

Chapter 2. Hilbert Spaces

Review of Inner Product Spaces from Linear Algebra

2.1 Definition: Let V be a vector space (over any field \mathbb{F}). Recall that a (Hamel) **basis** for V is a maximal linearly independent set in V or, equivalently, a linearly independent set which spans V . Also recall that any two Hamel bases for V have the same cardinality, and we define the (Hamel) **dimension** of V , denoted by $\dim(V)$, to be the cardinality of any Hamel basis.

2.2 Definition: Let V be an inner product space (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}). For a subset $\mathcal{B} \subseteq V$, we say \mathcal{B} is **orthogonal** when $\langle u, v \rangle = 0$ for all $u, v \in \mathcal{B}$ with $u \neq v$, and we say \mathcal{B} is **orthonormal** when \mathcal{B} is orthogonal with $\|u\| = 1$ for every $u \in \mathcal{B}$. For a finite or countable ordered set $\mathcal{B} = (u_1, u_2, u_3, \dots)$ in V we say \mathcal{B} is **orthogonal** when $\langle u_k, u_\ell \rangle = 0$ for all $k \neq \ell$, and we say \mathcal{B} is **orthonormal** when it is orthogonal and $\|u_k\| = 1$ for all k .

2.3 Theorem: Let V be an inner product space. Let $\mathcal{B} \subseteq V$ be orthonormal. Let $x, y \in \text{Span } \mathcal{B}$ with say $x = \sum_{k=1}^n a_k u_k$ and $y = \sum_{k=1}^n b_k u_k$ where $a_k, b_k \in \mathbb{F}$ and $u_k \in \mathcal{B}$. Then

$$\langle x, u_k \rangle = a_k, \quad \langle x, y \rangle = \sum_{k=1}^n a_k \overline{b_k}, \quad \text{and} \quad \|x\|^2 = \sum_{k=1}^n |a_k|^2.$$

In particular, \mathcal{B} is linearly independent.

Proof: We omit the proof.

2.4 Theorem: (The Gram-Schmidt Procedure) Let V be an inner product space, which is of finite or countable Hamel dimension. Let $\mathcal{A} = (u_1, u_2, u_3, \dots)$ be a finite or countable ordered Hamel basis for V . Let $v_1 = u_1$ and for $n \geq 2$ let $v_n = u_n - \sum_{k=1}^{n-1} \frac{\langle u_n, v_k \rangle}{\|v_k\|^2} v_k$. Then $\mathcal{B} = (v_1, v_2, v_3, \dots)$ is an orthogonal Hamel basis for V with the property that for every index $n \geq 1$ we have $\text{Span } \{v_1, \dots, v_n\} = \text{Span } \{u_1, \dots, u_n\}$.

Proof: We omit the proof

2.5 Corollary: Every inner product space which is of finite or countable Hamel dimension has an orthonormal Hamel basis.

2.6 Corollary: Let V be an inner product space which is of finite or countable Hamel dimension. Let $U \subseteq V$ be a finite dimensional subspace. Then every orthogonal (or orthonormal) Hamel basis \mathcal{B} for U extends to an orthogonal (or orthonormal) Hamel basis for V .

2.7 Corollary: Let U and V be inner product spaces of finite or countable Hamel dimension. Then U and V are isomorphic (as inner product spaces) if and only if $\dim(U) = \dim(V)$. In particular, if $\dim(U) = n$ then U is isomorphic to \mathbb{F}^n and if $\dim(U) = \aleph_0$ then U is isomorphic to \mathbb{F}^∞ (which is the space of sequences in \mathbb{F} with only finitely many nonzero terms, using the inner product $\langle x, y \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k}$).

2.8 Corollary: Every finite-dimensional inner product space is complete, and every inner product space which is of countable Hamel dimension is not complete.

2.9 Definition: When W is a vector space (over any field \mathbb{F}) and $U, V \subseteq W$ are subspaces, we write $U + V = \{u + v \mid u \in U, v \in V\}$ and we write $W = U \oplus V$ when $W = U + V$ and $U \cap V = \{0\}$, that is when for every $x \in W$, $x = u + v$ for some unique $u \in U, v \in V$.

2.10 Definition: Let V be an inner product space (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}). For a subspace $U \subseteq V$, we define the **orthogonal complement** of U in V to be the set

$$U^\perp = \{x \in V \mid \langle x, u \rangle = 0 \text{ for all } u \in U\}.$$

2.11 Theorem: Let V be an inner product space and let $U \subseteq V$ be a subspace. Then

- (1) U^\perp is a subspace of V ,
- (2) if \mathcal{B} is a basis for U then $U^\perp = \{x \in V \mid \langle x, u \rangle = 0 \text{ for all } u \in \mathcal{B}\}$,
- (3) $U \cap U^\perp = \{0\}$, and
- (4) $U \subseteq (U^\perp)^\perp$.
- (5) if U is finite-dimensional then $U \oplus U^\perp = V$, and
- (6) if $U \oplus U^\perp = W$ then $U = (U^\perp)^\perp$.

Proof: We omit the proof.

2.12 Definition: Let V be an inner product space. Let $U \subseteq V$ be a subspace such that $V = U \oplus U^\perp$. For $x \in V$, we define the **orthogonal projection** of x onto U , denoted by $\text{Proj}_U(x)$, as follows. Since $V = U \oplus U^\perp$, we can choose unique vectors $u, v \in V$ with $u \in U, v \in U^\perp$ and $u + v = x$. We then define

$$\text{Proj}_U(x) = u.$$

When U is finite-dimensional so $U = (U^\perp)^\perp$, for u and v as above we have $\text{Proj}_{U^\perp}(x) = v$. When $y \in V$ and $U = \text{Span}\{y\}$, we also write $\text{Proj}_y(x) = \text{Proj}_U(x)$.

2.13 Theorem: Let V be an inner product space. Let $U \subseteq V$ be a subspace of V such that $V = U \oplus U^\perp$. Let $x \in V$. Then $\text{Proj}_U(x)$ is the unique point in U nearest to x .

Proof: We omit the proof.

2.14 Example: Let V be an inner product space. Let U be a finite dimensional subspace of V . Let $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ be an orthogonal basis for U . Recall (or verify) that

$$\text{Proj}_U(x) = \sum_{k=1}^n \frac{\langle x, u_k \rangle}{\|u_k\|^2} u_k.$$

2.15 Example: Recall (or verify) that for $A \in M_{n \times m}(\mathbb{C})$ and $U = \text{Col}(A)$, given $x \in \mathbb{C}^n$ there exists $y \in \mathbb{C}^m$ such that $A^*Ay = A^*x$ and for any such y , we have $\text{Proj}_U(x) = Ay$. In particular, if $\text{rank}(A) = m$ then A^*A is invertible so that $\text{Proj}_U(x) = A(A^*A)^{-1}A^*x$.

2.16 Note: Let W be an inner product space and let $U \subseteq W$ be a subspace. Note that \overline{U} is also a subspace because given $u, v \in \overline{U}$ and $t \in \mathbb{F}$ we can choose sequences (x_n) and (y_n) in U with $x_n \rightarrow u$ and $y_n \rightarrow v$ and then we have $(x_n + t y_n \rightarrow u + tv)$ so that $u + tv \in \overline{U}$. Also note that $\overline{U}^\perp = U^\perp$. Indeed, since $U \subseteq \overline{U}$ we have $\overline{U}^\perp \subseteq U^\perp$ so it suffices to prove that $U^\perp \subseteq \overline{U}^\perp$. Let $v \in U^\perp$ and let $u \in \overline{U}$. Choose a sequence (x_n) in U with $x_n \rightarrow u$. Then we have $\langle v, u \rangle = \langle v, \lim_{n \rightarrow \infty} x_n \rangle = \lim_{n \rightarrow \infty} \langle v, x_n \rangle = 0$, indeed

$$|\langle v, u \rangle| = |\langle v, u \rangle - \langle v, x_n \rangle| = |\langle v, u - x_n \rangle| \leq \|v\| \|u - x_n\| \rightarrow 0.$$

Closed Subspaces of Hilbert Spaces and Orthogonal Projections

2.17 Example: Properties of finite-dimensional subspaces of inner product spaces do not always carry over to infinite dimensional subspaces. For example, let $V = \mathbb{F}^\infty$ (the space of sequences in \mathbb{F} with finitely many nonzero terms) with inner product $\langle x, y \rangle = \sum_{k=1}^{\infty} x_k \overline{y_k}$,

and let $U = \{a \in \mathbb{F}^\infty \mid \sum_{k=1}^{\infty} a_k = 0\}$. Note that V has countable Hamel dimension with standard orthonormal Hamel basis $\mathcal{S} = \{e_1, e_2, e_3, \dots\}$, and $U \subsetneq V$ has countable Hamel dimension, with Hamel basis $\mathcal{B} = \{u_1, u_2, u_3, \dots\}$ where $u_k = e_1 - e_{k+1}$. We have

$$\begin{aligned} U^\perp &= \{x \in V \mid \langle x, u_k \rangle = 0 \text{ for all } k\} = \{x \in V \mid \langle x, e_1 - e_{k+1} \rangle = 0 \text{ for all } k\} \\ &= \{x \in V \mid x_1 = x_{k+1} \text{ for all } k\} = \{x \in V \mid x_1 = x_2 = x_3 = \dots\} = \{0\} \end{aligned}$$

because for $x \in \mathbb{F}^\infty$ we have $x_n = 0$ for all but finitely many indices n . Notice that in this example we have $U \subsetneq (U^\perp)^\perp = V$ and $V \neq U \oplus U^\perp$. Although we could apply the Gram-Schmidt Procedure to \mathcal{B} to obtain an orthogonal Hamel basis $\mathcal{C} = \{v_1, v_2, \dots\}$ for U , we cannot extend \mathcal{C} to an orthogonal Hamel basis for V because there is no nonzero vector $0 \neq x \in V$ with $\langle x, v_k \rangle = 0$ for all k .

2.18 Definition: Let V be a vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . For a subset $S \subseteq V$, we say that S is **convex** when for all $a, b \in S$ we have $a + t(b - a) \in S$ for all $0 \leq t \leq 1$.

2.19 Theorem: Let H be a Hilbert space. Let $S \subseteq H$ be nonempty, closed and convex. Then for every $a \in H$ there exists a unique point $b \in S$ which is nearest to a , that is such that $\|a - b\| \leq \|a - x\|$ for all $x \in S$.

Proof: Let $a \in H$. Let $d = \text{dist}(a, S) = \inf \{\|x - a\| \mid x \in S\}$. Choose a sequence $\{x_n\}$ in S so that $\|x_n - a\| \rightarrow d$, hence $\|x_n - a\|^2 \rightarrow d^2$. Let $\epsilon > 0$ and choose $m \in \mathbb{Z}^+$ so that for all $n \geq m$ we have $\|x_n - a\|^2 \leq d^2 + \frac{\epsilon^2}{4}$. Let $k, l \geq m$. By the Parallelogram Law we have

$$\|(x_k - a) + (x_l - a)\|^2 + \|(x_k - a) - (x_l - a)\|^2 = 2\|x_k - a\|^2 + 2\|x_l - a\|^2$$

Since S is convex, we have $\frac{x_k + x_l}{2} \in S$, hence $\|\frac{x_k + x_l}{2} - a\| \geq d$, and so

$$\begin{aligned} \|x_k - x_l\|^2 &= \|(x_k - a) - (x_l - a)\|^2 \\ &= 2\|x_k - a\|^2 + 2\|x_l - a\|^2 - \|(x_k - a) + (x_l - a)\|^2 \\ &= 2\|x_k - a\|^2 + 2\|x_l - a\|^2 - 4\|\frac{x_k + x_l}{2} - a\|^2 \\ &\leq 2(d^2 + \frac{\epsilon^2}{4}) + 2(d^2 + \frac{\epsilon^2}{4}) - 4d^2 = \epsilon^2. \end{aligned}$$

so that $\|x_k - x_l\| \leq \epsilon$. This shows that the sequence $\{x_n\}$ is Cauchy. Since H is complete, $\{x_n\}$ converges in H , and since S is closed in H , the limit lies in S . Let $b = \lim_{n \rightarrow \infty} x_n \in S$.

Since $b \in S$ we have $\|b - a\| \geq d$, and we have $\|b - a\| \leq \|b - x_n\| + \|x_n - a\|$ for all $n \in \mathbb{Z}^+$ so that $\|b - a\| \leq \lim_{n \rightarrow \infty} (\|b - x_n\| + \|x_n - a\|) = d$, and so $\|b - a\| = d$. This shows that $\|b - a\| \geq \|x - a\|$ for all $x \in S$. Finally, we note that the point b is unique because given $c \in S$ with $\|c - a\| = d$, since S is convex we have $\frac{b+c}{2} \in S$ so that $\|\frac{b+c}{2} - a\| \geq d$, and so the Parallelogram Law gives

$$\begin{aligned} \|b - c\|^2 &= \|(b - a) - (c - a)\|^2 = 2\|b - a\|^2 + 2\|c - a\|^2 - \|(b - a) + (c - a)\|^2 \\ &= 4d^2 - 4\|\frac{b-c}{2} - a\|^2 \leq 4d^2 - 4d^2 = 0 \end{aligned}$$

so that $\|b - c\| = 0$ hence $b = c$.

2.20 Theorem: Let H be a Hilbert space. Let $U \subseteq H$ be a subspace. Then U is closed if and only if $H = U \oplus U^\perp$. In this case, U^\perp is closed and $(U^\perp)^\perp = U$ and for $x \in H$, if $x = u + v$ with $u \in U$ and $v \in U^\perp$ then u is the unique point in U nearest to x and v is the unique point in U^\perp nearest to x .

Proof: Suppose that $H = U \oplus U^\perp$. Let $(x_n)_{n \geq 1}$ be a sequence in U which converges in H , say $x_n \rightarrow a \in H$. Note that since $x_n \rightarrow a$ in H , we have $\langle x_n, y \rangle \rightarrow \langle a, y \rangle$ for all $y \in H$ because $|\langle x_n, y \rangle - \langle a, y \rangle| = |\langle x_n - a, y \rangle| \leq \|x_n - a\| \|y\|$. Since $H = U \oplus U^\perp$, we can write $a = u + v$ with $u \in U$ and $v \in U^\perp$. Then, since $\langle u, v \rangle = 0$, we have

$$\|v\|^2 = \langle v, v \rangle = \langle u + v, v \rangle = \langle a, v \rangle = \lim_{n \rightarrow \infty} \langle x_n, v \rangle = \lim_{n \rightarrow \infty} 0 = 0$$

and so $v = 0$ so that $a = u + v = u \in U$. Thus U is closed.

Suppose that U is closed. Let $x \in H$. Since U is a vector space it is convex, so by the previous theorem there is a unique point $u \in U$ which is nearest to x . Let u be this nearest point and let $v = x - u$ so that $u + v = x$. We claim that $v \in U^\perp$. Suppose, for a contradiction, that $v \notin U^\perp$. Choose $u_1 \in U$ with $\langle v, u_1 \rangle \neq 0$. Write $\langle v, u_1 \rangle = re^{i\theta}$ with $r > 0$ and $\theta \in \mathbb{R}$ (when $\mathbb{F} = \mathbb{R}$ we have $e^{i\theta} = \pm 1$) and let $u_2 = e^{i\theta}u_1$. Note that $u_2 \in U$ and $\langle v, u_2 \rangle = \langle v, e^{i\theta}u_1 \rangle = e^{-i\theta}\langle v, u_1 \rangle = e^{-i\theta}r e^{i\theta} = r > 0$. For all $t \in \mathbb{R}$ we have

$$\|x - (u + tu_2)\|^2 = \|v - tu_2\|^2 = \|v\|^2 - 2t \operatorname{Re} \langle v, u_2 \rangle + t^2 \|u_2\|^2 = \|v\|^2 - 2rt + \|u_2\|^2 t^2.$$

It follows that for small $t > 0$ we have $\|x - (u + tu_2)\|^2 \leq \|v\|^2 = \|x - u\|^2$ which is not possible, since u is the point in U which is nearest to x .

We claim that the points $u \in U$ and $v \in U^\perp$ with $u + v = x$, which we found in the previous paragraph, are the only such points. Let $x \in H$. Suppose that $u \in U$, $v \in U^\perp$ and $u + v = x$. We claim that u must be equal to the (unique) point in U which is nearest to x . Let $u' \in U$ with $u' \neq u$. Since $v \in U^\perp$ and $u' - u \in U$ we have $\langle x - u, u' - u \rangle = \langle v, u' - u \rangle = 0$ and so

$$\begin{aligned} \|x - u'\|^2 &= \|(x - u) - (u' - u)\|^2 = \|x - u\|^2 - 2\operatorname{Re} \langle x - u, u' - u \rangle + \|u' - u\|^2 \\ &= \|x - u\| + \|u' - u\| > \|x - u\|^2 \end{aligned}$$

so that $\|x - u'\| > \|x - u\|$. Thus u is the point in U which is nearest to x , so u (hence also v) is uniquely determined. Thus we have $H = U \oplus U^\perp$.

We claim that since $H = U \oplus U^\perp$, it follows that $(U^\perp)^\perp = U$. We always have $U \subseteq (U^\perp)^\perp$, so we only need to show that $(U^\perp)^\perp \subseteq U$. Let $x \in (U^\perp)^\perp$. Choose $u \in U$ and $v \in U^\perp$ such that $x = u + v$. Since $u \in U$ and $v \in U^\perp$ we have $\langle u, v \rangle = 0$, and since $v \in U^\perp$ and $x \in (U^\perp)^\perp$ we have $\langle x, v \rangle = 0$. It follows that

$$\|v\|^2 = \langle v, v \rangle = \langle u, v \rangle + \langle v, v \rangle = \langle u + v, v \rangle = \langle x, v \rangle = 0$$

and so $v = 0$ and hence $x = u + v = u \in U$. Thus $(U^\perp)^\perp \subseteq U$, as required.

Finally note that since $H = U \oplus U^\perp$ and $(U^\perp)^\perp = U$ we have $H = U^\perp \oplus (U^\perp)^\perp$, and so U^\perp is closed, as proven in the first paragraph (with U replaced by U^\perp).

2.21 Definition: When H is a Hilbert space and $U \subseteq H$ is a closed subspace, we define the **orthogonal projection** onto U to be the map $P : H \rightarrow U$ given by $Px = u$ where u is the unique point in U nearest to x . Equivalently, $Px = u$ where $x = u + v$ with $u \in U$ and $v \in U^\perp$.

Unordered Series

2.22 Definition: Let $(a_n)_{n \geq 1}$ be a sequence in a normed linear space V . We say that $\sum_{k=1}^{\infty} a_k$ **converges absolutely** in V when $\sum_{k=1}^{\infty} \|a_k\|$ converges in \mathbb{R} , and we say that $\sum_{k=1}^{\infty} a_k$ **converges unconditionally** in V when $\sum_{n=1}^{\infty} a_{\sigma(n)}$ converges in V for every bijective map $\sigma : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ (that is, when every rearrangement of the series converges).

2.23 Example: Recall that for a sequence $(a_n)_{n \geq 1}$ in \mathbb{R} , the series $\sum_{n=1}^{\infty} |a_n|$ converges if and only if $\sum_{n=1}^{\infty} a_{\sigma(n)}$ converges for every bijective map $\sigma : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ so, in \mathbb{R} , unconditional convergence is the same thing as absolute convergence. But verify that in ℓ_2 , the series $\sum_{n=1}^{\infty} \frac{1}{n} e_n$ converges unconditionally to $(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots)$, but it does not converge absolutely.

2.24 Definition: Let K be a nonempty set (possibly uncountable). When A is any set, an **indexed set** in A with index set K is a function $a : K \rightarrow A$, and we write $a_k = a(k)$ and $a = (a_k)_{k \in K}$. When X is a normed linear space and $(a_k)_{k \in K}$ is an indexed set in X , the **unordered series** $\sum_{k \in K} a_k$ is defined to be the indexed set $(s_F)_{F \in \text{Fin}(K)}$ where $\text{Fin}(K)$ is the set of finite subsets of K and $s_F = \sum_{k \in F} a_k$ for each $F \in \text{Fin}(K)$. We say that the unordered series $\sum_{k \in K} a_k$ **converges** (unconditionally) in X when there exists $s \in X$ such that

$$\forall \epsilon > 0 \quad \exists F \in \text{Fin}(K) \quad \forall I \in \text{Fin}(K) \quad (I \supseteq F \implies \|s_I - s\| < \epsilon).$$

In this case, the element $s \in X$ is unique, it is called the (unordered) **sum** of the unordered series $\sum_{k \in K} a_k$, and we write $\sum_{k \in K} a_k = s$. As usual, we write $\sum_{k \in K} a_k$ both to denote the unordered series (which may or may not converge) and its sum (when it does converge).

We say that the unordered series $\sum_{k \in K} a_k$ **converges absolutely** in X when $\sum_{k \in K} \|a_k\|$ converges in \mathbb{R} .

When $(a_k)_{k \in K}$ is an indexed set in \mathbb{R} with each $a_k \geq 0$, whether or not the unordered series $\sum_{k \in K} a_k$ converges, we define its (unordered) **sum** to be

$$s = \sup \left\{ \sum_{k \in F} a_k \mid F \in \text{Fin}(K) \right\}$$

and we write $\sum_{k \in K} a_k = s$. Verify, as an exercise, that the unordered series converges if and only if its sum is finite and that, in this case, our two definitions of the sum agree.

2.25 Exercise: Let X be a normed linear space. Show that X is a Banach space if and only if it has the property that every absolutely convergent unordered series in X converges.

2.26 Theorem: Let $(a_k)_{k \in K}$ be an indexed set in \mathbb{R} with each $a_k \geq 0$. If $\sum_{k \in K} a_k$ converges then there are at most countably many indices $k \in K$ for which $a_k \neq 0$.

Proof: For each $n \in \mathbf{Z}^+$, let $K_n = \{k \in K \mid a_k \geq \frac{1}{n}\}$. If one of the set K_n was infinite we would have $\sum_{k \in K} a_k = \infty$. Thus if $\sum_{k \in K} a_k < \infty$, then every set K_n is finite, and so the set

$$\{k \in K \mid a_k > 0\} = \bigcup_{n=1}^{\infty} K_n \text{ is at most countable.}$$

2.27 Definition: Let $(a_k)_{k \in K}$ be an indexed set in a normed linear space X . We say that the unordered series $\sum_{k \in K} a_k$ is **Cauchy** when

$$\forall \epsilon > 0 \quad \exists F \in \text{Fin}(K) \quad \forall I, J \in \text{Fin}(K) \quad (I, J \supseteq F \implies \|s_I - s_J\| < \epsilon).$$

As an exercise, verify that $\sum_{k \in K} a_k$ is Cauchy if and only if

$$\forall \epsilon > 0 \quad \exists F \in \text{Fin}(K) \quad \forall L \in \text{Fin}(K) \quad (L \cap F = \emptyset \implies \|s_L\| < \epsilon).$$

2.28 Theorem: (Cauchy Criterion for Unordered Series) Let $(a_k)_{k \in K}$ be an indexed set in a normed linear space X .

(1) If $\sum_{k \in K} a_k$ converges in X then it is Cauchy.

(2) If X is complete and $\sum_{k \in K} a_k$ is Cauchy, then $\sum_{k \in K} a_k$ converges in X .

Proof: To prove Part 1, suppose that $\sum_{k \in K} a_k$ converges in X , say $s = \sum_{k \in K} a_k$. Let $\epsilon > 0$.

Choose $F \in \text{Fin}(K)$ such that for all $I \in \text{Fin}(K)$ with $I \supseteq F$ we have $\|s_I - s\| < \frac{\epsilon}{2}$. Let $I, J \in \text{Fin}(K)$ with $I, J \supseteq F$. Then we have $\|s_I - s_J\| \leq \|s_I - s\| + \|s - s_J\| < \epsilon$, and so $\sum_{k \in K} a_k$ is Cauchy.

To prove Part 2, suppose X is complete and $\sum_{k \in K} a_k$ is Cauchy in X . Since $\sum_{k \in K} a_k$ is Cauchy, we can choose sets $F_n \in \text{Fin}(K)$ with $F_1 \subseteq F_2 \subseteq F_3 \subseteq \dots$ such that for all $I, J \in \text{Fin}(K)$ with $I, J \supseteq F_n$ we have $\|s_I - s_J\| < \frac{1}{2^n}$ (indeed, having chosen F_n we can choose $G_n \in \text{Fin}(K)$ so that $G_n \subseteq I, J \in \text{Fin}(K) \implies \|s_I - s_J\| < \frac{1}{2^{n+1}}$ and then set $F_{n+1} = F_n \cup G_n$). Then the sequence $(s_{F_n})_{n \geq 1}$ is Cauchy in X (because when $\ell > m$ we have $\|s_{F_\ell} - s_{F_m}\| \leq \|s_{F_\ell} - s_{F_{\ell-1}}\| + \dots + \|s_{F_{m+1}} - s_{F_m}\| < \frac{1}{2^{\ell-1}} + \dots + \frac{1}{2^m} < \frac{1}{2^{m-1}}$). Since X is complete, the sequence $(s_{F_n})_{n \geq 1}$ converges, say $s_{F_n} \rightarrow s$ in X . We claim that $\sum_{k \in K} a_k = s$.

Let $\epsilon > 0$. Choose $m \in \mathbf{Z}^+$ with $\frac{1}{2^m} < \frac{\epsilon}{2}$ such that $n \geq m \implies \|s_{F_n} - s\| < \frac{\epsilon}{2}$. Then for all $I \in \text{Fin}(K)$ with $I \supseteq F_m$ we have $\|s_I - s\| \leq \|s_I - s_{F_m}\| + \|s_{F_m} - s\| < \frac{1}{2^m} + \frac{\epsilon}{2} < \epsilon$. Thus $\sum_{k \in K} a_k = s$, as claimed.

Formulas Involving Orthonormal Indexed Sets

2.29 Definition: An indexed set $(u_k)_{k \in K}$ in an inner product space V is called **orthonormal** when $\|u_k\| = 1$ for all $k \in K$ and $\langle u_k, u_\ell \rangle = 0$ for all $k, \ell \in K$ with $k \neq \ell$.

2.30 Theorem: Let H be a Hilbert space. Let $(u_k)_{k \in K}$ be an orthonormal indexed set in H , and let $\mathcal{B} = \{u_k \mid k \in K\}$. Let $x, y \in \overline{\text{Span } \mathcal{B}} \in H$ and for each $k \in K$, let $a_k = \langle x, u_k \rangle$ and $b_k = \langle y, u_k \rangle$. Then

- (1) $\sum_{k \in K} a_k u_k = x$,
- (2) $\sum_{k \in K} |a_k|^2 = \|x\|^2$ and
- (3) $\sum_{k \in K} a_k \overline{b_k} = \langle x, y \rangle$.

Proof: Let us prove Part 1. For each $F \in \text{Fin}(K)$, let $U_F = \text{Span} \{u_k \mid k \in F\}$ and let $s_F = \sum_{k \in F} a_k u_k = \text{Proj}_{U_F}(x)$. Let $\epsilon > 0$. Since $x \in \overline{\text{Span } \mathcal{B}}$ we can choose $u \in \text{Span } \mathcal{B}$ with $\|u - x\| < \epsilon$. Since elements in $\text{Span } \mathcal{B}$ are finite linear combinations of elements in \mathcal{B} , we have $u \in U_F$ for some finite index set $F \in \text{Fin}(K)$. For $I \in \text{Fin}(K)$ with $I \supseteq F$, since s_I is the point in U_I nearest to x , and since we have $u \in U_F \subseteq U_I$, it follows that

$$\left\| \sum_{k \in I} a_k u_k - x \right\| = \|s_I - x\| \leq \|u - x\| < \epsilon.$$

Thus $\sum_{k \in K} a_k u_k = x$ in H , as required.

Let us prove Part 2. For each $F \in \text{Fin}(K)$, let $s_F = \sum_{k \in F} a_k u_k$. Let $\epsilon > 0$. Since $\sum_{k \in K} a_k u_k = x$, so we can choose $F \in \text{Fin}(K)$ such that for all $I \in \text{Fin}(K)$ with $I \supseteq F$ we have $\|s_I - x\| < \min \{1, \frac{\epsilon}{2\|x\|+1}\}$. Since $\|s_I - x\| < 1$ we have $\|s_I\| < \|x\| + 1$ hence $\|s_I\| + \|x\| < 2\|x\| + 1$, and since $\|s_I - x\| < \frac{\epsilon}{2\|x\|+1}$ we have $\|s_I\| - \|x\| \leq \|s_I - x\| < \frac{\epsilon}{2\|x\|+1}$, and so

$$\left| \sum_{k \in I} |a_k|^2 - \|x\|^2 \right| = \left| \|s_I\|^2 - \|x\|^2 \right| = \left| \|s_I\| - \|x\| \right| (\|s_I\| + \|x\|) < \epsilon.$$

Thus $\sum_{k \in K} |a_k|^2 = \|x\|^2$, as required.

Let us prove Part 3. For each $F \in \text{Fin}(K)$, let $r_F = \sum_{k \in F} a_k u_k$ and $s_I = \sum_{k \in I} b_k u_k$. Note that by Part 2, we have $\|r_I\|^2 = \sum_{k \in I} |a_k|^2 \leq \sum_{k \in K} |a_k|^2 = \|x\|^2$ so that $\|r_I\| \leq \|x\|$, and similarly $\|s_F\| \leq \|y\|$. Let $\epsilon > 0$. By Part 1, we can choose $F \in \text{Fin}(K)$ such that for all $I \in \text{Fin}(K)$ with $I \supseteq F$ we have $\|r_I - x\| < \frac{\epsilon}{\|y\|+1}$ and $\|s_I - y\| < \frac{\epsilon}{\|x\|+1}$. Then for $F \subseteq I \in \text{Fin}(K)$ we have

$$\begin{aligned} \left| \sum_{k \in I} a_k \overline{b_k} - \langle x, y \rangle \right| &= \left| \langle r_I, s_I \rangle - \langle x, y \rangle \right| = \left| \langle r_I, s_I \rangle - \langle x, s_I \rangle + \langle x, s_I \rangle - \langle x, y \rangle \right| \\ &\leq \left| \langle r_I, s_I \rangle - \langle x, s_I \rangle \right| + \left| \langle x, s_I \rangle - \langle x, y \rangle \right| = \left| \langle r_I - x, s_I \rangle \right| + \left| \langle x, s_I - y \rangle \right| \\ &\leq \|r_I - x\| \|s_I\| + \|x\| \|s_I - y\| \leq \|r_I - x\| \|y\| + \|x\| \|s_I - y\| \\ &< \epsilon. \end{aligned}$$

Thus $\sum_{k \in K} a_k \overline{b_k} = \langle x, y \rangle$, as required.

2.31 Theorem: Let H be a Hilbert space. Let $(u_k)_{k \in K}$ be an orthonormal indexed set in H , let $\mathcal{B} = \{u_k \mid k \in K\}$, let $U = \overline{\text{Span } \mathcal{B}}$, and let $(c_k)_{k \in K}$ be an indexed set in \mathbb{F} .

- (1) If $\sum_{k \in K} c_k u_k$ converges in H and $x = \sum_{k \in K} c_k u_k$, then $x \in U$ and $c_k = \langle x, u_k \rangle$ for all $k \in K$.
- (2) $\sum_{k \in K} c_k u_k$ converges in H if and only if $\sum_{k \in K} |c_k|^2$ converges in \mathbb{R} .

Proof: To prove Part 1, suppose the series $\sum_{k \in K} c_k u_k$ converges in H and let $x = \sum_{k \in K} c_k u_k$.

Since the series converges in H , it is Cauchy. Note that for each $F \in \text{Fin}(K)$, we have $s_F = \sum_{k \in F} c_k u_k \in \text{Span } \mathcal{B} \subseteq U$, and so the series $\sum_{k \in K} c_k u_k$ is a Cauchy series in U . Since U is closed in H it is complete, so the Cauchy series $\sum_{k \in K} c_k u_k$ converges in U , hence $x \in U$. Since $x \in U$, we know from Part 1 of the previous theorem that $x = \sum_{k \in K} a_k u_k$ where $a_k = \langle x, u_k \rangle$. Since $\sum_{k \in K} c_k u_k = x = \sum_{k \in K} a_k u_k$, it follows from linearity that $\sum_{k \in K} (c_k - a_k) u_k = 0$. From Part 2 of the previous theorem, we have $\sum_{k \in K} |c_k - a_k|^2 = 0$, and so we must have $c_k - a_k = 0$ for all $k \in K$. This completes the proof of Part 1.

To prove Part 2, suppose first that $\sum_{k \in K} c_k u_k$ converges, and let $x = \sum_{k \in K} c_k u_k$. By Part 1, we have $x \in U$ and $c_k = \langle x, u_k \rangle$. By Part 2 of the previous theorem, we have $\sum_{k \in K} |c_k|^2 \leq \|x\|^2$, so the series $\sum_{k \in K} |c_k|^2$ converges in \mathbb{R} .

Suppose, conversely, that $\sum_{k \in K} |c_k|^2$ converges in \mathbb{R} and let $m = \sum_{k \in K} |c_k|^2 < \infty$. For $I \in \text{Fin}(K)$, let $s_I = \sum_{k \in I} c_k u_k$. Let $\epsilon > 0$. Choose $F \in \text{Fin}(K)$ such that $m - \epsilon^2 < \sum_{k \in F} |c_k|^2 \leq m$. For $I, J \in \text{Fin}(K)$ with $I, J \supseteq F$, writing $I \Delta J = (I \cup J) \setminus (I \cap J) = (I \setminus J) \cup (J \setminus I)$, we have

$$\begin{aligned} \|s_I - s_J\|^2 &= \|s_{I \setminus J} - s_{J \setminus I}\|^2 = \sum_{k \in I \Delta J} |c_k|^2 = \sum_{k \in I \cup J} |c_k|^2 - \sum_{k \in I \cap J} |c_k|^2 \\ &\leq \sum_{k \in I \cup J} |c_k|^2 - \sum_{k \in F} |c_k|^2 < m - (m - \epsilon^2) = \epsilon^2 \end{aligned}$$

so that $\|s_I - s_J\| < \epsilon$. Thus the unordered series $\sum_{k \in K} c_k u_k$ is Cauchy, so it converges in H .

2.32 Theorem: (Bessel's Inequality) Let V be an inner product space. Let $(u_k)_{k \in K}$ be an orthonormal indexed set in V . For all $x \in V$, we have $\sum_{k \in K} |\langle x, u_k \rangle|^2 \leq \|x\|^2$.

Proof: Let $x \in V$. For $k \in K$, let $a_k = \langle x, u_k \rangle$. Let $F \in \text{Fin}(K)$ and let $w_F = \sum_{k \in F} a_k u_k$.

Then

$$\begin{aligned} 0 &\leq \|x - w_F\|^2 = \|x\|^2 - 2 \operatorname{Re} \langle x, w_F \rangle + \|w_F\|^2 \\ &= \|x\|^2 - 2 \operatorname{Re} \left(\sum_{k \in F} \overline{a_k} \langle x, u_k \rangle \right) + \sum_{k, \ell \in F} a_k \overline{a_\ell} \langle u_k, u_\ell \rangle \\ &= \|x\|^2 - \sum_{k \in F} |a_k|^2. \end{aligned}$$

Since $\sum_{k \in F} |a_k|^2 \leq \|x\|^2$ for every $F \in \text{Fin}(K)$, it follows that $\sum_{k \in K} |a_k|^2 \leq \|x\|^2$, as required.

2.33 Theorem: (Orthogonal Projection) Let H be a Hilbert space, let $(u_k)_{k \in K}$ be an orthonormal indexed set in H , let $\mathcal{B} = \{u_k \mid k \in K\}$ and let $U = \overline{\text{Span } \mathcal{B}}$. The orthogonal projection $P : H \rightarrow U$ is given by $Px = \sum_{k \in K} a_k u_k$ where $a_k = \langle x, u_k \rangle$ and we have $\|P\| = 1$.

Proof: First note that when $x \in H$, by Bessel's Inequality we have $\sum_{k \in K} |a_k|^2 \leq \|x\|^2$ so that $\sum_{k \in K} |a_k|^2$ converges, hence by Part 2 of Theorem 2.31, the unordered series $\sum_{k \in K} a_k u_k$ converges, and hence by Part 1 of Theorem 2.31, the sum $Px = \sum_{k \in K} a_k u_k$ lies in U . Thus the map $P : H \rightarrow U$ given by $\sum_{k \in K} a_k u_k$ is well-defined with $\text{Range}(P) \subseteq U$.

To show that P is the orthogonal projection onto U , it suffices to show that when $x \in H$ and $u = Px$ and $v = x - u$, we have $v \in U^\perp$. Let $x \in H$, $u = Px = \sum_{k \in K} a_k u_k \in U$ and $v = x - u$. Since $u = \sum_{k \in K} a_k u_k$, by Part 1 of Theorem 2.31, for all $k \in K$ we have $\langle u, u_k \rangle = a_k = \langle x, u_k \rangle$, and hence $\langle v, u_k \rangle = \langle x - u, u_k \rangle = \langle x, u_k \rangle - \langle u, u_k \rangle = 0$. Thus we have $v \in \text{Span } \mathcal{B}^\perp = U^\perp$, as required. Thus P is the orthogonal projection onto U .

It remains to show that $\|P\| = 1$. When $u \in U$ we have $Pu = u$ so that $\|Pu\| = \|u\|$ and it follows that $\|P\| \geq 1$. For $x \in H$, if we let $u = Px = \sum_{k \in K} a_k u_k$ then, as mentioned above, we have $\langle u, u_k \rangle = a_k = \langle x, u_k \rangle$, so by Part 2 of Theorem 2.30 and Bessel's Inequality, we have $\|Px\|^2 = \|u\|^2 = \sum_{k \in K} |a_k|^2 \leq \|x\|^2$ so that $\|Px\| \leq \|x\|$. Since $\|Px\| \leq \|x\|$ for all $x \in H$, we have $\|P\| \leq 1$.

Hilbert Bases

2.34 Theorem: Let H be a Hilbert space and let \mathcal{B} be an orthonormal set in H . Then \mathcal{B} is a maximal orthonormal set if and only $\text{Span } \mathcal{B}$ is dense in H .

Proof: Suppose \mathcal{B} is not maximal. Choose an orthonormal set \mathcal{C} in H with $\mathcal{B} \subsetneq \mathcal{C}$. Let $v \in \mathcal{C} \setminus \mathcal{B}$. Then $\|v\| = 1$ and $\langle v, u \rangle = 0$ for all $u \in \mathcal{B}$, hence $\langle v, u \rangle = 0$ for all $u \in \text{Span } \mathcal{B}$. For all $u \in \text{Span } \mathcal{B}$ we have $\|u - v\| = \|u\|^2 + \|v\|^2 = \|u\|^2 + 1 \geq 1$ so $v \notin \overline{\text{Span } \mathcal{B}}$.

Suppose, conversely, that $\text{Span } \mathcal{B}$ is not dense in H . Let $U = \overline{\text{Span } \mathcal{B}} \neq H$, and recall (from Note 2.16) that $U^\perp = (\text{Span } \mathcal{B})^\perp$. Since U is closed, by Theorem 2.20 we have $H = U \oplus U^\perp$. Since $U \neq H$ we have $U^\perp \neq \{0\}$. Choose $v \in U^\perp$ with $\|v\| = 1$. Then $\mathcal{B} \cup \{v\}$ is an orthonormal set which properly contains \mathcal{B} , so \mathcal{B} is not maximal.

2.35 Theorem:

- (1) Every inner product space contains a maximal orthonormal set.
- (2) In a Hilbert space, any two maximal orthonormal sets have the same cardinality

Proof: To prove Part 1, let V be an inner product space. Let S be the set of all orthonormal sets in V , ordered by inclusion. If C is a chain in S (that is a totally ordered subset of S) then $\bigcup C$ is an upper bound for C in S . Since every chain in S has an upper bound, it follows from Zorn's Lemma that S has a maximal element.

To prove Part 2, let H be a Hilbert space and let $(u_k)_{k \in K}$ and $(v_\ell)_{\ell \in L}$ be two indexed orthonormal sets in H , and suppose that $\mathcal{B} = \{u_k | k \in K\}$ and $\mathcal{C} = \{v_\ell | \ell \in L\}$ are both maximal. If K or L is finite, then \mathcal{B} and \mathcal{C} are both Hamel bases for H and they have the same cardinality. Suppose K and L are infinite. For $k \in K$, let $L_k = \{\ell \in L | \langle u_k, v_\ell \rangle \neq 0\}$. Since for each $\ell \in L$ we have $\sum_{k \in K} |\langle u_k, v_\ell \rangle| = \|v_\ell\|^2 = 1 > 0$, it follows that for each $\ell \in L$ there exists $k \in K$ such that $\langle u_k, v_\ell \rangle \neq 0$, so we have $L = \bigcup_{k \in K} L_k$. Since for each $k \in K$ we have $\sum_{\ell \in L} |\langle u_k, v_\ell \rangle|^2 = \|u_k\|^2 = 1 < \infty$, it follows from Theorem 2.26 that each set L_k is at most countable, that is $|L_k| \leq \aleph_0$. Thus, using some cardinal arithmetic, we have

$$|L| = \left| \bigcup_{k \in K} L_k \right| \leq \sum_{k \in K} |L_k| \leq \sum_{k \in K} \aleph_0 = |K| \cdot \aleph_0 = |K|.$$

A similar argument shows that $|K| \leq |L|$.

2.36 Definition: A **Hilbert basis** for a Hilbert space H is a maximal orthonormal set in H . The (Hilbert) **dimension** of a Hilbert space H , denoted by $\dim H$, is the cardinality of any Hilbert basis for H . We do not distinguish notationally between the Hamel dimension of H (that is the dimension of H as a vector space) and the Hilbert dimension of H (that is the dimension of H as a Hilbert space). Unless otherwise stated, when H is a Hilbert space, $\dim H$ will denote the Hilbert dimension.

2.37 Theorem: Let H be a Hilbert space, let $(u_k)_{k \in K}$ be an orthonormal indexed set in H , and let $\mathcal{B} = \{u_k | k \in K\}$. Then the following are equivalent.

- (1) \mathcal{B} is a Hilbert basis for H .
- (2) For every $x \in H$ we have $x = \sum_{k \in K} a_k u_k$, where $a_k = \langle x, u_k \rangle$.
- (3) For every $x \in H$ we have $\|x\|^2 = \sum_{k \in K} |a_k|^2$ where $a_k = \langle x, u_k \rangle$.
- (4) For every $x, y \in H$ we have $\langle x, y \rangle = \sum_{k \in K} a_k \overline{b_k}$ where $a_k = \langle x, u_k \rangle$ and $b_k = \langle y, u_k \rangle$.

Proof: The proof is left as an exercise.

2.38 Theorem: Let H be a Hilbert space with Hilbert basis \mathcal{B} . Then H is separable if and only if \mathcal{B} is at most countable.

Proof: Suppose that \mathcal{B} is uncountable. Let S be any dense subset of H . For each $u \in \mathcal{B}$ choose $s_u \in S$ with $\|s_u - u\| \leq \frac{\sqrt{2}}{4}$. For $u, v \in \mathcal{B}$ with $u \neq v$ we have $\|u\| = 1$ and $\|v\| = 1$ and $\langle u, v \rangle = 0$ so that $\|u - v\|^2 = \|u\|^2 + \|v\|^2 = 2$ and so

$$\|s_u - s_v\| = \|(s_u - u) + (u - v) + (v - s_v)\| \geq \|u - v\| - (\|s_u - u\| + \|s_v - v\|) = \sqrt{2} - \frac{\sqrt{2}}{4} - \frac{\sqrt{2}}{4} > 0$$

so that $s_u \neq s_v$. Thus \mathcal{B} is at most countable.

Suppose, conversely, that $\mathcal{B} = \{u_1, u_2, \dots\}$ is finite or countable. By Theorem 2.34, $\text{Span}_{\mathbb{F}} \mathcal{B}$ is dense in H . Note that $\text{Span}_{\mathbb{Q}} \mathcal{B}$ is dense in $\text{Span}_{\mathbb{R}} \mathcal{B}$ and $\text{Span}_{\mathbb{Q}[i]} \mathcal{B}$ is dense in $\text{Span}_{\mathbb{C}} \mathcal{B}$. Indeed given $c_1, \dots, c_n \in \mathbb{F}$ (where $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) we can choose $r_1, \dots, r_n \in \mathbb{K}$ (where $\mathbb{K} = \mathbb{Q}$ or $\mathbb{Q}[i]$) such that $|r_k - c_k| < \frac{\epsilon}{n}$ and then

$$\begin{aligned} \left\| \sum_{k=1}^n r_k u_k - \sum_{k=1}^n c_k u_k \right\| &= \left\| \sum_{k=1}^n (r_k - c_k) u_k \right\| \leq \sum_{k=1}^n \|(r_k - c_k) u_k\| \\ &= \sum_{k=1}^n |r_k - c_k| \|u_k\| = \sum_{k=1}^n |r_k - c_k| < \epsilon. \end{aligned}$$

2.39 Exercise: For any nonempty set K and for $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , let

$$\begin{aligned} \mathbb{F}^K &= \{(c_k)_{k \in K} \mid \text{each } c_k \in \mathbb{F}\}, \\ \ell_2(K, \mathbb{F}) &= \left\{ (c_k)_{k \in K} \in \mathbb{F}^K \mid \sum_{k \in K} |c_k|^2 < \infty \right\}. \end{aligned}$$

- (a) For $a, b \in \ell_2(K, \mathbb{F})$, show that $\sum_{k \in K} a_k \bar{b_k}$ converges and let $\langle a, b \rangle = \sum_{k \in K} a_k \bar{b_k}$.
- (b) Prove that this defines an inner product on $\ell_2(K, \mathbb{F})$.
- (c) Prove that $\ell_2(K, \mathbb{F})$ is complete under this inner product.
- (d) For each $\ell \in K$, let $e_\ell \in \ell_2(K, \mathbb{F})$ be given by $e_\ell = (e_{\ell, k})_{k \in K}$ with $e_{\ell, \ell} = 1$ and $e_{\ell, k} = 0$ when $k \neq \ell$. Prove that $(e_\ell)_{\ell \in K}$ is a Hilbert basis for $\ell_2(K, \mathbb{F})$.
- (e) Prove that if H is a Hilbert space over \mathbb{F} with $\dim H = |K|$ then $H \cong \ell_2(K, \mathbb{F})$.

2.40 Example: When $|K| = n \in \mathbb{Z}^+$ we have $\ell_2(K, \mathbb{F}) \cong \mathbb{F}^n$ (using the standard inner product). When $|K| = \aleph_0$ we have $\ell_2(K, \mathbb{F}) \cong \ell_2(\mathbb{F})$. For every separable Hilbert space H (over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) we have $H \cong \ell_2 = \ell_2(\mathbb{F})$. For example, we have $L_2[a, b] \cong \ell_2$.

The Dual Space and the Adjoint Map

2.41 Theorem: (The Riesz Representation Theorem for Hilbert Spaces) Let H be a Hilbert space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . The map $\phi =: H \rightarrow H^*$ given by $\phi(u)(x) = \langle x, u \rangle$ is a bijective norm-preserving map which is linear when $\mathbb{F} = \mathbb{R}$ and conjugate-linear when $\mathbb{F} = \mathbb{C}$.

Proof: For $u \in H$, write $\phi_u = \phi(u)$ so that $\phi_u(x) = \langle x, u \rangle$. Since $\phi_u(u) = \langle u, u \rangle = \|u\|^2$ it follows that $\|\phi_u\| \geq \|u\|$. Since for all $x \in H$ we have $|\phi_u(x)| = |\langle x, u \rangle| \leq \|x\| \|u\|$ it follows that $\|\phi_u\| \leq \|u\|$. Thus ϕ_u is a bounded linear map $\phi_u : H \rightarrow \mathbb{F}$ (that is $\phi_u \in H^*$) with $\|\phi_u\| = \|u\|$. Hence ϕ is a norm-preserving map $\phi : H \rightarrow H^*$. Note that ϕ is linear when $\mathbb{F} = \mathbb{R}$ and conjugate-linear when $\mathbb{F} = \mathbb{C}$. Since norm-preserving maps are injective, it remains to show that ϕ is surjective,

Let $f \in H^*$, that is let $f : H \rightarrow \mathbb{F}$ be a bounded linear map. If $f = 0$ then we can take $u = 0$ to get $\phi_u = f$. Suppose that $f \neq 0$. Let $U = \ker(f)$. Since f is linear, U is a subspace of H , and since f is bounded (hence continuous), U is closed, and it follows from Theorem 2.20 that $H = U \oplus U^\perp$. Since $f \neq 0$ it follows that $U \neq H$ so we have $U^\perp \neq \{0\}$. Choose $v \in U^\perp$ with $\|v\| = 1$. Let $x \in H$. For $y = f(x)v - f(v)x$ we have $f(y) = f(x)f(v) - f(v)f(x) = 0$ so that $y \in \ker(f) = U$. Since $y \in U$ and $v \in U^\perp$ we have $\langle y, v \rangle = 0$, and so

$$\begin{aligned} f(x) &= f(x)\|v\|^2 = f(x)\langle v, v \rangle = \langle f(x)v, v \rangle = \langle y + f(v)x, v \rangle \\ &= \langle f(v)x, v \rangle = f(v)\langle x, v \rangle = \langle x, \overline{f(v)}v \rangle. \end{aligned}$$

Thus we can choose $u = \overline{f(v)}v$ to get $\phi(u) = \phi_u = f$.

2.42 Definition: When H is a Hilbert space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , we use the bijection ϕ of the above theorem to define an inner product on H^* , as follows. Given $f, g \in H^*$ we let $u = \phi^{-1}(f)$ and $v = \phi^{-1}(g)$ (that is we let u and v be the elements in H such that $f(x) = \langle x, u \rangle$ and $g(x) = \langle x, v \rangle$) and then we define $\langle f, g \rangle = \langle v, u \rangle$ (note that the order of u and v is reversed so that the inner product is sesquilinear when $\mathbb{F} = \mathbb{C}$).

2.43 Definition: Recall that when U and V are vector spaces (over any field \mathbb{F}) and $F : U \rightarrow V$ is a linear map, we write $U^\#$ and $V^\#$ to denote the algebraic dual spaces, and we define the **dual** (or the **transpose** or the **algebraic adjoint**) of F to be the linear map $F^T : V^\# \rightarrow U^\#$ given by $F^T(g) = g \circ F$, that is by $F^T(g)(u) = g(F(u))$ when $g \in V^\#$ and $u \in U$. In the case that U and V are normed linear spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and $F \in \mathcal{B}(U, V)$ (that is if $F : U \rightarrow V$ is a continuous linear map), F^T restricts to give a well-defined map $F^T : V^* \rightarrow U^*$ (because if $g \in V^*$ is continuous then so is $g \circ F$).

When H and K are Hilbert spaces over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and $F : H \rightarrow K$ is a continuous linear map, we define the (Hilbert space) **adjoint** of F to be the liner map $F^* : K \rightarrow H$ given by $F^* = \phi^{-1} \circ F^T \circ \psi$ where $\phi : H \rightarrow H^*$ is the bijective map given by $\phi(u)(x) = \langle x, u \rangle$ and $\psi : K \rightarrow K^*$ is the bijective map given by $\psi(v)(y) = \langle y, v \rangle$. Equivalently, the adjoint of F is the map $F^* : K \rightarrow H$ such that $\phi \circ F^* = F^T \circ \psi$, that is the map such that

$$\begin{aligned} \phi(F^*(y)) &= F^T(\psi(y)) = \psi(y) \circ F \text{ for all } y \in K, \text{ that is} \\ \phi(F^*y)(x) &= \psi(y)(Fx) \text{ for all } x \in H, y \in K, \text{ that is} \\ \langle x, F^*y \rangle &= \langle Fx, y \rangle \text{ for all } x \in H, y \in K. \end{aligned}$$

2.44 Exercise: Show that when H and K are Hilbert spaces and $F : H \rightarrow K$ is a bounded linear map, we have $\|F^*\| = \|F^T\| = \|F\|$.

Weak Convergence

2.45 Definition: Let V be an inner product space over F , where $F = \mathbb{R}$ or \mathbb{C} , let (u_n) be a sequence in V and let $w \in V$. We say that (u_n) **converges weakly** to w in V , and we write $u_n \rightarrow w$ weakly in V , when $\langle u_n, x \rangle \rightarrow \langle w, x \rangle$ in F for all $x \in V$.

2.46 Note: When V is an inner product space and (u_n) is a sequence in V , it is easy to see that if $u_n \rightarrow w$ in V then we also have $u_n \rightarrow w$ weakly in V , but the converse is not always true. For example, when (u_n) is an orthonormal sequence in a Hilbert space H , verify that $u_n \rightarrow 0$ weakly in H (by Part 3 of Theorem 2.37), but $u_n \not\rightarrow 0$ in H .

2.47 Theorem: Every bounded sequence in a Hilbert space has a weakly convergent subsequence.

Proof: Let H be a Hilbert space. We claim that for every $a \in H$ and every bounded sequence $u = (u_n)$ in H , there is a subsequence (u_{n_ℓ}) of (u_n) such that the sequence $(\langle u_{n_\ell}, a \rangle)$ converges in \mathbb{F} . Let $a \in H$, let $(u_n)_{n \geq 1}$ be a bounded sequence in H , and let $M = \sup \{ \|u_n\| \mid n \in \mathbb{Z}^+ \}$. Then for all $n \in \mathbb{Z}^+$ we have $|\langle u_n, a \rangle| \leq \|u_n\| \|a\| \leq M \|a\|$, and so the sequence $(\langle u_n, a \rangle)$ is bounded in \mathbb{F} . By the Bolzano-Weierstrass Theorem, we can choose a subsequence (u_{n_ℓ}) of (u_n) such that $(\langle u_{n_\ell}, a \rangle)$ converges in \mathbb{F} , as claimed.

Suppose that H is separable and let $S = \{a_1, a_2, \dots\} \subseteq H$ be a countable dense subset. Let $u = (u_n)$ be a bounded sequence in H and let $M = \sup \{ \|u_n\| \mid n \in \mathbb{Z}^+ \}$. By the above claim, we can choose a subsequence (u_{n_ℓ}) of (u_n) such that $\lim_{\ell \rightarrow \infty} \langle u_{n_\ell}, a_1 \rangle$ exists in \mathbb{F} , then we can choose a subsequence $(u_{n_{\ell_k}})$ of (u_{n_ℓ}) such that $\lim_{k \rightarrow \infty} \langle u_{n_{\ell_k}}, a_2 \rangle$ exists in \mathbb{F} , then we can choose a subsequence $(u_{n_{\ell_{k_j}}})$ of $(u_{n_{\ell_k}})$ so that $\lim_{j \rightarrow \infty} \langle u_{n_{\ell_{k_j}}}, a_3 \rangle$ exists in \mathbb{F} , and so on. Then the diagonal sequence $v = (v_1, v_2, v_3, \dots) = (u_{n_1}, u_{n_{\ell_2}}, u_{n_{\ell_{k_3}}}, \dots)$ is then a subsequence of the original sequence (u_n) with the property that $(\langle v_k, a_m \rangle)$ converges in \mathbb{F} for every $m \in \mathbb{Z}^+$, that is $(\langle v_k, a \rangle)$ converges for every $a \in S$.

Define $f : S \rightarrow \mathbb{F}$ by $f(a) = \lim_{k \rightarrow \infty} \langle v_k, a \rangle$ for $a \in S$. Note that f is uniformly continuous on S because for $a, b \in S$ we have $|\langle v_k, a - b \rangle| \leq \|v_k\| \|a - b\| \leq M \|a - b\|$ for all k so that

$$|f(a) - f(b)| = \left| \lim_{k \rightarrow \infty} \langle v_k, a \rangle - \lim_{k \rightarrow \infty} \langle v_k, b \rangle \right| = \lim_{k \rightarrow \infty} |\langle v_k, a - b \rangle| \leq M \|a - b\|.$$

Since $f : S \rightarrow \mathbb{F}$ is uniformly continuous on S and S is dense in H , it follows that f extends (uniquely) to a continuous map $f : H \rightarrow \mathbb{F}$ defined by $f(x) = \lim_{n \rightarrow \infty} f(a_n)$ where $x \in H$ and (a_n) is any sequence in S with $a_n \rightarrow x$ in H . Verify that this map f is linear and bounded (so we have $f \in H^*$) with $\|f\| \leq M$.

By The Riesz Representation Theorem, we can choose $w \in H$ such that $f(x) = \langle x, w \rangle$ for all $x \in H$. Verify that we have $\lim_{k \rightarrow \infty} \langle v_k, x \rangle = \langle w, x \rangle$ for all $x \in H$, so (v_k) converges weakly to w in H . This completes the proof of the theorem in the case that H is separable.

Suppose that H is not separable and let (u_n) be a bounded sequence in H . Let $\mathcal{B} = \{e_k \mid k \in K\}$ be a Hilbert basis for H . For each $n \in \mathbb{Z}^+$, by Theorem 2.30 we have $u_n = \sum_{k \in K} c_{n,k} e_k$ where $c_{n,k} = \langle u_n, e_k \rangle$ and we have $\sum_{k \in K} |c_{n,k}|^2 = \|u_n\|^2$. By theorem 2.26, for each $n \in \mathbb{Z}^+$ there are at most countably many indices $k \in K$ for which $c_{n,k} \neq 0$. Thus the set $L = \{k \in K \mid \exists n \in \mathbb{Z}^+ c_{n,k} \neq 0\}$ is at most countable, and all of the elements u_n lie in the separable Hilbert space $U = \overline{\text{Span} \{e_\ell \mid \ell \in L\}}$. Since (u_n) is bounded, as proven above we can find a subsequence of (u_n) which converges weakly in U to an element $w \in U$. Verify that since $H = U \oplus U^\perp$, the subsequence also converges weakly in H to w .

The Spectral Theorem for Compact Self-Adjoint Operators

2.48 Definition: Let H be a Hilbert space. A **compact operator** on H is a linear map $F : H \rightarrow H$ which sends weakly convergent sequences to convergent sequences, that is a linear map such that if $u_n \rightarrow w$ weakly in H then $Fu_n \rightarrow Fw$ in H .

2.49 Note: When H is a Hilbert space, every compact operator on H is continuous (because if $u_n \rightarrow w$ in H then $u_n \rightarrow w$ weakly in H) but the converse is not always true. For example, when H is an infinite-dimensional Hilbert space, the identity map $I : H \rightarrow H$ is continuous but not compact (since if (u_n) is an orthonormal sequence in H then $u_n \rightarrow 0$ weakly in H but $u_n \not\rightarrow 0$ in H).

2.50 Definition: Let H be a Hilbert space. A **self-adjoint operator** on H is a continuous linear map $F : H \rightarrow H$ such that $F^* = F$, that is such that $\langle Fx, y \rangle = \langle x, Fy \rangle$ for all $x, y \in H$.

2.51 Theorem: Let H be a Hilbert space and let $F : H \rightarrow H$ be a continuous self-adjoint operator. Then

- (1) For every $u \in H$, we have $\langle Fu, u \rangle \in \mathbb{R}$. In particular, every eigenvalue of F is real.
- (2) We have $\|F\| = \sup \left\{ |\langle Fu, u \rangle| \mid u \in H, \|u\| = 1 \right\}$. In particular, for every eigenvalue λ of F we have $|\lambda| \leq \|F\|$.

Proof: To prove Part 1, note that since F is self-adjoint we have $\langle Fu, u \rangle = \langle u, F^*u \rangle = \langle u, Fu \rangle = \overline{\langle Fu, u \rangle}$, and so $\langle Fu, u \rangle \in \mathbb{R}$. In particular, when λ is an eigenvalue of F and $u \in H$ is a corresponding eigenvector with $\|u\| = 1$, we have $\lambda = \lambda \langle u, u \rangle = \langle \lambda u, u \rangle = \langle Fu, u \rangle \in \mathbb{R}$.

To prove Part 2, let $M = \sup \left\{ |\langle Fu, u \rangle| \mid u \in H, \|u\| = 1 \right\}$. Note that for all $u \in H$ with $\|u\| = 1$, we have $|\langle Fu, u \rangle| \leq \|Fu\| \|u\| \leq \|F\| \|u\| \cdot \|u\| = \|F\|$, and so $M \leq \|F\|$.

To show that $\|F\| \leq M$ we shall use a formula similar to the Polarization Identity. Verify (by expanding and cancelling) that for all $u, v \in H$ we have

$$(\langle F(u+v), u+v \rangle - \langle F(u-v), u-v \rangle) + i(\langle F(u+iv), u+iv \rangle - \langle F(u-iv), u-iv \rangle) = 4\langle Fu, v \rangle.$$

By Part 1, all of the inner products on the left are real, so if $\langle Fu, v \rangle \in \mathbb{R}$ then we have

$$\langle Fu, v \rangle = \frac{1}{4}(\langle F(u+v), u+v \rangle - \langle F(u-v), u-v \rangle).$$

Since $|\langle Fu, u \rangle| \leq M$ for all $u \in H$ with $\|u\| = 1$, it follows that $|\langle Fw, w \rangle| \leq M\|w\|^2$ for all $w \in H$ (indeed when $w \neq 0$ we have $|\langle Fw, w \rangle| = \|w\|^2 |\langle F \frac{w}{\|w\|}, \frac{w}{\|w\|} \rangle| \leq \|w\|^2 M$). Applying this fact with $w = u \pm v$ to the above displayed formula for $\langle Fu, v \rangle$, then using the Parallelogram Law, when $\langle Fu, v \rangle \in \mathbb{R}$ we have

$$\begin{aligned} |\langle Fu, v \rangle| &\leq \frac{1}{4}(|\langle F(u+v), u+v \rangle| + |\langle F(u-v), u-v \rangle|) \\ &\leq \frac{M}{4}(\|u+v\|^2 + \|u-v\|^2) = \frac{M}{2}(\|u\|^2 + \|v\|^2). \end{aligned}$$

In particular, if $\|u\| = \|v\| = 1$ and $\langle Fu, v \rangle \in \mathbb{R}$ then $|\langle Fu, v \rangle| \leq M$. So for all $u \in H$ with $\|u\| = 1$, if $Fu = 0$ then $\|Fu\| \leq M$ and if $Fu \neq 0$ then $\|Fu\| = |\langle Fu, \frac{Fu}{\|Fu\|} \rangle| \leq M$. Thus we have $\|F\| \leq M$, as required. Finally, note that when λ is an eigenvalue of F and u is a corresponding eigenvector with $\|u\| = 1$, we have $|\lambda| = |\lambda \langle u, u \rangle| = |\langle Fu, u \rangle| \leq \|F\|$.

2.52 Example: The map $F : L_2[0, 1] \rightarrow L_2[0, 1]$ given by $F(f)(x) = xf(x)$ is a continuous self-adjoint map with no eigenvalues.

2.53 Theorem: Let H be a Hilbert space and let $F : H \rightarrow H$ be a compact self-adjoint operator. Then F has an eigenvalue λ with $|\lambda| = \|F\|$.

Proof: When $F = 0$, $\lambda = \|F\| = 0$ is an eigenvalue of F . Suppose $F \neq 0$. Since F is self-adjoint, we know that $\langle Fu, u \rangle \in \mathbb{R}$ for all $u \in H$ with $\|F\| = \sup \{ |\langle Fu, u \rangle| \mid \|u\| = 1 \}$. It follows that either $\|F\| = \lambda$ where $\lambda = \sup \{ \langle Fu, u \rangle \mid \|u\| = 1 \} > 0$ or $\|F\| = -\lambda$ where $\lambda = \inf \{ \langle Fu, u \rangle \mid \|u\| = 1 \} < 0$. Suppose the former (the proof in the latter case is similar). Since $\lambda = \sup \{ \langle Fu, u \rangle \mid \|u\|^2 = 1 \}$, we can choose a sequence (u_n) in H with each $\|u_n\| = 1$ such that $\langle Fu_n, u_n \rangle \rightarrow \lambda$ in \mathbb{R} . Since (u_n) is bounded, we can choose a weakly convergent subsequence $(v_k) = (u_{n_k})$, say $v_k \rightarrow w$ weakly in H . Note that each $\|v_k\| = 1$, we have $\langle Fv_k, v_k \rangle \in \mathbb{R}$ for all k with $\langle Fv_k, v_k \rangle \rightarrow \lambda$ in \mathbb{R} , and $\lambda = \|F\|$, and so

$$\begin{aligned} \|Fv_k - \lambda v_k\|^2 &= \|Fv_k\|^2 - 2\operatorname{Re} \langle Fv_k, \lambda v_k \rangle + \|\lambda v_k\|^2 \\ &= \|Fv_k\|^2 - 2\lambda \langle Fv_k, v_k \rangle + \lambda^2 \\ &\leq \|F\|^2 - 2\lambda \langle Fv_k, v_k \rangle + \lambda^2 \rightarrow \|F\|^2 - \lambda^2 = 0. \end{aligned}$$

Since $v_k \rightarrow w$ weakly in H and F is compact, we have $Fv_k \rightarrow Fw$ in H , and hence

$$\lambda v_k = (\lambda v_k - Fv_k) + Fv_k \rightarrow 0 + Fw = Fw.$$

Since F is continuous we have

$$F(Fw) = F\left(\lim_{k \rightarrow \infty} \lambda v_k\right) = \lambda \lim_{k \rightarrow \infty} Fv_k = \lambda Fw$$

and so λ is an eigenvalue of F with eigenvector Fw .

2.54 Note: Let H be a Hilbert space. We use the following remarks in the next theorem.

(1) When $F : H \rightarrow H$ is a continuous linear operator and λ is an eigenvalue of F , the eigenspace E_λ is closed because $\{0\}$ is closed in H and $E_\lambda = G^{-1}(\{0\})$ where $G = F - \lambda I$, which is continuous.

(2) When $F : H \rightarrow H$ is a continuous self-adjoint operator and λ and μ are distinct eigenvalues of F , the eigenspaces E_λ and E_μ are orthogonal. Indeed, if $\lambda, \mu \in \mathbb{R}$ with $\lambda \neq \mu$ and $u \in E_\lambda$ and $v \in E_\mu$, then $\lambda \langle u, v \rangle = \langle \lambda u, v \rangle = \langle Fu, v \rangle = \langle u, Fv \rangle = \langle u, \mu v \rangle = \mu \langle u, v \rangle$ hence $\langle u, v \rangle = 0$.

(3) When $U \subseteq H$ is a closed subspace, the orthogonal projection P onto U is self-adjoint. Indeed, given $x, y \in H$, write $x = u + v$ and $y = r + s$ with $u, r \in U$ and $v, s \in U^\perp$ and then $\langle Px, y \rangle = \langle u, r + s \rangle = \langle u, r \rangle - \langle u + v, r \rangle = \langle x, Py \rangle$.

(4) When $F, G : H \rightarrow H$ are self-adjoint, so is $F + cG$ where $c \in \mathbb{R}$, because for all $x, y \in H$ we have $\langle (F + cG)x, y \rangle = \langle Fx, y \rangle + c \langle Gx, y \rangle = \langle x, Fy \rangle + c \langle x, Gy \rangle = \langle x, (F + cG)y \rangle$.

(5) When $U \subseteq H$ is a finite-dimensional subspace, the orthogonal projection P onto U is compact. Indeed, suppose $w_n \rightarrow w$ weakly in H . Write $w_n = u_n + v_n$ and $w = u + v$ with $u_n, u \in U$ and $v_n, v \in U^\perp$. For all $x \in U$, we have $\langle u_n, x \rangle = \langle w_n, x \rangle \rightarrow \langle w, x \rangle = \langle u, x \rangle$ so $u_n \rightarrow u$ weakly in U . Since U is finite-dimensional, we can choose an orthonormal basis $\{e_1, \dots, e_n\}$ for U and then $u_n = \sum_{k=1}^n \langle u_n, e_k \rangle e_k \rightarrow \sum_{k=1}^n \langle u, e_k \rangle e_k = u$ in U . Thus $Pw_n = u_n \rightarrow u = Pw$, so P is compact.

(6) When $F, G : H \rightarrow H$ are compact, so is $F + cG$ where $c \in \mathbb{F}$, because if (w_n) converges weakly in H then (Fw_n) and (Gw_n) , hence also $((F + cG)w_n)$, converge in H .

(7) When $F : H \rightarrow H$ is a continuous self-adjoint operator, λ is a nonzero eigenvalue of F , and P is the orthogonal projection onto the eigenspace E_λ , we have $\lambda P = FP = PF$ because for all $x \in H$ we have $Px \in E_\lambda$ so that $FPx = \lambda Px$, and for all $x, y \in H$ we have $\langle PFx, y \rangle = \langle Fx, Py \rangle = \langle x, FPy \rangle = \langle x, \lambda Py \rangle = \langle \lambda Px, y \rangle$.

2.55 Theorem: (The Spectral Theorem for Compact Self-Adjoint Operators) Let H be a Hilbert space and let $F : H \rightarrow H$ be a nonzero compact self-adjoint operator on H . Then the set of nonzero eigenvalues of H is at most countable, and the eigenspace of each nonzero eigenvalue is finite-dimensional. When H has finitely many nonzero eigenvalues, say $\lambda_1, \dots, \lambda_n$, we have $F = \lambda_1 P_{\lambda_1} + \dots + \lambda_n P_{\lambda_n}$ where P_{λ_k} is the orthogonal projection onto the eigenspace E_{λ_k} . When H has countably many nonzero eigenvalues, they can be arranged into a sequence $\lambda_1, \lambda_2, \lambda_3, \dots$ in nonincreasing order of absolute value with $\lambda_n \rightarrow 0$, and in the space of bounded linear operators on H , we have

$$F = \sum_{k=1}^{\infty} \lambda_k P_{\lambda_k}$$

where P_{λ_k} is the orthogonal projection onto the eigenspace E_{λ_k} .

Proof: First we note that because F is compact, it follows that the eigenspace E_λ of any nonzero eigenvalue $\lambda \neq 0$ must be finite dimensional, because if E_λ was infinite dimensional we could choose an orthonormal sequence $(e_n)_{n \geq 1}$ in E_λ , but this is not possible because we would have $e_n \rightarrow 0$ weakly in H but $Fe_n = \lambda e_n \not\rightarrow 0$ in H .

Using Theorem 2.52, choose an eigenvalue λ of F with $|\lambda| = \|F\|$ and note that $\lambda \neq 0$. Since F is continuous, the eigenspace $E_\lambda = E_\lambda(F)$ is closed. Let P be the orthogonal projection onto E_λ . and note that P is compact and self-adjoint and we have $FP = PF = \lambda P$. Let

$$G = F - \lambda P$$

and note that G is also compact and self-adjoint.

We claim that λ is not an eigenvalue of G . Let $u \in H$ with $Gu = \lambda u$, that is $\lambda u = Gu = Fu - \lambda Pu$. Apply P on both sides, using $PF = \lambda P$ and $P^2 = P$ to get $\lambda Pu = P(Fu - \lambda Pu) = \lambda Pu - \lambda Pu = 0$, and hence $Pu = 0$. Since $Pu = 0$ and P is the orthogonal projection onto E_λ , we have $u \in E_\lambda^\perp$. Since $u \in E_\lambda^\perp$ and $u \in E_\lambda$, we have $u = 0$. Thus λ is not an eigenvalue of G , as claimed.

We claim that every non-zero eigenvalue μ of G is also an eigenvalue of F , and that $E_\mu(G) = E_\mu(F)$ (that is, the eigenspace of μ for G is equal to the eigenspace of μ for F). Let $0 \neq \mu$ be an eigenvalue of G and let w be an eigenvector of μ for G , so we have $Gw = \mu w$. Note that since $\lambda P = FP = PF$ we have $G = F - \lambda P = F(I - P) = (I - P)F$, and since $P^2 = P$ we have $(I - P)^2 = (I - 2P + P^2) = (I - P)$. Thus we have $\mu w = Gw = (I - P)Fw$ and hence $(I - P)\mu w = (I - P)^2 Fw = (I - P)Fw = Gw = \mu w$. Since $\mu \neq 0$ we can divide both sides by μ to get $(I - P)w = w$, and so $Fw = F(I - P)w = Gw = \mu w$. Thus μ is also an eigenvalue of F with w as an eigenvector, so we have $E_\mu(G) \subseteq E_\mu(F)$.

It remains to show that $E_\mu(F) \subseteq E_\mu(G)$. Let $v \in E_\mu(F)$, so we have $Fv = \mu v$. Since μ is an eigenvalue of G but λ is not, we have $\mu \neq \lambda$ so that the eigenspaces $E_\mu(F)$ and $E_\lambda(F)$ are orthogonal, and hence $Pv = 0$. Thus $Gv = (F - \lambda P)v = Fv = \mu v$ and hence $E_\mu(F) \subseteq E_\mu(G)$, as required.

Let $F_1 = F$, $\lambda_1 = \lambda$ and $F_2 = G = F_1 - \lambda_1 P_{\lambda_1}$, then repeat the above procedure by choosing an eigenvalue λ_2 of F_2 with $|\lambda_2| = \|F_2\|$, and letting $F_3 = F_2 - \lambda_2 P_{\lambda_2}$, and so on, to obtain a sequence of eigenvalues $\lambda_1, \lambda_2, \dots$ and maps $F_{n+1} = F - \sum_{k=1}^n \lambda_k P_{\lambda_k}$ where at each stage, λ_n is an eigenvalue for F_n with $|\lambda_n| = \|F_n\|$, and $E_{\lambda_n}(F_n) = E_{\lambda_n}(F)$. Note that the eigenvalues are distinct (because λ_{n-1} is an eigenvalue for F_{n-1} but not for F_n) and they are in nonincreasing order of absolute value (because λ_n is an eigenvalue of F_{n-1} so that $|\lambda_n| \leq \|F_{n-1}\| = |\lambda_{n-1}|$).

Either the procedure comes to an end after finitely many steps with $F_{n+1} = 0$, in which case we have $F = \sum_{k=1}^n \lambda_k P_{\lambda_k}$, or it continues indefinitely to give an infinite (countable) sequence of distinct eigenvalues in nonincreasing order of absolute value. Suppose that the procedure continues indefinitely, so we obtain an infinite sequence $\lambda_1, \lambda_2, \lambda_3, \dots$ of distinct eigenvalues of F with $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \dots$

We claim that $|\lambda_n| \rightarrow 0$. Suppose, for a contradiction, that $|\lambda_n| \rightarrow r > 0$. For each $n \in \mathbf{Z}^+$, choose an eigenvector $u_n \in E_{\lambda_n}(F)$ with $\|u_n\| = 1$. Since (u_n) is bounded, we can choose a weakly convergent subsequence (u_{n_k}) . Since F is compact, the sequence (Fu_{n_k}) converges in H . But this is not possible because (since the eigenspaces are orthogonal) we have

$$\|Fu_{n_k} - Fu_{n_\ell}\|^2 = \|\lambda_{n_k} u_{n_k} - \lambda_{n_\ell} u_{n_\ell}\|^2 = \lambda_{n_k}^2 + \lambda_{n_\ell}^2 \geq 2r^2$$

so the sequence (Fu_{n_k}) is not Cauchy. Thus $|\lambda_n| \rightarrow 0$, as claimed.

Note that since $|\lambda_n| \rightarrow 0$, it follows that $F = \sum_{k=1}^{\infty} \lambda_k P_{\lambda_k}$ (in the space of bounded linear operators on H , using the operator norm) because

$$\left\| F - \sum_{k=1}^n \lambda_k P_{\lambda_k} \right\| = \|F_{n+1}\| = |\lambda_{n+1}| \rightarrow 0.$$

It remains to show that the eigenvalues $\lambda_1, \lambda_2, \dots$ constitute all of the nonzero eigenvalues of F . Let us consider the case that our procedure yields infinitely many eigenvalues $\lambda_1, \lambda_2, \dots$ and that $F = \sum_{k=1}^{\infty} \lambda_k P_{\lambda_k}$ (the case of finitely many eigenvalues is simpler). Each eigenspace E_{λ_k} is finite-dimensional and can be given an orthonormal basis. These bases can be combined to give a countable orthonormal set (or an orthonormal sequence). This orthonormal set is a Hamel basis for the space of sums $\sum_{k=1}^{\infty} u_k$ where each $u_k \in E_{\lambda_k}$ with only finitely many of the terms u_k non-zero. Let U be the closure of this space in H . By Theorems 2.30 and 2.31, U is the space of sums $\sum_{k=1}^{\infty} u_k$ in H with $\sum_{k=1}^{\infty} \|u_k\|^2 < \infty$, where each $u_k \in E_{\lambda_k}$, and the elements u_k are uniquely determined. Since U is closed in H , we have $H = U \oplus U^\perp$, and so every element $w \in H$ can be written uniquely in the form $w = v + \sum_{k=1}^{\infty} u_k$ with $v \in U^\perp$ and $u_k \in E_{\lambda_k}$, and then we have $u_k = P_{\lambda_k} w$.

Let $0 \neq \mu \in \mathbb{R}$ with $\mu \neq \lambda_k$ for any k , let $w \in H$, and suppose that $Fw = \mu w$. Write $w = v + \sum_{k=1}^{\infty} u_k$ with $v \in U^\perp$ and $u_k \in E_{\lambda_k}$. Then $Fw = \sum_{k=1}^{\infty} \lambda_k u_k$ and $\mu w = \mu v + \sum_{k=1}^{\infty} \mu u_k$, so that $0 = \mu w - Fw = \mu v + \sum_{k=1}^{\infty} (\mu - \lambda_k) u_k$, hence $\mu v = 0$ and $(\mu - \lambda_k) u_k = 0$ for all k . Since since $\mu \neq 0$ we have $v = 0$ and since $\mu \neq \lambda_k$ we have $u_k = 0$. Thus $w = 0$ so that μ is not an eigenvalue of F .