
Chapter 1. Preliminaries

Basic Definitions

1.1 Definition: Let F = R or C. Let U be a vector space over F. An inner product on
U (over F) is a function 〈 , 〉 : U ×U → U (meaning that if u, v ∈ U then 〈u, v〉 ∈ U) such
that for all u, v, w ∈ U and all t ∈ F we have

(1) (Sesquilinearity) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 , 〈tu, v〉 = t 〈u, v〉,
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 , 〈u, tv〉 = t 〈u, v〉,

(2) (Conjugate Symmetry) 〈u, v〉 = 〈v, u〉, and
(3) (Positive Definiteness) 〈u, u〉 ≥ 0 with 〈u, u〉 = 0 ⇐⇒ u = 0.

For u, v ∈ U , 〈u, v〉 is called the inner product of u with v. An inner product space
(over F) is a vector space over F equipped with an inner product. Given two inner product
spaces U and V over F, a linear map L : U → V is called a homomorphism of inner
product spaces (or we say that L preserves inner product) when

〈
L(x), L(y)

〉
= 〈x, y〉

for all x, y ∈ U .

1.2 Definition: Let F = R or C. Let U be a vector space over F. A norm on U is a map
‖ ‖ : U → R such that for all u, v ∈ U and all t ∈ F we have

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with ‖u‖ = 0 ⇐⇒ u = 0, and
(3) (Triangle Inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
For u ∈ U the real number ‖u‖ is called the norm (or length) of u, and we say that
u is a unit vector when ‖u‖ = 1. A normed linear space over F is a vector space
over F equipped with a norm. Given two normed linear spaces U and V over F, a linear
map L : U → V is called a homomorphism of normed linear spaces (or we say that L
preserves norm) when

∣∣∣∣L(x)
∣∣∣∣ = ‖x‖ for all x ∈ U .

1.3 Theorem: Let F = R or C. Let U be an inner product space over F. For u ∈ U
define ‖u‖ =

√
〈u, u〉. Then

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with ‖u‖ = 0 ⇐⇒ u = 0,
(3) ‖u+ v‖2 = ‖u‖2 + 2 Re 〈u, v〉+ ‖v‖2,
(4) (Pythagoras’ Theorem) if 〈u, v〉 = 0 then ‖u+ v‖2 = ‖u‖2 + ‖v‖2,
(5) (Parallelogram Law) ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2,
(6) (Polarization Identity) if F = R then 〈u, v〉 = 1

4

(
‖u+ v‖ − ‖u− v‖

)
and

if F = C then 〈u, v〉 = 1
4

(
‖u+ v‖2 + i‖u+ iv‖2 − ‖u− v‖2 − i‖u− iv|‖2

)
,

(7) (The Cauchy-Schwarz Inequality) |〈u, v〉| ≤ ‖u‖‖v‖ with |〈u, v〉| = ‖u‖‖v‖ if and only if
{u, v} is linearly dependent, and

(8) (The Triangle Inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
In particular, ‖ ‖ is a norm on U .

Proof: We omit the proof.
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1.4 Definition: A metric on a nonempty set X is a function d : X ×X → R such that,
for all x, y, z ∈ X we have

(1) (Positive Definiteness) d(x, y) ≥ 0 with d(x, y) = 0 ⇐⇒ x = y,
(2) (Symmetry) d(x, y) = d(y, x) and
(3) (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z).

A nonempty set with a metric is called a metric space.

1.5 Definition: A topology on a set X is a set T of subsets of X such that

(1) ∅ ∈ T and X ∈ T ,
(2) if U ∈ T and V ∈ T then U ∩ V ∈ T , and
(3) if K is a set and Uk ∈ T for each k ∈ K then

⋃
k∈K

Uk ∈ T .

For a subset A ⊆ X, we say that A is open (in X) when A ∈ T and we say that A is
closed (in X) when X \A ∈ T . A set with a topology is called a topological space.

1.6 Note: Given an inner product on a vector space V over F = R or C, Theorem 1.3
shows that we can define an associated norm on V by letting ‖x‖ =

√
〈x, x〉 for x ∈ V .

Given a norm on a vector space V , we can define an associated metric on any subset
X ⊆ V by letting d(x, y) = ‖x− y‖ for x, y ∈ X.

Given a metric on a set X, recall (or verify) that we can define an associated topology
on X by stipulating that a subset A ⊆ X is open when it has the property that for all
a ∈ A there exists r > 0 such that B(a, r) ⊆ A, where B(a, r) =

{
x ∈ X

∣∣d(x, a) < r
}

.

1.7 Definition: Let (xn)n≥1 be a sequence in a metric space X. For a ∈ X, we say that
the sequence (xn) converges to a in X, and we write lim

n→∞
xn = a, or we write xn → a,

when
∀ ε>0 ∃n∈Z+ ∀k∈Z+

(
k ≥ n =⇒ d(xn, a) < ε

)
.

We say that (xn) converges in X when it converges to some element a ∈ X. We say that
(xn) is Cauchy when

∀ ε>0 ∃n∈Z+ ∀ k, l∈Z+
(
k, l ≥ n =⇒ d(xk, xl) < ε

)
.

Recall (or verify) that, in a metric space, if a sequence converges then it is Cauchy.

1.8 Definition: A metric space X is called complete when, in X, every Cauchy sequence
converges. Note that if X is complete and A ⊆ X is closed then A is also complete. A
complete normed linear space is called a Banach space and a complete inner-product
space is called a Hilbert space.

1.9 Definition: Let X be a topological space and let A ⊆ X. We say that A is dense in
X when A = X (where A denotes the closure of A in X). In the case that X is a metric
space, A is closed when for every sequence (xn) in A and every a ∈ X, if xn → a in X then
a ∈ A. A metric space is called separable when it contains a countable dense subset.
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Examples

1.10 Example: Let F = R or C. The standard inner product of Fn is given by

〈x, y〉 = y∗x =
n∑
k=1

xkyk. It induces the standard norm, also called the 2-norm, on Fn

given by ‖x‖ = ‖x‖2 =
( n∑
k=1

|xk|2
)1/2

and the standard metric, also called the 2-metric,

on Fn given by d(x, y) = d2(x, y) = ‖x − y‖2. Recall that Fn is complete and separable
under d2, so it is a finite-dimensional separable Hilbert space.

1.11 Example: Let F = R or C, let Fω be the space of sequences x = (x1, x2, x3, · · ·)
with each xk ∈ F, and let F∞ be the space of eventually zero sequences (F∞ is countable-
dimensional with basis {e1, e2, e3, · · ·} where e1 = (1, 0, 0 · · ·), e2 = (0, 1, 0, · · ·) and so on).
Let

`2 = `2(F) =
{
x ∈ Fω

∣∣ n∑
k=1

|xk|2 <∞
}
.

Recall that we can define an inner product, called the standard inner product, on `2

given by 〈x, y〉 =
∞∑
k=1

xkyk. It induces the 2-norm given by ‖x‖2 =
( ∞∑
k=1

|xk|
)1/2

, and the

2-metric given by d2(x, y) = ‖x− y‖2. Recall that `2 is complete and separable under d2,
so it is an infinite-dimensional separable Hilbert space.

1.12 Example: Let A ⊆ R be measurable and let F = R or C. Recall that when
u, v : A → R, the function f = u + iv : A → C is measurable if and only if u and v are
both measurable and, in this case,

∫
A
f =

∫
A
u+ i

∫
A
v. Let M(A) =M(A,F) denote the

set of all measurable functions f : A→ F, and let

L2(A) = L2(A,F) =
{
f ∈M(A)

∣∣∣ ∫
A

|f |2 <∞
}/
∼

where ∼ is the equivalence relation given by f ∼ g ⇐⇒ f = g a.e. in A. Recall
that we can define an inner product, called the standard inner product, on L2(A) by

〈f, g〉 =
∫
A
fg. It induces the 2-norm given by ‖f‖2 =

( ∫
A
|f |2

)1/2
and the 2-metric

given by d2(f, g) = ‖f − g‖2. Recall that L2(A) is complete under d2. Also recall that for
a < b, L2[a, b] is separable so it is an infinite-dimensional separable Hilbert space.

1.13 Example: Let F = R or C. For x ∈ Fn, define ‖x‖p =
( n∑
k=1

|xk|p
)1/p

for 1 ≤ p <∞,

and ‖x‖∞ = max
{
|xk|

∣∣ 1 ≤ k ≤ n
}

. Recall that for 1 ≤ p ≤ ∞, ‖x‖p gives a norm,
called the p-norm on Fn, and it induces the p-metric dp. The ∞-norm is also called
the supremum norm and the ∞-metric is also called the supremum metric. Recall
that Fn is complete and separable under dp for 1 ≤ p ≤ ∞, so it is a finite-dimensional
separable Banach space.

1.14 Example: Let F = R or C. For x ∈ Fω, define ‖x‖p =
( ∞∑
k=1

|xk|p
)1/p

for 1 ≤ p <∞,

and ‖x‖∞ = sup
{
|xk|

∣∣ k ∈ Z+
}

(note that ‖x‖p and ‖x‖∞ can be infinite), and let

`p = `p(F) =
{
x ∈ Fω

∣∣ ‖x‖p <∞} and `∞ = `∞(F) =
{
x ∈ Fω

∣∣ ‖x‖∞ <∞
}
.

Recall that for 1 ≤ p ≤ ∞, ‖x‖p gives a norm, called the p-norm on `p, and it induces the
p-metric dp. The ∞-norm is also called the supremum norm and the ∞-metric is also
called the supremum metric. Recall that `p is complete under dp for 1 ≤ p ≤ ∞, so it
is a Banach space. Also recall that `p is separable for 1 ≤ p <∞, but `∞ is not separable.
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1.15 Example: Let A ⊆ R be measurable and let F = R or C. Let M(A) = M(A,F)
be the set of all (Lebesgue) measurable functions f : A → F. When f ∈ M(A), for
1 ≤ p <∞, the p-norm of f is given by

‖f‖p =

(∫
A

|f |p
)1/p

and the ∞-norm, also called the essential supremum, of f is given by

‖f‖∞ = inf
{
m ≥ 0

∣∣ |f(x)| ≤ m a.e. on A
}

(note that ‖f‖p and ‖f‖∞ can by infinite). Let

Lp(A) =
{
f ∈M(A)

∣∣∣ ‖f‖p <∞}/ ∼ for 1 ≤ p <∞, and

L∞(A) =
{
f ∈M(A)

∣∣∣ ‖f‖∞ <∞
}/
∼

where ∼ is the equivalence relation given by f ∼ g ⇐⇒ f = g a.e. in A. Recall that
the p-norm is indeed a norm on Lp(A) for 1 ≤ p ≤ ∞, and it induces the p-metric dp.
The ∞-norm is also called the supremum norm and the ∞-metric is also called the
supremum metric. Recall that Lp(A) is complete under dp for 1 ≤ p ≤ ∞, so it is a
Banach space. Also recall that for a < b, Lp[a, b] is separable for 1 ≤ p <∞ but L∞[a, b]
is not separable.

1.16 Remark: In Examples 1.11 and 1.14, we need to quotient by the equivalence relation
∼ in order that the inner product and the p-norms are positive definite. In Examples 1.13,
1.14 and 1.15, it is not immediately obvious, from the definition of the various p-norms,
that they satisfy the Triangle Inequality. The Triangle Inequality for the p-norms is called
Minkowski’s Inequality, and it is often proven using Hölder’s Inequality.

1.17 Theorem: (Hölder’s Inequality) Let F = R or C, let p, q ∈ [1,∞] with 1
p + 1

q = 1
and let A ⊆ R be measurable.

(1) For all x, y ∈ Fn and for all x, y ∈ Fω we have ‖xy‖1 ≤ ‖x‖p‖y‖q.
(2) For all f, g ∈M(A) we have ‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof: We omit the proof.

1.18 Theorem: (Minkowski’s Inequality) Let F = R or C, let p ∈ [1,∞] and let A ⊆ R
be measurable.

(1) For all x, y ∈ Fn and for all x, y ∈ Fω we have ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
(2) For all f, g ∈M(A) we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof: We omit the proof.

1.19 Example: Let X be a metric space and let F = R or C. Let F(X) = F(X,F) be the
space of all functions f : X → F. let Fb(X) = Fb(X,F) be the space of bounded functions,
let C(X) = C(X,F) be the space of continuous functions, and let Cb(X) = Cb(X,F) be the
space of bounded continuous functions. Recall that Fb(X) is a Banach space under the
supremum metric ‖f‖∞ = sup

{
|f(x)|

∣∣x ∈ X} (indeed, convergence in Fb(X) under the
supremum metric is the same thing as uniform convergence on X, and Fb(X) is complete
because the uniform limit of a sequence of continuous functions is continuous). Also Cb(X)
is closed in Fb(X), so it is also a Banach space under the supremum norm. When X is
compact we have C(X) = Cb(X), so C(X) is a Banach space. When a, b ∈ R with a < b,
C[a, b] is separable by the Weierstrass Polynmial Approximation Theorem.
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Bounded Linear Operators

1.20 Remark: When U and V are normed linear spaces over F = R or C, a linear map
F : U → V is also called a linear transformation or a linear operator, a linear map
F : U → U is also called a linear operator on U , and a linear map F : U → F is also
called a linear functional on U . In the past, the words operator and functional were
normally used when U was an infinite-dimensional space of functions.

1.21 Definition: Let U and V be normed linear spaces and let F : U → V be a linear
operator. The operator norm of F is given by

‖F‖ = sup
{
‖Fx‖

∣∣∣x ∈ U with ‖x‖ ≤ 1
}

and we say that F is bounded when ‖F‖ < ∞, that is when the set F
(
BU (0, 1)

)
is

bounded in V . Since Fx = ‖x‖F
(
x
‖x‖
)

for all 0 6= x ∈ U , it follows that (when U 6= {0})

‖F‖ = sup
{
‖Fx‖

∣∣∣x ∈ U with ‖x‖ = 1
}

and that
‖Fx‖ ≤ ‖F‖ ‖x‖ for all x ∈ U

with
‖F‖ = inf

{
m ≥ 0

∣∣∣ ‖Fx‖ ≤ m‖x‖ for all x ∈ U
}
.

We denote the space of bounded linear operators F : U → V by B(U, V ), so

B(U, V ) =
{
F : U → V

∣∣∣ F is linear with ‖F‖ <∞
}
.

1.22 Example: Recall, from linear algebra, that when U and V are non-trivial finite
dimensional inner product spaces over R and F : U → V is a linear map, the closed unit
ball in U is compact (so that ‖Fx‖ attains its maximum on the closed unit ball) and we
have

‖F‖ = max
{
‖Fx‖

∣∣∣x ∈ U, ‖x‖ = 1
}

= ‖Fu‖ =
√
λ

where λ is the largest eigenvalue of F ∗F : U → U and u is a unit eigenvector for λ.

1.23 Theorem: Let U and V be normed linear spaces.

(1) The set B(U, V ) is a normed linear space using the operator norm.
(2) If V is a Banach space then B(U, V ) is a Banach space.

Proof: To prove Part 1, let F,G : U → V be linear operators. It is clear, from the definition
of ‖F‖ that ‖F‖ ≥ 0 with ‖F‖ = 0 ⇐⇒ F = 0. For all x ∈ U and t ∈ F, we have

‖(tF )x‖ = ‖t(Fx)‖ = |t| ‖Fx‖ ≤ |t| ‖F‖ ‖x‖
and it follows that ‖tF‖ = |t| ‖F‖. Also, for all x, y ∈ U we have

‖(F +G)x‖ = ‖Fx+Gx‖ ≤ ‖Fx‖+ ‖Gx‖ ≤ ‖F‖ ‖x‖+ ‖G‖ ‖x‖ =
(
‖F‖+ ‖G‖

)
‖x‖

and it follows that ‖F +G‖ ≤ ‖F‖+ ‖G‖. Thus B(U, V ) is a vector space (it is a subspace
of the space Hom(U, V ) of linear maps from U to V because 0 ∈ B(U, V ) and when F and
G are bounded and t ∈ F, the operators tF and F + G are bounded) and the operator
norm is indeed (as its name suggests) a norm on B(U, V ).
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To prove Part 2, suppose that V is a Banach space and let (Fn)n≥1 be a Cauchy
sequence in B(U, V ). Note that for each x ∈ U and for k, ` ∈ Z+ we have

‖Fkx− F`x‖ = ‖(Fk − F`)x‖ ≤ ‖Fk − F`‖ ‖x‖
and it follows that (Fnx)n≥1 is a Cauchy sequence in V and hence, since V is a Banach
space, it converges. Define G : U → V by Gx = lim

n→∞
Fnx. Note that G is linear.

We claim that G is bounded. Since the sequence (Fn)n≥1 is Cauchy in B(U, V )
it is also bounded in B(U, V ), so we can choose M ≥ 0 such that ‖Fn‖ ≤ M for all
n ∈ Z+. Then for all x ∈ U , since Fnx→ Gx in V we have ‖Fnx‖ → ‖Gx‖ in R (because∣∣‖Fnx‖ − ‖Gx‖∣∣ ≤ ‖Fnx−Gx‖), and since ‖Fnx‖ ≤ ‖Fn‖ ‖x‖ ≤M ‖x‖ for all n, we have

‖Gx‖ =
∣∣∣∣ lim
n→∞

Fnx
∣∣∣∣ = lim

n→∞
‖Fnx‖ ≤M‖x‖.

Thus ‖G‖ ≤M so that G is bounded, as claimed.

Finally, we claim that Fn → G in B(U, V ). Let ε > 0. Since (Fn)n≥1 is Cauchy in
B(U, V ), we can choose m ∈ Z+ such that when k, n ≥ m we have ‖Fn − Fk‖ < ε. Then
when k, n ≥ m, for all x ∈ U we have

‖Fnx− Fkx‖ = ‖(Fn − Fk)x‖ ≤ ‖Fn − Fk‖ ‖x‖ < ε‖x‖.
Let n ≥ m. Then for all x ∈ U we have

‖(Fn −G)x‖ = ‖Fnx−Gx‖ =
∣∣∣∣Fnx− lim

k→∞
Fkx

∣∣∣∣ = lim
k→∞

‖Fnx− Fkx‖ ≤ ε‖x‖.

Thus Fn → G in B(U, V ), as claimed.

1.24 Definition: Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y . We say
that f is Lipschitz continuous (on X) when there is a constant ` ≥ 0, called a Lipschitz
constant for f , such that for all x, y ∈ X we have dY

(
f(x), f(y)

)
≤ ` · dX(x, y).

1.25 Note: Let X and Y be metric spaces and let f : X → Y be Lipschitz continuous.
Then f is also uniformly continuous. Also, if xn → a in X then f(xn) → f(a) in Y .
Likewise, if (xn) is Cauchy in X then

(
f(xn)

)
is Cauchy in Y .

1.26 Theorem: Let U and V be normed linear spaces and let F : U → V be a linear
map. Then the following are equivalent:

(1) F is Lipschitz continuous on U .
(2) F is continuous at some point a ∈ U .
(3) F is continuous at 0.
(4) F is bounded.

In this case, ‖F‖ is a Lipschitz constant for F .

Proof: If F is Lipschitz continuous on U then F is continuous at some point a ∈ U (indeed
F is continuous at every point a ∈ U). If F is continuous at some point a ∈ U then F is
also continuous at 0 because, given x ∈ U , if we let u = x+ a then we have ‖x‖ = ‖u− a‖
and ‖Fx‖ = ‖Fu− Fa‖. If F is continuous at 0 then F is bounded because if we choose
δ > 0 such that for all x ∈ U with ‖x‖ ≤ δ we have ‖Fx‖ ≤ 1, then for all x ∈ U with
‖x‖ = 1 we have ‖δx‖ = δ so that ‖Fx‖ = 1

δ ‖F (δx)‖ ≤ 1
δ , and it follows that ‖F‖ ≤ 1

δ .
Finally note that if F is bounded then for all x, y ∈ U we have

d(Fx, Fy) = ‖Fx− Fy‖ = ‖F (x− y)‖ ≤ ‖F‖ ‖x− y‖ = ‖F‖ d(x, y)

so that F is Lipschitz continuous with Lipschitz constant ‖F‖.
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Dual Spaces

1.27 Definition: The (linear) dual space of a vector space U over a field F is the vector
space

U# = Hom(U,F) =
{
f : U → F

∣∣ f is linear
}
.

The (continuous) dual space of a normed linear space U over F = R or C is the normed
linear space

U∗ = B(U,F) =
{
f : U → F

∣∣ f is linear with ‖f‖ <∞
}

using the operator norm. Note U∗ is a Banach space by Theorem 1.23.

1.28 Theorem: (The Riesz Representation Theorem for the `p Spaces) Let p, q ∈ [1,∞]
with 1

p + 1
q = 1.

(1) The map F : `q → `p
∗ given by F (b)(a) =

∞∑
k=1

akbk is well-defined, linear, injective and
norm-preserving.

(2) When p 6=∞, the above map F is also surjective, so we have `p
∗ ∼= `q.

Proof: For b ∈ `q, write Fb = F (b). For a ∈ `p, writing |a| =
(
|a1|, |a2|, · · ·

)
and similarly

for |b|, Hölder’s Inequality gives∣∣Fb(a)
∣∣ =

∣∣∣ ∞∑
k=1

akbk

∣∣∣ ≤ ∞∑
k=1

|akbk| =
∣∣∣∣|a| |b|∣∣∣∣

1
≤ ‖a‖p‖b‖q

so that Fb is a well-defined bounded linear map Fb : `p → F with ‖Fb‖ ≤ ‖b‖q, and hence
F is a well-defined linear map F : `q → `p

∗. We claim that F preserves norm.
Case 1: suppose p = 1 (and q = ∞). Let b ∈ `∞. Let en = (0, · · · , 0, 1, 0, · · ·) be the

nth standard basis vector in F∞. Then ‖en‖1 = 1 and
∣∣Fb(en)

∣∣ = |bn| hence ‖Fn‖ ≥ |bn|.
Since ‖Fb‖ ≥ bn for all n ∈ Z+, we have ‖Fb‖ ≥ sup

{
|bn|

∣∣n ∈ Z+
}

= ‖b‖∞. We already
showed above that ‖Fb‖ ≤ ‖b‖∞ so we have ‖Fb‖ = ‖b‖∞, and so F is norm-preserving.

Case 2: suppose 1 < p <∞. Let b ∈ `q. If b = 0 then Fb = 0. Suppose that b 6= 0. Let
m ∈ Z+ be large enough so bk 6= 0 for some k ≤ m. Let a = (a1, a2, · · · , am, 0, 0, · · ·) ∈ `p
where ak = |bk|q

bk
when k ≤ m and bk 6= 0 and ak = 0 otherwise. Since

∣∣Fb(a)
∣∣ ≤ ‖Fb‖ ‖a‖p,

and Fb(a) =
m∑
k=1

|bk|q, and ‖a‖p =
( m∑
k=1

|bk|p(q−1)
)1/p

=
( m∑
k=1

|bk|q
)1/p

, we have

m∑
k=1

|bk|q =
∣∣Fb(a)

∣∣ ≤ ‖Fb‖ ‖a‖p = ‖Fb‖
( m∑
k=1

|bk|q
)1/p

and hence

‖Fb‖ ≥
( m∑
k=1

|bk|q
)1− 1

p

=
( m∑
k=1

|bk|q
)1/q

−→ ‖b‖q as m→∞.

It follows that ‖Fb‖ ≥ ‖b‖q hence ‖Fb‖ = ‖b‖q, and so F preserves norm.

Case 3: suppose p = ∞ (and q = 1). Let b ∈ `1. For each k ∈ Z+, let ak = |bk|
bk

if

bk 6= 0 and let ak = 1 if bk = 0, and let a = (a1, a2, · · ·). Then we have ‖a‖∞ = 1 and

Fb(a) =
∞∑
k=1

|bk| = ‖b‖1, and so ‖Fb‖ ≥ ‖b‖1. Thus ‖Fb‖ = ‖b‖1 so F preserves norm.

Since every norm-preserving map is injective, this proves Part 1. To prove Part 2, let
1 ≤ p < ∞ and let f ∈ `p∗. Let b =

(
f(e1), f(e2), f(e3), · · ·

)
∈ Fω, where ek is the kth

standard basis vector in F∞. We claim that b ∈ `q and that Fb = f , so that F is surjective,
as required.
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Case 1: suppose p = 1 (and q =∞). Let f ∈ `1∗ and let b =
(
f(e1), f(e2), · · ·

)
∈ Fω.

For each k ∈ Z+ we have ‖ek‖1 = 1 hence |bk| =
∣∣f(ek)

∣∣ ≤ ‖f‖. Since |bk| ≤ ‖f‖ for all
k ∈ Z+, we have ‖b‖∞ ≤ ‖f‖ < ∞ and so b ∈ `∞, as required. To show that Fb = f ,

let a ∈ `p. For each m ∈ Z+, let xm =
m∑
k=1

akek = (a1, · · · , am, 0, 0, · · ·) ∈ `p. Note that

xm → a in `p. Since f is continuous and linear we have

f(a) = lim
m→∞

f(xm) = lim
m→∞

m∑
k=1

akf(ek) = lim
m→∞

m∑
k=1

akbk =
∞∑
k=1

akbk = Fb(a).

Case 2: suppose 1 < p < ∞. Let f ∈ `p
∗ and let b =

(
f(e1), f(e2), · · ·

)
∈ Fω. If

b = 0 then b ∈ `q. Suppose b 6= 0. As in our proof in Case 2 of Part 1, choose m ∈ Z+

large enough that bk 6= 0 for some k ≤ m and let a = (a1, · · · , am, 0, 0, · · ·) with ak = |bk|q
bk

when k ≤ m, bk 6= 0. As above, we have
m∑
k=1

|bk|q =
∣∣f(a)

∣∣ ≤ ‖f‖ ‖a‖p =
( m∑
k=1

|bk|q
)1/p

and hence ‖f‖ ≥
( m∑
k=1

|bk|q
)1/q

, and it follows, by taking the limit as m → ∞, that

‖b‖q ≤ ‖f‖ < ∞ so that b ∈ `q, as required. We can show that Fb = f as we did in Case

1. Given a ∈ `p, we let xm =
m∑
k=1

akek ∈ `p, we note that xm → a in `p, and use the fact

that f is continuous and linear to get f(a) = Fb(a).

1.29 Remark: In the case that p = ∞ and q = 1, the above proof breaks down at the
last step, because when a ∈ `∞ and xm = (a1, · · · , am, 0, 0, · · ·), we do not have xm → a
in `∞. In fact, the map F is not surjective in this case (as we shall see later, using the
Hahn-Banach Theorem).

1.30 Remark: We often identify `p
∗ with its image under the above map F , so we identify

`q with `p
∗ when 1 ≤ p <∞, and we identify `1 with a (proper) subspace of `∞

∗.

1.31 Theorem: (The Riesz Representation Theorem for the Lp Spaces) Let p, q ∈ [1,∞]
with 1

p + 1
q = 1, and let A ⊆ R be measurable with λ(A) > 0.

(1) The map F : Lq(A) → Lp(A)∗ given by F (g)(f) =

∫
A

fg is a well-defined injective
norm-preserving map.

(2) When 1 ≤ p <∞, the above map F is also surjective, so we have Lp(A)∗ ∼= Lq(A).

Proof: At the moment we can only prove Part 1, because we have not developed sufficient
machinery to prove Part 2. Part 2 is often proven in PMATH 451 using the Radon-Nikodym
Theorem. We might give a proof later in the course using an alternate method.

To prove Part 1, let g ∈ Lq(A) and write Fg = F (g). For f ∈ Lp(A), by Hölder’s
Inequality we have∣∣Fg(f)

∣∣ =

∣∣∣∣∫
A

fg

∣∣∣∣ ≤ ∫
A

|fg| =
∣∣∣∣ |f | |g| ∣∣∣∣

1
≤ ‖f‖p‖g‖q ≤ ‖g‖q

so that Fg is a well-defined bounded linear map Fg : `p → F with ‖Fg‖ ≤ ‖g‖q. Thus F is
a well-defined linear map F : Lq(A) → Lp(A)∗. It remains to show that ‖Fg‖ ≥ ‖q‖q for
all g ∈ Lq(A), so that F preserves norm.

8



Case 1: suppose that p = 1 (and q = ∞). Let g ∈ Lq(A). Let ε > 0 and let
C =

{
x ∈ A

∣∣ |g(x)| > ‖g‖∞− ε
}

. Note that, by the definition of ‖g‖∞, we have λ(C) > 0.

Choose B ⊆ C so that 0 < λ(B) < ∞. Define s : A → F by s(x) = g(x)
|g(x)| if g(x) 6= 0 and

s(x) = 1 if g(x) = 0 (so that we have sg = |g|), and let f =
s

λ(B)
χ
B

where χ
B

is the

characteristic function of B (given by χ
B

(x) = 1 if x ∈ B and χ
B

(x) = 0 if x 6= B). Then

‖f‖1 =

∫
A

|s|
λ(B)

χ
B

=
1

λ(B)

∫
A

χ
B

= 1

and∣∣Fg(f)
∣∣ =

∣∣∣∣∫
A

fg

∣∣∣∣ =

∫
A

sg

λ(B)
χ
B

=
1

λ(B)

∫
B

|g| ≥ 1

λ(B)

∫
B

(
‖g‖∞ − ε

)
= ‖g‖∞ − ε.

It follows that ‖Fg‖ ≥ ‖g‖∞ − ε for every ε > 0, and so ‖Fg‖ ≥ ‖g‖∞, as required.

Case 2. suppose that 1 < p <∞. Let g ∈ Lq(A). If g = 0 then ‖Fg‖ ≥ ‖g‖q. Suppose

that ‖g‖q 6= 0. Define s : A → F as above, by s(x) = g(x)
|g(x)| if g(x) 6= 0 and s(x) = 1 if

g(x) = 0, and let f =
s

‖g‖q/pq

|g|q/p. Then

‖f‖pp =

∫
A

|f |p =

∫
A

1

‖g‖qq
|g|q = 1

and, since q
p + 1 = q

(
1
p + 1

q

)
= q hence also q − q

p = 1, we have

∣∣Fg(f)
∣∣ =

∣∣∣∣∫
A

fg

∣∣∣∣ =

∣∣∣∣∣
∫
A

sg

‖g‖q/pq

|g|q/p
∣∣∣∣∣ =

∫
A

|g|
‖g‖q/pq

|g|q/p =
1

‖g‖q/pq

∫
A

|g|q/p+1

=
1

‖g‖q/pq

∫
A

|g|q =
1

‖g‖q/pq

‖g‖qq = ‖g‖q−q/pq = ‖g‖q

so we have ‖Fg‖ ≥ ‖g‖q, as required.

Case 3. suppose that p = ∞ (and q = 1). Let g ∈ L1(A). Define s : A → {±1}
as above, by s(x) = g(x)

|g(x)| if g(x) 6= 0 and s(x) = 1 if g(x) = 0. Then ‖s‖∞ = 1 and∣∣Fg(s)∣∣ =
∫
A
|g| = ‖g‖1 so that ‖Fg‖ ≥ ‖g‖1, as required.
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Uniform Boundedness

1.32 Definition: Let X be a metric space and let A ⊆ X. Recall that A is dense (in
X) when for every nonempty open ball B ⊆ X we have B ∩ A 6= ∅, equivalently when
A = X. We say A is nowhere dense (in X) when for every nonempty open ball B ⊆ R
there exists a nonempty open ball C ⊆ B with C ∩A = ∅, or equivalently when A

0
= ∅.

When A ⊆ B ⊆ X, note that if A is dense in X then so is B and, on the other hand,
if B is nowhere dense in X then so is A. When A,B ⊆ X with B = Ac = X \A, note that

A is nowhere dense ⇐⇒ A
0

= ∅ ⇐⇒ B0 = X ⇐⇒ the interior of B is dense.

1.33 Definition: Let A ⊆ X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when Ac is first category.

Note that every countable set in R is first category since if A = {a1, a2, a3, · · ·} then we

have A =
∞⋃
k=1

{ak}. In particular Q is first category and Qc = R \Q is residual. Also note

that if A ⊆ X is first category then so is every subset of A. and that if A1, A2, A3, · · · ⊆ X
are are all first category then so is

∞⋃
k=1

Ak.

1.34 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.
(2) Every residual set in X is dense.
(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

LetA ⊆ X be first category, sayA =
∞⋃
n=1

Cn where each Cn is nowhere dense. Suppose,

for a contradiction, that A has nonempty interior, and choose an open ball B0 = B(a0, r0)
with 0 < r0 < 1 such that B0 ⊆ A . Since each Cn is nowhere dense, we can chose a
nested sequence of open balls Bn = B(an, rn) with 0 < rn <

1
2n such that Bn ⊆ Bn−1 and

Bn ∩ Cn = ∅. Because rn → 0, it folows that the sequence {an} is Cauchy. Because X
is complete, it follows that {an} converges in X, say a = lim

n→∞
an. Note that a ∈ Bn for

all n since ak ∈ Bn for all k ≥ n. Since a ∈ B0 and B0 ⊆ A we have a ∈ A. But since

a ∈ Bnfor al n ≥ 1, and Bn ∩Cn = ∅, we have a /∈ Cn for all n ≥ 1 hence a /∈
∞⋃
n=1

Cn, that

is a /∈ A.

1.35 Example: Recall that Q is first category and Qc is residual. The Baire Category
Theorem shows that Qc cannot be first category because if Q and Qc were both first
category then R = Q ∪ Qc would also be first category, but this is not possible since R
does not have empty interior.

1.36 Notation: Let X be a set. For any set C of subsets of X we write

Cσ =
{ ∞⋃
k=1

Ak

∣∣∣ each Ak ∈ C
}

and Cδ =
{ ∞⋂
k=1

Ak

∣∣∣ each Ak ∈ C
}
.

Note that Cσσ = Cσ and Cδδ = Cδ.
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1.37 Definition: Let X be a set. A σ-algebra in X is a set C of subsets of X such that

(1) ∅ ∈ C,
(2) if A ∈ C then Ac = X \A ∈ C, and

(3) if A1, A2, A3, · · · ∈ C then
∞⋃
k=1

Ak ∈ C.

Note that when C is a σ-algebra in X we have Cσ = C and Cδ = C.

1.38 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that Gσ = G
and Fδ = F .

1.39 Exercise: Using the Baire Category Theorem, show that in R we have F ⊆ Gδ
(equivalently G ⊆ Fσ), Fσ 6= Gδ, and Gδ ∪ Fσ ⊂6= Gδσ ∩ Fσδ.

1.40 Theorem: (The Banach-Steinhaus Theorem, or the Uniform Boundedness Principle)
Let X be a Banach space and let Y be a normed linear space. Let S be a set of bounded
linear maps L : X → Y . Suppose that for every x ∈ X there exists mx ≥ 0 such that
||Lx|| ≤ mx for all L ∈ S. Then there exists m ≥ 0 such that ||L|| ≤ m for all L ∈ S.

Proof: For each n ∈ Z+, let An =
{
x∈X

∣∣ ||Lx||≤n for all L∈S
}

. Note that An is closed

because the sets {x∈X
∣∣ ||Lx|| ≤ n} are closed for each L ∈ S, and An is the intersection

of these sets. By the hypothesis of the theorem, we have X =
⋃∞
n=1An. By the Baire

Category Theorem (since X is complete), the sets An cannot all be nowhere dense. Choose
n ∈ Z+ so that An is not nowhere dense. Chose a ∈ An and r > 0 so that B(a, r) ⊆ An.
For all x ∈ X, if x ∈ B(a, r) then x ∈ An so we have ||L(x)|| ≤ n for all L ∈ S. If ||x|| < r
then x+ a ∈ B(a, r) and a ∈ B(a, r) and so

||L(x)|| = ||L(x+ a)− L(a)|| ≤ ||L(x+ a)||+ ||L(a)|| ≤ 2n for all L ∈ S.
For all L ∈ S and x ∈ X, if ||x|| ≤ 1 then ||rx|| ≤ r and so ||L(x)|| = 1

r ||L(rx)|| ≤ 2n
r .

Thus we have ||L|| ≤ 2n
r for all L ∈ S.

1.41 Theorem: (Condensation of Singularities) Let X be a Banach space and let Y be
a normed linear space. For each m,n ∈ Z+, let Lm,n : X → Y be a bounded linear map.
Suppose that for each m ∈ Z+ there exists xm ∈ X such that lim sup

n→∞
||Lmn(xm)|| = ∞.

Then the set E =
{
x ∈ X

∣∣∣ lim sup
n→∞

||Lmn(x)|| =∞ for all m ∈ Z+
}

is a dense Gδ set.

Proof: Fixm ∈ Z+. For each ` ∈ Z+, letA` =
{
x∈X

∣∣ ||Ln,m(x)|| ≤ ` for all n ∈ Z+
}

and
note that each set A` is closed. As in the proof of the Uniform Boundedness Principle, if one
of the sets A` was not nowhere dense then we could choose m ≥ 0 such that ||Lm,n|| ≤ m
for all n ∈ Z+. But then for all x ∈ X we would have ||Lm,n(x)|| ≤ m||x|| for all n so
that lim sup

n→∞
||Lm,n(x)|| ≤ m||x||, contradicting the hypothesis of the theorem. Thus all of

the sets A` must be nowhere dense. Let Bm =
∞⋃
`=1

A` =
{
x∈X

∣∣ lim sup
n→∞

||Lm,n(x)|| <∞
}

and let C =
∞⋃
m=1

Bm =
{
x∈X

∣∣ lim sup
n→∞

||Lm,n(x)|| <∞ for some m ∈ Z+
}

, and note that

E = X \C. Then C is a countable union of closed nowhere dense sets, so E is a countable
intersection of open dense sets. By the Baire Category Theorem, E is dense.
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