

Chapter 5. Fourier Series

5.1 Remark: We shall begin with an informal discussion of Fourier series and how they can be used in physics and engineering.

5.2 Definition: A real **trigonometric series** is a series of the form

$$a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

where $a_n, b_n \in \mathbb{R}$ and $x \in \mathbb{R}$. If the series converges, we say it is the real **Fourier series** of its sum

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx,$$

which is a periodic function of the real variable x with period 2π , and the numbers a_n, b_n are called the **Fourier coefficients** of $f(x)$. If we are justified in integrating term by term then, using the formulas

$$\int_{-\pi}^{\pi} 1 = 2\pi, \quad \int_{-\pi}^{\pi} \cos nx \, dx = 0 = \int_{-\pi}^{\pi} \sin nx \, dx, \quad \int_{-\pi}^{\pi} \cos^2 nx \, dx = \pi = \int_{-\pi}^{\pi} \sin^2 nx \, dx$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx \, dt = 0 = \int_{-\pi}^{\pi} \sin nx \sin mx \, dt, \text{ and } \int_{-\pi}^{\pi} \cos nx \sin mx \, dt = 0$$

where $n, m \in \mathbb{Z}^+$ with $n \neq m$, we find that the Fourier coefficients are given by

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \quad \text{and} \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx.$$

5.3 Remark: For the moment, we shall blithely assume that, given a 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$, the Fourier series with coefficients a_n and b_n given by the above formulas converges to the given function $f(x)$.

5.4 Example: Find the Fourier coefficients of the 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ with

$$f(x) = \begin{cases} \frac{\pi}{2} + x & \text{for } -\pi \leq x \leq 0, \\ \frac{\pi}{2} - x & \text{for } 0 \leq x \leq \pi. \end{cases}$$

Solution: Since $f(x)$ is even, we have $a_n = 0$ for all $n \in \mathbb{Z}^+$, and we have

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{2}{\pi} \int_0^{\pi} f(x) \, dx = \frac{2}{\pi} \int_0^{\pi} \frac{\pi}{2} - x \, dx = \frac{2}{\pi} \left[\frac{\pi}{2}x - \frac{1}{2}x^2 \right]_0^{\pi} = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_0^{\pi} \left(\frac{\pi}{2} - x \right) \cos nx \, dx$$

$$= \int_0^{\pi} \cos nx \, dx - \frac{2}{\pi} \int_0^{\pi} x \cos nx \, dx = \left[\frac{1}{n} \sin nx \right]_0^{\pi} - \frac{2}{\pi} \left[\frac{1}{n}x \sin nx + \frac{1}{n^2} \cos nx \right]_0^{\pi}$$

$$= 0 - \frac{2}{\pi} \left(\frac{1}{n^2} (-1)^n - 1 \right) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ \frac{4}{\pi n^2} & \text{if } n \text{ is odd.} \end{cases}$$

Thus, assuming that the Fourier series of $f(x)$ converges to $f(x)$, we have

$$f(x) = \frac{4}{\pi} \left(\frac{1}{1^2} \cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right)$$

5.5 Remark: Assuming convergence, putting $x = 0$ into the above function $f(x)$ gives $\frac{\pi}{2} = \frac{4}{\pi} \left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right)$ so we obtain the formula

$$\sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

5.6 Example: (Forced Damped Oscillations) Suppose an object of mass m is attached to a spring of spring-constant k and vibrates in a fluid of damping-constant c and let $x = x(t)$ be the displacement of the object from its equilibrium position at time t . Suppose, in addition, that the object is acted on by an external force $f(t)$. The total force $F(t)$ acting on the object consists of the force exerted by the spring, which is equal to $-kx(t)$, the resistive force exerted by the fluid, which is equal to $-cx'(t)$, and the external driving force, which is equal to $f(t)$. By Newton's Second Law of motion we have $F(t) = mx''(t)$ and so $x(t)$ satisfies the differential equation (the DE)

$$mx''(t) + cx'(t) + kx(t) = f(t).$$

5.7 Example: Use Fourier series to solve the above DE with $m = 1$, $c = 2$ and $k = 5$, where $f(t)$ is the function from Example 5.4,

Solution: We need to solve the DE

$$x''(t) + 2x'(t) + 5x(t) = f(t).$$

To solve the associated homogeneous DE $x'' + 2x' + 5x = 0$, we look for a solution of the form $x = x(t) = e^{rt}$. Putting $x = e^{rt}$, $x' = re^{rt}$ and $x'' = r^2e^{rt}$ into the homogeneous DE gives $(r^2 + 2r + 5)e^{rt} = 0$ hence $r = -1 \pm 2i$. This gives us the two complex-valued solutions $x(t) = e^{(-1 \pm 2i)t} = e^{-t}(\cos 2t \pm i \sin 2t)$. By taking suitable linear combinations of these two complex-valued solutions we obtain the two real-valued solutions $x_1(t) = e^{-t} \cos 2t$ and $x_2(t) = e^{-t} \sin 2t$. The general solution to the DE $x'' + 2x' + 5x = 0$ is given by

$$x(t) = Ae^{-t} \cos 2t + Be^{-t} \sin 2t, \text{ where } A, B \in \mathbb{R}.$$

For each $n \in \mathbb{Z}^+$, to find a particular solution to the DE $x'' + 2x' + 5x = \cos nt$, we look for a solution of the form $x = x(t) = A_n \cos nt + B_n \sin nt$. Putting $x = A_n \cos nt + B_n \sin nt$, $x' = -nA_n \sin nt + nB_n \cos nt$ and $x'' = -n^2 A_n \cos nt - n^2 B_n \sin nt$ into $x'' + 2x' + 5 = \cos nt$ gives $(-n^2 A_n + 2nB_n + 5A_n) \cos nt + (-n^2 B_n - 2nA_n + 5B_n) \sin nt = \cos nt$ for all $t \in \mathbb{R}$ and so we must have $(5 - n^2)A_n + 2nB_n = 1$ and $(5 - n^2)B_n - 2nA_n = 0$. We solve these two equations to get $A_n = \frac{5-n^2}{n^4-6n^2+25}$ and $B_n = \frac{2n}{n^4-6n^2+25}$ and so one solution to the DE $x'' + 2x' + 5 = \cos nt$ is given by

$$x(t) = A_n \cos nt + B_n \sin nt, \text{ where } A_n = \frac{5-n^2}{n^4-6n^2+25} \text{ and } B_n = \frac{2n}{n^4-6n^2+25}.$$

Since $f(t) = \sum_{n \text{ odd}} \frac{4}{\pi n^2} \cos nt$, one particular solution, called the **steady state solution**, to the original DE $x'' + 2x' + 5x = f(t)$ is given by

$$x(t) = \sum_{n \text{ odd}} \frac{4}{\pi n^2} (A_n \cos nt + B_n \sin nt)$$

and the general solution is

$$x(t) = Ae^{-t} \cos 2t + Be^{-t} \sin 2t + \sum_{n \text{ odd}} \frac{4}{\pi n^2} (A_n \cos nt + B_n \sin nt), \text{ where } A, B \in \mathbb{R}.$$

5.8 Example: (The One-Dimensional Wave Equation) An elastic string is stretched to length π and is fixed at its two endpoints along the x -axis at $x = 0$ and $x = \pi$. The string is displaced so that it follows the curve $u = f(x)$ with $f(0) = 0$ and $f(\pi) = 0$, then at time $t = 0$ the string is released and allowed to vibrate. The problem is to determine the string's shape $u = u(x, t)$ at all points $0 \leq x \leq \pi$ and all times $t \geq 0$.

To formulate a differential equation (or DE) which models the situation, we consider a segment of string, at time t , between the points $p_1 = (x_1, u(x_1, t))$ and $p_2 = (x_2, u(x_2, t))$ where the difference $dx = x_2 - x_1$ is small. The slope of the curve $u = g(x) = u(x, t)$ at p_1 is $\frac{\partial u}{\partial x}(x_1, t)$ and the angle θ_1 from the horizontal is given by $\tan \theta_1 = \frac{\partial u}{\partial x}(x_1, t)$. Similarly, the angle θ_2 at p_2 is given by $\tan \theta_2 = \frac{\partial u}{\partial x}(x_2, t)$, and we have

$$\tan \theta_2 - \tan \theta_1 = \frac{\partial u}{\partial x_1}(x_1, t) - \frac{\partial u}{\partial x}(x_2, t) = \frac{\partial^2 u}{\partial x^2} dx.$$

Let T_1 be the magnitude of the force exerted on p_1 by the portion of the string which lies to the left of p_1 , and let T_2 be the magnitude of the force exerted on p_2 by the portion of the string which lies to the right of p_2 . Assuming that the segment of string moves only vertically (so the total horizontal component of the force is zero) we have $T_1 \cos \theta_1 = T_2 \cos \theta_2$. Let

$$T = T_1 \cos \theta_1 = T_2 \cos \theta_2$$

and note that T is a constant which we call the **tension** of the string. The total vertical component of the force is $F = T_2 \sin \theta_2 - T_1 \sin \theta_1$ and by Newton's Second Law of motion, we have

$$T_2 \sin \theta_2 - T_1 \sin \theta_1 = m \frac{\partial^2 u}{\partial t^2} = \rho dx \frac{\partial^2 u}{\partial t^2}$$

where ρ is the linear **density** of the string, that is its mass per unit length. From the equations $\tan \theta_2 - \tan \theta_1 = \frac{\partial^2 u}{\partial x^2} dx$, $T_1 \cos \theta_1 = T_2 \cos \theta_2$ and $T_2 \sin \theta_2 - T_1 \sin \theta_1 = \rho dx \frac{\partial^2 u}{\partial t^2}$ we obtain the **one-dimensional wave equation**

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \text{ where } c^2 = \frac{T}{\rho}.$$

5.9 Example: Use Fourier series to solve the one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ subject to the boundary conditions $u(0, t) = 0$ and $u(0, \pi) = 0$ for all $t \geq 0$ and to the initial conditions $u(x, 0) = f(x)$ and $\frac{\partial u}{\partial t}(x, 0) = g(x)$ for all $0 \leq x \leq \pi$.

Solution: We use a method known as **separation of variables**. We look for a solution to the DE of the form $u(x, t) = y(x)s(t)$ which satisfies the given boundary conditions $0 = u(0, t) = y(0)s(t)$ and $0 = u(\pi, t) = y(\pi)s(t)$. If we had $y(x) = 0$ for all x or $s(t) = 0$ for all t then we would obtain the trivial solution $u(x, t) = 0$ for all x, t , so let us assume this is not the case, so the boundary conditions become $y(0) = y(\pi) = 0$. When $u(x, t) = y(x)s(t)$, the DE becomes $y(x)s''(t) = c^2 y''(x)s(t)$ which we can write as $\frac{y''(x)}{y(x)} = \frac{1}{c^2} \frac{s''(t)}{s(t)}$. Since the function on the left is a function of x (and is constant in t) and the function on the right is a function of t (and is constant in x), in order for these two functions to be equal for all x, t they must both be constant, say

$$\frac{y''(x)}{y(x)} = k = \frac{1}{c^2} \frac{s''(t)}{s(t)}$$

where k is constant.

First we solve the DE $\frac{y''(x)}{y(x)} = k$ subject to the boundary conditions $y(0) = y(\pi) = 0$. If $k = 0$ then the DE becomes $y'' = 0$, which has solution $y = Cx + D$, and the boundary conditions give $C = D = 0$, so we obtain the trivial solution. If $k > 0$, say $k = n^2$ where $n > 0$, then the DE becomes $y'' - n^2y = 0$, which has solution $y = Ce^{nx} + De^{-nx}$, and the boundary conditions give $C + D = 0$ and $Ce^{n\pi} + De^{-n\pi} = 0$ which imply that $C = D = 0$, so again we obtain the trivial solution. Suppose that $k < 0$, say $k = -n^2$ where $n > 0$. The DE becomes $y'' + n^2y = 0$ which has solution $y = C \cos nx + D \sin nx$. The boundary condition $y(0) = 0$ gives $C = 0$ so that $y = D \sin nx$, and the boundary condition $y(\pi) = 0$ gives $D = 0$ or $\sin n\pi = 0$. If $D = 0$ we obtain the trivial solution and if $\sin n\pi = 0$ then we must have $n \in \mathbb{Z}$. Thus in order to obtain a nontrivial solution to the DE which satisfies the boundary conditions we must have $k = -n^2$ for some $n \in \mathbb{Z}^+$ and, in this case,

$$y(x) = D_n \sin nx, \text{ where } D_n \in \mathbb{R}.$$

When $k = -n^2$ with $n \in \mathbb{Z}^+$, and $y(x) = D_n \sin nx$, the DE $\frac{1}{c^2} \frac{s''(t)}{s(t)} = k$ becomes $s''(t) + (cn)^2 s(t) = 0$, and the solution is $s(t) = A_n \cos(cn t) + B_n \sin(cn t)$. Thus, for each $n \in \mathbb{Z}^+$, and for all $A_n, B_n \in \mathbb{R}$, the function

$$u(x, t) = y(x)s(t) = (A_n \cos cn t + B_n \sin cn t) \sin nx$$

is a solution to the one-dimensional wave equation which satisfies the boundary conditions (we remark that it would be redundant to include the constants D_n as they could be amalgamated with the constants A_n and B_n).

In order to find a solution which satisfies the given initial conditions $u(x, 0) = f(x)$ and $\frac{\partial u}{\partial t}(x, 0) = g(x)$, we look for a solution of the form

$$u(x, t) = \sum_{n=1}^{\infty} (A_n \cos cn t + B_n \sin cn t) \sin nx.$$

In order to obtain $u(x, 0) = f(x)$ we need $\sum_{n=1}^{\infty} A_n \sin nx = f(x)$ and so we choose A_n to be equal to the Fourier coefficients of the odd 2π -periodic function $F(x)$ with $F(x) = f(x)$ for $0 \leq x \leq \pi$, that is we choose

$$A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx.$$

Assuming that we can differentiate term-by-term, we have

$$\frac{\partial u}{\partial t}(x, t) = \sum_{n=1}^{\infty} (-cnA_n \sin cn t + cnB_n \cos cn t) \sin nx.$$

In order to obtain $\frac{\partial u}{\partial t}(x, 0) = g(x)$ we need $\sum_{n=1}^{\infty} cnB_n \sin nx = g(x)$ and so we choose B_n to be equal to the Fourier coefficients of the odd 2π -periodic function $G(x)$ with $G(x) = g(x)$ for $0 \leq x \leq \pi$, that is

$$B_n = \frac{2}{cn\pi} \int_0^{\pi} g(x) \sin nx \, dx.$$

5.10 Remark: Let us now begin a more formal presentation of Fourier series in which we consider convergence issues more carefully.

5.11 Definition: A real-valued **trigonometric polynomial** is a function $f : \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$f(x) = a_0 + \sum_{n=1}^m a_n \cos nx + \sum_{n=1}^m b_n \sin nx$$

for some $a_n, b_n \in \mathbb{R}$, and we say that $f(x)$ is of degree m when either $a_m \neq 0$ or $b_m \neq 0$. A real-valued **trigonometric series** is a series of the form

$$a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

which is given by its sequence of partial sums $s_m(x) = a_0 + \sum_{n=1}^m a_n \cos nx + \sum_{n=1}^m b_n \sin nx$.

5.12 Remark: A trigonometric series may or may not converge and, indeed, we can consider several different notions of convergence, for example pointwise convergence, uniform convergence, or convergence with respect to a p -norm.

5.13 Definition: Every real-valued trigonometric polynomial is a smooth 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$. Every 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ determines, and is determined by, a function $f : [-\pi, \pi] \rightarrow \mathbb{R}$ with $f(-\pi) = f(\pi)$, or equivalently by a function $f : T \rightarrow \mathbb{R}$ where $T = \mathbb{R}/2\pi\mathbb{Z}$, or equivalently by a function $f : S \rightarrow \mathbb{R}$ where $S = \{e^{it} \mid -\pi \leq t \leq \pi\} = \{z \in \mathbb{Z} \mid |z| = 1\}$. A function $f : T \rightarrow \mathbb{R}$ is continuous (or differentiable, or \mathcal{C}^k) if and only if the corresponding 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ is continuous (or differentiable, or \mathcal{C}^k). We say that a function $f : T \rightarrow \mathbb{R}$ is **measurable** when the corresponding 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{R}$ is measurable, or equivalently when the corresponding function $f : [-\pi, \pi] \rightarrow \mathbb{R}$ with $f(-\pi) = f(\pi)$ is measurable. For a measurable function $f : T \rightarrow \mathbb{R}$ and for $1 \leq p \leq \infty$ we define the **p-norm** $\|f\|_p$ of the function $f : T \rightarrow \mathbb{R}$ to be equal to the p -norm $\|f\|_p$ of the corresponding function $f : [-\pi, \pi] \rightarrow \mathbb{R}$. We define $L_p(T, \mathbb{R})$ to be the quotient of the set of measurable functions $f : T \rightarrow \mathbb{R}$ with $\|f\|_p < \infty$ under the equivalence relation in which $f \sim g$ when $f(x) = g(x)$ for a.e. $x \in [-\pi, \pi]$. Note that because $\lambda([-\pi, \pi]) = 2\pi < \infty$, for $1 \leq p \leq \infty$ we have $L_\infty(T) \subseteq L_p(T) \subseteq L_1(T)$.

5.14 Definition: When $f(x) = a_0 + \sum_{n=1}^m a_n \cos nx + b_n \sin nx$, where $a_n, b_n \in \mathbb{R}$, we have $f \in \mathcal{C}^\infty(T)$ and we know that the coefficients a_n and b_n are given by the formulas

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

Note that the above integrals all exist and are finite for any function $f \in L_1(T, \mathbb{R})$. Given a function $f \in L_1(T, \mathbb{R})$, we define the **real Fourier coefficients** of f to be the real numbers $a_n = a_n(f)$ and $b_n = b_n(f)$ given by the above formulas, and we define the **real Fourier series** of f to be the corresponding real trigonometric series. Note that a real Fourier series is a real trigonometric series which arises, in this way, from some function $f \in L_1(T, \mathbb{R})$.

5.15 Definition: A complex-valued **trigonometric polynomial** is a function $f : \mathbb{R} \rightarrow \mathbb{C}$ of the form

$$f(x) = \sum_{n=-m}^m c_n e^{inx}$$

for some $c_n \in \mathbb{C}$, and we say that $f(x)$ is of degree m when either $c_m \neq 0$ or $c_{-m} \neq 0$. A complex-valued **trigonometric series** is a series of the form

$$\sum_{n=-\infty}^{\infty} c_n e^{inx}$$

which is given by its sequence of partial sums $s_m(x) = \sum_{n=-m}^m c_n e^{inx}$.

5.16 Definition: Every complex-valued trigonometric polynomial is a smooth 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{C}$. Every 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{C}$ determines, and is determined by, a function $f : [-\pi, \pi] \rightarrow \mathbb{C}$ with $f(-\pi) = f(\pi)$, or equivalently by a function $f : T \rightarrow \mathbb{C}$ where $T = \mathbb{R}/2\pi\mathbb{Z}$, or equivalently by a function $f : S \rightarrow \mathbb{C}$ where $S = \{z \in \mathbb{Z} \mid |z| = 1\}$. For $1 \leq p \leq \infty$, we define $L_p(T) = L_p(T, \mathbb{C})$ in the same way that we defined $L_p(T, \mathbb{R})$. For $f : T \rightarrow \mathbb{C}$ given by $f = u + iv$ where $u : T \rightarrow \mathbb{R}$ and $v : T \rightarrow \mathbb{R}$, f is measurable if and only if u and v are both measurable, and in this case we have $\int_T f = \int_T u + i \int_T v$, $\int_T |f| = \int_T \sqrt{u^2 + v^2}$, $\|f\|_p = \|\sqrt{u^2 + v^2}\|_p$ and $f \in L_p(T, \mathbb{C})$ if and only if $u \in L_p(T, \mathbb{R})$ and $v \in L_p(T, \mathbb{R})$.

5.17 Definition: When $f(x) = \sum_{n=-m}^m c_n e^{inx}$, where $c_n \in \mathbb{C}$, because

$$\int_T e^{ikx} e^{-ilx} dx = \int_{-\pi}^{\pi} \cos(k-l)x \, dx + i \int_{-\pi}^{\pi} \sin(k-l)x \, dx = \begin{cases} 2\pi & \text{if } k = l \\ 0 & \text{if } k \neq l, \end{cases}$$

it follows that the coefficients c_n are given by the formula

$$c_n = c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} \, dx.$$

Note that the above integrals exist and are finite for any function $f \in L_1(T) = L_1(T, \mathbb{C})$. Given a function $f \in L_1(T)$, we define the (complex) **Fourier coefficients** of f to be the complex numbers $c_n = c_n(f)$ given by the above formulas, and we define the (complex) **Fourier series** of f to be the corresponding complex trigonometric series.

5.18 Note: Given $a_n, b_n \in \mathbb{R}$, we have

$$\begin{aligned} a_0 + \sum_{n=1}^m a_n \cos nx + \sum_{n=1}^m b_n \sin nx &= a_0 + \sum_{n=1}^m a_n \frac{e^{inx} + e^{-inx}}{2} + \sum_{n=1}^m b_n \frac{e^{inx} - e^{-inx}}{2i} \\ &= a_0 + \sum_{n=1}^m \left(\frac{a_0}{2} - i \frac{b_n}{2} \right) e^{inx} + \sum_{n=1}^m \left(\frac{a_0}{2} - \frac{b_n}{2i} \right) e^{-inx} = \sum_{n=-m}^m c_n e^{inx} \end{aligned}$$

where $c_0 = a_0$ and $c_n = \frac{1}{2}(a_n - ib_n)$ and $c_{-n} = \overline{c_n} = \frac{1}{2}(a_n + ib_n)$ for $n > 0$.

On the other hand, given $f \in L_1(T, \mathbb{R})$, for $n > 0$ we have

$$\begin{aligned} c_n &= \frac{1}{2\pi} \int_T f(x) e^{-inx} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) (\cos nx - i \sin nx) dx \\ &= \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(x) \cos nx dx - i \int_{-\pi}^{\pi} f(x) \sin nx dx \right) = \frac{1}{2}(a_n - i b_n) \\ c_{-n} &= \frac{1}{2\pi} \int_T f(x) e^{inx} dx = \frac{1}{2}(a_n + i b_n) \end{aligned}$$

It follows that when $f \in L_1(T, \mathbb{R})$, the m^{th} partial sum of the real Fourier series for f is exactly equal to the m^{th} partial sum for the complex Fourier series for f .

5.19 Definition: For $f \in L_1(T) = L_1(T, \mathbb{C})$ we denote the m^{th} partial sum of the Fourier series of f by $s_m(f)$, so we have

$$s_m(f)(x) = \sum_{n=-m}^m c_n e^{inx} , \text{ where } c_n = c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt.$$

5.20 Exercise: Show that if $f \in L_p(T)$ with $1 \leq p \leq \infty$, and $s_m(x) = \sum_{n=-m}^m d_n e^{inx}$ with $s_m \rightarrow f$ in $L_p(T)$, then $d_n = c_n(f)$.

5.21 Theorem: (The Stone-Weierstrass Theorem) Let X be a compact metric space and let $C(X) = C(X, F)$ be the set of continuous functions $f : X \rightarrow F$ where $F = \mathbb{R}$ or \mathbb{C} . Let A be an algebra in $C(X)$ which contains the constant functions and which separates points in X and is closed under conjugation. Then A is uniformly dense in $C(X)$, which means that for all $f \in C(X)$ and for all $\epsilon > 0$ there exists $g \in A$ such that $\|g - f\|_{\infty} < \epsilon$.

Proof: We omit the proof.

5.22 Corollary: The set of polynomials $\mathbb{R}[x]$ is uniformly dense in $C([a, b])$.

5.23 Corollary: The set of functions of the form

$$u(x, y) = \sum_{k=1}^n f_k(x) g_k(y) , \text{ where } f_k \in C([a, b]) \text{ and } g_k \in C([c, d])$$

is uniformly dense in $C([a, b] \times [c, d])$.

5.24 Corollary: The set of real trigonometric polynomials is uniformly dense in $C(T, \mathbb{R})$, and the set of complex trigonometric polynomials is uniformly dense in $C(T) = C(T, \mathbb{C})$.

5.25 Corollary: (The Riemann-Lebesgue Lemma) Let $f \in L_1(T)$. Then $\lim_{n \rightarrow \pm\infty} c_n(f) = 0$.

Proof: Let $\epsilon > 0$. Since the space of trigonometric polynomials is dense in $C(T)$ using the ∞ -norm, hence also dense in $C(T)$ using the 1-norm, and $C(T)$ is dense in $L_1(T)$ using the 1-norm, we can choose a trigonometric polynomial $p(x) = \sum_{n=-m}^m a_n e^{inx}$ with $\|p - f\|_1 < \frac{\epsilon}{2\pi}$.

Then for $|n| > m$ we have $c_n(p) = a_n = 0$ and so

$$\begin{aligned} |c_n(f)| &= |c_n(f) - c_n(p)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - p(x)) e^{-inx} dx \right| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - p(x)| dx = \frac{1}{2\pi} \|f - p\|_1 < \epsilon. \end{aligned}$$

5.26 Note: Since real trigonometric polynomials are dense in $C(T, \mathbb{R})$, hence also in $L_2(T, \mathbb{R})$, it follows that the orthonormal set

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \cos nx, \frac{1}{\sqrt{\pi}} \sin nx \mid n \in \mathbb{Z}^+ \right\}$$

is a Hilbert basis for the Hilbert space $L_2(T, \mathbb{R})$. For $f \in L_2(T, \mathbb{R})$ we have

$$a_0(f) = \frac{1}{2\pi} \langle f, 1 \rangle, \quad a_n(f) = \frac{1}{2\pi} \langle f, \cos nx \rangle, \quad b_n = \frac{1}{2\pi} \langle f, \sin nx \rangle.$$

Similarly, since complex trigonometric polynomials are dense in $L_2(T) = L_2(T, \mathbb{C})$, it follows that the orthonormal set

$$\left\{ \frac{1}{\sqrt{2\pi}} e^{inx} \mid n \in \mathbb{Z} \right\}$$

is a Hilbert basis for the Hilbert space $L_2(T, \mathbb{C})$. For $f \in L_2(T, \mathbb{C})$ we have

$$c_n(f) = \frac{1}{2\pi} \langle f, e^{inx} \rangle.$$

The following theorem is an immediate consequence of our earlier study of Hilbert spaces.

5.27 Theorem: *In the Hilbert space $L_2(T) = L_2(T, \mathbb{C})$, we have the following.*

(1) *(Best Approximation) Given $f \in L_2(T)$, $s_m(f)$ is the unique trigonometric polynomial of degree at most m which best approximates f in $L_2(T)$.*

(2) *(Convergence) Given $f \in L_2(T)$ we have $s_m(f) \rightarrow f$ in $L_2(T)$.*

(3) *(Parseval's Identity) Given $f \in L_2(T)$ we have $\|f\|_2^2 = 2\pi \sum_{n=-\infty}^{\infty} |c_n(f)|^2$.*

(4) *(Inner Product Formula) Given $f, g \in L_2(T)$ we have $\langle f, g \rangle = 2\pi \sum_{n=-\infty}^{\infty} c_n(f) \overline{c_n(g)}$.*

(5) *(The Riesz-Fischer Theorem) Given $c_n \in \mathbb{C}$, if $\sum_{n=-\infty}^{\infty} |c_n|^2 < \infty$ then there exists a unique $f \in L_2(T)$ such that $c_n = c_n(f)$.*

Proof: These are immediate consequences of Theorems 4.23 and 4.24.

5.28 Exercise: Show that when $f \in L_2(T, \mathbb{R})$, Parseval's Identity becomes

$$\|f\|_2^2 = 2\pi |a_0(f)|^2 + \pi \sum_{n=1}^{\infty} |a_n(f)|^2 + \pi \sum_{n=1}^{\infty} |b_n(f)|^2.$$

5.29 Exercise: Use Parseval's Identity, together with the result of Example 5.4, to prove that $\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96}$ and use this result to calculate $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

5.30 Note: Let $f \in L_1(T)$. Then

$$\begin{aligned} s_m(f)(x) &= \sum_{n=-m}^m c_n(f) e^{inx} = \sum_{n=-m}^m \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt \right) e^{inx} \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \sum_{n=-m}^m e^{in(x-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_m(x-t) dt \end{aligned}$$

where

$$\begin{aligned} D_m(u) &= \sum_{n=-m}^m e^{inu} = e^{-imu} \frac{e^{i(2m+1)u} - 1}{e^{iu} - 1} = \frac{e^{i(m+1)u} - e^{-imu}}{e^{iu} - 1} \cdot \frac{e^{-iu/2}}{e^{-iu/2}} \\ &= \frac{e^{i(2m+1)u/2} - e^{i(2m+1)u/2}}{e^{iu/2} - e^{-iu/2}} = \frac{\sin \frac{(2m+1)u}{2}}{\sin \frac{u}{2}}. \end{aligned}$$

5.31 Definition: The above function $D_m : T \rightarrow \mathbb{R}$ is called the m^{th} **Dirichlet kernel**.

5.32 Remark: For $f, g \in L_1(T)$, the **convolution** of f with g is the function $f \star g : T \rightarrow \mathbb{R}$ given by $(f \star g)(x) = \frac{1}{2\pi} \int_T f(t)g(x-t) dt$. Using this notation we have $s_m(f) = f \star D_m$.

5.33 Note: We have

$$\int_{-\pi}^{\pi} D_m(u) du = \int_{-\pi}^{\pi} \sum_{n=-m}^m e^{inu} du = \int_{-\pi}^{\pi} 1 + \sum_{n=1}^m 2 \cos(nu) du = 2\pi$$

and

$$\begin{aligned} \int_{-\pi}^{\pi} |D_m(u)| du &= \int_{-\pi}^{\pi} \left| \frac{\sin \frac{(2m+1)u}{2}}{\sin \frac{u}{2}} \right| du = 2 \int_0^{\pi} \left| \frac{\sin \frac{(2m+1)u}{2}}{\sin \frac{u}{2}} \right| du \\ &\geq 2 \int_{u=0}^{\pi} \frac{\left| \sin \frac{(2m+1)u}{2} \right|}{\frac{u}{2}} du = 2 \int_{t=0}^{(m+\frac{1}{2})\pi} \frac{|\sin t|}{\frac{t}{2m+1}} \cdot \frac{2}{2m+1} dt \\ &\geq 4 \sum_{n=1}^m \int_{(n-1)\pi}^{n\pi} \frac{|\sin t|}{t} dt \geq 4 \sum_{n=1}^m \int_{(n-1)\pi}^{n\pi} \frac{|\sin t|}{n\pi} dt \\ &= \frac{8}{\pi} \sum_{n=1}^m \frac{1}{n} \geq \frac{8}{\pi} \int_{x=1}^{m+1} \frac{1}{x} dx = \frac{8}{\pi} \ln(m+1) \geq \frac{8}{\pi} \ln m. \end{aligned}$$

5.34 Theorem: (Pointwise Divergence) Let $C(T) = C(T, \mathbb{C})$ be the Banach space of continuous functions $f : T \rightarrow \mathbb{C}$ equipped with the supremum norm. There exists a dense \mathcal{G}_δ set $E \subseteq C(T)$ such that for every $f \in E$ the set of points $x \in T$ at which the Fourier series for f diverges is dense in T .

Proof: First we fix $x = 0$. For $m \in \mathbb{Z}^+$, define $F_m : C(T) \rightarrow \mathbb{C}$ by

$$F_m(f) = s_m(f)(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_m(t) dt.$$

Note that

$$|F_m(f)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)| |D_m(t)| dt \leq \frac{1}{2\pi} \|f\|_\infty \int_{-\pi}^{\pi} |D_m(t)| dt$$

so we have

$$\|F_m\|_{op} \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_m(t)| dt.$$

We claim that in fact $\|F_m\|_{op} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_m(t)| dt$. Fix m and define

$$s(t) = \begin{cases} 1 & \text{if } D_m(t) \geq 0, \\ -1 & \text{if } D_m(t) < 0. \end{cases}$$

Construct continuous functions $g_n : T \rightarrow \mathbb{R}$ with $|g_n| \leq 1$ such that $g_n \rightarrow s$ pointwise. By the Dominated Convergence Theorem, we have

$$F_m(g_n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_n(t) D_m(t) dt \rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} s(t) D_m(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_m(t)| dt$$

so that $\|F_m\|_{op} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_m(t)| dt$, as claimed. By Note 5.33 we have $\|F_m\|_{op} \geq \frac{4 \ln m}{\pi^2}$, so

the set of linear operators $S = \{F_m \mid m \in \mathbb{Z}^+\}$ is not uniformly bounded. By the Uniform Boundedness Principle, applied to the set S , there exists a function $f \in C(T)$ such that for all $M > 0$ we have $|F_m(f)| > M$, that is $|s_m(f)(0)| > M$, for some $m \in \mathbb{Z}^+$. For this function $f \in C(T)$, the Fourier series for f diverges at 0 because $\limsup_{m \rightarrow \infty} |s_m(f)(0)| = \infty$.

Let $Q = \{a_1, a_2, a_3, \dots\}$ be a dense subset of $[0, 2\pi]$ and consider each a_n as an element in T . For each $n \in \mathbb{Z}^+$ let $f_n(x) = f(x - a_n)$ so that $\limsup_{m \rightarrow \infty} |s_m(f_n)(a_n)| = \infty$. For $n, m \in \mathbb{Z}^+$, define $L_{n,m} : C(T) \rightarrow \mathbb{C}$ by $L_{n,m}(f) = s_m(f)(a_n)$. By Condensation of Singularities, the set

$$E = \left\{ f \in C(T) \mid \limsup_{m \rightarrow \infty} \|L_{n,m}(f)\| = \infty \text{ for all } n \in \mathbb{Z}^+ \right\}$$

is a dense \mathcal{G}_δ in the Banach space $C(T)$. For each $f \in E$, we have $\limsup_{m \geq 0} |s_m(f)(a_n)| = \infty$ for every $n \in \mathbb{Z}^+$, so the Fourier series for f diverges at every point a_n .

5.35 Theorem: (Cesàro Convergence) Let $a_n \in \mathbb{C}$ for $n \geq 0$, let $s_m = \sum_{n=0}^m a_n$ and let

$$\sigma_\ell = \frac{1}{\ell+1} \sum_{m=0}^{\ell} s_m.$$

If the sequence $\{s_m\}$ converges then so does the sequence $\{\sigma_\ell\}$ and, in this case, we have

$$\lim_{\ell \rightarrow \infty} \sigma_\ell = \lim_{m \rightarrow \infty} s_m.$$

Proof: The proof is left as an exercise.

5.36 Definition: For $f \in L_1(T) = L_1(T, \mathbb{C})$, we define the ℓ^{th} **Cesàro mean** of the Fourier series of f to be the function $\sigma_\ell(f) : T \rightarrow \mathbb{C}$ given by

$$\sigma_\ell(f) = \frac{1}{\ell+1} \sum_{m=0}^{\ell} s_m(f).$$

5.37 Note: For $f \in L_1(T) = L_1(T, \mathbb{C})$ we have

$$\begin{aligned} \sigma_\ell(f)(x) &= \frac{1}{\ell+1} \sum_{m=0}^{\ell} s_m(f)(x) = \frac{1}{\ell+1} \sum_{m=0}^{\ell} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_m(x-t) dt \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \frac{1}{\ell+1} \sum_{m=0}^{\ell} D_m(x-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_\ell(x-t) dt \end{aligned}$$

where

$$\begin{aligned} K_\ell(u) &= \frac{1}{\ell+1} \sum_{m=0}^{\ell} D_m(u) = \frac{1}{\ell+1} \sum_{m=0}^{\ell} \frac{\sin \frac{(2m+1)u}{2}}{\sin \frac{u}{2}} \\ &= \frac{1}{(\ell+1) \sin \frac{u}{2}} \cdot \text{Im} \left(\sum_{m=0}^{\ell} e^{i(2m+1)u/2} \right) = \frac{1}{(\ell+1) \sin \frac{u}{2}} \cdot \text{Im} \left(e^{iu/2} \sum_{m=0}^{\ell} e^{imu} \right) \\ &= \frac{1}{(\ell+1) \sin \frac{u}{2}} \cdot \text{Im} \left(e^{iu/2} \frac{e^{i(\ell+1)u} - 1}{e^{iu} - 1} \right) = \frac{1}{(\ell+1) \sin \frac{u}{2}} \cdot \text{Im} \left(\frac{e^{i(\ell+1)u} - 1}{e^{iu/2} - e^{-iu/2}} \right) \\ &= \frac{1}{(\ell+1) \sin \frac{u}{2}} \cdot \text{Im} \left(\frac{e^{i(\ell+1)u/2} - e^{-i(\ell+1)u/2}}{e^{iu/2} - e^{-iu/2}} \cdot e^{i(\ell+1)u/2} \right) \\ &= \frac{1}{(\ell+1) \sin \frac{u}{2}} \cdot \frac{\sin \frac{(\ell+1)u}{2}}{\sin \frac{u}{2}} \cdot \sin \frac{(\ell+1)u}{2} = \frac{\sin^2 \frac{(\ell+1)u}{2}}{(\ell+1) \sin^2 \frac{u}{2}}. \end{aligned}$$

5.38 Definition: The above function $K_\ell : T \rightarrow \mathbb{R}$ is called the ℓ^{th} **Féjer kernel**.

5.39 Remark: Using convolution notation, for $f \in L_1(T)$ we have $\sigma_\ell(f) = f \star K_\ell$.

5.40 Lemma: We have

(1) For $0 < t \leq \pi$ we have $0 \leq K_\ell(t) \leq \frac{\pi^2}{(\ell+1)t^2}$.

(2) $\int_{-\pi}^{\pi} K_\ell(t) dt = 2 \int_0^{\pi} K_\ell(t) dt = 2\pi$.

(3) $\int_{-\pi}^{\pi} f(t) K_\ell(x-t) dt = \int_{-\pi}^{\pi} f(x+t) K_\ell(t) dt = \int_{-\pi}^{\pi} f(x-t) K_\ell(t) dt$.

Proof: The proof is left as an exercise.

5.41 Theorem: (Convergence of the Cesàro Means) Let $f \in L_1(T)$ and consider f as a 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{C}$.

(1) If $a \in \mathbb{R}$ and the one-sided limits $f(a^-) = \lim_{x \rightarrow a^-} f(x)$ and $f(a^+) = \lim_{x \rightarrow a^+} f(x)$ both exist in \mathbb{C} , then

$$\lim_{\ell \rightarrow \infty} \sigma_\ell(f)(a) = \frac{f(a^-) + f(a^+)}{2}.$$

(2) If $a, b \in \mathbb{R}$ with $a \leq b$ and f is continuous in $[a, b]$ then $\sigma_\ell \rightarrow f$ uniformly on $[a, b]$.

Proof: By Part 3 of the above lemma, we have

$$\sigma_\ell(f)(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_\ell(a-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(a+t) + f(a-t)}{2} K_\ell(t) dt$$

and by Part 2 of the above lemma we have

$$\frac{f(a^+) + f(a^-)}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(a^+) + f(a^-)}{2} K_\ell(t) dt$$

and so

$$\begin{aligned} \left| \sigma_\ell(f)(a) - \frac{f(a^+) + f(a^-)}{2} \right| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{f(a+t) + f(a-t)}{2} - \frac{f(a^+) + f(a^-)}{2} \right) K_\ell(t) dt \right| \\ &= \left| \frac{1}{2\pi} \int_0^\pi \left((f(a+t) - f(a^+)) + (f(a-t) - f(a^-)) \right) K_\ell(t) dt \right| \\ &\leq \frac{1}{2\pi} \int_0^\pi \left(|f(a+t) - f(a^+)| + |f(a-t) - f(a^-)| \right) K_\ell(t) dt \\ &= I_\delta + J_\delta, \end{aligned}$$

for any $0 < \delta \leq \pi$, where

$$\begin{aligned} I_\delta &= \frac{1}{2\pi} \int_0^\delta \left(|f(a+t) - f(a^+)| + |f(a-t) - f(a^-)| \right) K_\ell(t) dt \\ J_\delta &= \frac{1}{2\pi} \int_\delta^\pi \left(|f(a+t) - f(a^+)| + |f(a-t) - f(a^-)| \right) K_\ell(t) dt. \end{aligned}$$

Let $\epsilon > 0$. Choose $\delta > 0$ so that for all $0 < t < \delta$ we have $|f(a+t) - f(a^+)| < \frac{\epsilon}{2}$ and $|f(a-t) - f(a^-)| < \frac{\epsilon}{2}$. Then, by Part 2 of the above lemma,

$$I_\delta \leq \frac{1}{2\pi} \int_0^\pi \epsilon \cdot K_\ell(t) dt \leq \frac{\epsilon}{2}.$$

By Part 1 of the above lemma, for $\delta \leq t \leq \pi$ we have $K_\ell(t) \leq \frac{\pi^2}{(\ell+1)\delta^2}$ so for $\ell+1 \geq \frac{M}{\epsilon}$ where $M = \pi(\|f\|_1 + \pi|f(a^+)| + \pi|f(a^-)|)/\delta^2$ we have

$$\begin{aligned} J_\delta &\leq \frac{1}{2\pi} \int_\delta^\pi \left(|f(a+t)| + |f(a-t)| + |f(a^+)| + |f(a^-)| \right) \frac{\pi^2}{(\ell+1)\delta^2} dt \\ &\leq \frac{1}{2\pi} \cdot \frac{\pi^2}{(\ell+1)\delta^2} (\|f\|_1 + \pi|f(a^+)| + \pi|f(a^-)|) = \frac{M}{2(\ell+1)} \leq \frac{\epsilon}{2}. \end{aligned}$$

This proves Part (1), and Part (2) can be proven using the same method noting that the estimates can be made uniformly.

5.42 Corollary: Let $f \in L_1(T)$, consider f as a 2π -periodic function $f : \mathbb{R} \rightarrow \mathbb{C}$, and let $a \in \mathbb{R}$. If $f(a^+)$, $f(a^-)$ and $\lim_{m \rightarrow \infty} s_m(f)(a)$ all exist in \mathbb{C} then

$$\lim_{m \rightarrow \infty} s_m(f)(a) = \frac{f(a^+) + f(a^-)}{2}.$$

5.43 Remark: The above corollary justifies the argument given in Remark 5.5 where we showed that $\sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.