
Chapter 2. Hilbert Spaces

Review of Inner Product Spaces from Linear Algebra

2.1 Definition: Let V be a vector space (over any field F). Recall that a (Hamel) basis
for V is a maximal linearly independent set in V or, equivalently, a linearly independent
set which spans V . Also recall that any two Hamel bases for V have the same cardinality,
and we define the (Hamel) dimension of V , denoted by dim(V ), to be the cardinality of
any Hamel basis.

2.2 Definition: Let V be an inner product space (over F = R or C). For a subset
B ⊆ V , we say B is orthogonal when 〈u, v〉 = 0 for all u, v ∈ B with u 6= v, and we say
B is orthonormal when B is orthogonal with ‖u‖ = 1 for every u ∈ B. For a finite or
countable ordered set B = (u1, u2, u3, · · ·) in V we say B is orthogonal when 〈uk, u`〉 = 0
for all k 6= `, and we say B is orthonormal when it is orthogonal and ‖uk‖ = 1 for all k.

2.3 Theorem: Let V be an inner product space. Let B ⊆ V be orthonormal. Let

x, y ∈ SpanB with say x =
n∑
k=1

akuk and y =
n∑
k=1

bkuk where ak, bk ∈ F and uk ∈ B. Then

〈x, uk〉 = ak , 〈x, y〉 =
n∑
k=1

akbk , and ‖x‖2 =
n∑
k=1

|ak|2.

In particular, B is linearly independent.

Proof: We omit the proof.

2.4 Theorem: (The Gram-Schmidt Procedure) Let V be an inner product space, which
is of finite or countable Hamel dimension. Let A = (u1, u2, u3, · · ·) be a finite or countable

ordered Hamel basis for V . Let v1 = u1 and for n ≥ 2 let vn = un −
n−1∑
k=1

〈un, vk〉
‖vk‖2

vk. Then

B = (v1, v2, v3, · · ·) is an orthogonal Hamel basis for V with the property that for every
index n ≥ 1 we have Span {v1, · · · , vn} = Span {u1, · · · , un}.

Proof: We omit the proof

2.5 Corollary: Every inner product space which is of finite or countable Hamel dimension
has an orthonormal Hamel basis.

2.6 Corollary: Let V be an inner product space which is of finite or countable Hamel
dimension. Let U ⊆ V be a finite dimensional subspace. Then every orthogonal (or
orthonormal) Hamel basis B for U extends to an orthogonal (or orthonormal) Hamel basis
for V .

2.7 Corollary: Let U and V be inner product spaces of finite or countable Hamel di-
mension. Then U and V are isomorphic (as inner product spaces) if and only if dim(U) =
dim(V ). In particular, if dim(U) = n then U is isomorphic to Fn and if dim(U) = ℵ0
then U is isomorphic to F∞ (which is the space of sequences in F with only finitely many

nonzero terms, using the inner product 〈x, y〉 =
∞∑
k=1

xkyk ).

2.8 Corollary: Every finite-dimensional inner product space is complete, and every inner
product space which is of countable Hamel dimension is not complete.
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2.9 Definition: When W is a vector space (over any field F) and U, V ⊆W are subspaces,
we write U + V =

{
u+ v

∣∣u ∈ U, v ∈ V } and we write W = U ⊕ V when W = U + V and
U ∩ V = {0}, that is when for every x ∈W , x = u+ v for some unique u ∈ U , v ∈ V .

2.10 Definition: Let V be an inner product space (over F = R or C). For a subspace
U ⊆ V , we define the orthogonal complement of U in V to be the set

U⊥ =
{
x ∈ V

∣∣〈x, u〉 = 0 for all u ∈ U
}
.

2.11 Theorem: Let V be an inner product space and let U ⊆ V be a subspace. Then

(1) U⊥ is a subspace of V ,
(2) if B is a basis for U then U⊥ =

{
x ∈ V

∣∣〈x, u〉 = 0 for all u ∈ B
}

,
(3) U ∩ U⊥ = {0}, and
(4) U ⊆ (U⊥)⊥.

(5) if U is finite-dimensional then U ⊕ U⊥ = V , and
(6) if U ⊕ U⊥ = W then U = (U⊥)⊥.

Proof: We omit the proof.

2.12 Definition: Let V be an inner product space. Let U ⊆ V be a subspace such that
V = U ⊕ U⊥. For x ∈ V , we define the orthogonal projection of x onto U , denoted
by ProjU (x), as follows. Since V = U ⊕ U⊥, we can choose unique vectors u, v ∈ V with
u ∈ U , v ∈ V and u+ v = x. We then define

ProjU (x) = u.

When U is finite-dimensional so U = (U⊥)⊥, for u and v as above we have ProjU⊥(x) = v.
When y ∈ V and U = Span {y}, we also write Projy(x) = ProjU (x).

2.13 Theorem: Let V be an inner product space. Let U ⊆ V be a subspace of V such
that V = U ⊕ U⊥. Let x ∈ V . Then ProjU (x) is the unique point in U nearest to x.

Proof: We omit the proof.

2.14 Example: Let V be an inner product space. Let U be a finite dimensional subspace
of V . Let B = {u1, u2, · · · , un} be an orthogonal basis for U . Recall (or verify) that

ProjU (x) =
n∑
k=1

〈x, uk〉
‖uk‖2

uk.

2.15 Example: Recall (or verify) that for A ∈Mn×m(C) and U = Col(A), given x ∈ Cn
there exists y ∈ Cm such that A∗Ay = A∗x and for any such y, we have ProjU (x) = Ay.
In particular, if rank(A) = m then A∗A is invertible so that ProjU (x) = A(A∗A)−1A∗x.

2.16 Note: Let W be an inner product space and let U ⊆ W be a subspace. Note that
U is also a subspace because given u, v ∈ U and t ∈ F we can choose sequences (xn) and
(yn) in U with xn → u and yn → v and then we have (xn + tyn → utv so that u+ tv ∈ U)

Also note that U
⊥

= U⊥. Indeed, since U ⊆ U we have U
⊥ ⊆ U⊥ so it suffices to prove

that U⊥ ⊆ U
⊥

Let v ∈ U⊥ and let u ∈ U . Choose a sequence (xn) in U with xn → u.
Then we have 〈v, u〉 = 〈v, lim

n→∞
xn〉 = lim

n→∞
〈v, xn〉 = 0, indeed∣∣〈v, u〉∣∣ =

∣∣〈v, u〉 − 〈v, xn〉∣∣ =
∣∣〈v, u− xn〉∣∣ ≤ ‖v‖ ‖u− xn‖ → 0.

2



Closed Subspaces of Hilbert Spaces and Orthogonal Projections

2.17 Example: Properties of finite-dimensional subspaces of inner product spaces do not
always carry over to infinite dimensional subspaces. For example, let V = F∞ (the space

of sequences in F with finitely many nonzero terms) with inner product 〈x, y〉 =
∞∑
k=1

xkyk,

and let U =
{
a ∈ F∞

∣∣ ∞∑
k=1

ak = 0
}

. Note that V has countable Hamel dimension with

standard orthonormal Hamel basis S = {e1, e2, e3, · · ·}, and U ⊂6= V has countable Hamel

dimension, with Hamel basis B = {u1, u2, u3, · · ·} where uk = e1 − ek+1. We have

U⊥ =
{
x ∈ V

∣∣〈x, uk〉 = 0 for all k
}

=
{
x ∈ V

∣∣〈x, e1 − ek+1〉 = 0 for all k
}

=
{
x ∈ V

∣∣x1 = xk+1 for all k
}

=
{
x ∈ V

∣∣x1 = x2 = x3 = · · ·
}

= {0}
because for x ∈ F∞ we have xn = 0 for all but finitely many indices n. Notice that in
this example we have U ⊂6= (U⊥)⊥ = V and V 6= U ⊕ U⊥. Although we could apply the

Gram-Schmidt Procedure to B to obtain an orthogonal Hamel basis C = {v1, v2, · · ·} for
U , we cannot extend C to an orthogonal Hamel basis for V because there is no nonzero
vector 0 6= x ∈ V with 〈x, vk〉 = 0 for all k.

2.18 Definition: Let V be a vector space over F = R or C. For a subset S ⊆ V , we say
that S is convex when for all a, b ∈ S we have a+ t(b− a) ∈ S for all 0 ≤ t ≤ 1.

2.19 Theorem: Let H be a Hilbert space. Let S ⊆ H be nonempty, closed and convex.
Then for every a ∈ H there exists a unique point b ∈ S which is nearest to a, that is such
that ‖a− b‖ ≤ ‖a− x‖ for all x ∈ S.

Proof: Let a ∈ H. Let d = dist(a, S) = inf
{
‖x− a‖

∣∣x ∈ S}. Choose a sequence {xn} in
S so that ‖xn − a‖ → d, hence ‖xn − a‖2 → d2. Let ε > 0 and choose m ∈ Z+ so that for

all n ≥ m we have ‖xn − a‖2 ≤ d2 + ε2

4 . Let k, l ≥ m. By the Parallelogram Law we have∣∣∣∣(xk − a) + (xl − a)
∣∣∣∣2 +

∣∣∣∣(xk − a)− (xl − a)
∣∣∣∣2 = 2

∣∣∣∣xk − a∣∣∣∣2 + 2
∣∣∣∣xl − a∣∣∣∣2

Since S is convex, we have xk+xl

2 ∈ S, hence
∣∣∣∣xk+xl

2 − a
∣∣∣∣ ≥ d, and so∣∣∣∣xk − xl∣∣∣∣2 =

∣∣∣∣(xk − a)− (xl − a)
∣∣∣∣2

= 2
∣∣∣∣xk − a∣∣∣∣2 + 2

∣∣∣∣xl − a∣∣∣∣2 − ∣∣∣∣(xk − a) + (xl − a)
∣∣∣∣2

= 2
∣∣∣∣xk − a∣∣∣∣2 + 2

∣∣∣∣xl − a∣∣∣∣2 − 4
∣∣∣∣xk+xl

2 − a
∣∣∣∣2

≤ 2
(
d2 + ε2

4

)
+ 2
(
d2 + ε2

4

)
− 4d2 = ε2.

so that ‖xk −xl‖ ≤ ε. This shows that the sequence {xn} is Cauchy. Since H is complete,
{xn} converges in H, and since S is closed in H, the limit lies in S. Let b = lim

n→∞
xn ∈ S.

Since b ∈ S we have ‖b−a‖ ≥ d, and we have ‖b−a‖ ≤ ‖b−xn‖+ ‖xn−a‖ for all n ∈ Z+

so that ‖b − a‖ ≤ lim
n→∞

(
‖b − xn‖ + ‖xn − a‖

)
= d, and so ‖b − a‖ = d. This shows that

‖b− a‖ ≥ ‖x− a‖ for all x ∈ S. Finally, we note that the point b is unique because given
c ∈ S with ‖c− a‖ = d, since S is convex we have b+c

2 ∈ S so that
∣∣∣∣ b+c

2 − a
∣∣∣∣ ≥ d, and so

the Parallelogram Law gives

‖b− c‖2 =
∣∣∣∣(b− a)− (c− a)

∣∣∣∣2 = 2‖b− a‖2 + 2‖c− a‖2 −
∣∣∣∣(b− a) + (c− a)

∣∣∣∣
= 4d2 − 4

∣∣∣∣ b−c
2 − a

∣∣∣∣2 ≤ 4d2 − 4d2 = 0

so that ‖b− c‖ = 0 hence b = c.
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2.20 Theorem: Let H be a Hilbert space. Let U ⊆ H be a subspace. Then U is closed
if and only if H = U ⊕ U⊥. In this case, U⊥ is closed and (U⊥)⊥ = U and for x ∈ H, if
x = u + v with u ∈ U and v ∈ U⊥ then u is the unique point in U nearest to x and v is
the unique point in U⊥ nearest to x.

Proof: Suppose that H = U ⊕ U⊥. Let (xn)n≥1 be a sequence in U which converges in
H, say xn → a ∈ H. Note that since xn → a in H, we have 〈xn, y〉 → 〈a, y〉 for all y ∈ H
because

∣∣〈xn, y〉 − 〈a, y〉∣∣ =
∣∣〈xn − a, y〉∣∣ ≤ ‖xn − a‖ ‖y‖. Since H = U ⊕U⊥, we can write

a = u+ v with u ∈ U and v ∈ U⊥. Then, since 〈u, v〉 = 0, we have

‖v‖2 = 〈v, v〉 = 〈u+ v, v〉 = 〈a, v〉 = lim
n→∞

〈xn, v〉 = lim
n→∞

0 = 0

and so v = 0 so that a = u+ v = u ∈ U . Thus U is closed.

Suppose that U is closed. Let x ∈ H. Since U is a vector space it is convex, so by
the previous theorem there is a unique point u ∈ U which is nearest to x. Let u be this
nearest point and let v = x − u so that u + v = x. We claim that v ∈ U⊥. Suppose, for
a contradiction, that v /∈ U⊥. Choose u1 ∈ U with 〈v, u1〉 6= 0. Write 〈v, u1〉 = reiθ with
r > 0 and θ ∈ R (when F = R we have eiθ = ±1) and let u2 = eiθu1. Note that u2 ∈ U
and 〈v, u2〉 = 〈v, eiθu1〉 = e−iθ〈v, u1〉 = e−iθr eiθ = r > 0. For all t ∈ R we have∣∣∣∣x− (u+ tu2)

∣∣∣∣2 = ‖v − tu2‖2 = ‖v‖2 − 2tRe 〈v, u2〉+ t2‖u2‖2 = ‖v‖2 − 2r t+ ‖u2‖2t2.

It follows that for small t > 0 we have
∣∣∣∣x − (u + tu2)

∣∣∣∣2 ≤ ‖v‖2 = ‖x − u‖2 which is not
possible, since u is the point in U which is nearest to x.

We claim that the points u ∈ U and v ∈ U⊥ with u + v = x, which we found in the
previous paragraph, are the only such points. Let x ∈ H. Suppose that u ∈ U , v ∈ U⊥ and
u+v = x. We claim that u must be equal to the (unique) point in U which is nearest to x.
Let u′ ∈ U with u′ 6= u. Since v ∈ U⊥ and u′−u ∈ U we have 〈x−u, u′−u〉 = 〈v, u′−u〉 = 0
and so∣∣∣∣x− u′∣∣∣∣2 =

∣∣∣∣(x− u)− (u′ − u)
∣∣∣∣2 = ‖x− u‖2 − 2Re 〈x− u, u′ − u〉+ ‖u′ − u‖2

= ‖x− u‖+ ‖u′ − u‖ > ‖x− u‖2

so that ‖x − u′‖ > ‖x − u‖. Thus u is the point in U which is nearest to x, so u (hence
also v) is uniquely determined. Thus we have H = U ⊕ U⊥.

We claim that since H = U ⊕ U⊥, it follows that (U⊥)⊥ = U . We always have
U ⊆ (U⊥)⊥, so we only need to show that (U⊥)⊥ ⊆ U . Let x ∈ (U⊥)⊥. Choose u ∈ U
and v ∈ U⊥ such that x = u + v. Since u ∈ U and v ∈ U⊥ we have 〈u, v〉 = 0, and since
v ∈ U⊥ and x ∈ (U⊥)⊥ we have 〈x, v〉 = 0. It follows that

‖v‖2 = 〈v, v〉 = 〈u, v〉+ 〈v, v〉 = 〈u+ v, v〉 = 〈x, v〉 = 0

and so v = 0 and hence x = u+ v = u ∈ U . Thus (U⊥)⊥ ⊆ U , as required.
Finally note that since H = U ⊕U⊥ and (U⊥)⊥ = U we have H = U⊥ ⊕ (U⊥)⊥, and

so U⊥ is closed, as proven in the first paragraph (with U replaced by U⊥).

2.21 Definition: When H is a Hilbert space and U ⊆ H is a closed subspace, we define
the orthogonal projection onto U to be the map P : H → U given by Px = u where u
is the unique point in U nearest to x. Equivalently, Px = u where x = u+ v with u ∈ U
and v ∈ U⊥.
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Unordered Series

2.22 Definition: Let (an)n≥1 be a sequence in a normed linear space V . We say that
∞∑
k=1

ak converges absolutely in V when
∞∑
k=1

‖ak‖ converges in R, and we say that
∞∑
k=1

ak

converges unconditionally in V when
∞∑
n=1

aσ(n) converges in V for every bijective map

σ : Z+ → Z+ (that is, when every rearrangement of the series converges).

2.23 Example: Recall that for a sequence (an)n≥1 in R, the series
∞∑
n=1
|an| converges if

and only if
∞∑
n=1

aσ(n) converges for every bijective map σ : Z+ → Z+ so, in R, unconditional

convergence is the same thing as absolute convergence. But verify that in `2, the series
∞∑
n=1

1
n en converges unconditionally to

(
1
1 ,

1
2 ,

1
3 , · · ·

)
, but it does not converge absolutely.

2.24 Definition: Let K be a nonempty set (possibly uncountable). When A is any set,
an indexed set in A with index set K is a function a : K → A, and we write ak = a(k)
and a = (ak)k∈K . When X is a normed linear space and (ak)k∈K is an indexed set in X,
the unordered series

∑
k∈K

ak is defined to be the indexed set (s
F

)F∈Fin(K) where Fin(K)

is the set of finite subsets of K and s
F

=
∑
k∈F

ak for each F ∈ Fin(K). We say that the

unordered series
∑
k∈K

ak converges (unconditionally) in X when there exists s ∈ X such

that
∀ ε>0 ∃F ∈Fin(K) ∀ I∈Fin(K)

(
I ⊇ F =⇒ ‖s

I
− s‖ < ε

)
.

In this case, the element s ∈ X is unique, it is called the (unordered) sum of the un-
ordered series

∑
k∈K

ak, and we write
∑
k∈K

ak = s. As usual, we write
∑
k∈K

ak both to denote

the unordered series (which may or may not converge) and its sum (when it does converge).

We say that the unordered series
∑
k∈K

ak converges absolutely in X when
∑
k∈K
‖ak‖

converges in R.

When (ak)k∈K is an indexed set in R with each ak ≥ 0, whether or not the unordered
series

∑
k∈K

ak converges, we define its (unordered) sum to be

s = sup
{ ∑
k∈F

ak
∣∣F ∈ Fin(K)

}
and we write

∑
k∈K

ak = s. Verify, as an exercise, that the unordered series converges if and

only if its sum is finite and that, in this case, our two definitions of the sum agree.

2.25 Exercise: Let X be a normed linear space. Show that X is a Banach space if
and only if it has the property that every absolutely convergent unordered series in X
converges.
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2.26 Theorem: Let (ak)k∈K be an indexed set in R with each ak ≥ 0. If
∑
k∈K

ak converges

then there are at most countably many indices k ∈ K for which ak 6= 0.

Proof: For each n ∈ Z+, let Kn = {k ∈ K | ak ≥ 1
n

}
. If one of the set Kn was infinite we

would have
∑
k∈K

ak = ∞. Thus if
∑
k∈K

ak < ∞, then every set Kn is finite, and so the set

{k ∈ K | ak > 0} =
∞⋃
n=1

Kn is at most countable.

2.27 Definition: Let (ak)k∈K be an indexed set in a normed linear space X. We say that
the unordered series

∑
k∈K

ak is Cauchy when

∀ ε>0 ∃F ∈Fin(K) ∀ I, J ∈ Fin(K)
(
I, J ⊇ F =⇒ ‖s

I
− s

J
‖ < ε

)
.

As an exercise, verify that
∑
k∈K

ak is Cauchy if and only if

∀ ε>0 ∃F ∈ Fin(K) ∀L∈Fin(K)
(
L ∩ F = ∅ =⇒ ‖s

L
‖ < ε

)
.

2.28 Theorem: (Cauchy Criterion for Unordered Series) Let (ak)k∈K be an indexed set
in a normed linear space X.

(1) If
∑
k∈K

ak converges in X then it is Cauchy.

(2) If X is complete and
∑
k∈K

ak is Cauchy, then
∑
k∈K

ak converges in X.

Proof: To prove Part 1, suppose that
∑
k∈K

ak converges in X, say s =
∑
k∈K

ak. Let ε > 0.

Choose F ∈ Fin(K) such that for all I ∈ Fin(K) with I ⊇ F we have ‖s
I
− s‖ < ε

2 .
Let I, J ∈ Fin(K) with I, J ⊇ F . Then we have ‖s

I
− s

J
‖ ≤ ‖s

I
− s‖+ ‖s− s

J
‖ < ε, and

so
∑
k∈K

ak is Cauchy.

To prove Part 2, suppose X is complete and
∑
k∈K

ak is Cauchy in X. Since
∑
k∈K

ak

is Cauchy, we can choose sets Fn ∈ Fin(K) with F1 ⊆ F2 ⊆ F3 ⊆ · · · such that for all
I, J ∈ Fin(K) with I, J ⊇ Fn we have ‖s

I
− s

J
‖ < 1

2n (indeed, having chosen Fn we can
choose Gn ∈ Fin(K) so that Gn ⊆ I, J ∈ Fin(K) =⇒ ‖s

I
− s

J
‖ < 1

2n+1 and then set

Fn+1 = Fn ∪Gn). Then the sequence (s
Fn

)n≥1 is Cauchy in X
(
because when ` > m we

have ‖s
F`
−s

Fm
‖ ≤ ‖s

F`
−s

F`−1
‖+ · · ·+‖s

Fm+1
−s

Fm
‖ < 1

2`−1 + · · ·+ 1
2m < 1

2m−1

)
. Since X

is complete, the sequence (s
Fn

)n≥1 converges, say s
Fn
→ s in X. We claim that

∑
k∈K

ak = s.

Let ε > 0. Choose m ∈ Z+ with 1
2m < ε

2 such that n ≥ m =⇒ ‖s
Fn
− s‖ < ε

2 . Then for all

I ∈ Fin(K) with I ⊇ Fm we have ‖s
I
− s‖ ≤ ‖s

I
− s

Fm
‖+ ‖s

Fm
− s‖ < 1

2m + ε
2 < ε. Thus∑

k∈K
ak = s, as claimed.
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Formulas Involving Orthonormal Indexed Sets

2.29 Definition: An indexed set (uk)k∈K in an inner product space V is called orthonor-
mal when ‖uk‖ = 1 for all k ∈ K and 〈uk, u`〉 = 0 for all k, ` ∈ K with k 6= `.

2.30 Theorem: Let H be a Hilbert space. Let (uk)k∈K be an orthonormal indexed set in

H, and let B = {uk | k ∈ K}. Let x, y ∈ SpanB ∈ H and for each k ∈ K, let ak = 〈x, uk〉
and bk = 〈y, uk〉. Then

(1)
∑
k∈K

akuk = x,

(2)
∑
k∈K
|ak|2 = ‖x‖2 and

(3)
∑
k∈K

akbk = 〈x, y〉.

Proof: Let us prove Part 1. For each F ∈ Fin(K), let UF = Span {uk | k ∈ F} and let

s
F

=
∑
k∈F

akuk = ProjUF
(x). Let ε > 0. Since x ∈ SpanB we can choose u ∈ SpanB with

‖u− x‖ < ε. Since elements in SpanB are finite linear combinations of elements in B, we
have u ∈ UF for some finite index set F ∈ Fin(K). For I ∈ Fin(K) with I ⊇ F , since sI
is the point in UI nearest to x, and since we have u ∈ UF ⊆ UI , it follows that∥∥ ∑

k∈I
akuk − x

∥∥ = ‖sI − x‖ ≤ ‖u− x‖ < ε.

Thus
∑
k∈K

akuk = x in H, as required.

Let us prove Part 2. For each F ∈ Fin(K), let sF =
∑
k∈F

akuk. Let ε > 0. Since∑
k∈K

akuk = x, so we can choose F ∈ Fin(K) such that for all I ∈ Fin(K) with I ⊇ F

we have ‖s
I
− x‖ < min

{
1, ε

2‖x‖+1

}
. Since ‖sI − x‖ < 1 we have ‖sI‖ < ‖x‖ + 1 hence

‖s
I
‖+‖x‖ < 2‖x‖+1, and since ‖s

I
−x‖ < ε

2‖x‖+1 we have
∣∣‖s

I
‖−‖x‖

∣∣ ≤ ‖s
I
−x‖ < ε

2‖x‖+1 ,

and so ∣∣ ∑
k∈I
|aI |2 − ‖x‖2

∣∣ =
∣∣‖s

I
‖2 − ‖x‖2

∣∣ =
∣∣‖sI‖ − ‖x‖∣∣(‖sI‖+ ‖x‖

)
< ε.

Thus
∑
k∈K
|ak|2 = ‖x‖2, as required.

Let us prove Part 3. For each F ∈ Fin(K), let r
F

=
∑
k∈F

akuk and s
I

=
∑
k∈F

bkuk.

Note that by Part 2, we have ‖r
I
‖2 =

∑
k∈F
|ak|2 ≤

∑
k∈K
|ak|2 = ‖x‖2 so that ‖r

F
‖ ≤ ‖x‖,

and similarly ‖s
F
‖ ≤ ‖y‖. Let ε > 0. By Part 1, we can choose F ∈ Fin(K) such that for

all I ∈ Fin(K) with I ⊇ F we have ‖rI − x‖ <
ε

‖y‖+1 and ‖s
I
− y‖ < ε

‖x‖+1 . Then for

F ⊆ I ∈ Fin(K) we have∣∣ ∑
k∈I

akbk − 〈x, y〉
∣∣ =

∣∣〈r
I
, s
I
〉 − 〈x, y〉

∣∣ =
∣∣∣〈rI , sI〉 − 〈x, sI〉+ 〈x, s

I
〉 − 〈x, y〉

∣∣∣
≤
∣∣〈r

I
, s
I
〉 − 〈x, s

I
〉
∣∣+
∣∣〈x, s

I
〉 − 〈x, y〉

∣∣ =
∣∣〈r

i
− x, s

I
〉
∣∣+
∣∣〈x, s

I
− y〉

∣∣
≤ ‖r

I
− x‖ ‖s

I
‖+ ‖x‖ ‖s

I
− y‖ ≤ ‖r

I
− x‖ ‖y‖+ ‖x‖ ‖s

I
− y‖

< ε.

Thus
∑
k∈K

akbk = 〈x, y〉, as required.
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2.31 Theorem: Let H be a Hilbert space. Let (uk)k∈K be an orthonormal indexed set
in H, let B = {uk | k ∈ K}, let U = SpanB, and let (ck)k∈K be an indexed set in F.

(1) If
∑
k∈K

ckuk converges in H and x=
∑
k∈K

ckuk, then x ∈ U and ck = 〈x, uk〉 for all k ∈ K.

(2)
∑
k∈K

ckuk converges in H if and only if
∑
k∈K
|ck|2 converges in R.

Proof: To prove Part 1, suppose the series
∑
k∈K

ckuk converges in H and let x =
∑
k∈K

ckuk.

Since the series converges in H, it is Cauchy. Note that for each F ∈ Fin(K), we have
s
F

=
∑
k∈F

ckuk ∈ SpanB ⊆ U , and so the series
∑
k∈K

ckuk is a Cauchy series in U . Since U is

closed inH it is complete, so the Cauchy series
∑
k∈K

ckuk converges in U , hence x ∈ U . Since

x ∈ U , we know from Part 1 of the previous theorem that x =
∑
k∈K

akuk where ak = 〈x, uk〉.

Since
∑
k∈K

ckuk = x =
∑
k∈K

akuk, it follows from linearity that
∑
k∈K

(ck − xk)uk = 0. From

Part 2 of the previous theorem, we have
∑
k∈K
|ck−ak|2 = 0, and so we must have ck−ak = 0

for all k ∈ K. This completes the proof of Part 1.
To prove Part 2, suppose first that

∑
k∈K

ckuk converges, and let x =
∑
k∈K

ckuk. By

Part 1, we have x ∈ U and ck = 〈x, uk〉. By Part 2 of the previous theorem, we have∑
k∈K
|ck|2 ≤ ‖x‖2, so the series

∑
k∈K
|ck|2 converges in R.

Suppose, conversely, that
∑
k∈K
|ck|2 converges in R and let m =

∑
k∈K
|ck|2 <∞. For I ∈

Fin(K), let s
I

=
∑
k∈I

ckuk. Let ε > 0. Choose F ∈ Fin(K) such thatm−ε2 <
∑
k∈F
|ck|2 ≤ m.

For I, J ∈ Fin(K) with I, J ⊇ F , writing I4J = (I ∪ J) \ (I ∩ J) = (I \ J) ∪ (J \ I), we
have

‖s
I
− s

J
‖2 = ‖s

I\J − sJ\I‖
2 =

∑
k∈I4J

|ck|2 =
∑

k∈I∪J
|ck|2 −

∑
k∈I∩J

|ck|2

≤
∑

k∈I∪J
|ck|2 −

∑
k∈F
|ck|2 < m− (m− ε2) = ε2

so that ‖s
I
− s

J
‖ < ε. Thus the unordered series

∑
k∈K

ckuk is Cauchy, so it converges in H.

2.32 Theorem: (Bessel’s Inequality) Let V be an inner product space. Let (uk)k∈K be

an orthonormal indexed set in V . For all x ∈ V , we have
∑
k∈K

∣∣〈x, uk〉∣∣2 ≤ ‖x‖2.

Proof: Let x ∈ V . For k ∈ K, let ak = 〈x, uk〉. Let F ∈ Fin(K) and let wF =
∑
k∈F

akuk.

Then
0 ≤ ‖x− wF ‖2 = ‖x‖2 − 2 Re 〈x,wF 〉+ ‖wF ‖2

= ‖x‖2 − 2 Re
( ∑
k∈F

ak〈x, uk〉
)

+
∑

k,`∈F
aka`〈uk, u`〉

= ‖x‖2 −
∑
k∈F
|ak|2.

Since
∑
k∈F
|ak|2 ≤ ‖x‖2 for every F ∈ Fin(K), it follows that

∑
k∈K
|ak|2 ≤ ‖x‖2, as required.
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2.33 Theorem: (Orthogonal Projection) Let H be a Hilbert space, let (uk)k∈K be an

orthonormal indexed set in H, let B = {uk | k ∈ K} and let U = SpanB. The orthogonal
projection P : H → U is given by Px =

∑
k∈K

akuk where ak = 〈x, uk〉 and we have ‖P‖ = 1.

Proof: First note that when x ∈ H, by Bessel’s Inequality we have
∑
k∈K
|ak|2 ≤ ‖x‖2 so

that
∑
k∈K
|ak|2 converges, hence by Part 2 of Theorem 2.31, the unordered series

∑
k∈K

akuk

converges, and hence by Part 1 of Theorem 2.31, the sum Px =
∑
k∈K

akuk lies in U . Thus

the map P : H → U given by
∑
k∈K

akuk is well-defined with Range(P ) ⊆ U .

To show that P is the orthogonal projection onto U , it suffices to show that when
x ∈ H and u = Px and v = x− u, we have v ∈ U⊥. Let x ∈ H, u = Px =

∑
k∈K

akuk ∈ U

and v = x − u. Since u =
∑
k∈K

akuk, by Part 1 of Theorem 2.31, for all k ∈ K we have

〈u, uk〉 = ak = 〈x, uk〉, and hence 〈v, uk〉 = 〈x − u, uk〉 = 〈x, uk〉 − 〈u, uk〉 = 0. Thus we
have v ∈ SpanB⊥ = U⊥, as required. Thus P is the orthogonal projection onto U .

It remains to show that ‖P‖ = 1. When u ∈ U we have Pu = u so that ‖Pu‖ = ‖u‖
and it follows that ‖P‖ ≥ 1. For x ∈ H, if we let u = Px =

∑
k∈K

akuk then, as mentioned

above, we have 〈u, uk〉 = ak = 〈x, uk〉, so by Part 2 of Theorem 2.30 and Bessel’s Inequality,
we have ‖Px‖2 = ‖u‖2 =

∑
k∈K
|ak|2 ≤ ‖x‖2 so that ‖Px‖ ≤ ‖x‖. Since ‖Px‖ ≤ ‖x‖ for all

x ∈ H, we have ‖P‖ ≤ 1.
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Hilbert Bases

2.34 Theorem: Let H be a Hilbert space and let B be an orthonormal set in H. Then
B is a maximal orthonormal set if and only SpanB is dense H.

Proof: Suppose B is not maximal. Choose an orthonormal set C in H with B ⊂6= C. Let

v ∈ C \ B. Then ‖v‖ = 1 and 〈v, u〉 = 0 for all u ∈ B, hence 〈v, u〉 = 0 for all u ∈ SpanB.

For all u ∈ SpanB we have ‖u− v‖ = ‖u‖2 + ‖v‖2 = ‖u‖2 + 1 ≥ 1 so v /∈ SpanB.

Suppose, conversely, that SpanB is not dense in H. Let U = SpanB 6= H, and recall
(from Note 2.16) that U⊥ = (SpanB)⊥. Since U is closed, by Theorem 2.20 we have
H = U ⊕ U⊥. Since U 6= H we have U⊥ 6= {0}. Choose v ∈ U⊥ with ‖v‖ = 1. Then
B ∪ {v} is an orthonormal set which properly contains B, so B is not maximal.

2.35 Theorem:

(1) Every inner product space contains a maximal orthonormal set.
(2) In a Hilbert space, any two maximal orthonormal sets have the same cardinality

Proof: To prove Part 1, let V be an inner product space. Let S be the set of all orthonormal
sets in V , ordered by inclusion. If C is a chain in S (that is a totally ordered subset of S)
then

⋃
C is an upper bound for C in S. Since every chain in S has an upper bound, it

follows from Zorn’s Lemma that S has a maximal element.
To prove Part 2, let H be a Hilbert space and let (uk)k∈K and (v`)`∈L be two indexed

orthonormal sets in H, and suppose that B = {uk|k ∈K} and C = {v`|` ∈ L} are both
maximal. If K or L is finite, then B and C are both Hamel bases for H and they have the
same cardinality. Suppose K and L are infinite. For k ∈ K, let Lk =

{
` ∈ L

∣∣〈uk, v`〉 6= 0
}

.

Since for each ` ∈ L we have
∑
k∈K

∣∣〈uk, v`〉∣∣ = ‖v`‖2 = 1 > 0, it follows that for each ` ∈ L

there exists k ∈ K such that 〈uk, v`〉 6= 0, so we have L =
⋃
k∈K

Lk. Since for each k ∈ K

we have
∑
`∈L

∣∣〈uk, v`〉∣∣2 = ‖uk‖2 = 1 <∞, it follows from Theorem 2.26 that each set Lk is

at most countable, that is |Lk| ≤ ℵ0. Thus, using some cardinal arithmetic, we have

|L| =
∣∣∣ ⋃
k∈K

Lk
∣∣ ≤ ∑

k∈K
|Lk| ≤

∑
k∈K
ℵ0 = |K| · ℵ0 = |K|.

A similar argument shows that |K| ≤ |L|.
2.36 Definition: A Hilbert basis for a Hilbert spaceH is a maximal orthonormal set in H.
The (Hilbert) dimension of a Hilbert space H, denoted by dimH, is the cardinality of
any Hilbert basis for H. We do not distinguish notationally between the Hamel dimension
of H (that is the dimension of H as a vector space) and the Hilbert dimension of H (that
is the dimension of H as a Hilbert space). Unless otherwise stated, when H is a Hilbert
space, dimH will denote the Hilbert dimension.

2.37 Theorem: Let H be a Hilbert space, let (uk)k∈K be an orthonormal indexed set in
H, and let B = {uk | k ∈ K}. Then the following are equivalent.

(1) B is a Hilbert basis for H.
(2) For every x ∈ H we have x =

∑
k∈K

akuk, where ak = 〈x, uk〉.

(3) For every x ∈ H we have ‖x‖2 =
∑
k∈K
|ak|2 where ak = 〈x, uk〉.

(4) For every x, y ∈ H we have 〈x, y〉 =
∑
k∈K

akbk where ak = 〈x, uk〉 and bk = 〈y, uk〉.

Proof: The proof is left as an exercise.
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2.38 Theorem: Let H be a Hilbert space with Hilbert basis B. Then H is separable if
and only if B is at most countable.

Proof: Suppose that B is uncountable. Let S be any dense subset of H. For each u ∈ B
choose s

u
∈ S with ‖s

u
− u‖ ≤

√
2
4 . For u, v ∈ B with u 6= v we have ‖u‖ = 1 and ‖v‖ = 1

and 〈u, v〉 = 0 so that ‖u− v‖2 = ‖u‖2 + ‖v‖2 = 2 and so

‖s
u
−s

v
‖ =

∣∣∣∣(s
u
−u)+(u−v)+(v−s

v
)
∣∣∣∣ ≥ ‖u−v‖−(‖s

u
−u‖+‖s

v
−v‖

)
=
√

2−
√
2
4 −

√
2
4 > 0

so that s
u
6= s

v
. Thus B is at most countable.

Suppose, conversely, that B = {u1, u2, · · ·} is finite or countable. By Theorem 2.34,
Span F B is dense in H. Note that Span QB is dense in Span RB and Span Q[i]

B is dense in

Span CB. Indeed given c1, · · · , cn ∈ F (where F = R or C) we can choose r1, · · · , rn ∈ K
(where K = Q or Q[i]) such that |rk − ck| < ε

n and then∣∣∣∣∣∣ n∑
k=1

rkuk −
n∑
k=1

ckuk

∣∣∣∣∣∣ =
∣∣∣∣∣∣ n∑
k=1

(rk − ck)uk

∣∣∣∣∣∣ ≤ n∑
k=1

∣∣∣∣(rk − ck)uk
∣∣∣∣

=
n∑
k=1

|rk − ck| ‖uk‖ =
n∑
k=1

|rk − ck| < ε.

2.39 Exercise: For any nonempty set K and for F = R or C, let

FK =
{

(ck)k∈K
∣∣ each ck ∈ F

}
,

`2(K,F) =
{

(ck)k∈K ∈ FK
∣∣∣ ∑
k∈K
|ck|2 <∞

}
.

(a) For a, b ∈ `2(K,F), show that
∑
k∈K

akbk converges and let 〈a, b〉 =
∑
k∈K

akbk.

(b) Prove that this defines an inner product on `2(K,F).
(c) Prove that `2(K,F) is complete under this inner product.
(d) For each ` ∈ K, let e` ∈ `2(K,F) be given by e` = (e`,k)k∈K with e`,` = 1 and e`,k = 0
when k 6= `. Prove that (e`)`∈K is a Hilbert basis for `2(K,F).
(e) Prove that if H is a Hilbert space over F with dimH = |K| then H ∼= `2(K,F).

2.40 Example: When |K| = n ∈ Z+ we have `2(K,F) ∼= Fn (using the standard inner
product). When |K| = ℵ0 we have `2(K,F) ∼= `2(F). For every separable Hilbert space H
(over F = R or C) we have H ∼= `2 = `2(F). For example, we have L2[a, b] ∼= `2.
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The Dual Space and the Adjoint Map

2.41 Theorem: (The Riesz Representation Theorem for Hilbert Spaces) Let H be a
Hilbert space over F = R or C. The map φ =: H → H∗ given by φ(u)(x) = 〈x, u〉 is
a bijective norm-preserving map which is linear when F = R and conjugate-linear when
F = C.

Proof: For u ∈ H, write φu = φ(u) so that φu(x) = 〈x, u〉. Since φu(u) = 〈u, u〉 = ‖u‖2
it follows that ‖φu‖ ≥ ‖u‖. Since for all x ∈ H we have

∣∣φu(x)
∣∣ =

∣∣〈x, u〉∣∣ ≤ ‖x‖ ‖u‖ it
follows that ‖φu‖ ≤ ‖u‖. Thus φu is a bounded linear map φu : H → F (that is φu ∈ H∗)
with ‖φu‖ = ‖u‖. Hence φ is a norm-preserving map φ : H → H∗. Note that φ is linear
when F = R and conjugate-linear when F = C. Since norm-preserving maps are injective,
it remains to show that φ is surjective,

Let f ∈ H∗, that is let f : H → F be a bounded linear map. If f = 0 then we can
take u = 0 to get φu = f . Suppose that f 6= 0. Let U = ker(f). Since f is linear, U is
a subspace of H, and since f is bounded (hence continuous), U is closed, and it follows
from Theorem 2.20 that H = U ⊕ U⊥. Since f 6= 0 it follows that U 6= H so we have
U⊥ 6= {0}. Choose v ∈ U⊥ with ‖v‖ = 1. Let x ∈ H. For y = f(x)v − f(v)x we have
f(y) = f(x)f(v)− f(v)f(x) = 0 so that y ∈ ker(f) = U . Since y ∈ U and v ∈ U⊥ we have
〈y, v〉 = 0, and so

f(x) = f(x)‖v‖2 = f(x)〈v, v〉 =
〈
f(x)v, v

〉
=
〈
y + f(v)x , v

〉
=
〈
f(v)x, v

〉
= f(v)〈x, v〉 =

〈
x , f(v) v

〉
.

Thus we can choose u = f(v) v to get φ(u) = φu = f .

2.42 Definition: When H is a Hilbert space over F = R or C, we use the bijection φ
of the above theorem to define an inner product on H∗, as follows. Given f, g ∈ H∗ we
let u = φ−1(f) and v = φ−1(g) (that is we let u and v be the elements in H such that
f(x) = 〈x, u〉 and g(x) = 〈x, v〉) and then we define 〈f, g〉 = 〈v, u〉 (note that the order of
u and v is reversed so that the inner product is sesquilinear when F = C).

2.43 Definition: Recall that when U and V are vector spaces (over any field F) and
F : U → V is a linear map, we write U# and V # to denote the algebraic dual spaces, and
we define the dual (or the transpose or the algebraic adjoint) of F to be the linear
map FT : V # → U# given by FT (g) = g◦F , that is by FT (g)(u) = g

(
F (u)

)
when g ∈ V #

and u ∈ U . In the case that U and V are normed linear spaces over F = R or C, and
F ∈ B(U, V ) (that is if F : U → V is a continuous linear map), FT restricts to give a
well-defined map FT : V ∗ → U∗ (because if g ∈ V # is continuous then so is g ◦ F ).

When H and K are Hilbert spaces over F = R or C and F : H → K is a continuous
linear map, we define the (Hilbert space) adjoint of F to be the liner map F ∗ : K → H
given by F ∗ = φ−1◦FT ◦ψ where φ : H → H∗ is the bijective map given by φ(u)(x) = 〈x, u〉
and ψ : K → K∗ is the bijective map given by ψ(v)(y) = 〈y, v〉. Equivalently, the adjoint
of F is the map F ∗ : K → H such that φ ◦ F ∗ = FT ◦ ψ, that is the map such that

φ
(
F ∗(y)

)
= FT

(
ψ(y)

)
= ψ(y) ◦ F for all y ∈ K, that is

φ
(
F ∗y

)
(x) = ψ(y)(Fx) for all x ∈ H, y ∈ K, that is

〈x, F ∗y〉 = 〈Fx, y〉 for all x ∈ H, y ∈ K.

2.44 Exercise: Show that when H and K are Hilbert spaces and F : H → K is a bounded
linear map, we have ‖F ∗‖ = ‖FT ‖ = ‖F‖.
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Weak Convergence

2.45 Definition: Let V be an inner product space over F , where F = R or C, let (un) be
a sequence in V and let w ∈ V . We say that (un) converges weakly to w in V , and we
write un → w weakly in V , when 〈un, x〉 → 〈w, x〉 in F for all x ∈ V .

2.46 Note: When V is an inner product space and (un) is a sequence in V , it is easy to
see that if un → w in V then we also have un → w weakly in V , but the converse is not
always true. For example, when (un) is an orthonormal sequence in a Hilbert space H,
verify that un → 0 weakly in H (by Part 3 of Theorem 2.37), but un 6→ 0 in H.

2.47 Theorem: Every bounded sequence in a Hilbert space has a weakly convergent
subsequence.

Proof: Let H be a Hilbert space. We claim that for every a ∈ H and every bounded
sequence u = (un) in H, there is a subsequence (un`

) of (un) such that the sequence(
〈un`

, a〉
)

converges in F. Let a ∈ H, let (un)n≥1 be a bounded sequence in H, and let

M = sup
{
‖un‖

∣∣n∈Z+
}

. Then for all n∈Z+ we have
∣∣〈un, a〉∣∣ ≤ ‖un‖ ‖a‖ ≤M‖a‖, and

so the sequence
(
〈un, a〉

)
is bounded in F. By the Bolzano-Weierstrass Theorem, we can

choose a subsequence (un`
) of (un) such that

(
〈un, a〉

)
converges in F, as claimed.

Suppose that H is separable and let S = {a1, a2, · · ·} ⊆ H be a countable dense
subset. Let u = (un) be a bounded sequence in H and let M = sup

{
‖un‖

∣∣n∈Z+
}

. By
the above claim, we can choose a subsequence (un`

) of (un) such that lim
`→∞
〈un`

, a1〉 exists

in F, then we can choose a subsequence (un`k
) of (un`

) such that lim
k→∞

〈un`k
, a2〉 exists in

F, then we can choose a subsequence (un`kj
) of (un`k

) so that lim
j→∞
〈un`kj

, a3〉 exists in F,

and so on. Then the diagonal sequence v = (v1, v2, v3, · · ·) =
(
un1 , un`2

, un`k3
, · · ·

)
is then

a subsequence of the original sequence (un) with the property that
(
〈vk, am〉

)
converges in

F for every m ∈ Z+, that is
(
〈vk, a〉

)
converges for every a ∈ S.

Define f : S → F by f(a) = lim
k→∞

〈vk, a〉 for a ∈ S. Note that f is uniformly continuous

on S because for a, b ∈ S we have
∣∣〈vk, a−b〉∣∣ ≤ ‖vk‖ ‖a−b‖ ≤M‖a−b‖ for all k so that∣∣f(a)− f(b)

∣∣ =
∣∣∣ lim
k→∞

〈vk, a〉 − lim
k→∞

〈vk, b〉
∣∣∣ = lim

k→∞

∣∣〈vk, a−b〉∣∣ ≤M‖a− b‖.
Since f : S → F is uniformly continuous on S and S is dense in H, it follows that f extends
(uniquely) to a continuous map f : H → F defined by f(x) = lim

n→∞
f(an) where x ∈ H and

(an) is any sequence in S with an → x in H. Verify that this map f is linear and bounded
(so we have f ∈ H∗) with ‖f‖ ≤M .

By The Riesz Representation Theorem, we can choose w ∈ H such that f(x) = 〈x,w〉
for all x ∈ H. Verify that we have lim

k→∞
〈vk, x〉 = 〈w, x〉 for all x ∈ H, so (vk) converges

weakly to w in H. This completes the proof of the theorem in the case that H is separable.

Suppose that H is not separable and let (un) be a bounded sequence in H. Let
B =

{
ek
∣∣k ∈ K} be a Hilbert basis for H. For each n ∈ Z+, by Theorem 2.30 we have

un =
∑
k∈K

cn,kek where cn,k = 〈un, ek〉 and we have
∑
k∈K
|cn,k|2 = ‖uk‖2. By theorem 2.26,

for each n ∈ Z+ there are at most countably many indices k ∈ K for which cn,k 6= 0. Thus
the set L =

{
k ∈ K

∣∣∃n ∈Z+ cn,k 6= 0
}

is at most countable, and all of the elements un

lie in the separable Hilbert space U = Span
{
e`
∣∣` ∈ L}. Since (un) is bounded, as proven

above we can find a subsequence of (un) which converges weakly in U to an element w ∈ U .
Verify that since H = U ⊕ U⊥, the subsequence also converges weakly in H to w.
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The Spectral Theorem for Compact Self-Adjoint Operators

2.48 Definition: Let H be a Hilbert space. A compact operator on H is a linear map
F : H → H which sends weakly convergent sequences to convergent sequences, that is a
linear map such that if un → w weakly in H then Fun → Fw in H.

2.49 Note: When H is a Hilbert space, every compact operator on H is continuous
(because if un → w in H then un → w weakly in H) but the converse is not always true.
For example, when H is an infinite-dimensional Hilbert space, the identity map I : H → H
is continuous but not compact (since if (un) is an orthonormal sequence in H then un → 0
weakly in H but un 6→ 0 in H).

2.50 Definition: Let H be a Hilbert space. A self-adjoint operator on H is a continuous
linear map F : H → H such that F ∗ = F , that is such that 〈Fx, y〉 = 〈x, Fy〉 for all
x, y ∈ H.

2.51 Theorem: Let H be a Hilbert space and let F : H → H be a continuous self-adjoint
operator. Then

(1) For every u ∈ H, we have 〈Fu, u〉 ∈ R. In particular, every eigenvalue of F is real.

(2) We have ‖F‖ = sup
{∣∣〈Fu, u〉∣∣ ∣∣∣u ∈ H, ‖u‖ = 1

}
. In particular, for every eigenvalue λ

of F we have |λ| ≤ ‖F‖.
Proof: To prove Part 1, note that since F is self-adjoint we have 〈Fu, u〉 = 〈u, F ∗u〉 =
〈u, Fu〉 = 〈Fu, u〉, and so 〈Fu, u〉 ∈ R. In particular, when λ is an eigenvalue of F and
u ∈ H is a corresponding eigenvector with ‖u‖ = 1, we have λ = λ〈u, u〉 = 〈λu, u〉 =
〈Fu, u〉 ∈ R.

To prove Part 2, let M = sup
{∣∣〈Fu, u〉∣∣ ∣∣∣u ∈ H, ‖u‖ = 1

}
. Note that for all u ∈ H

with ‖u‖ = 1, we have
∣∣〈Fu, u〉∣∣ ≤ ‖Fu‖ ‖u‖ ≤ ‖F‖‖u‖ · ‖u‖ = ‖F‖, and so M ≤ ‖F‖.

To show that ‖F‖ ≤ M we shall use a formula similar to the Polarization Identity.
Verify (by expanding and cancelling) that for all u, v ∈ H we have(〈
F (u+v), u+v

〉
−
〈
F (u−v), u−v

〉)
+ i
(〈
F (u+iv), u+iv

〉
−
〈
F (u−iv), u−iv

〉)
= 4〈Fu, v〉.

By Part 1, all of the inner products on the left are real, so if 〈Fu, v〉 ∈ R then we have

〈Fu, v〉 = 1
4

(〈
F (u+v), u+v

〉
−
〈
F (u−v), u−v

〉)
.

Since
∣∣〈Fu, u〉∣∣ ≤ M for all u ∈ H with ‖u‖ = 1, it follows that

∣∣〈Fw,w〉∣∣ ≤ M‖w‖2
for all w ∈ H

(
indeed when w 6= 0 we have

∣∣〈Fw,w〉∣∣ = ‖w‖2
∣∣〈F w

‖w‖ ,
w
‖w‖
〉∣∣ ≤ ‖w‖2M).

Applying this fact with w = u± v to the above displayed formula for 〈Fu, v〉, then using
the Parallelogram Law, when 〈Fu, v〉 ∈ R we have∣∣〈Fu, v〉∣∣ ≤ 1

4

(∣∣〈F (u+v), u+v
〉∣∣+

∣∣〈F (u−v), u−v
〉∣∣)

≤ M
4

(
‖u+ v‖2 + ‖u− v‖2

)
= M

2

(
‖u‖2 + ‖v‖2

)
.

In particular, if ‖u‖ = ‖v‖ = 1 and 〈Fu, v〉 ∈ R then
∣∣〈Fu, v〉∣∣ ≤M . So for all u ∈ H with

‖u‖ = 1, if Fu = 0 then ‖Fu‖ ≤M and if Fu 6= 0 then ‖Fu‖ =
∣∣〈Fu, Fu

‖Fu‖
〉∣∣ ≤M . Thus

we have ‖F‖ ≤M , as required. Finally, note that when λ is an eigenvalue of F and u is a
corresponding eigenvector with ‖u‖ = 1, we have |λ| =

∣∣λ〈u, u〉∣∣ =
∣∣〈Fu, u〉∣∣ ≤ ‖F‖.

2.52 Example: The map F : L2[0, 1]→ L2[0, 1] given by F (f)(x) = xf(x) is a continuous
self-adjoint map with no eigenvalues.
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2.53 Theorem: Let H be a Hilbert space and let F : H → H be a compact self-adjoint
operator. Then F has an eigenvalue λ with |λ| = ‖F‖.

Proof: When F = 0, λ = ‖F‖ = 0 is an eigenvalue of F . Suppose F 6= 0. Since F is

self-adjoint, we know that 〈Fu, u〉 ∈ R for all u ∈ H with ‖F‖ = sup
{∣∣〈Fu, u〉∣∣ ∣∣∣ ‖u‖ = 1

}
.

It follows that either ‖F‖ = λ where λ = sup
{
〈Fu, u〉

∣∣‖u‖ = 1
}
> 0 or ‖F‖ = −λ where

λ = inf
{
〈Fu, u〉

∣∣ ‖u‖ = 1
}
< 0. Suppose the former (the proof in the latter case is similar).

Since λ = sup
{
〈Fu, u〉

∣∣ ‖u‖2 = 1
}

, we can choose a sequence (un) in H with each ‖un‖ = 1
such that 〈Fun, un〉 → λ in R. Since (un) is bounded, we can choose a weakly convergent
subsequence (vk) = (unk

), say vk → w weakly in H. Note that each ‖vk‖ = 1, we have
〈Fvk, vk〉 ∈ R for all k with 〈Fvk, vk〉 → λ in R, and λ = ‖F‖, and so∥∥Fvk − λvk∥∥2 = ‖Fvk‖2 − 2Re 〈Fvk, λvk〉+ ‖λvk‖2

= ‖Fvk‖2 − 2λ〈Fvk, vk〉+ λ2

≤ ‖F‖2 − 2λ〈Fvk, vk〉+ λ2 −→ ‖F‖2 − λ2 = 0.

Since vk → w weakly in H and F is compact, we have Fvk → Fw in H, and hence

λvk = (λvk − Fvk) + Fvk −→ 0 + Fw = Fw.

Since F is continuous we have

F (Fw) = F
(

lim
k→∞

λvk
)

= λ lim
k→∞

Fvk = λFw

and so λ is an eigenvalue of F with eigenvector Fw.

2.54 Note: Let H be a Hilbert space. We use the following remarks in the next theorem.

(1) When F : H → H is a continuous linear operator and λ is an eigenvalue of F , the
eigenspace Eλ is closed because {0} is closed in H and Eλ = G−1({0}) where G = F −λI,
which is continuous.
(2) When F : H → H is a continuous self-adjoint operator and λ and µ are distinct
eigenvalues of F , the eigenspaces Eλ and Eµ are orthogonal. Indeed, if λ, µ ∈ R with λ 6= µ
and u ∈ Eλ and v ∈ Eµ, then λ〈u, v〉 = 〈λu, v〉 = 〈Fu, v〉 = 〈u, Fv〉 = 〈u, µv〉 = µ〈u, v〉
hence 〈u, v〉 = 0.
(3) When U ⊆ H is a closed subspace, the orthogonal projection P onto U is self-adjoint.
Indeed, given x, y ∈ H, write x = u + v and y = r + s with u, r ∈ U and v, s ∈ U⊥ and
then 〈Px, y〉 = 〈u, r + s〉 = 〈u, r〉 − 〈u+ v, r〉 = 〈x, Py〉.
(4) When F,G : H → H are self-adjoint, so is F +cG where c ∈ R, because for all x, y ∈ H
we have 〈(F + cG)x, y〉 = 〈Fx, y〉+ c〈Gx, y〉 = 〈x, Fy〉+ c〈x,Gy〉 = 〈x, (F + cG)y〉.
(5) When U ⊆ H is a finite-dimensional subspace, the orthogonal projection P onto U is
compact. Indeed, suppose wn → w weakly in H. Write wn = un + vn and w = u+ v with
un, u ∈ U and vn, v ∈ U⊥. For all x ∈ U , we have 〈un, x〉 = 〈wn, x〉 → 〈w, x〉 = 〈u, x〉
so un → u weakly in U . Since U is finite-dimensional, we can choose an orthonormal

basis {e1, · · · , en} for U and then un =
n∑
k=1

〈un, ek〉ek →
n∑
k=1

〈u, ek〉ek = u in U . Thus

Pwn = un → u = Pw, so P is compact.
(6) When F,G : H → H are compact, so is F + cG where c ∈ F, because if (wn) converges
weakly in H then (Fwn) and (Gwn), hence also

(
(F + cG)wn

)
, converge in H.

(7) When F : H → H is a continuous self-adjoint operator, λ is a nonzero eigenvalue of
F , and P is the orthogonal projection onto the eigenspace Eλ, we have λP = FP = PF
because for all x ∈ H we have Px ∈ Eλ so that FPx = λPx, and for all x, y ∈ H we have
〈PFx, y〉 = 〈Fx, Py〉 = 〈x, FPy〉 = 〈x, λPy〉 = 〈λPx, y〉.
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2.55 Theorem: (The Spectral Theorem for Compact Self-Adjoint Operators) Let H be
a Hilbert space and let F : H → H be a nonzero compact self-adjoint operator on H.
Then the set of nonzero eigenvalues of H is at most countable, and the eigenspace of each
nonzero eigenvalue is finite-dimensional. When H has finitely many nonzero eigenvalues,
say λ1, · · · , λn, we have F = λ1Pλ1

+ · · ·+ λnPλn
where Pλk

is the orthogonal projection
onto the eigenspace Eλk

. When H has countably many nonzero eigenvalues, they can
be arranged into a sequence λ1, λ2, λ3, · · · in nonincreasing order of absolute value with
λn → 0, and in the space of bounded linear operators on H, we have

F =
∞∑
k=1

λkPλk

where Pλk
is the orthogonal projection onto the eigenspace Eλk

.

Proof: First we note that because F is compact, it follows that the eigenspace Eλ of any
nonzero eigenvalue λ 6= 0 must be finite dimensional, because if Eλ was infinite dimensional
we could choose an orthonormal sequence (en)n≥1 in Eλ, but this is not possible because
we would have en → 0 weakly in H but Fen = λen 6→ 0 in H.

Using Theorem 2.52, choose an eigenvalue λ of F with |λ| = ‖F‖ and note that
λ 6= 0. Since F is continuous, the eigenspace Eλ = Eλ(F ) is closed. Let P be the
orthogonal projection onto Eλ. and note that P is compact and self-adjoint and we have
FP = PF = λP . Let

G = F − λP

and note that G is also compact and self-adjoint.

We claim that λ is not an eigenvalue of G. Let u ∈ H with Gu = λu, that is
λu = Gu = Fu − λPu. Apply P on both sides, using PF = λP and P 2 = P to get
λPu = P (Fu − λPu) = λPu − λPu = 0, and hence Pu = 0. Since Pu = 0 and P is
the orthogonal projection onto Eλ, we have u ∈ E⊥λ . Since u ∈ E⊥λ and u ∈ Eλ, we have
u = 0. Thus λ is not an eigenvalue of G, as claimed.

We claim that every non-zero eigenvalue µ of G is also an eigenvalue of F , and that
Eµ(G) = Eµ(F ) (that is, the eigenspace of µ forG is equal to the eigenspace of µ for F ). Let
0 6= µ be an eigenvalue of G and let w be an eigenvector of µ for G, so we have Gw = µw.
Note that since λP = FP = PF we have G = F − λP = F (I − P ) = (I − P )F , and since
P 2 = P we have (I−P )2 = (I−2P +P 2) = (I−P ). Thus we have µw = Gw = (I−P )Fw
and hence (I −P )µw = (I −P )2Fw = (I −P )Fw = Gw = µw. Since µ 6= 0 we can divide
both sides by µ to get (I − P )w = w, and so Fw = F (I − P )w = Gw = µw. Thus µ is
also an eigenvalue of F with w as an eigenvector, so we have Eµ(G) ⊆ Eµ(F ).

It remains to show that Eµ(F ) ⊆ Eµ(G). Let v ∈ Eµ(F ), so we have Fv = µv. Since
µ is an eigenvalue of G but λ is not, we have µ 6= λ so that the eigenspaces Eµ(F ) and
Eλ(F ) are orthogonal, and hence Pv = 0. Thus Gv = (F − λP )v = Fv = µv and hence
Eµ(F ) ⊆ Eµ(G), as required.

Let F1 = F , λ1 = λ and F2 = G = F1 − λ1Pλ1 , then repeat the above procedure by
choosing an eigenvalue λ2 of F2 with |λ2| = ‖F2‖, and letting F3 = F2 − λ2Pλ2 , and so

on, to obtain a sequence of eigenvalues λ1, λ2, · · · and maps Fn+1 = F −
n∑
k=1

λkPλk
where

at each stage, λn is an eigenvalue for Fn with |λn| = ‖Fn‖, and Eλn(Fn) = Eλn(F ). Note
that the eigenvalues are distinct (because λn−1 is an eigenvalue for Fn−1 but not for Fn)
and they are in nonincreasing order of absolute value

(
because λn is an eigenvalue of Fn−1

so that |λn| ≤ ‖Fn−1‖ = |λn−1|
)
.
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Either the procedure comes to an end after finitely many steps with Fn+1 = 0, in which

case we have F =
n∑
k=1

λkPλk
, or it continues indefinitely to give an infinite (countable)

sequence of distinct eigenvalues in nonincreasing order of absolute value. Suppose that the
procedure continues indefinitely, so we obtain an infinite sequence λ1, λ2, λ3, · · · of distinct
eigenvalues of F with |λ1| ≥ |λ2| ≥ |λ3| ≥ · · ·.

We claim that |λn| → 0. Suppose, for a contradiction, that |λn| → r > 0. For each
n ∈ Z+, choose an eigenvector un ∈ Eλn

(F ) with ‖un‖ = 1. Since (un) is bounded, we can
choose a weakly convergent subsequence (unk

). Since F is compact, the sequence (Funk
)

converges in H. But this is not possible because (since the eigenspaces are orthogonal) we
have

‖Funk
− Fun`

‖2 = ‖λnk
unk
− λn`

un`

∥∥2 = λ2nk
+ λ2n`

≥ 2r2

so the sequence (Funk
) is not Cauchy. Thus |λn| → 0, as claimed.

Note that since |λn| → 0, it follows that F =
∞∑
k=1

λkPλk
(in the space of bounded

linear operators on H, using the operator norm) because∥∥∥F − n∑
k=1

λkPλk

∥∥∥ = ‖Fn+1‖ = |λn+1| → 0.

It remains to show that the eigenvalues λ1, λ2, · · · constitute all of the nonzero eigen-
values of F . Let us consider the case that our procedure yields infinitely many eigenvalues

λ1, λ2, · · · and that F =
∞∑
k=1

λkPλk
(the case of finitely many eigenvalues is simpler). Each

eigenspace Eλk
is finite-dimensional and can be given an orthonormal basis. These bases

can be combined to give a countable orthonormal set (or an orthonormal sequence). This

orthonormal set is a Hamel basis for the space of sums
∞∑
k=1

uk where each uk ∈ Eλk
with

only finitely many of the terms uk non-zero. Let U be the closure of this space in H.

By Theorems 2.30 and 2.31, U is the space of sums
∞∑
k=1

uk in H with
∞∑
k=1

‖uk‖2 < ∞,

where each uk ∈ Eλk
, and the elements uk are uniquely determined. Since U is closed in

H, we have H = U ⊕ U⊥, and so every element w ∈ H can be written uniquely in the

form w = v +
∞∑
k=1

uk with v ∈ U⊥ and uk ∈ Eλk
, and then we have uk = Pλk

w.

Let 0 6= µ ∈ R with µ 6= λk for any k, let w ∈ H, and suppose that Fw = µw. Write

w = v+
∞∑
k=1

uk with v ∈ U⊥ and uk ∈ Eλk
. Then Fw =

∞∑
k=1

λkuk and µw = µv+
∞∑
k=1

µuk,

so that 0 = µw − Fw = µv +
∞∑
k=1

(µ − λk)uk, hence µv = 0 and (µ − λk)uk = 0 for all k.

Since since µ 6= 0 we have v = 0 and since µ 6= λk we have uk = 0. Thus w = 0 so that µ
is not an eigenvalue of F .
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