cauchy in $(V, \| \cdot \|_2)$ (because $\|x_\ell - x_n\|_1 \leq \|x_\ell - x_n\|_3$ and $\|x_\ell - x_n\|_2 \leq \|x_\ell - x_n\|_3$). Since $(U, \| \cdot \|_1)$ and $(V, \| \cdot \|_2)$ are both complete, it follows that (x_n) converges in $(U, \| \cdot \|_1)$ and (Fx_n) converges in $(V, \| \cdot \|_2)$, say $x_n \rightarrow a$ in $(U, \| \cdot \|_1)$ and $Fx_n \rightarrow b$ in $(V, \| \cdot \|_2)$. Since F has a closed graph, we have $b = Fa$, and it follows that $x_n \rightarrow a$ in $(U, \| \cdot \|_3)$ because $\|x_n - a\|_3 = \|x_n - a\|_1 + \|Fx_n - b\|_2$. Thus $(U, \| \cdot \|_3)$ is complete. Since U is complete under both $\| \cdot \|_1$ and $\| \cdot \|_3$ and we have $\|x\|_1 \leq \|x\|_3$ for all $x \in U$, it follows from Corollary 3.29 that there exists $\ell \geq 0$ such that $\|x\|_3 \leq \ell \|x\|_1$ for all $x \in U$. Thus F is bounded, hence continuous.