Chapter 5. Fourier Series

5.1 Remark: We shall begin with an informal discussion of Fourier series and how they
can be used in physics and engineering.

5.2 Definition: A real trigonometric series is a series of the form

(o) o0
agp+ Y. apcosnz+ Y bysinnx

where a,,b, € R and x € R. If the series converges, we say it is the real Fourier series
of its sum

o0 o

f(z) =ao+ > apcosnx+ > b,sinnz,

n=1 n=1
which is a periodic function of the real variable x with period 2z, and the numbers a,,, b,
are called the Fourier coefficients of f(x). If we are justified in integrating term by term
then, using the formulas
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where n,n € ZT with n # m, we find that the Fourier coefficients are given by

1 T 1 [7 1 [7
ap = — flz)dx , a, = — f(x)cosnx dx , and b, = — f(x)sinnx dx.
2 J_ . T J)_. T J)_.
5.3 Remark: For the moment, we shall blithely assume that, given a 27-periodic function
f : R — R, the Fourier series with coefficients a,, and b,, given by the above formulas

converges to the given function f(x).

5.4 Example: Find the Fourier coefficients of the 27-periodic function f : R — R with

Tt+zxfor —m<z<0,
flz) =12
5 —xfor 0 <z <

Solution: Since f(z) is even, we have a,, = 0 for all n € Z™, and we have

us
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0 if n is even,
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Thus, assuming that the Fourier series of f(x) converges to f(x), we have

—4_if n is odd.
™n

f(z) = 4(1%cosx+3%c083x+5%cos5x+...)

T



5.5 Remark: Assuming convergence, putting x = 0 into the above function f(z) gives
5 = %(1% + 3% + 5% +) so we obtain the formula

2
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5.6 Example: (Forced Damped Oscillations) Suppose an object of mass m is attached to a
spring of spring-constant k and vibrates in a fluid of damping-constant ¢ and let x = z(t)
be the displacement of the object from its equilibrium position at time ¢. Suppose, in
addition, that the object is acted on by an external force f(t). The total force F(t) acting
on the object consists of the force exerted by the spring, which is equal to —kz(t), the
resistive force exerted by the fluid, which is equal to —cz’(t), and the external driving
force, which is equal to f(¢). By Newton’s Second Law of motion we have F(t) = maz" (t)
and so x(t) satisfies the differential equation (the DE)

ma” (t) + cx'(t) + kx(t) = f(t).

5.7 Example: Use Fourier series to solve the above DE with m = 1, ¢ = 2 and k£ = 5,
where f(t) is the function from Example 5.4,

Solution: We need to solve the DE
z"(t) + 22/ (t) + bx(t) = f(¢t).

To solve the associated homogeneous DE z” + 22’ + 52 = 0, we look for a solution of the
form z = x(t) = €. Putting x = €™, 2’ = re™ and z” = r2e™ into the homogeneous DE
gives (r2+2r+5)e™ = 0 hence r = —1=£2i. This gives us the two complex-valued solutions
z(t) = (7120t — ¢=t(cos 2t + isin2t). By taking suitable linear combinations of these
two complex-valued solutions we obtain the two real-valued solutions z1(t) = e~* cos 2t

and x5 (t) = e 'sin 2t. The general solution to the DE z” + 22’ + 5x = 0 is given by
x(t) = Ae tcos2t + Be 'sin2t , where A, B € R.

For each n € Z™, to find a particular solution to the DE 2" + 22’ + 5z = cos nt, we look for
a solution of the form =z = z(t) = A,, cosnt + B,, sinnt. Putting x = A,, cosnt + B,, sinnt,
2’ = —nA, sinnz + nB,, cosnt and "’ = —n2A,, cosnt — n?B,, sinnt into " + 22’ + 5 =
cosnt gives ( —n2A, +2nB,, + 5An) cosnt + ( —n?B, —2nA, + 5B,)sinnt = cosnt for

all t € R and so we must have (5 —n?)4, + 2nB,, = 1 and (5 —n?)B,, — 2nA, = 0. We

: _ 5—n2 _ 2n .
solve these two equations to get A, = P S cont BT and B,, = T onT T35 and so one solution

to the DE z” + 22’ + 5 = cosnt is given by

: _TL2 n
ZL‘(t) = An cosnt + Bn sinx , where An = m and Bn = m
Since f(t) = > # cos nt, one particular solution, called the steady state solution,
n odd
to the original DE x” + 22’ + 52 = f(t) is given by
4 .
x(t) = z;d g (A, cosnt + B, sinnt)
n o

and the general solution is

4
x(t) = Ae ' cos 2t + Be 'sin 2t + E — (An cosnt + By, sin nt) , where 4, B € R.
™m
n odd



5.8 Example: (The One-Dimensional Wave Equation) An elastic string is stretched to
length 7 and is fixed at its two endpoints along the x-axis at * = 0 and x = 7. The string
is displaced so that it follows the curve u = f(z) with f(0) = 0 and f(7) = 0, then at
time ¢t = 0 the string is released and allowed to vibrate. The problem is to determine the
strings shape u = u(z,t) at all points 0 < z < 7 and all times ¢ > 0.

To formulate a differential equation (or DE) which models the situation, we consider
a segment of string, at time ¢, between the points p; = (z1,u(z1,t)) and py = (z2, u(z2,t))
where the difference dx = xo — x; is small. The slope of the curve u = g(z) = u(x,t) at p;
is 6—(:171, t) and the angle ¢, from the horizontal is given by tanf; = %(:1:1, t). Similarly,
the angle 65 at po is given by tanfy = (:1:2, t), and we have

tanfy — tan 6y = 8‘9;‘ (r1,t) — gg (zo,t) = % dz.

Let T} be the magnitude of the force exerted on p; by the portion of the string which
lies to the left of p;, and let T; be the magnitude of the force exerted on ps by the
portion of the string which lies to the right of ps. Assuming that the segment of string
moves only vertically (so the total horizontal component of the force is zero) we have
TicosB; = T5cosby. Let

T =17 cosbty = T5 cos b5

and note that T is a constant which we call the tension of the string. The total vertical
component of the force is F' = T5 sin 0, — T} sin #; and by Newton’s Second Law of motion,
we have

Ty sinfy — Thsinf; = mZL 8t2 = pdx atQ

where p is the linear density of the string, that is its mass per unit length. From the
2

equations tan 6y —tanf; = 271; dx, Ty cos 1 = T5 cos 5 and T5 sin @y — T sin 0y = pda: 87&2

we obtain the one-dimentional wave equation

%u 29%u

Fu 2_ T
52 = C G2, Where ¢® = -
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5.9 Example: Use Fourier series to solve the one-dimensional wave equation % Gz = c? gxg

subject to the boundary conditions u(0,¢) = 0 and w(0,7) = 0 for all ¢ > 0 and to the
initial conditions u(z,0) = f(z) and 2%(z,0) = g(z) for all 0 < z < 7.

Solution: We use a method known as separation of variables. We look for a solution
to the DE of the form u(z,t) = y(x)s(t) which satisfies the given boundary conditions
0 = u(0,t) = y(0)s(t) and 0 = wu(m,t) = y(m)s(t). If we had y(x) = 0 for all x or
s(t) = 0 for all ¢ then we would obtain the trivial solution u(x,t) = 0 for all z,t, so
let us assume this is not the case, so the boundary conditions become y(0) = y(m) = 0.

When u(x,t) = y(x)s(t), the DE becomes y(z)s”(t) = c¢*y”(x)s(t) which we can write as

y@;/(g) = C% % Since the function on the left is a function of z (and is constant in ¢) and

the function on the right is a function of ¢ (and is constant in z), in order for these two
functions to be equal for all z,¢ they must both be constant, say

where k is constant.



First we solve the DE y;(%) = k subject to the boundary conditions y(0) = y(m) = 0.
If £ = 0 then the DE becomes 3" = 0, which has solution y = Cx + D, and the boundary
conditions give C' = D = 0, so we obtain the trivial solution. If £ > 0, say k = n? where
n > 0, then the DE becomes y”" — n?y = 0, which has solution y = Ce™ + De~"* and the
boundary conditions give C'+ D = 0 and Ce"™ + De™"" = 0 which imply that C' =D =0,
so again we obtain the trivial solution. Suppose that k < 0, say k = —n? where n > 0.
The DE becomes 3" +n?y = 0 which has solution y = C cosnzx + D sin nx. The boundary
condition y(0) = 0 gives C' = 0 so that y = D sinnz, and the boundary condition y(7) =0
gives D = 0 or sinnm = 0. If D = 0 we obtain the trivial solution and if sin nm = 0 then we
must have n € Z. Thus in order to obtain a nontrivial solution to the DE which satisfies
the boundary conditions we must have k = —n? for some n € Z* and, in this case,

y(z) = D, sinnz , where D,, € R.

When k = —n? with n € Z*, and y(z) = D, sinnz, the DE & % = k. becomes
s"(t) + (cn)?s(t) = 0, and the solution is s(t) = A,, cos(cnt) + By, sin(ent). Thus, for each
n € Z*, and for all A, B,, € R, the function

u(z,t) = y(x)s(t) = (A, coscnt + By, sinent) sinnx

is a solution to the one-dimensional wave equation which satisfies the boundary conditions
(we remark that it would be redundant to include the constants D,, as they could be
amalgamated with the constants A,, and B,,).

In order to find a solution which satisfies the given initial conditions u(z,0) = f(x)
and %(:1:, 0) = g(x), we look for a solution of the form

oo
u(x,t) = Z (A, coscent + By, sinent) sinna .
n=1

In order to obtain u(z,0) = f(z) we need > A, sinnz = f(z) and so we choose 4,, to be
n=1

equal to the Fourier coefficients of the odd 2m-periodic function F(x) with F(x) = f(x)
for 0 < x < m, that is we choose

— T

An:—/ F(ac)sinnxdx:z/ f(x)sinnx dz.
T Jo

Assuming that we can differentiate term-by-term, we have

e 9]
9u(z,t) = Z (— cnA, sinent 4+ cnB,, cosnt) sinnz.
n=1

In order to obtain 2%(z,0) = g(z) we need Y. cnB,sinnz = g(z) and so we choose B,, to
n=1

be equal to the Fourier coefficients of the odd 27-periodic function G(x) with G(x) = g(z)
for 0 < x <, that is
2 s
B, =— g(z)sinnz dx .
cnm Jo



5.10 Remark: Let us now begin a more formal presentation of Fourier series in which we
consider convergence issues more carefully.

5.11 Definition: A real-valued trigonometric polynomial is a function f : R — R of
the form
m m
f®)=ao+ > apcosnx+ > b,sinnx
n=1 n=1
for some a,,,b, € R, and we say that f(z) is of degree m when either a,, # 0 or b,, # 0.
A real-valued trigonometric series is a series of the form

oo oo
ag+ Y apcosnz+ Y. bysinnx

m m
which is given by its sequence of partial sums s,,(z) = ag + Y a,cosnx + > b, sinnx.
n=1 n=1
5.12 Remark: A trigonometric series may or may not converge and, indeed, we can con-
sider several different notions of convergence, for example pointwise convergence, uniform
convergence, or convergence with respect to a p-norm.

5.13 Definition: Every real-valued trigonometric polynomial is a smooth 2mw-periodic
function f : R — R. Every 27-periodic function f : R — R determines, and is determined
by, a function f : [-m, 7] — R with f(—=n) = f(7), or equivalently by a function f : T — R
where T' = R/27Z, or equivalently by a function f : S — R where S = {e“| —rm<t< 7T}
= {z € Z||z| = 1}. A function f: T — R is continuous (or differentiable, or C*) if and
only if the corresponding 27-periodic function f : R — R is continuous (or differentiable,
or C¥). We say that a function f : T — R is measurable when the corresponding
2m-periodic function f : R — R is measurable, or equivalently when the corresponding
function f : [-7, 7] — R with f(—n) = f(«) is measurable. For a measurable function
f:T — R and for 1 < p < oo we define the p-norm | f||, of the function f : T — R
to be equal to the p-norm || f||,, of the corresponding function f : [—m, 7] — R. We define
L,(T,R) to be the quotient of the set of measurable functions f : T'— R with || f]|, < oo
under the equivalence relation in which f ~ g when f(x) = g(z) for a.e. x € [—7,7|. Note
that because A([—,7]) = 27 < oo, for 1 < p < 0o we have Loo(T') C L,(T) C L1 (T).

5.14 Definition: When f(z) = a9 + ) a, cosnz + b, sin nz, where a,,b, € R, we have
n=1

f € C>®(T) and we know that the coefficients a,, and b,, are given by the formulas

17 17 L[
ao = o flx)dz , ap, = — f(z)cosnx dx | b, = — f(z)sinnx dz.
™ T J_n —

Note that the above integrals all exist and are finite for any function f € L;(7T,R). Given a
function f € L,(T,R), we define the real Fourier coefficients of f to be the real numbers
an = an(f) and b, = b,(f) given by the above formulas, and we define the real Fourier
series of f to be the corresponding real trigonometric series. Note that a real Fourier series
is a real trigonometric series which arises, in this way, from some function f € L;(T,R).



5.15 Definition: A complex-valued trigonometric polynomial is a function f : R — C
of the form
m .
fle)= > cpe™®
n=—m
for some ¢, € C, and we say that f(z) is of degree m when either ¢, # 0 or ¢_,, #0. A
complex-valued trigonometric series is a series of the form

=S .
Z Cnezn:t
n=—00

which is given by its sequence of partial sums s,,(z) = > ¢,e™2.

5.16 Definition: Every complex-valued trigonometric polynomial is a smooth 27-periodic
function f : R — C. Every 27m-periodic function f : R — C determines, and is determined
by, a function f : [-m,n] — C with f(—=n) = f(7), or equivalently by a function f : T"— C
where T' = R/27Z, or equivalently by a function f : S — C where S = {z € ZHz! = 1}.
For 1 < p < oo, we define L,(T) = L,(7,C) in the same way that we defined L,(T,R).
For f: T — C given by f = u+ iv where u : T' — R and v : T' — R, f is measurable if
and only if v and v are both measurable, and in this case we have [, f = [Lu+1i [, v,
Jrlfl = JpVu2 +02, || fll, = [[Vu? + 02|, and f € L,(T,C) if and only if u € L,(T,R)
and v € L,(T,R).

5.17 Definition: When f(z) = Y. ¢,e™*, where ¢, € C, because

ik il " Y 2rif k=1
e e "y = cos(k — )z dx +1i sin(k — l)x de = .
T - - 0 if k #1,
it follows that the coefficients ¢,, are given by the formula
— el =5 [ Fa)ed
o =cnlf) = o x)e x.

—T

Note that the above integrals exist and are finite for any function f € Li(T") = L1(T,C).
Given a function f € Li(T"), we define the (complex) Fourier coefficients of f to be the
complex numbers ¢, = ¢,(f) given by the above formulas, and we define the (complex)
Fourier series of f to be the corresponding complex trigonometric series.

5.18 Note: Given a,,b, € R, we have

m m m . . m .
. inT —inx C 2
ap+ > apcosnx + Y, bysinne =ag+ Y, an —HF—+ > b, ¢
n=1 n=1 n=1 n=1

m ) m ) )
maot 35 (g ity $5 (e m S o
n=



On the other hand, given f € L1(T,R), for n > 0 we have

1 , r["
) = %/Tf(x)emm dr — Py » f(x)(cosnm — iSinTL.I) dx
1

_( ' f(z)cosnz —i ' f(z)sinnz dﬂc> = 2(an —iby,)

T o o
— 5 | F@en o = Yan + ib)
Cin_27rT e r=5(an +1iby

It follows that when f € Li(T,R), the m'" partial sum of the real Fourier series for f is
exactly equal to the m*" partial sum for the complex Fourier series for f.

5.19 Definition: For f € L(T) = L1(T,C) we denote the m*" partial sum of the Fourier
series of f by s,,(f), so we have

m . 1 ™ .
sm(f)(x)= > cpe™® , where ¢, =c,(f) = 2—/ ft)e " dt.
n=-—m [L

5.20 Exercise: Show that if f € L,(T) with 1 < p < oo, and s,,(z) = > d,, ™* with
Sm — fin L,(T'), then d,, = ¢, (f). B

5.21 Theorem: (The Stone-Weierstrass Theorem) Let X be a compact metric space and
let C(X) = C(X,F) be the set of continuous functions f : X — F where F' = R or C.
Let A be an algebra in C'(X) which contains the constant functions and which separates

points in X and is closed under conjugation. Then A is uniformly dense in C'(X), which
means that for all f € C(X) and for all ¢ > 0 there exists g € A such that ||g — f]loo < €.

Proof: We omit the proof.
5.22 Corollary: The set of polynomials R[z] is uniformly dense in C([a,b]).
5.23 Corollary: The set of functions of the form

u(e.y) = 3 ful@)aily) . where fi € C((a. b)) and gy € C(fe.d)

is uniformly dense in C([a,b] x [c,d]).

5.24 Corollary: The set of real trigonometric polynomials is uniformly dense in C (T, R),
and the set of complex trigonometric polynomials is uniformly dense in C(T') = C(T,C).

5.25 Corollary: (The Riemann-Lebesgue Lemma) Let f € L1(T'). Then liI:Itl en(f) =0.
n— oo

Proof: Let € > 0. Since the space of trigonometric polynomials is dense in C(7T') using the
oo-norm, hence also dense in C(T') using the 1-norm, and C(7') is dense in L;(T") using the
1-norm, we can choose a trigonometric polynomial p(z) = > ane™ with [[p— f|1 < 5.

Then for |n| > m we have ¢, (p) = a,, = 0 and so B

! / " (f@) - pla)) e da

2 )

len(F)l = |en(f) = calp)| =
1 T

2m ) .

IN

|f(x) = plx)| do = 2= || f — plh <e.



5.26 Note: Since real trigonometric polynomials are dense in C'(7,R), hence also in
Lo(T,R), it follows that the orthonormal set

{\/%7, \/Lgcosnx, \%sinnm‘n €z}

is a Hilbert basis for the Hilbert space Lo(T,R). For f € Lo(T,R) we have

ao(f) = %(f,1> , an(f) = %(f,cosm:) , by, = %(f,sinn:@.

Similarly, since complex trigonometric polynomials are dense in Lo(T) = Lo(T,C), it
follows that the orthonormal set

{\/%76'”” ‘ n e Z}
is a Hilbert basis for the Hilbert space Ly(T,C). For f € Lo(T,C) we have

cn(f) = 55 (f, ™).

The following theorem is an immediate consequence of our earlier study of Hilbert spaces.

5.27 Theorem: In the Hilbert space Lo(T) = Lo(T,C), we have the following.

(1) (Best Approximation) Given f € Lo(T), sy (f) Is the unique trigonometric polynomial
of degree at most m which best approximates f in Lo(T).

(2) (Convergence) Given f € Lyo(T) we have s, (f) — f in Ly(T).

(3) (Parseval’s Identity) Given f € Ly(T) we have ||f||; =27 > |cn(f)‘2.

n=—oo
o0

(4) (Inner Product Formula) Given f,g € Lo(T) we have (f,g) =27 Y, cn(f)cn(g)-

n=—oo

(5) (The Riesz-Fischer Theorem) Given ¢, € C, if Y. |ec,|?> < oo then there exists a
unique f € Lo(T) such that ¢, = c,(f). neTee

Proof: These are immediate consequences of Theorems 4.23 and 4.24.

5.28 Exercise: Show that when f € Lo(T,R), Parseval’s Identity becomes

1715 = 2wlao(F)" + 7 3 Jau(H)* 7 3 [bu()[*

5.29 Exercise: Use Parseval’s Identity, together with the result of Example 5.4, to prove
o

o0
that > m = g—g and use this result to calculate y. .



5.30 Note: Let f € L;(T). Then

= nx = 1 " —in mnx
@)= 30 e = Y (5 [ swer)e
L ft) f) eine— g = L [ f(t) Dy (z —t) dt
27 -7 n=—m ™ J_rx m
where
m ) ) i(2m+1)u _ 1 i(m+1)u _ —imu —iu/2
inu _ _—imu € € e . e
Dm(“) = n_z_me =e eiv _ 1 - elv — 1 e—iu/2

ci@m+1)u/2 _ Li2m+1)u/2  sin w

elu/2 _ g—iu/2 sin%

5.31 Definition: The above function D,, : T — R is called the m'" Dirichlet kernel.

5.32 Remark: For f,g € L1(T), the convolution of f with g is the function fxg: T — R
given by (f * g)(z) = 5= [, f(t)g(z — t) dt. Using this notation we have s, (f) = f * Dy,.
5.33 Note: We have

T T

m ) 0 m
D, (u) du = S e™du = / 1+ > 2cos(nu) du =27
- —rn=—m T n=1
and
- 7 |sin (2m;—1)u 7 | sin (2m;—1)u
/ ‘Dm(u)‘du:/ — duz?/ — du
- - Sin b 0 Sin 3
T sin @mtu (m-l—%)ﬂ' |SiIlt| )
> 2 m du:2/ T amgy At
u=0 2 t=0 2m-+1
m nm . m nw .
242 |smt| dt242/ |Slnt| dt
n—1 (n—1)m t n—1 (n—1)m nm
m m—+1
:%Z%Z%/ ldz=2m(m+1)> 2 Inm
n=1 =1



5.34 Theorem: (Pointwise Divergence) Let C(T) = C(T,C) be the Banach space of
continuous functions f : T'— C equipped with the supremum norm. There exists a dense
Gs set E C C(T) such that for every f € E the set of points © € T at which the Fourier
series for f diverges is dense in T'.

Proof: First we fix z = 0. For m € Z*, define F,, : C(T) — C by

Fnlf) = (DO = 5= [ 1) Dn(t)
Note that
FulD] < 5= [ 17010l @t < 511 [ Do)
so we have s
1Fllon < 5= [ |Pun(t)] .

1 ™
We claim that in fact || Fy,|lep = o / |Dpn(t)| dt. Fix m and define
™ —T

1if Dy (t) > 0,
s(t) = _
—1if Dy, (t) <O0.
Construct continuous functions g,, : T — R with |g,,| < 1 such that g, — s pointwise. By
the Dominated Convergence Theorem, we have

Falon) = 5= [ aa0Dn1at — o= [ s1Duat = 5= [ [Duto)]a

o o 2 J_, T on .

1 i
so that || Fillop= —/ |Din(t)| dt, as claimed. By Note 5.33 we have ||F,,||op > dlnm o

2r J_ . T
the set of linear operators S = {Fm‘m € Z+} is not uniformly bounded. By the Uniform
Boundedness Principle, applied to the set S, there exists a function f € C(T') such that
for all M > 0 we have |Fy,(f)| > M, that is |s,(f)(0)| > M, for some m € Z*. For this
function f € C(T), the Fourier series for f diverges at 0 because limsup |s,,(f)(0)| = occ.
m—r o0

Let Q@ = {ai,az2,as,---} be a dense subset of [0,27] and consider each a, as an
element in T. For each n € ZT let f,(z) = f(z — a,) so that limsup |s,,(fn)(an)| = .
m— o0

For n,m € Z*, define L, ., : C(T) — C by Ly ;m(f) = sm(f)(an). By Condensation of
Singularities, the set

E:{feC@)

limsup || L, (f)|| = oo for all n € Z+}
m— o0

is a dense Gs in the Banach space C(T). For each f € E, we have limsup |s,,(f)(a,)| = oo
m>0

for every n € Z™, so the Fourier series for f diverges at every point a,,.

10
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5.35 Theorem: (Cesaro Convergence) Let a,, € C forn >0, let s, = Y a, and let
¢ n=0
= 2
If the sequence {s,,} converges then so does the sequence {o,} and, in this case, we have

hm o¢ = lim s,,.
—)OO m—r0o0

Proof: The proof is left as an exercise.

5.36 Definition: For f € Li(T) = Li(T,C), we define the /** Cesaro mean of the
Fourier series of f to be the function o4(f) : T — C given by

5.37 Note: For f € L1(T) = L1(T,C) we have

+ m=0 +1 m=0 2m -
1 T 4 1 4
5 |tk > Dula—t)dt =5 [ fOKa—1)ds
where
¢ ¢ - (2m4+1)u
1 1 Sin —
Ki(w) = ——" Dp(u) =
e(u) E—I—lmzzo (u) f—i—lmzzo sin &
1 I ( f: i(2m+1)u/2) 1 I ( iu)2 i imu)
R R—— e =————— .Imle e
(+1)sin g =0 (€ +1)sin g =0
1 . i(+u _q 1 i(t+1)u _q
= ~Im<e’“/2 S > = U 'Im(‘e. ﬂu)
(€ +1)sin g etv —1 (€ +1)sin g eit/2 _ o=
(£ u —i(l u
_ 1 ' m(e (e+1)u/2 _ g=i(t+1)u/2 .ei(€+1)u/2>
(0 +1)sin g eiu/2 — g—iu/2
. (+D)u .2 (U+1D)u
B 1 Sm e - gip D _ e
~ ((+1)sin%  sin 2 (+1)sin?%’
2

5.38 Definition: The above function K, : T'— R is called the ¢t Féjer kernel.
5.39 Remark: Using convolution notation, for f € Li(T) we have o,(f) = f*xK,.
5.40 Lemma: We have

(1) For 0 <t < m we have 0 < K,(t) < (éff)tz
(2) TFKg( dt_2/ Ke dt—?ﬂ'
(3) / FOKy(z —t)dt = ’ Fla+t)K(t) dt = ’ flz — ) Ky (t) dt.

Proof: The proof is left as an exercise.
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5.41 Theorem: (Convergence of the Cesaro Means) Let f € Li(T) and consider f as a
2m-periodic function f: R — C.

(1) If a € R and the one-sided limits f(a~) = lim f(z) and f(a™) = hm f(x) both

Tr—a~— CC—>CL
exist in C, then

i oy (@) - £ A

£— 00 2

(2) If a,b € R with a <b and f is continuous in [a,b] then oy — f uniformly on [a, b].

Proof: By Part 3 of the above lemma, we have

(@) =5 [ fOKia—a =5 [ LI g

27 _%

and by Part 2 of the above lemma we have

M0 1[0

and so

ou(f)(a) -

2 2

fla®) + f(a”) ’

2 /’r (f((H—t) +fla=t) _ flah)+ f(a_))Ke(t) dt‘

1

2 ) on

- \% [ (@) = @)+ (la=0) = ) Kett) dt\
1

<o [ (@)= f@h] + | a=0) - fa)]) Kate) e

21
=Is + Js,
for any 0 < § < 7, where
1 /9
I =50 | (IFa+t) = f@)] [ fla=t) = fla)] ) Kale) e

s =5 [ (180 = 5] + | fla=1) = £a)]) Ket) dr

Let € > 0. Choose § > 0 so that for all 0 < ¢ < § we have |f(a +t) — f(a™)| < § and
|f(a—1t)— f(a”)| < §. Then, by Part 2 of the above lemma,

1 7T
Is < — CKp(t)dt < €.
6_271'/06 () di < 3

By Part 1 of the above lemma, for § < ¢t < 7 we have K;(t) < ar )52 sofor/+1>24
where M = (|| f|l1 + 7| f(a®)| + 7| f(a7)]) /6* we have

1

s < e [ (1t 01+ L@ =01+ 1) + O] e a

= % ' (e+7r1)_52 (||f||1 + 7| f(a®)] +7r|f(a_)|) = 2(g+1) < %

This proves Part (1), and Part (2) can be proven using the same method noting that the
estimates can be made uniformly.
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5.42 Corollary: Let f € L1(T), consider f as a 2m-periodic function f : R — C, and let
a€R.If f(aT), f(a™) and lim s,,(f)(a) all exist in C then
m— 00

at a~
i o)) = @) )

m— o0 2

5.43 Remark: The above corollary justifies the argument given in Remark 5.5 where we
2

o0
showed that k21 m =z
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