Chapter 2. Hilbert Spaces

Review of Inner Product Spaces from Linear Algebra

2.1 Definition: Let V' be a vector space (over any field ). Recall that a (Hamel) basis
for V' is a maximal linearly independent set in V' or, equivalently, a linearly independent
set which spans V. Also recall that any two Hamel bases for V' have the same cardinality,
and we define the (Hamel) dimension of V, denoted by dim(V'), to be the cardinality of
any Hamel basis.

2.2 Definition: Let V' be an inner product space (over F = R or C). For a subset
B C V, we say B is orthogonal when (u,v) = 0 for all u,v € B with u # v, and we say
B is orthonormal when B is orthogonal with ||u|| = 1 for every u € B. For a finite or
countable ordered set B = (uy,ug,us,---) in V we say B is orthogonal when (uy,us) =0
for all k # ¢, and we say B is orthonormal when it is orthogonal and ||ug| = 1 for all k.

2.3 Theorem: Let V be an inner product space Let B C V be orthonormal. Let

x,y € Span B with say x = Z apuy and y = Z bruy where ay, b, € F and uy, € B. Then
k=1 k=1

n

(w,uk) = ax , (w,y) = 3 axby , and ||z]* = Z | ?.
k=1

In particular, B is linearly independent.
Proof: We omit the proof.

2.4 Theorem: (The Gram-Schmidt Procedure) Let V' be an inner product space, which
is of finite or countable Hamel dimension. Let A = (uy,uq,us,---) be a finite or countable
n_l <un7 Uk)

ordered Hamel basis for V. Let vi = uy and for n > 2 let v,, = u, — > o v. Then
k=1 I[IVk
B = (v1,v9,vs,---) is an orthogonal Hamel basis for V with the property that for every

index n > 1 we have Span {vy,---,v,} = Span{uy, -, u,}.
Proof: We omit the proof

2.5 Corollary: Every inner product space which is of finite or countable Hamel dimension
has an orthonormal Hamel basis.

2.6 Corollary: Let V' be an inner product space which is of finite or countable Hamel
dimension. Let U C V be a finite dimensional subspace. Then every orthogonal (or
orthonormal) Hamel basis B for U extends to an orthogonal (or orthonormal) Hamel basis

for V.

2.7 Corollary: Let U and V be inner product spaces of finite or countable Hamel di-
mension. Then U and V' are isomorphic (as inner product spaces) if and only if dim(U) =
dim(V'). In particular, if dim(U) = n then U is isomorphic to F™ and if dim(U) = Ny
then U is isomorphic to F*° (which is the space of sequences in F with only finitely many

o
nonzero terms, using the inner product (z,y) = > Uk ).
e

2.8 Corollary: Every finite-dimensional inner product space is complete, and every inner
product space which is of countable Hamel dimension is not complete.



2.9 Definition: When W is a vector space (over any field F) and U,V C W are subspaces,
we write U +V = {u+v‘u€ U,v e V} and we write W =U ®V when W = U +V and
U NV ={0}, that is when for every x € W, x = u + v for some unique u € U, v € V.

2.10 Definition: Let V be an inner product space (over F = R or C). For a subspace
U CV, we define the orthogonal complement of U in V' to be the set

Ut ={zeV|(z,u)=0forallueU}.

2.11 Theorem: Let V' be an inner product space and let U C V' be a subspace. Then
(1) U+ is a subspace of V,

(2) if B is a basis for U then U+ = {x € V|(z,u) = 0 for all u € B},

(3) UNU*L = {0}, and

(4) U C (UHL.

(5) if U is finite-dimensional then U & U+ =V, and

(6) ifU® U+ =W then U = (U+)* .

Proof: We omit the proof.

2.12 Definition: Let V be an inner product space. Let U C V be a subspace such that
V =U@®U~". For z € V, we define the orthogonal projection of z onto U, denoted
by Proj;(z), as follows. Since V = U @ U+, we can choose unique vectors u,v € V with
ueU,veV and u+v=x We then define

Projy (x) = u.

When U is finite-dimensional so U = (U1)1, for u and v as above we have Proj;;. (z) = v.
When y € V and U = Span {y}, we also write Proj, (z) = Proj;(z).

2.13 Theorem: Let V be an inner product space. Let U C V be a subspace of V' such
that V. =U @ U~+. Let x € V. Then Proj;(x) is the unique point in U nearest to x.

Proof: We omit the proof.

2.14 Example: Let V be an inner product space. Let U be a finite dimensional subspace
of V. Let B = {uy,us,--,u,} be an orthogonal basis for U. Recall (or verify) that

. L <.T,Uk>
Pro x) =
(@) = 2

2.15 Example: Recall (or verify) that for A € M,,x,,,(C) and U = Col(A), given x € C"
there exists y € C™ such that A*Ay = A*x and for any such y, we have Proj;(z) = Ay.
In particular, if rank(A) = m then A*A is invertible so that Proj (z) = A(A*A) "1 A*x.

2.16 Note: Let W be an inner product space and let U C W be a subspace. Note that
U is also a subspace because given u,v € U and ¢t € F we can choose sequences (z,,) and
(yn) in U with x,, — u and y,, — v and then we have (z,, + ty, — u;v so that u+tv € U)
Also note that UL =U-+t. Indeed, since U C U we have UL C U+ so it suffices to prove
that U+ C UL Let v € U+ and let u € U. Choose a sequence (z,) in U with z,, — u.
Then we have (v,u) = (v, lim z,) = lim (v,z,) = 0, indeed

n—oo n—oo

Uk -

(v, u)| = [(v,0) = (v,20)| = [{v,u = 2)| < |Joll [l — za ]| — 0.



Closed Subspaces of Hilbert Spaces and Orthogonal Projections

2.17 Example: Properties of finite-dimensional subspaces of inner product spaces do not
always carry over to infinite dimensional subspaces. For example, let V' = F> (the space
0

of sequences in F with finitely many nonzero terms) with inner product (x,y) = E Tk Uk,

and let U = {a € F°°| Z ap = 0} Note that V has countable Hamel dimension with

standard orthonormal Hamel basis S = {ej1,es,e3,---}, and U % V has countable Hamel
dimension, with Hamel basis B = {u1, ug,us, - -} where uy = e; — exy1. We have

= {z € V|{z,ux) =0 for all k} = {x € V|(z,e1 — epq1) = 0 for all k}

= {xEV‘xl = x4 for all k:} = {xEV‘xl :x2:m3:~--} = {0}

because for x € F*> we have x,, = 0 for all but finitely many indices n. Notice that in
this example we have U % (UHYt =V and V # U @ U+. Although we could apply the

Gram-Schmidt Procedure to B to obtain an orthogonal Hamel basis C = {v1,vs,---} for
U, we cannot extend C to an orthogonal Hamel basis for V' because there is no nonzero
vector 0 # x € V with (z,vg) = 0 for all .

2.18 Definition: Let V be a vector space over F = R or C. For a subset S C V', we say
that S is convex when for all a,b € S we have a +t(b—a) € S for all 0 <t < 1.

2.19 Theorem: Let H be a Hilbert space. Let S C H be nonempty, closed and convex.
Then for every a € H there exists a unique point b € S which is nearest to a, that is such
that ||ja — b|| < ||a — z|| for all x € S.

Proof: Let a € H. Let d = dist(a,S) = inf {|lz — a|| |z € S}. Choose a sequence {z,,} in
S so that ||z, — al| — d, hence ||z, — al|> — d?. Let € > 0 and choose m € Z* so that for
all n > m we have ||z,, — al|?> < d? + %. Let k,1 > m. By the Parallelogram Law we have
@k —a) + (@ = )" + [|(@e — a) = (@2 = @)|” = 2| — a]|” + 2]}z — a]
Since S is convex, we have ”TJF”” € S, hence ‘|””“T+“ — aH > d, and so
o —all” = | @r =) = @ =)

= 2||z) — aH2 +2||@; - aH2 —||(@r —a) + (@ — a)H2

= 2flar — al|" + 2]} — a* — 4] 22f=

<P+ S)+2(2+9) —4d® = €.

so that ||z — z;]| < e. This shows that the sequence {x,} is Cauchy. Since H is complete,

{z,} converges in H, and since S is closed in H, the limit lies in S. Let b = hm x, € 5.

Since b € S we have ||b—al|| > d, and we have ||[b—a| < ||[b— x| + ||z — al for alln € Z*
so that [|b—al| < lim (||b — z,|| + ||zn — al|) = d, and so ||b — a|| = d. This shows that
n—oo

|b —al| > ||z — al| for all x € S. Finally, we note that the point b is unique because given
c € S with ||c — a|| = d, since S is convex we have %< € S so that ||25¢ — al| > d, and so
the Parallelogram Law gives

Jb—cl? = [[(6=a) = (c— @) |* = 20— all* + 2lc — al* — [|(b— @) + (c — )
= 4d% — 4)|%5¢ — a|® < 4d2 — 4d2 = 0
so that ||b — ¢|| = 0 hence b = c.



2.20 Theorem: Let H be a Hilbert space. Let U C H be a subspace. Then U is closed
if and only if H = U @ U~+. In this case, U* is closed and (U+)*t = U and for z € H, if
x=u+v withu € U and v € U™ then u is the unique point in U nearest to x and v is
the unique point in U* nearest to x.

Proof: Suppose that H = U @ UL. Let (z,),>1 be a sequence in U which converges in
H, say x, — a € H. Note that since x,, — a in H, we have (z,,y) — (a,y) for all y € H
because |(z,,,y) — (a,y)| = [(zn — a,y)| < |lzn —al| |y||. Since H = U & U+, we can write
a=u-+v with u € U and v € U*. Then, since (u,v) = 0, we have

2 o o IERT IRT o
HUH - <’U,’U> - <U +U,U> - <CL,U> - n11_>IIolo<l'n,U> - nll_{réoo =0

and sov=0sothat a=u+v=wu € U. Thus U is closed.

Suppose that U is closed. Let x € H. Since U is a vector space it is convex, so by
the previous theorem there is a unique point u € U which is nearest to . Let u be this
nearest point and let v = z — u so that v +v = . We claim that v € U+. Suppose, for
a contradiction, that v ¢ UL. Choose u; € U with (v,u;) # 0. Write (v,u;) = re®® with
r>0and § € R (when F = R we have ¢ = £1) and let us = e¢u;. Note that uy € U

and (v, u2) = (v, e%u;) = e (v, uy) = e re?? =r > 0. For all t € R we have

2
Hm — (u -l-tuQ)H = ||v — tus||® = ||v||* = 2t Re (v, up) + t2||us||® = ||v||* — 2rt + ||ua||*t%.

It follows that for small ¢ > 0 we have Hac — (u+ tug)H2 < |[v|I* = ||z — u||* which is not
possible, since u is the point in U which is nearest to x.

We claim that the points v € U and v € U+ with u 4+ v = x, which we found in the
previous paragraph, are the only such points. Let 2 € H. Suppose that v € U, v € U+ and
u+v = z. We claim that v must be equal to the (unique) point in U which is nearest to z.
Let v/ € U with u’ # . Sincev € Ut and v/ —u € U we have (z—u,u'—u) = (v,u'—u) =0
and so

2 2
|z —||" = ||(z —w) — (v = w)||” = |z — ul|* — 2Re (x — u, v’ — u) + [|[u’ — ul?
2
= [lz = ull + [lu" — ul| > [l —u]
so that ||z — /|| > || — w||. Thus w is the point in U which is nearest to z, so u (hence
also v) is uniquely determined. Thus we have H = U @ U-+.

We claim that since H = U @ U+, it follows that (U+)+ = U. We always have

U C (UY)1, so we only need to show that (U+)t C U. Let 2 € (U+)*. Choose u € U

and v € Ut such that z = u +v. Since u € U and v € U+ we have (u,v) = 0, and since
v € UL and x € (UL)1 we have (z,v) = 0. It follows that

0] = (v,v) = (u,v) + (v,0) = (u+v,v) = (2,v) =0
and so v = 0 and hence x = u +v =u € U. Thus (U1)+ C U, as required.

Finally note that since H = U ® U~ and (U+)+ = U we have H = U+ @ (U+)*, and
so U™ is closed, as proven in the first paragraph (with U replaced by UL).

2.21 Definition: When H is a Hilbert space and U C H is a closed subspace, we define
the orthogonal projection onto U to be the map P : H — U given by Px = u where u
is the unique point in U nearest to . Equivalently, Pr = u where ¢ = u 4+ v with u € U
and v € U™,



Unordered Series

2.22 Definition: Let (ay),>1 be a sequence in a normed linear space V. We say that
o0

o0 o0
> aj, converges absolutely in V' when ) |lax|| converges in R, and we say that > a

k=1 k=1 k=1
o0

converges unconditionally in V' when ) a,(,) converges in V for every bijective map
n=1
o:Z" — ZT (that is, when every rearrangement of the series converges).

o0
2.23 Example: Recall that for a sequence (a,),>1 in R, the series ) |a,| converges if
n=1

[e.e]
and only if ) a,(,) converges for every bijective map o : Z" — 77 so, in R, unconditional

n=1
convergence is the same thing as absolute convergence. But verify that in /5, the series
o]
> %en converges unconditionally to (%, %, %, e ), but it does not converge absolutely.

n=1

2.24 Definition: Let K be a nonempty set (possibly uncountable). When A is any set,
an indexed set in A with index set K is a function a : K — A, and we write ay, = a(k)
and a = (ag)rerx- When X is a normed linear space and (ag)rex is an indexed set in X,
the unordered series ) ay is defined to be the indexed set (s,.)perin(x) Where Fin(K)

keK
is the set of finite subsets of K and s, = ) aj for each F' € Fin(K). We say that the
keF
unordered series > aj converges (unconditionally) in X when there exists s € X such
keK
that

Ve>0 JFeFin(K) VIEFin(K) (I2F = ||s; —s| <e).

In this case, the element s € X is unique, it is called the (unordered) sum of the un-

ordered series Y ay, and we write Y. ap = s. As usual, we write Y aj both to denote
kEK kEK kEK
the unordered series (which may or may not converge) and its sum (when it does converge).

We say that the unordered series > aj converges absolutely in X when > |lakl

converges in R. heK keK

When (ax)rex is an indexed set in R with each a; > 0, whether or not the unordered
series > aj converges, we define its (unordered) sum to be
keK

s zsup{kz ax | F € Fin(K)}
€F

and we write > ap = s. Verify, as an exercise, that the unordered series converges if and
keK
only if its sum is finite and that, in this case, our two definitions of the sum agree.

2.25 Exercise: Let X be a normed linear space. Show that X is a Banach space if
and only if it has the property that every absolutely convergent unordered series in X
converges.



2.26 Theorem: Let (ay)rex be an indexed set in R with each ap, > 0. If > aj converges
keK
then there are at most countably many indices k € K for which aj, # 0.

Proof: For each n € Z*, let K,, = {k € K |ay > %} If one of the set K,, was infinite we
would have >  ar = oo. Thus if Y  ap < oo, then every set K, is finite, and so the set
kEK kEK

{ke Kl|a,>0}= |J K, is at most countable.
n=1
2.27 Definition: Let (ax)rex be an indexed set in a normed linear space X. We say that
the unordered series Y aj is Cauchy when
kEK
Ve>0 FFeFin(K) VI,J €Fin(K) (I,J 2D F = ||s; — s,|| <¢).

As an exercise, verify that >  aj is Cauchy if and only if
keK

Ve>0 FFeFin(K) VLeFin(K) (LNF=0= ||s,| <e).

2.28 Theorem: (Cauchy Criterion for Unordered Series) Let (ax)rex be an indexed set
in a normed linear space X.

(1) If > ay converges in X then it is Cauchy.
keK
(2) If X is complete and », ay is Cauchy, then > aj converges in X.
kEK k€K

Proof: To prove Part 1, suppose that >  ax converges in X, say s = > ax. Let € > 0.
keEK kEK
Choose F' € Fin(K) such that for all I € Fin(K) with I 2 F' we have [[s, — s|| < §.
Let I,J € Fin(K) with I,.J O F. Then we have |5, —s,| < |ls; —s| +[|s — s,|| <€, and
so Y. ay is Cauchy.
keK
To prove Part 2, suppose X is complete and > aj is Cauchy in X. Since > ai
keK kEK
is Cauchy, we can choose sets F,, € Fin(K) with F; C F, C F3 C --- such that for all
I,J € Fin(K) with I,J 2 F,, we have ||s; — s || < 5= (indeed, having chosen F), we can
choose G, € Fin(K) so that G, C I,J € Fin(K) = ||s; — s,|| < 5t and then set
Fny1 = F, UG,). Then the sequence (s, ),>1 is Cauchy in X (because when ¢ > m we
have [|sp, —sp || < |[sp, —sp,_ I+ ~+H3Fm+1 —sp || < s+t 5 < maer). Since X
is complete, the sequence (s, ),>1 converges, say s, — sin X. We claim that ) ap = s.
" " kEK

Let € > 0. Choose m € ZT with 55 < § such that n > m = [|s,, — s|| < 5. Then for all
I € Fin(K) with I D F,,, we have ||s, —s|| < |ls; = s, ||+ [|sp —s| < 5= + & <e. Thus
> ag = s, as claimed.
keK




Formulas Involving Orthonormal Indexed Sets

2.29 Definition: An indexed set (uy)rex in an inner product space V' is called orthonor-
mal when ||ug|| =1 for all k € K and (ug,us) =0 for all k,¢ € K with k # (.

2.30 Theorem: Let H be a Hilbert space. Let (ux)rex be an orthonormal indexed set in
H, and let B = {uy |k € K}. Let x,y € SpanB € H and for each k € K, let a;, = (x,ug)
and by, = (y,ug). Then

(1) > apuy = x,

keK
(2) 3 lax* = ||lz|* and
keK

(3) X arby = (z,y).

keK

Proof: Let us prove Part 1. For each F' € Fin(K), let Ur = Span{uy |k € F} and let

§p =, apux = Projy (). Let € > 0. Since x € Span B we can choose u € Span B with
keF

|lu — z|| < e. Since elements in Span 3 are finite linear combinations of elements in B, we

have u € Up for some finite index set F' € Fin(K). For I € Fin(K) with I O F, since s

is the point in U nearest to x, and since we have u € Up C Uy, it follows that

1

H > aguy — JCH =|s;—z|| <|lu—z| <e
kel
Thus Y apur =z in H, as required.
kEK
Let us prove Part 2. For each F' € Fin(K), let s, = > apuy. Let € > 0. Since

keF
> apur = z, so we can choose F' € Fin(K) such that for all / € Fin(K) with I O F
keK

we have ||s; — z|| < min {1, 55— }. Since ||s; — z|| < 1 we have [|s,| < ||z| + 1 hence

? 2||z|[+1
s | +llz|| < 2||z|4+1, and since [|s,—z|| < m we have ‘||s[||—\|x||| < ls;—z| < W,
and so
|k21 larl® = Nz = |lls, 117 = =[] = [lscll = N2l (s, 1+ l2]]) <e.
c

Thus Y |ax|? = ||z||?, as required.
keK

Let us prove Part 3. For each F' € Fin(K), let r, = ) apup and s; = > brpug.
kEF kEF
Note that by Part 2, we have |r; |2 = Y |ax]®* < X |ax* = [|z[|* so that ||r.| < [z,
kel keK

and similarly |s.[ < |y||. Let € > 0. By Part 1, we can choose I € Fin(K) such that for
all I € Fin(K) with I O F we have |r, — x| < Mot and s, —yll < meisi- Then for
F C I € Fin(K) we have
| S axby — (o) =[Gy p) = (@) =[50 = @5, + (o) = (o)
€

S |<TI,SI> - <x75[>| + ‘<$,31> - <£B,y>| = |<r1 _xa‘S])‘ + |<x781 _y>‘

<Al =@l s Il + 2l ls; =yl < lrp =2l lyll + [l s — vl

< €.

Thus > apbr = (x,v), as required.
keK



2.31 Theorem: Let H be a Hilbert space. Let (ug)rex be an orthonormal indexed set
in H, let B={u |k € K}, let U = Span B, and let (c;)rcx be an indexed set in F.

(1) If > cxuy converges in H and x= Y cpug, then x € U and ¢, = (x,uy) for allk € K.
kEK kEK

(2) 3" cpup converges in H if and only if > |cx|? converges in R.
keK keK

Proof: To prove Part 1, suppose the series Y cpuy converges in H and let x = > cpuy.
kEK kEK
Since the series converges in H, it is Cauchy. Note that for each F' € Fin(K), we have

Sp = > cruy € Span B C U, and so the series Y cpuy is a Cauchy series in U. Since U is

keF keK
closed in H it is complete, so the Cauchy series > cpuy convergesin U, hence x € U. Since
keK
x € U, we know from Part 1 of the previous theorem that x = > agui where ax = (x, u).
kEK
Since Y cpur =x = >, apug, it follows from linearity that > (¢x — zr)ur = 0. From
keK kEK kEK
Part 2 of the previous theorem, we have Y |c, —ax|?> = 0, and so we must have ¢, —ay = 0
keK

for all K € K. This completes the proof of Part 1.

To prove Part 2, suppose first that > cpui converges, and let z = > cpug. By
kEK kEK
Part 1, we have z € U and ¢, = (z,ux). By Part 2 of the previous theorem, we have

S Jerl? < ||z||?, so the series > |cx|? converges in R.

kEK kEK
Suppose, conversely, that > |cx|? converges in R and let m = > |cx|? < oo. For I €
kEK kEK
Fin(K),let s, = > cpug. Let € > 0. Choose F' € Fin(K) such that m—e* < > |cx|* < m.
kel kEF
For I,J € Fin(K) with I,J O F, writing IAJ = ({UJ)\(INJ)=(I\J)U(J\I), we
have ) ) ) ) )
”S[ - SJH = ||S[\J _SJ\]H = Z |Ck| = Z |Ck3| - Z |C/<|
kEIAT keluJ keInJ
< X el = X Jel* <m—(m—€?) =€
keluJ kEF

so that |[s; —s || < e. Thus the unordered series  cpuy is Cauchy, so it converges in H.
keK

2.32 Theorem: (Bessel’s Inequality) Let V' be an inner product space. Let (uy)rex be
an orthonormal indexed set in V. For all x € V', we have ) |<x,uk>|2 < lz|)*.
keK

Proof: Let x € V. For k € K, let ar, = (x,ux). Let F' € Fin(K) and let wp = > apuy.
kel
Then ) ) )
0 <z —wrl” = [lz]” = 2Re (z, wr) + [lwrl]

= ol = 2Re (& @lw,ue) ) + 3 anai{ug, )
kEF k(EF

= [l = 3 Jarl.

keF

Since Y |ax|? < ||z]|? for every F € Fin(K), it follows that > |ax|? < ||2]|?, as required.
keF keK



2.33 Theorem: (Orthogonal Projection) Let H be a Hilbert space, let (ux)kcx be an

orthonormal indexed set in H, let B = {uy |k € K} and let U = Span 3. The orthogonal

projection P : H — U is given by Px = ) aguy where ap, = (x,uy) and we have | P| = 1.
keK

Proof: First note that when x € H, by Bessel’s Inequality we have > |ax|? < ||z]|? so
that > |ax|? converges, hence by Part 2 of Theorem 2.31, the unordngeI((i series Y agug
conv:regfe(s, and hence by Part 1 of Theorem 2.31, the sum Px = ) apuy lies in k[f' %(Thus
the map P: H — U given by > ajuy is well-defined with Ran;ee(i;) CcU.

To show that P is the orl?ciggonal projection onto U, it suffices to show that when
r€Handu=Prandv=x—u, wehavev € Ut. Let v € H,u= Pr =Y agu, €U
and v = ¢ — u. Since u = Y, apuy, by Part 1 of Theorem 2.31, for all k ICGGI;( we have
(u,ug) = ar = (x,ur), and khee[;ce (v,ug) = (x —u,ux) = (x,ur) — (u,ux) = 0. Thus we
have v € Span B+ = U=, as required. Thus P is the orthogonal projection onto U.

It remains to show that ||P|| = 1. When v € U we have Pu = u so that ||Pul| = ||ul|
and it follows that ||P|| > 1. For x € H, if we let u = Px = ) ajuy then, as mentioned
keK
above, we have (u, ur) = ar = (x, u), so by Part 2 of Theorem 2.30 and Bessel’s Inequality,
we have || Pz|]? = [[u]|*> = > |ax|? < ||z||* so that ||Pz| < ||z||. Since ||Pz|| < ||z|| for all
kEK
x € H, we have ||P|| < 1.



Hilbert Bases

2.34 Theorem: Let H be a Hilbert space and let B be an orthonormal set in H. Then
B is a maximal orthonormal set if and only Span B is dense H.

Proof: Suppose B is not maximal. Choose an orthonormal set C in H with B % C. Let
v € C\ B. Then ||v|| =1 and (v,u) = 0 for all u € B, hence (v,u) = 0 for all u € Span B.
For all u € Span B we have |lu — v| = ||ul|® + |[v]|? = |lu/|> + 1 > 1 so v ¢ Span B.

Suppose, conversely, that Span B is not dense in H. Let U = Span B # H, and recall
(from Note 2.16) that U+ = (SpanB)t. Since U is closed, by Theorem 2.20 we have
H =U®U". Since U # H we have UL # {0}. Choose v € Ut with ||v|]| = 1. Then
B U {v} is an orthonormal set which properly contains B, so B is not maximal.

2.35 Theorem:

(1) Every inner product space contains a maximal orthonormal set.
(2) In a Hilbert space, any two maximal orthonormal sets have the same cardinality

Proof: To prove Part 1, let V' be an inner product space. Let S be the set of all orthonormal
sets in V', ordered by inclusion. If C' is a chain in S (that is a totally ordered subset of S)
then | JC is an upper bound for C' in S. Since every chain in S has an upper bound, it
follows from Zorn’s Lemma that S has a maximal element.

To prove Part 2, let H be a Hilbert space and let (ug)rex and (ve)ecr, be two indexed
orthonormal sets in H, and suppose that B = {ug|k € K} and C = {v/|¢ € L} are both
maximal. If K or L is finite, then B and C are both Hamel bases for H and they have the
same cardinality. Suppose K and L are infinite. For k € K, let L = {f € L‘ (ug, ve) # 0}.
Since for each ¢ € L we have Y. |{ug,ve)| = [lug[|> =1 > 0, it follows that for each £ € L

keK
there exists k € K such that (ug,vs) # 0, so we have L = |J Lg. Since for each k € K

keK
we have > |(ug, vg)}Q = ||ug]|* = 1 < o0, it follows from Theorem 2.26 that each set Ly, is

leL
at most countable, that is |Lg| < Ry. Thus, using some cardinal arithmetic, we have

Ll =] U Le| < X Ll < 3 Ro = K] Ro =|K].
keK keK keK

A similar argument shows that |K| < |L|.

2.36 Definition: A Hilbert basis for a Hilbert space His a maximal orthonormal set in H.
The (Hilbert) dimension of a Hilbert space H, denoted by dim H, is the cardinality of
any Hilbert basis for H. We do not distinguish notationally between the Hamel dimension
of H (that is the dimension of H as a vector space) and the Hilbert dimension of H (that
is the dimension of H as a Hilbert space). Unless otherwise stated, when H is a Hilbert
space, dim H will denote the Hilbert dimension.

2.37 Theorem: Let H be a Hilbert space, let (ux)rek be an orthonormal indexed set in
H, and let B = {uy |k € K}. Then the following are equivalent.

(1) B is a Hilbert basis for H.
(2) For every x € H we have x = ), apuy, where a, = (x,uy).

keK
(3) For every x € H we have ||z||*> = > |ax|®> where ai, = (z,uy).
keK
(4) For every z,y € H we have (x,y) = Y. apb, where a = (z,uy,) and by, = (y,uz).
keK

Proof: The proof is left as an exercise.
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2.38 Theorem: Let H be a Hilbert space with Hilbert basis B. Then H is separable if
and only if B is at most countable.

Proof: Suppose that B is uncountable. Let S be any dense subset of H. For each u € B
choose s, € S with |5 —ul < \4[ For u,v € B with u # v we have |Ju| =1 and |jv]| =1

and (u, v) = 0 so that Hu —v||? = |Jul]® + HUH2 =2 and so
s, =51l = [l(s,~w+(u=0)+ (=3, > u=v] = (Is,~ull+]ls, ~vll) = VI-F = >0

so that s, # s . Thus B is at most countable.
Suppose, conversely, that B = {uy,us,---} is finite or countable. By Theorem 2.34,
Span B is dense in H. Note that Span QB is dense in Span B and SpanQ[i]B is dense in

Span B. Indeed given cy,---,¢c, € F (where F = R or C) we can choose ry,---,7, € K
(where K = Q or Q[i]) such that |ry — ¢x| < £ and then

) Ckuk‘ = (re — Ck)ukH Z | (rie — ex)ur|

k=1 k=1 k=1

n
= Z 7% — cr| [Jur|| = Z T — cr| <.

2.39 Exercise: For any nonempty set K and for F =R or C, let
FE = {(Ck)keK‘ each ¢, € IE‘},

0o (K, F) = {(ck)keK € FK \ b)) lex|? < oo}.
S

(a) For a,b € f5(K,F), show that > azby converges and let {a,b) = > azbg.
kEK kEK

(b) Prove that this defines an inner product on /5 (K, TF).

(c

(d

) Prove that ¢5(K,F) is complete under this inner product.

) For each ¢ € K, let e, € £5(K,F) be given by e; = (esx)rex withegy =1 and e, =0
when k # £. Prove that (es)rck is a Hilbert basis for /o (K, F).
(e) Prove that if H is a Hilbert space over F with dim H = |K| then H = /5(K,TF).

2.40 Example: When |K| =n € Z" we have l5(K,F) = F" (using the standard inner
product). When |K| = Ry we have l5(K,F) = ¢5(F). For every separable Hilbert space H
(over F =R or C) we have H 2 {5 = {5(F). For example, we have Lo[a, b] = (5.

11



The Dual Space and the Adjoint Map

2.41 Theorem: (The Riesz Representation Theorem for Hilbert Spaces) Let H be a
Hilbert space over F = R or C. The map ¢ =: H — H* given by ¢(u)(z) = (x,u) is
a bijective norm-preserving map which is linear when F = R and conjugate-linear when
F=C.

Proof: For u € H, write ¢, = ¢(u) so that ¢, (z) = (z,u). Since ¢, (u) = (u,u) = |lul?
it follows that [|¢y|| > [ull. Since for all z € H we have |¢,(z)| = |(z,u)| < ||| ||u]| it
follows that ||¢,| < ||u||. Thus ¢, is a bounded linear map ¢, : H — F (that is ¢, € H*)
with ||¢|| = ||u||. Hence ¢ is a norm-preserving map ¢ : H — H*. Note that ¢ is linear
when F = R and conjugate-linear when ' = C. Since norm-preserving maps are injective,
it remains to show that ¢ is surjective,

Let f € H*, that is let f : H — F be a bounded linear map. If f = 0 then we can
take u = 0 to get ¢, = f. Suppose that f # 0. Let U = ker(f). Since f is linear, U is
a subspace of H, and since f is bounded (hence continuous), U is closed, and it follows
from Theorem 2.20 that H = U @ U+. Since f # 0 it follows that U # H so we have
Ut # {0}. Choose v € U+ with |[v|| = 1. Let x € H. For y = f(z)v — f(v)x we have
fy) = f(x)f(v) — f(v)f(x) = 0 so that y € ker(f) = U. Since y € U and v € U* we have
(y,v) = 0, and so

f@) = f@)llvl* = f(z)(v,v) = (f(x)v,v) = (y + f(v)z, v)
= (f(v)z,0) = f(v){z,v) = (z, f(v)v).

Thus we can choose u = f(v)v to get ¢p(u) = ¢, = f.

2.42 Definition: When H is a Hilbert space over F = R or C, we use the bijection ¢
of the above theorem to define an inner product on H*, as follows. Given f,g € H* we
let u = ¢~ 1(f) and v = ¢~1(g) (that is we let u and v be the elements in H such that
f(z) = (z,u) and g(x) = (x,v)) and then we define (f, g) = (v,u) (note that the order of
u and v is reversed so that the inner product is sesquilinear when F = C).

2.43 Definition: Recall that when U and V are vector spaces (over any field F) and
F :U — V is a linear map, we write U# and V# to denote the algebraic dual spaces, and
we define the dual (or the transpose or the algebraic adjoint) of F' to be the linear
map FT : V# — U# given by F*(g) = goF, that is by F¥(g)(u) = g(F(u)) when g € V#
and v € U. In the case that U and V are normed linear spaces over F = R or C, and
F € B(U,V) (that is if F : U — V is a continuous linear map), FT restricts to give a
well-defined map FT : V* — U* (because if g € V# is continuous then so is g o F).

When H and K are Hilbert spaces over F = R or C and F : H — K is a continuous
linear map, we define the (Hilbert space) adjoint of F' to be the liner map F* : K — H
given by F* = ¢~ 1o FT ot where ¢ : H — H* is the bijective map given by ¢(u)(z) = (z,u)
and ¢ : K — K* is the bijective map given by ¥ (v)(y) = (y,v). Equivalently, the adjoint
of F is the map F* : K — H such that ¢ o F* = FT o1, that is the map such that

(F*(y)) = FT(¥(y)) = ¢(y) o F for all y € K, that is
¢(F*y)(z) = ¢(y)(Fz) for all z € H,y € K, that is
(x, F*y) = (Fx,y) forall x € H,y € K.

2.44 Exercise: Show that when H and K are Hilbert spaces and F' : H — K is a bounded
linear map, we have ||F*|| = |[FT| = || F]|.
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Weak Convergence

2.45 Definition: Let V' be an inner product space over F', where F = R or C, let (u,) be
a sequence in V and let w € V. We say that (u,,) converges weakly to w in V', and we
write u,, — w weakly in V', when (u,,z) — (w,z) in F for all x € V.

2.46 Note: When V is an inner product space and (u,) is a sequence in V| it is easy to
see that if u, — w in V then we also have u,, — w weakly in V', but the converse is not
always true. For example, when (u,) is an orthonormal sequence in a Hilbert space H,
verify that u,, — 0 weakly in H (by Part 3 of Theorem 2.37), but u,, /4 0 in H.

2.47 Theorem: FEvery bounded sequence in a Hilbert space has a weakly convergent
subsequence.
Proof: Let H be a Hilbert space. We claim that for every a € H and every bounded
sequence u = (uy) in H, there is a subsequence (uy,) of (u,) such that the sequence
((un,,a)) converges in F. Let a € H, let (u,)n>1 be a bounded sequence in H, and let
M = sup {|lun| |n€ZT}. Then for all n€ZT we have ‘(un,a>| < N|unl| ||a|| < Mlla||, and
so the sequence ((un, a>) is bounded in F. By the Bolzano-Weierstrass Theorem, we can
choose a subsequence (uy,) of (uy,) such that ((u,,a)) converges in F, as claimed.
Suppose that H is separable and let S = {aj,a2,---} € H be a countable dense
subset. Let u = (uy) be a bounded sequence in H and let M = sup {||u,|||[n€ZT}. By
the above claim, we can choose a subsequence (uy,,) of (u,) such that eli}rgo (Unp,,a1) exists

in IF, then we can choose a subsequence (uy, ) of (un,) such that lim (un, ,az2) exists in
k— o0
IF, then we can choose a subsequence <u"€kj) of (un,, ) so that jli{&(u”fkj ,a3) exists in F,
and so on. Then the diagonal sequence v = (vy,vg,v3,-+) = (Um s Ung, s Ung, 5 ) is then
3

a subsequence of the original sequence (u,,) with the property that ( (v, am>) converges in
F for every m € Z™, that is ((vk, a)) converges for every a € S.
Define f : S — F by f(a) = klim (vk, a) for a € S. Note that f is uniformly continuous
— 00

on S because for a,b € S we have |(vy, a—b)| < [Jvg|| la—b|| < M||a—b|| for all k so that
| f(a) = f(b)] = | lim — lim <vk,b>‘ = lim |(vx,a—b)| < M|a —b].
k—o0 k—oo k—o0

Since f : S — F is uniformly continuous on S and S is dense in H, it follows that f extends
(uniquely) to a continuous map f : H — F defined by f(z) = lim f(a,) where x € H and
n—oo

<Ukﬂ a>

(a,) is any sequence in S with a,, — x in H. Verify that this map f is linear and bounded
(so we have f € H*) with || f|| < M.

By The Riesz Representation Theorem, we can choose w € H such that f(x) = (z,w)
for all x € H. Verify that we have kli_)r{io(vk,a:) = (w,z) for all z € H, so (vx) converges

weakly to w in H. This completes the proof of the theorem in the case that H is separable.

Suppose that H is not separable and let (u,) be a bounded sequence in H. Let

B = {ek}k € K} be a Hilbert basis for H. For each n € Z*, by Theorem 2.30 we have

Up = Y Cprer where ¢, = (up,ex) and we have > |, x]? = ||ug||?. By theorem 2.26,
kEK kEK

for each n € Z™ there are at most countably many indices k € K for which ¢, ; # 0. Thus

the set L = {k: S K|E|n eZ+t Cnk 7 0} is at most countable, and all of the elements u,,

lie in the separable Hilbert space U = Span {eg|€ € L}. Since (uy,,) is bounded, as proven
above we can find a subsequence of (u,,) which converges weakly in U to an element w € U.
Verify that since H = U @ U+, the subsequence also converges weakly in H to w.
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The Spectral Theorem for Compact Self-Adjoint Operators

2.48 Definition: Let H be a Hilbert space. A compact operator on H is a linear map
F : H — H which sends weakly convergent sequences to convergent sequences, that is a
linear map such that if u,, — w weakly in H then Fu, — Fw in H.

2.49 Note: When H is a Hilbert space, every compact operator on H is continuous
(because if u,, — w in H then u,, — w weakly in H) but the converse is not always true.
For example, when H is an infinite-dimensional Hilbert space, the identity map I : H — H

is continuous but not compact (since if (u,,) is an orthonormal sequence in H then u,, — 0
weakly in H but u, 4 0in H).

2.50 Definition: Let H be a Hilbert space. A self-adjoint operator on H is a continuous
linear map F' : H — H such that F* = F, that is such that (Fz,y) = (x, Fy) for all
r,y € H.

2.51 Theorem: Let H be a Hilbert space and let F' : H — H be a continuous self-adjoint
operator. Then

(1) For every u € H, we have (Fu,u) € R. In particular, every eigenvalue of F is real.
(2) We have ||F|| = sup {‘(Fu, )| )u € H, |ul| = 1}. In particular, for every eigenvalue A
of F' we have |A| < ||F|.

Proof: To prove Part 1, note that since F' is self-adjoint we have (Fu,u) = (u, F*u) =
(u, Fu) = (Fu,u), and so (Fu,u) € R. In particular, when A is an eigenvalue of F' and
u € H is a corresponding eigenvector with |lu|| = 1, we have A = Au,u) = (Au,u) =
(Fu,u) € R.

To prove Part 2, let M = sup {‘(Fu7u>| ‘u € H,|ul| = 1}. Note that for all u € H

with ||ul| = 1, we have [(Fu, u)| < [|[Full [[ul] < [|F||[[u] - [lull = [|F']|, and so M < ||F|].
To show that ||F|| < M we shall use a formula similar to the Polarization Identity.
Verify (by expanding and cancelling) that for all u,v € H we have

<<F(u—|—v), utv) — (F(u—v), u—v>> +1 <<F(u+iv), utiv) — (F(u—iv), u—iv>) = 4(Fu,v).
By Part 1, all of the inner products on the left are real, so if (Fu,v) € R then we have
(Fu,v) <<F u+v),utv) — (F(u— v),u—v>).

Since |(Fu,u)| < M for all u € H with |jul| = 1, it follows that [(Fw,w)| < M|w|?
for all w € H (indeed when w # 0 we have |(Fw,w)| = ||w]|? KFHwH’ HWII>| < |lw|*M).

Applying this fact with w = u £ v to the above displayed formula for (Fu,v), then using
the Parallelogram Law, when (Fu,v) € R we have

‘(Fu,vﬂ < i<|<F(u—|—v),u—|—v>| + ‘<F(u—v),u—v>‘)
< T (luw+2)? + llu —of?) = Z(([ull® + [[0]?).

In particular, if |lul| = [|v|| = 1 and (Fu,v) € R then |(Fu,v)| < M. So for all u € H with
ul| =1, if Fu =0 then |[Fu| < M and if Fu # 0 then ||Ful| = |(Fu, ‘Fu”>‘ < M. Thus
we have ||F|| < M, as required. Finally, note that when X is an eigenvalue of F' and u is a
corresponding eigenvector with |ul| = 1, we have [A| = [Mu,u)| = [(Fu,u)| < |F].

2.52 Example: The map F': L»[0, 1] — L3[0, 1] given by F(f)(z) = = f(z) is a continuous
self-adjoint map with no eigenvalues.
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2.53 Theorem: Let H be a Hilbert space and let F' : H — H be a compact self-adjoint
operator. Then I has an eigenvalue \ with |\| = || F||.

Proof: When F = 0, A = ||F|| = 0 is an eigenvalue of F'. Suppose F' # 0. Since F is
self-adjoint, we know that (Fu,u) € R for all w € H with || F|| = sup {}(Fu,uﬂ ‘ |lu|| = 1}.

It follows that either ||F|| = A where A = sup {(Fu,u)||lul| =1} > 0 or |F|| = —X where
A = inf { (Fu, u)| [Jul] = 1} < 0. Suppose the former (the proof in the latter case is similar).
Since A = sup { (Fu,u)| |lul|* = 1}, we can choose a sequence (u,,) in H with each ||u, || =1
such that (Fuy,,u,) — A in R. Since (u,) is bounded, we can choose a weakly convergent

subsequence (vy) = (un, ), say vr — w weakly in H. Note that each ||vg|]| = 1, we have
(Fog,v) € R for all k with (Fog,vg) — X in R, and A = || F||, and so

[ For — Mog||” = || Fog||® = 2Re (Fuog, Aog) + [[Av |2
= [|Fug||? — 2\ (Fug, vg) + A2
< ||F|I? = 2XM(Fvg, vg) + A2 — || F||* = A* = 0.
Since v — w weakly in H and F' is compact, we have Fv, — Fw in H, and hence
v = (Avg — Fog) + Foy, — 0+ Fw = Fu.
Since F' is continuous we have
F(Fw) = F(kli_{go)\vk) =A kli_)rgonk = AFw
and so \ is an eigenvalue of F' with eigenvector Fw.

2.54 Note: Let H be a Hilbert space. We use the following remarks in the next theorem.

(1) When F' : H — H is a continuous linear operator and A\ is an eigenvalue of F, the
eigenspace F), is closed because {0} is closed in H and E) = G~1({0}) where G = F — \I,
which is continuous.

(2) When F : H — H is a continuous self-adjoint operator and A and p are distinct
eigenvalues of F', the eigenspaces I/ and E, are orthogonal. Indeed, if A\, u € R with A # p
and v € Ey and v € E,, then A(u,v) = (Au,v) = (Fu,v) = (u, Fv) = (u, pv) = p(u,v)
hence (u,v) = 0.

(3) When U C H is a closed subspace, the orthogonal projection P onto U is self-adjoint.
Indeed, given z,y € H, write = v+ v and y = r + s with u,7 € U and v,s € UL and
then <any> = <U,T—|—8> = <U,T‘> - <’LL—|—’U,T‘> = <:L‘,Py>

(4) When F,G : H — H are self-adjoint, so is F'+c¢ G where ¢ € R, because for all x,y € H
we have ((F + cG)x,y) = (Fz,y) + ¢(Gz,y) = (x, F'y) + c(z, Gy) = (x, (F + cGQ)y).

(5) When U C H is a finite-dimensional subspace, the orthogonal projection P onto U is
compact. Indeed, suppose w,, — w weakly in H. Write w,, = u,, +v,, and w = u + v with
Up,u € U and v,,v € UL. For all z € U, we have (u,,z) = (w,,z) — (w,z) = (u,z)

so u, — u weakly in U. Since U is finite-dimensional, we can choose an orthonormal
n

basis {e1,---,e,} for U and then u, = > (un,ep)er — > (u,ex)er = uw in U. Thus
Pw,, = u, — u = Pw, so P is compact. " h=1
(6) When F,G : H — H are compact, so is F'+ ¢ G where ¢ € F, because if (w,,) converges
weakly in H then (Fw,) and (Gwy), hence also ((F + ¢G)wy,), converge in H.

(7) When F' : H — H is a continuous self-adjoint operator, A is a nonzero eigenvalue of
F, and P is the orthogonal projection onto the eigenspace F), we have AP = FP = PF
because for all x € H we have Px € E) so that FPx = APx, and for all z,y € H we have

(PFx,y) = (Fx, Py) = (z, FPy) = (x, \Py) = (APx,y).
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2.55 Theorem: (The Spectral Theorem for Compact Self-Adjoint Operators) Let H be
a Hilbert space and let F' : H — H be a nonzero compact self-adjoint operator on H.
Then the set of nonzero eigenvalues of H is at most countable, and the eigenspace of each
nonzero eigenvalue is finite-dimensional. When H has finitely many nonzero eigenvalues,
say A1, -, An, we have F' = \{ Py, + --- + A\, P\, where P,, is the orthogonal projection
onto the eigenspace E),. When H has countably many nonzero eigenvalues, they can
be arranged into a sequence A1, A2, A3, --- in nonincreasing order of absolute value with
An — 0, and in the space of bounded linear operators on H, we have

F=13 APy,
k=1

where Py, is the orthogonal projection onto the eigenspace Ej, .

Proof: First we note that because F' is compact, it follows that the eigenspace E) of any
nonzero eigenvalue A\ # 0 must be finite dimensional, because if )\ was infinite dimensional
we could choose an orthonormal sequence (ey,),>1 in Ey, but this is not possible because
we would have e,, — 0 weakly in H but Fe, = Xe,, / 0in H.

Using Theorem 2.52, choose an eigenvalue A of F' with |A\| = ||F|| and note that
A # 0. Since F is continuous, the eigenspace E\ = FE\(F) is closed. Let P be the
orthogonal projection onto F). and note that P is compact and self-adjoint and we have
FP=PF = \P. Let
G=F—-\P

and note that G is also compact and self-adjoint.

We claim that A is not an eigenvalue of G. Let v € H with Gu = Au, that is
At = Gu = Fu — APu. Apply P on both sides, using PF = AP and P? = P to get
APu = P(Fu — APu) = APu — APu = 0, and hence Pu = 0. Since Pu = 0 and P is
the orthogonal projection onto E), we have u € Ef Since u € Ef and u € F), we have
u = 0. Thus A is not an eigenvalue of GG, as claimed.

We claim that every non-zero eigenvalue p of G is also an eigenvalue of F', and that
E,(G) = E,(F) (that is, the eigenspace of ;1 for G is equal to the eigenspace of ;1 for F'). Let
0 # p be an eigenvalue of G and let w be an eigenvector of u for G, so we have Gw = pw.
Note that since AP = FP = PF we have G = F — AP = F(I — P) = (I — P)F, and since
P? = P we have (I — P)? = (I-2P+ P?) = (I— P). Thus we have yw = Gw = (I — P)Fw
and hence (I — P)uw = (I — P)?Fw = (I — P)Fw = Gw = pw. Since u # 0 we can divide
both sides by p to get (I — P)w = w, and so Fw = F(I — P)w = Gw = pw. Thus p is
also an eigenvalue of F' with w as an eigenvector, so we have E,(G) C E,(F).

It remains to show that £, (F) C E,(G). Let v € E,(F'), so we have F'v = pv. Since
p is an eigenvalue of G but A is not, we have p # A so that the eigenspaces E,(F) and
E\(F) are orthogonal, and hence Pv = 0. Thus Gv = (F — AP)v = Fv = pv and hence
E,(F) C E,(G), as required.

Let F} = F, A\ = A and Fy, = G = I} — A\ P\, then repeat the above procedure by
choosing an eigenvalue Ay of Fy with |\o| = [|F||, and letting F3 = F» — A2 P),, and so
on, to obtain a sequence of eigenvalues Aj, Ag, -+ and maps F,, 11 = F — > AP\, where

k=1
at each stage, )\, is an eigenvalue for F,, with |[\,| = ||F},||, and E\, (F,) = E\, (F). Note
that the eigenvalues are distinct (because \,_; is an eigenvalue for F;,_; but not for F,)
and they are in nonincreasing order of absolute value (beca,use An is an eigenvalue of Fj,_q
so that |A,| < [|[Fuz1] = [An-1])-
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Either the procedure comes to an end after finitely many steps with F;, 11 = 0, in which
n

case we have F' = Y A\yP,,, or it continues indefinitely to give an infinite (countable)

k=1
sequence of distinct eigenvalues in nonincreasing order of absolute value. Suppose that the
procedure continues indefinitely, so we obtain an infinite sequence A1, Ao, A3, - - - of distinct

eigenvalues of F' with [A1]| > [Aa] > [Ag] > ---.

We claim that |A,| — 0. Suppose, for a contradiction, that |\,| — r > 0. For each
n € Z*, choose an eigenvector u,, € F) , (F) with |lu,|| = 1. Since (u,) is bounded, we can
choose a weakly convergent subsequence (u,, ). Since F' is compact, the sequence (Fuy,,)
converges in H. But this is not possible because (since the eigenspaces are orthogonal) we
have
||Funk - Fune“Q = H)‘nkunk - )‘neunzHQ = )‘ik + Agu > 2T2

so the sequence (Fuy, ) is not Cauchy. Thus |\,| — 0, as claimed.

o
Note that since |A\,| — 0, it follows that F' = > Ay Py, (in the space of bounded
k=1
linear operators on H, using the operator norm) because

[P = Ml = 1Pl = sl = 0.
k=1

It remains to show that the eigenvalues Aq, A2, - - - constitute all of the nonzero eigen-
values of F'. Let us consider the case that our procedure yields infinitely many eigenvalues

oo
A1, Ag, - -+ and that F' = Y Ay Py, (the case of finitely many eigenvalues is simpler). Each
k=1
eigenspace E, is finite-dimensional and can be given an orthonormal basis. These bases
can be combined to give a countable orthonormal set (or an orthonormal sequence). This

o0

orthonormal set is a Hamel basis for the space of sums ) wu; where each uy € E), with
k=1

only finitely many of the terms u; non-zero. Let U be the closure of this space in H.

o0 o0

By Theorems 2.30 and 2.31, U is the space of sums Y wuy in H with Y [Jugl]? < oo,
k=1 k=1

where each u, € E),, and the elements uy are uniquely determined. Since U is closed in

H, we have H = U @ U', and so every element w € H can be written uniquely in the

(e e
form w=v+ > uy with v € U+ and uy € E),, and then we have up = P\, w.

k=1
Let 0 # p € R with pu # A\ for any k, let w € H, and suppose that Fw = pw. Write

w=v+ Y u withv € UL and uy, € Ey,. Then Fw = Y A\puy and pw = pv + Y. pug,
k=1 k=1 k=1

so that 0 = pw — Fw = pv + > (u — Ag)ug, hence pv = 0 and (u — Ag)ug, = 0 for all k.
k=1

Since since p # 0 we have v = 0 and since p # A\ we have ux = 0. Thus w = 0 so that u

is not an eigenvalue of F.
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