
Chapter 5. Fourier Series

5.1 Remark: We shall begin with an informal discussion of Fourier series and how they
can be used in physics and engineering.

5.2 Definition: A real trigonometric series is a series of the form

a0 +
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx

where an, bn ∈ R and x ∈ R. If the series converges, we say it is the real Fourier series
of its sum

f(x) = a0 +
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx,

which is a periodic function of the real variable x with period 2π, and the numbers an, bn
are called the Fourier coefficients of f(x). If we are justified in integrating term by term
then, using the formulas∫ π

−π
1 = 2π ,

∫ π

−π
cosnx dx = 0 =

∫ π

−π
sinnx dx ,

∫ π

−π
cos2 nx dx = π =

∫ π

−π
sin2 nx dx∫ π

−π
cosnx cosmx dt = 0 =

∫ π

−π
sinnx sinmx dt , and

∫ π

−π
cosnx sinmx dt = 0

where n, n ∈ Z+ with n 6= m, we find that the Fourier coefficients are given by

a0 =
1

2π

∫ π

−π
f(x) dx , an =

1

π

∫ π

−π
f(x) cosnx dx , and bn =

1

π

∫ π

−π
f(x) sinnx dx.

5.3 Remark: For the moment, we shall blithely assume that, given a 2π-periodic function
f : R → R, the Fourier series with coefficients an and bn given by the above formulas
converges to the given function f(x).

5.4 Example: Find the Fourier coefficients of the 2π-periodic function f : R→ R with

f(x) =

{
π
2 + x for − π ≤ x ≤ 0,
π
2 − x for 0 ≤ x ≤ π.

Solution: Since f(x) is even, we have an = 0 for all n ∈ Z+, and we have

a0 =
1

2π

∫ π

−π
f(x) dx =

2

π

∫ π

0

f(x) dx =
2

π

∫ π

0

π
2 − x dx = 2

π

[
π
2x−

1
2x

2
]π
0

= 0

an =
1

π

∫ π

−π
f(x) cosnx dx =

2

π

∫ π

0

f(x) cosnx dx =
2

π

∫ π

0

(
π
2 − x

)
cosnx dx

=

∫ π

0

cosnx dx− 2

π

∫ π

0

x cosnx dx =
[
1
n sinnx

]π
0
− 2

π

[
1
nx sinnx+ 1

n2 cosnx
]π
0

= 0− 2
π

(
1
n2 (−1)n − 1

)
=

{
0 if n is even,

4
π n2 if n is odd.

Thus, assuming that the Fourier series of f(x) converges to f(x), we have

f(x) = 4
π

(
1
12 cosx+ 1

32 cos 3x+ 1
52 cos 5x+ · · ·

)
1



5.5 Remark: Assuming convergence, putting x = 0 into the above function f(x) gives
π
2 = 4

π

(
1
12 + 1

32 + 1
52 + · · ·

)
so we obtain the formula

∞∑
k=1

1
(2k+1)2 = π2

8 .

5.6 Example: (Forced Damped Oscillations) Suppose an object of mass m is attached to a
spring of spring-constant k and vibrates in a fluid of damping-constant c and let x = x(t)
be the displacement of the object from its equilibrium position at time t. Suppose, in
addition, that the object is acted on by an external force f(t). The total force F (t) acting
on the object consists of the force exerted by the spring, which is equal to −kx(t), the
resistive force exerted by the fluid, which is equal to −cx′(t), and the external driving
force, which is equal to f(t). By Newton’s Second Law of motion we have F (t) = mx′′(t)
and so x(t) satisfies the differential equation (the DE)

mx′′(t) + cx′(t) + kx(t) = f(t).

5.7 Example: Use Fourier series to solve the above DE with m = 1, c = 2 and k = 5,
where f(t) is the function from Example 5.4,

Solution: We need to solve the DE

x′′(t) + 2x′(t) + 5x(t) = f(t).

To solve the associated homogeneous DE x′′ + 2x′ + 5x = 0, we look for a solution of the
form x = x(t) = ert. Putting x = ert, x′ = rert and x′′ = r2ert into the homogeneous DE
gives (r2+2r+5)ert = 0 hence r = −1±2i. This gives us the two complex-valued solutions
x(t) = e(−1±2i)t = e−t(cos 2t ± i sin 2t). By taking suitable linear combinations of these
two complex-valued solutions we obtain the two real-valued solutions x1(t) = e−t cos 2t
and x2(t) = e−t sin 2t. The general solution to the DE x′′ + 2x′ + 5x = 0 is given by

x(t) = Ae−t cos 2t+Be−t sin 2t , where A,B ∈ R.

For each n ∈ Z+, to find a particular solution to the DE x′′+2x′+5x = cosnt, we look for
a solution of the form x = x(t) = An cosnt+Bn sinnt. Putting x = An cosnt+Bn sinnt,
x′ = −nAn sinnx + nBn cosnt and x′′ = −n2An cosnt − n2Bn sinnt into x′′ + 2x′ + 5 =
cosnt gives

(
− n2An + 2nBn + 5An

)
cosnt+

(
− n2Bn − 2nAn + 5Bn) sinnt = cosnt for

all t ∈ R and so we must have (5 − n2)An + 2nBn = 1 and (5 − n2)Bn − 2nAn = 0. We

solve these two equations to get An = 5−n2

n4−6n2+25 and Bn = 2n
n4−6n2+25 and so one solution

to the DE x′′ + 2x′ + 5 = cosnt is given by

x(t) = An cosnt+Bn sinnx , where An = 5−n2

n4−6n2+25 and Bn = 2n
n4−6n2+25 .

Since f(t) =
∑

n odd

4
πn2 cosnt, one particular solution, called the steady state solution,

to the original DE x′′ + 2x′ + 5x = f(t) is given by

x(t) =
∑
n odd

4

πn2
(
An cosnt+Bn sinnt

)
and the general solution is

x(t) = Ae−t cos 2t+Be−t sin 2t+
∑
n odd

4

πn2
(
An cosnt+Bn sinnt

)
, where A,B ∈ R.
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5.8 Example: (The One-Dimensional Wave Equation) An elastic string is stretched to
length π and is fixed at its two endpoints along the x-axis at x = 0 and x = π. The string
is displaced so that it follows the curve u = f(x) with f(0) = 0 and f(π) = 0, then at
time t = 0 the string is released and allowed to vibrate. The problem is to determine the
strings shape u = u(x, t) at all points 0 ≤ x ≤ π and all times t ≥ 0.

To formulate a differential equation (or DE) which models the situation, we consider
a segment of string, at time t, between the points p1 = (x1, u(x1, t)) and p2 = (x2, u(x2, t))
where the difference dx = x2−x1 is small. The slope of the curve u = g(x) = u(x, t) at p1
is ∂u

∂x (x1, t) and the angle θ1 from the horizontal is given by tan θ1 = ∂u
∂x (x1, t). Similarly,

the angle θ2 at p2 is given by tan θ2 = ∂u
∂x (x2, t), and we have

tan θ2 − tan θ1 = ∂u
∂x1

(x1, t)− ∂u
∂x (x2, t) = ∂2u

∂x2 dx.

Let T1 be the magnitude of the force exerted on p1 by the portion of the string which
lies to the left of p1, and let T2 be the magnitude of the force exerted on p2 by the
portion of the string which lies to the right of p2. Assuming that the segment of string
moves only vertically (so the total horizontal component of the force is zero) we have
T1 cos θ1 = T2 cos θ2. Let

T = T1 cos θ1 = T2 cos θ2

and note that T is a constant which we call the tension of the string. The total vertical
component of the force is F = T2 sin θ2−T1 sin θ1 and by Newton’s Second Law of motion,
we have

T2 sin θ2 − T2 sin θ1 = m∂2u
∂t2 = ρ dx∂

2u
∂t2

where ρ is the linear density of the string, that is its mass per unit length. From the

equations tan θ2− tan θ1 = ∂2u
∂x2 dx, T1 cos θ1 = T2 cos θ2 and T2 sin θ2−T1 sin θ2 = ρ dx ∂2u

∂t2

we obtain the one-dimentional wave equation

∂2u
∂t2 = c2 ∂

2u
∂x2 , where c2 = T

ρ .

5.9 Example: Use Fourier series to solve the one-dimensional wave equation ∂2u
∂t2 = c2 ∂

2u
∂x2

subject to the boundary conditions u(0, t) = 0 and u(0, π) = 0 for all t ≥ 0 and to the
initial conditions u(x, 0) = f(x) and ∂u

∂t (x, 0) = g(x) for all 0 ≤ x ≤ π.

Solution: We use a method known as separation of variables. We look for a solution
to the DE of the form u(x, t) = y(x)s(t) which satisfies the given boundary conditions
0 = u(0, t) = y(0)s(t) and 0 = u(π, t) = y(π)s(t). If we had y(x) = 0 for all x or
s(t) = 0 for all t then we would obtain the trivial solution u(x, t) = 0 for all x, t, so
let us assume this is not the case, so the boundary conditions become y(0) = y(π) = 0.
When u(x, t) = y(x)s(t), the DE becomes y(x)s′′(t) = c2y′′(x)s(t) which we can write as
y′′(x)
y(x) = 1

c2
s′′(t)
s(t) . Since the function on the left is a function of x (and is constant in t) and

the function on the right is a function of t (and is constant in x), in order for these two
functions to be equal for all x, t they must both be constant, say

y′′(x)
y(x) = k = 1

c2
s′′(t)
s(t)

where k is constant.
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First we solve the DE y′′(x)
y(x) = k subject to the boundary conditions y(0) = y(π) = 0.

If k = 0 then the DE becomes y′′ = 0, which has solution y = Cx+D, and the boundary
conditions give C = D = 0, so we obtain the trivial solution. If k > 0, say k = n2 where
n > 0, then the DE becomes y′′−n2y = 0, which has solution y = Cenx +De−nx, and the
boundary conditions give C+D = 0 and Cenπ +De−nπ = 0 which imply that C = D = 0,
so again we obtain the trivial solution. Suppose that k < 0, say k = −n2 where n > 0.
The DE becomes y′′+ n2y = 0 which has solution y = C cosnx+D sinnx. The boundary
condition y(0) = 0 gives C = 0 so that y = D sinnx, and the boundary condition y(π) = 0
gives D = 0 or sinnπ = 0. If D = 0 we obtain the trivial solution and if sinnπ = 0 then we
must have n ∈ Z. Thus in order to obtain a nontrivial solution to the DE which satisfies
the boundary conditions we must have k = −n2 for some n ∈ Z+ and, in this case,

y(x) = Dn sinnx , where Dn ∈ R.

When k = −n2 with n ∈ Z+, and y(x) = Dn sinnx, the DE 1
c2

s′′(t)
s(t) = k. becomes

s′′(t) + (cn)2s(t) = 0, and the solution is s(t) = An cos(cn t) +Bn sin(cn t). Thus, for each
n ∈ Z+, and for all An, Bn ∈ R, the function

u(x, t) = y(x)s(t) =
(
An cos cnt+Bn sin cnt

)
sinnx

is a solution to the one-dimensional wave equation which satisfies the boundary conditions
(we remark that it would be redundant to include the constants Dn as they could be
amalgamated with the constants An and Bn).

In order to find a solution which satisfies the given initial conditions u(x, 0) = f(x)
and ∂u

∂t (x, 0) = g(x), we look for a solution of the form

u(x, t) =

∞∑
n=1

(
An cos cnt+Bn sin cnt

)
sinnx .

In order to obtain u(x, 0) = f(x) we need
∞∑
n=1

An sinnx = f(x) and so we choose An to be

equal to the Fourier coefficients of the odd 2π-periodic function F (x) with F (x) = f(x)
for 0 ≤ x ≤ π, that is we choose

An =
1

π

∫ π

−π
F (x) sinnx dx =

2

π

∫ π

0

f(x) sinnx dx .

Assuming that we can differentiate term-by-term, we have

∂u
∂t (x, t) =

∞∑
n=1

(
− cnAn sin cnt+ cnBn cosnt

)
sinnx.

In order to obtain ∂u
∂t (x, 0) = g(x) we need

∞∑
n=1

cnBn sinnx = g(x) and so we choose Bn to

be equal to the Fourier coefficients of the odd 2π-periodic function G(x) with G(x) = g(x)
for 0 ≤ x ≤ π, that is

Bn =
2

cnπ

∫ π

0

g(x) sinnx dx .
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5.10 Remark: Let us now begin a more formal presentation of Fourier series in which we
consider convergence issues more carefully.

5.11 Definition: A real-valued trigonometric polynomial is a function f : R → R of
the form

f(x) = a0 +
m∑
n=1

an cosnx+
m∑
n=1

bn sinnx

for some an, bn ∈ R, and we say that f(x) is of degree m when either am 6= 0 or bm 6= 0.
A real-valued trigonometric series is a series of the form

a0 +
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx

which is given by its sequence of partial sums sm(x) = a0 +
m∑
n=1

an cosnx+
m∑
n=1

bn sinnx.

5.12 Remark: A trigonometric series may or may not converge and, indeed, we can con-
sider several different notions of convergence, for example pointwise convergence, uniform
convergence, or convergence with respect to a p-norm.

5.13 Definition: Every real-valued trigonometric polynomial is a smooth 2π-periodic
function f : R→ R. Every 2π-periodic function f : R→ R determines, and is determined
by, a function f : [−π, π]→ R with f(−π) = f(π), or equivalently by a function f : T → R
where T = R/2πZ, or equivalently by a function f : S → R where S =

{
eit
∣∣− π ≤ t ≤ π}

= {z ∈ Z
∣∣|z| = 1

}
. A function f : T → R is continuous (or differentiable, or Ck) if and

only if the corresponding 2π-periodic function f : R → R is continuous (or differentiable,
or Ck). We say that a function f : T → R is measurable when the corresponding
2π-periodic function f : R → R is measurable, or equivalently when the corresponding
function f : [−π, π] → R with f(−π) = f(π) is measurable. For a measurable function
f : T → R and for 1 ≤ p ≤ ∞ we define the p-norm ‖f‖p of the function f : T → R
to be equal to the p-norm ‖f‖p of the corresponding function f : [−π, π]→ R. We define
Lp(T,R) to be the quotient of the set of measurable functions f : T → R with ‖f‖p <∞
under the equivalence relation in which f ∼ g when f(x) = g(x) for a.e. x ∈ [−π, π]. Note
that because λ

(
[−π, π]

)
= 2π <∞, for 1 ≤ p ≤ ∞ we have L∞(T ) ⊆ Lp(T ) ⊆ L1(T ).

5.14 Definition: When f(x) = a0 +
m∑
n=1

an cosnx+ bn sinnx, where an, bn ∈ R, we have

f ∈ C∞(T ) and we know that the coefficients an and bn are given by the formulas

a0 =
1

2π

∫ π

−π
f(x) dx , an =

1

π

∫ π

−π
f(x) cosnx dx , bn =

1

π

∫ π

−π
f(x) sinnx dx .

Note that the above integrals all exist and are finite for any function f ∈ L1(T,R). Given a
function f ∈ L1(T,R), we define the real Fourier coefficients of f to be the real numbers
an = an(f) and bn = bn(f) given by the above formulas, and we define the real Fourier
series of f to be the corresponding real trigonometric series. Note that a real Fourier series
is a real trigonometric series which arises, in this way, from some function f ∈ L1(T,R).
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5.15 Definition: A complex-valued trigonometric polynomial is a function f : R→ C
of the form

f(x) =
m∑

n=−m
cne

inx

for some cn ∈ C, and we say that f(x) is of degree m when either cm 6= 0 or c−m 6= 0. A
complex-valued trigonometric series is a series of the form

∞∑
n=−∞

cne
inx

which is given by its sequence of partial sums sm(x) =
m∑

n=−m
cne

inx.

5.16 Definition: Every complex-valued trigonometric polynomial is a smooth 2π-periodic
function f : R→ C. Every 2π-periodic function f : R→ C determines, and is determined
by, a function f : [−π, π]→ C with f(−π) = f(π), or equivalently by a function f : T → C
where T = R/2πZ, or equivalently by a function f : S → C where S = {z ∈ Z

∣∣|z| = 1
}

.
For 1 ≤ p ≤ ∞, we define Lp(T ) = Lp(T,C) in the same way that we defined Lp(T,R).
For f : T → C given by f = u + iv where u : T → R and v : T → R, f is measurable if
and only if u and v are both measurable, and in this case we have

∫
T
f =

∫
T
u + i

∫
T
v,∫

T
|f | =

∫
T

√
u2 + v2, ‖f‖p = ‖

√
u2 + v2‖p and f ∈ Lp(T,C) if and only if u ∈ Lp(T,R)

and v ∈ Lp(T,R).

5.17 Definition: When f(x) =
m∑

n=−m
cne

inx, where cn ∈ C, because

∫
T

eikxe−ilxdx =

∫ π

−π
cos(k − l)x dx+ i

∫ π

−π
sin(k − l)x dx =

{
2π if k = l

0 if k 6= l,

it follows that the coefficients cn are given by the formula

cn = cn(f) =
1

2π

∫ π

−π
f(x)e−inx dx .

Note that the above integrals exist and are finite for any function f ∈ L1(T ) = L1(T,C).
Given a function f ∈ L1(T ), we define the (complex) Fourier coefficients of f to be the
complex numbers cn = cn(f) given by the above formulas, and we define the (complex)
Fourier series of f to be the corresponding complex trigonometric series.

5.18 Note: Given an, bn ∈ R, we have

a0 +
m∑
n=1

an cosnx+
m∑
n=1

bn sinnx = a0 +
m∑
n=1

an
einx+e−inx

2 +
m∑
n=1

bn
einx−e−inx

2i

= a0 +
m∑
n=1

(
a0
2 − i

bn
2

)
einx +

m∑
n=1

(
a0
2 −

bn
2i

)
e−inx =

m∑
n=−m

cne
inx

where c0 = a0 and cn = 1
2 (an − ibn) and c−n = cn = 1

2 (an + ibn) for n > 0.

6



On the other hand, given f ∈ L1(T,R), for n > 0 we have

cn =
1

2π

∫
T

f(x)e−inx dx =
1

2π

∫ π

−π
f(x)

(
cosnx− i sinnx

)
dx

=
1

2π

(∫ π

−π
f(x) cosnx− i

∫ π

−π
f(x) sinnx dx

)
= 1

2 (an − i bn)

c−n =
1

2π

∫
T

f(x)einx dx = 1
2 (an + i bn)

It follows that when f ∈ L1(T,R), the mth partial sum of the real Fourier series for f is
exactly equal to the mth partial sum for the complex Fourier series for f .

5.19 Definition: For f ∈ L1(T ) = L1(T,C) we denote the mth partial sum of the Fourier
series of f by sm(f), so we have

sm(f)(x) =
m∑

n=−m
cne

inx , where cn = cn(f) =
1

2π

∫ π

−π
f(t)e−intdt.

5.20 Exercise: Show that if f ∈ Lp(T ) with 1 ≤ p ≤ ∞, and sm(x) =
m∑

n=−m
dn e

inx with

sm → f in Lp(T ), then dn = cn(f).

5.21 Theorem: (The Stone-Weierstrass Theorem) Let X be a compact metric space and
let C(X) = C(X,F ) be the set of continuous functions f : X → F where F = R or C.
Let A be an algebra in C(X) which contains the constant functions and which separates
points in X and is closed under conjugation. Then A is uniformly dense in C(X), which
means that for all f ∈ C(X) and for all ε > 0 there exists g ∈ A such that ‖g − f‖∞ < ε.

Proof: We omit the proof.

5.22 Corollary: The set of polynomials R[x] is uniformly dense in C
(
[a, b]

)
.

5.23 Corollary: The set of functions of the form

u(x, y) =
n∑
k=1

fk(x)gk(y) , where fk ∈ C([a, b]) and gk ∈ C
(
[c, d]

)
is uniformly dense in C

(
[a, b]× [c, d]

)
.

5.24 Corollary: The set of real trigonometric polynomials is uniformly dense in C
(
T,R),

and the set of complex trigonometric polynomials is uniformly dense in C(T ) = C(T,C).

5.25 Corollary: (The Riemann-Lebesgue Lemma) Let f ∈ L1(T ). Then lim
n→±∞

cn(f) = 0.

Proof: Let ε > 0. Since the space of trigonometric polynomials is dense in C(T ) using the
∞-norm, hence also dense in C(T ) using the 1-norm, and C(T ) is dense in L1(T ) using the

1-norm, we can choose a trigonometric polynomial p(x) =
m∑

n=−m
ane

inx with ‖p− f‖1< ε
2π .

Then for |n| > m we have cn(p) = an = 0 and so

|cn(f)| =
∣∣cn(f)− cn(p)

∣∣ =

∣∣∣∣ 1

2π

∫ π

−π

(
f(x)− p(x)

)
e−inx dx

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(x)− p(x)
∣∣ dx = 1

2π‖f − p‖1 < ε.
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5.26 Note: Since real trigonometric polynomials are dense in C(T,R), hence also in
L2(T,R), it follows that the orthonormal set{

1√
2π
, 1√

π
cosnx , 1√

π
sinnx

∣∣n ∈ Z+
}

is a Hilbert basis for the Hilbert space L2(T,R). For f ∈ L2(T,R) we have

a0(f) = 1
2π 〈f, 1〉 , an(f) = 1

2π 〈f, cosnx〉 , bn = 1
2π 〈f, sinnx〉.

Similarly, since complex trigonometric polynomials are dense in L2(T ) = L2(T,C), it
follows that the orthonormal set {

1√
2π
einx

∣∣n ∈ Z
}

is a Hilbert basis for the Hilbert space L2(T,C). For f ∈ L2(T,C) we have

cn(f) = 1
2π 〈f, e

inx〉.

The following theorem is an immediate consequence of our earlier study of Hilbert spaces.

5.27 Theorem: In the Hilbert space L2(T ) = L2(T,C), we have the following.

(1) (Best Approximation) Given f ∈ L2(T ), sm(f) is the unique trigonometric polynomial
of degree at most m which best approximates f in L2(T ).

(2) (Convergence) Given f ∈ L2(T ) we have sm(f)→ f in L2(T ).

(3) (Parseval’s Identity) Given f ∈ L2(T ) we have ‖f‖22 = 2π
∞∑

n=−∞

∣∣cn(f)
∣∣2.

(4) (Inner Product Formula) Given f, g ∈ L2(T ) we have 〈f, g〉 = 2π
∞∑

n=−∞
cn(f) cn(g).

(5) (The Riesz-Fischer Theorem) Given cn ∈ C, if
∞∑

n=−∞
|cn|2 <∞ then there exists a

unique f ∈ L2(T ) such that cn = cn(f).

Proof: These are immediate consequences of Theorems 4.23 and 4.24.

5.28 Exercise: Show that when f ∈ L2(T,R), Parseval’s Identity becomes

‖f‖22 = 2π
∣∣a0(f)

∣∣2 + π
∞∑
n=1

∣∣an(f)
∣∣2 + π

∞∑
n=1

∣∣bn(f)
∣∣2 .

5.29 Exercise: Use Parseval’s Identity, together with the result of Example 5.4, to prove

that
∞∑
k=0

1
(2k+1)4 = π4

96 and use this result to calculate
∞∑
n=1

1
n4 .
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5.30 Note: Let f ∈ L1(T ). Then

sm(f)(x) =
m∑

n=−m
cn(f) einx =

m∑
n=−m

(
1

2π

∫ π

−π
f(t)e−int dt

)
einx

=
1

2π

∫ π

−π
f(t)

m∑
n=−m

ein(x−t) dt =
1

2π

∫ π

−π
f(t)Dm(x− t) dt

where

Dm(u) =
m∑

n=−m
einu = e−imu

ei(2m+1)u − 1

eiu − 1
=
ei(m+1)u − e−imu

eiu − 1
· e
−iu/2

e−iu/2

=
ei(2m+1)u/2 − ei(2m+1)u/2

eiu/2 − e−iu/2
=

sin (2m+1)u
2

sin u
2

.

5.31 Definition: The above function Dm : T → R is called the mth Dirichlet kernel.

5.32 Remark: For f, g ∈ L1(T ), the convolution of f with g is the function f? g : T → R
given by (f ? g)(x) = 1

2π

∫
T
f(t)g(x− t) dt. Using this notation we have sm(f) = f ? Dm.

5.33 Note: We have∫ π

−π
Dm(u) du =

∫ π

−π

m∑
n=−m

einu du =

∫ π

−π
1 +

m∑
n=1

2 cos(nu) du = 2π

and ∫ π

−π

∣∣Dm(u)
∣∣ du =

∫ π

−π

∣∣∣∣∣ sin
(2m+1)u

2

sin u
2

∣∣∣∣∣ du = 2

∫ π

0

∣∣∣∣∣ sin
(2m+1)u

2

sin u
2

∣∣∣∣∣ du
≥ 2

∫ π

u=0

∣∣∣ sin (2m+1)u
2

∣∣∣
u
2

du = 2

∫ (m+ 1
2 )π

t=0

| sin t|
t

2m+1

· 2
2m+1 dt

≥ 4
m∑
n=1

∫ nπ

(n−1)π

| sin t|
t

dt ≥ 4
m∑
n=1

∫ nπ

(n−1)π

| sin t|
nπ

dt

= 8
π

m∑
n=1

1
n ≥

8
π

∫ m+1

x=1

1
x dx = 8

π ln(m+ 1) ≥ 8
π lnm.
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5.34 Theorem: (Pointwise Divergence) Let C(T ) = C(T,C) be the Banach space of
continuous functions f : T → C equipped with the supremum norm. There exists a dense
Gδ set E ⊆ C(T ) such that for every f ∈ E the set of points x ∈ T at which the Fourier
series for f diverges is dense in T .

Proof: First we fix x = 0. For m ∈ Z+, define Fm : C(T )→ C by

Fm(f) = sm(f)(0) =
1

2π

∫ π

−π
f(t)Dm(t) dt.

Note that ∣∣Fm(f)
∣∣ ≤ 1

2π

∫ π

−π

∣∣f(t)
∣∣ ∣∣Dm(t)

∣∣ dt ≤ 1

2π
‖f‖∞

∫ π

−π

∣∣Dm(t)
∣∣ dt

so we have

‖Fm‖op ≤
1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt .

We claim that in fact ‖Fm‖op =
1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt. Fix m and define

s(t) =

{
1 if Dm(t) ≥ 0,

−1 if Dm(t) < 0.

Construct continuous functions gn : T → R with |gn| ≤ 1 such that gn → s pointwise. By
the Dominated Convergence Theorem, we have

Fm(gn) =
1

2π

∫ π

−π
gn(t)Dm(t) dt −→ 1

2π

∫ π

−π
s(t)Dm(t) dt =

1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt

so that ‖Fm‖op=
1

2π

∫ π

−π

∣∣Dm(t)
∣∣ dt, as claimed. By Note 5.33 we have ‖Fm‖op≥ 4 lnm

π2 , so

the set of linear operators S =
{
Fm
∣∣m ∈ Z+

}
is not uniformly bounded. By the Uniform

Boundedness Principle, applied to the set S, there exists a function f ∈ C(T ) such that
for all M > 0 we have

∣∣Fm(f)
∣∣ > M , that is

∣∣sm(f)(0)
∣∣ > M , for some m ∈ Z+. For this

function f ∈ C(T ), the Fourier series for f diverges at 0 because lim sup
m→∞

∣∣sm(f)(0)
∣∣ =∞.

Let Q = {a1, a2, a3, · · ·} be a dense subset of [0, 2π] and consider each an as an
element in T . For each n ∈ Z+ let fn(x) = f(x − an) so that lim sup

m→∞

∣∣sm(fn)(an)
∣∣ = ∞.

For n,m ∈ Z+, define Ln,m : C(T ) → C by Ln,m(f) = sm(f)(an). By Condensation of
Singularities, the set

E =
{
f ∈ C(T )

∣∣∣ lim sup
m→∞

∣∣∣∣Ln,m(f)
∣∣∣∣ =∞ for all n ∈ Z+

}
is a dense Gδ in the Banach space C(T ). For each f ∈ E, we have lim sup

m≥0

∣∣sm(f)(an)
∣∣ =∞

for every n ∈ Z+, so the Fourier series for f diverges at every point an.
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5.35 Theorem: (Cesàro Convergence) Let an ∈ C for n ≥ 0, let sm =
m∑
n=0

an and let

σ` = 1
`+1

∑̀
m=0

sm .

If the sequence {sm} converges then so does the sequence {σ`} and, in this case, we have

lim
`→∞

σ` = lim
m→∞

sm.

Proof: The proof is left as an exercise.

5.36 Definition: For f ∈ L1(T ) = L1(T,C), we define the `th Cesàro mean of the
Fourier series of f to be the function σ`(f) : T → C given by

σ`(f) = 1
`+1

∑̀
m=0

sm(f).

5.37 Note: For f ∈ L1(T ) = L1(T,C) we have

σ`(f)(x) =
1

`+ 1

∑̀
m=0

sm(f)(x) =
1

`+ 1

∑̀
m=0

1

2π

∫ π

−π
f(t)Dm(x− t) dt

=
1

2π

∫ π

−π
f(t) 1

`+1

∑̀
m=0

Dm(x− t) dt =
1

2π

∫ π

−π
f(t)K`(x− t) dt

where

K`(u) =
1

`+ 1

∑̀
m=0

Dm(u) =
1

`+ 1

∑̀
m=0

sin (2m+1)u
2

sin u
2

=
1

(`+ 1) sin u
2

· Im
( ∑̀
m=0

ei(2m+1)u/2
)

=
1

(`+ 1) sin u
2

· Im
(
eiu/2

∑̀
m=0

eimu
)

=
1

(`+ 1) sin u
2

· Im
(
eiu/2

ei(`+1)u − 1

eiu − 1

)
=

1

(`+ 1) sin u
2

· Im
( ei(`+1)u − 1

eiu/2 − e−iu
2

)
=

1

(`+ 1) sin u
2

· Im
(ei(`+1)u/2 − e−i(`+1)u/2

eiu/2 − e−iu/2
· ei(`+1)u/2

)
=

1

(`+ 1) sin u
2

·
sin (`+1)u

2

sin u
2

· sin (`+1)u
2 =

sin2 (`+1)u
2

(`+ 1) sin2 u
2

.

5.38 Definition: The above function K` : T → R is called the `th Féjer kernel.

5.39 Remark: Using convolution notation, for f ∈ L1(T ) we have σ`(f) = f ?K`.

5.40 Lemma: We have

(1) For 0 < t ≤ π we have 0 ≤ K`(t) ≤ π2

(`+1) t2 .

(2)

∫ π

−π
K`(t) dt = 2

∫ π

0

K`(t) dt = 2π.

(3)

∫ π

π

f(t)K`(x− t) dt =

∫ π

−π
f(x+ t)K`(t) dt =

∫ π

−π
f(x− t)K`(t) dt.

Proof: The proof is left as an exercise.
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5.41 Theorem: (Convergence of the Cesàro Means) Let f ∈ L1(T ) and consider f as a
2π-periodic function f : R→ C.

(1) If a ∈ R and the one-sided limits f(a−) = lim
x→a−

f(x) and f(a+) = lim
x→a+

f(x) both

exist in C, then

lim
`→∞

σ`(f)(a) =
f(a−) + f(a+)

2
.

(2) If a, b ∈ R with a ≤ b and f is continuous in [a, b] then σ` → f uniformly on [a, b].

Proof: By Part 3 of the above lemma, we have

σ`(f)(a) =
1

2π

∫ π

−π
f(t)K`(a− t) dt =

1

2π

∫ π

−π

f(a+ t) + f(a− t)
2

K`(t) dt

and by Part 2 of the above lemma we have

f(a+) + f(a−)

2
=

1

2π

∫ π

−π

f(a+) + f(a−)

2
K`(t) dt

and so∣∣∣∣σ`(f)(a)− f(a+) + f(a−)

2

∣∣∣∣ =

∣∣∣∣ 1

2π

∫ π

−π

(
f(a+t) + f(a−t)

2
− f(a+) + f(a−)

2

)
K`(t) dt

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

0

(
(f(a+t)− f(a+)) + (f(a−t)− f(a−))

)
K`(t) dt

∣∣∣∣
≤ 1

2π

∫ π

0

(∣∣f(a+t)− f(a+)
∣∣+
∣∣f(a−t)− f(a−)

∣∣)K`(t) dt

= Iδ + Jδ,

for any 0 < δ ≤ π, where

Iδ =
1

2π

∫ δ

0

(∣∣f(a+t)− f(a+)
∣∣+
∣∣f(a−t)− f(a−)

∣∣)K`(t) dt

Jδ =
1

2π

∫ π

δ

(∣∣f(a+t)− f(a+)
∣∣+
∣∣f(a−t)− f(a−)

∣∣)K`(t) dt .

Let ε > 0. Choose δ > 0 so that for all 0 < t < δ we have
∣∣f(a + t) − f(a+)

∣∣ < ε
2 and∣∣f(a− t)− f(a−)

∣∣ < ε
2 . Then, by Part 2 of the above lemma,

Iδ ≤
1

2π

∫ π

0

ε ·K`(t) dt ≤ ε
2 .

By Part 1 of the above lemma, for δ ≤ t ≤ π we have K`(t) ≤ π2

(`+1) δ2 so for ` + 1 ≥ M
ε

where M = π
(
‖f‖1 + π|f(a+)|+ π|f(a−)|

)/
δ2 we have

Jδ ≤
1

2π

∫ π

δ

(
|f(a+ t)|+ |f(a− t)|+ |f(a+)|+ |f(a−)|

)
π2

(`+1) δ2 dt

≤ 1
2π ·

π2

(`+1) δ2

(
‖f‖1 + π|f(a+)|+ π|f(a−)|

)
= M

2(`+1) ≤
ε
2 .

This proves Part (1), and Part (2) can be proven using the same method noting that the
estimates can be made uniformly.
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5.42 Corollary: Let f ∈ L1(T ), consider f as a 2π-periodic function f : R→ C, and let
a ∈ R. If f(a+), f(a−) and lim

m→∞
sm(f)(a) all exist in C then

lim
m→∞

sm(f)(a) =
f(a+) + f(a−)

2
.

5.43 Remark: The above corollary justifies the argument given in Remark 5.5 where we

showed that
∞∑
k=1

1
(2k+1)2 = π2

8 .
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