Chapter 4. Banach and Hilbert Spaces

4.1 Definition: Let W be an inner product space over F = R or C. For a subset A C W,
we say that A is orthogonal when (u,v) = 0 for all u,v € A with u # v, and we say that
A is orthonormal when A is orthogonal with ||u|| = 1 for every u € A.

4.2 Theorem: Let W be an inner product space over F =R or C. Let A C W.

n
(1) If A is an orthogonal set of nonzero vectors then for x € Span A with say © = > ciug
k=1
where ¢, € F and uy € A, we have ¢, = (x,u)/||ug||? for all indices k, and in particular,
A is linearly independent.

n

(2) If A is orthonormal then for x € SpanA with say x = Y cxur where ¢, € F and
k=1

ug € A, we have ¢ = (x,uy) for all k, and in particular, A is linearly independent.

Proof: To prove Part (1), suppose that A is an orthogonal set of nonzero vectors and let
n

x = Y cju; with each ¢; € F and each u; € A. Then for all indices k, since (u;,u) =0
j=1

n n
whenever j # k we have (x,ug) = < ciu;, uk> = > cjuj,ug) = cx (g, uk) = cxllugl]?

J

(T.ur) = ag required. In particular, when z = 0 we find that ¢; = 0 for all k,

lJurll?”

and this shows that A is linearly independent. This proves Part (1), and Part (2) follows
immediately from Part (1).

4.3 Theorem: (The Gram-Schmidt Procedure) Let W be a finite or countable dimensional

inner product space over F = R or C. Let A = {uy,us, -} be an ordered basis for W.
n=1 {y 9

Let v1 = uy and forn > 2 let v, = uy, — Y, W
k=1 [IVk

is an orthogonal basis for W with the property that for every index n > 1 we have

Span{vy,---,v,} = Span{uy, -, up}.

and so ¢, =

vk. Then the set B = {vy,va, -}

Proof: We prove, by induction on n, that {vi,ve,---,v,} is an orthogonal basis for
Span{uy,us,---,u,}. When n = 1 this is clear since v1 = uy. Let n > 2 and sup-
pose, inductively, that {vq,---,v,_1} is an orthogonal basis for Span{uy,---,u,_1}. Since

—1 (un, . . C .
Up = Up — Y opey W v, we see that u, is equal to v, plus a linear combination of the

vectors vy, -+, vp—1, and so we have Span{vy,- -+, v,—1,v,} = Span{vy, -, vp_1,u,}. By
the induction hypothesis, we have Span{vy,---,v,_1} = Span{uy,---,u,—1} so we have

Span{vi, -+, vp_1,0n} = Span{vi, -+, Up—1,Un} = Span{u, -, Up—1,Up}.

It remains to show that the set {vy,va, -+, v,} is an orthogonal set. By the induction
hypothesis, we have (v;,v;) = 0 for all 1 < j, k < n, so it suffices to show that (v,,v;) =0
for all indices 1 < k < n and indeed, for 1 < k < n we have

n—1 n—1
(s vk) = (un = 3 G2 vy, o) = (unswn) = 3 Gl (v, )
Up, U
= (Up, Vg) — u (v, vg) = 0.

o112



4.4 Corollary: Every finite or countable dimensional inner product space W over F = R
or C has an orthonormal basis.

Proof: The proof is left as an exercise.

4.5 Remark: It is not the case that every uncountable dimensional inner product space
has an orthonormal basis. For example, we shall see below that an infinite dimensional
separable Hilbert space does not have an orthonormal basis.

4.6 Corollary: Let W be a finite or countable dimensional inner product space over
F=RorC. Let U C W be a finite dimensional subspace. Then every orthogonal (or
orthonormal) basis A for U extends to an orthogonal (or orthonormal) basis for W.

Proof: The proof is left as an exercise.

4.7 Remark: The above corollary does not hold in general in the case that the subspace
U is countable dimensional, as we shall soon see in Example 4.12.

4.8 Corollary: Let F =R or C and let U and V' be finite or countable dimensional inner
product spaces over F. Then U and V are isomorphic (as inner product spaces) if and
only if dim(U) = dim(V'). In particular, if dim(U) = n then U is isomorphic to F" and if
dim(U) = Wy then U is isomorphic to F>.

Proof: The proof is left as an exercise.

4.9 Definition: Let W be an inner product space over F = R or C. For a subspace
U C W, we define the orthogonal complement of U in W to be the set

Ut ={zeWl[(z,u)=0foraluecU}.

4.10 Theorem: Let W be an inner product space over F' = R or C. Let U C W be a
subspace. Then

(1) U+ is a subspace of W,

(2) if A is a basis for U then U+ = {& € W|(z,u) =0 for allu € U},
(3) UNU+ = {0}, and

(4) U C (UH)*L.

(5) if U is finite dimensional then U ® U+ = W, and

(6) if U® U+ =W then U = (U+)*.

Proof: We leave the proofs of Parts (1) to (4) as an exercise. To prove Part (5), suppose
that U is finite-dimensional. Let A = {uy,ug, -, u,} be an orthonormal basis for A. We
need to show that for every « € W there exist unique vectors u,v € W withu € U, v € U+
and v + v = . First we prove uniqueness. Let € W, and suppose that v € U, v € U+
and u + v = x. Note that for all indices k we have

(T, up) = (u+v,up) = (u,ur) + (v, ur) = (u, ug).

and so, by Theorem 4.2, we have

u= > (u,ug)ur = > (x,uk)ug.

k=1 k=1



n
This proves uniqueness, since given x € W, the vector u must be given by u = > (x, ug)ug
k=1
and then the vector v must be given by v = x — u.
n

To prove existence, let € W and choose u and v to be the vectors u = > (z, ug)ug
k=1
and v =  — u. Then we have u € U and u + v = z, so it suffices to show that v € U~L.
For all indices k£ we have

(v, ug) = (& — u,ug) = (z,ug) — (u,ug) = (x,u) — <é:1<.r,uj>uj, uk>

= () = 3 (o) g ) = (o) = 32 () = (o) = (o) = 0.

Since (v,u;) = 0 for all 1 < k < n, from Part (2) we have v € UL. This proves Part (5).
To prove Part (6). Suppose that U C (U+)+. We know, from Part 4, that U C (U+)*.

Let # € (U1)L. Choose u,v € W with v € U, v € UL such that u + v = x. Since

weUC (UMt andz € (UL, wehavev = z—u € (UL)L. Sincev € ULN(U+)+ = {0},

we have v =0sothat c=u+v=u€cU.

4.11 Remark: Parts (5) and (6) of the above theorem do not always hold when U is

infinite dimensional, as the following example shows.

4.12 Example: Let F =R or C. Let W =F* and let U = {a € IFOO‘ > ag = O}. Note
k=1

that W is a countable-dimensional inner product space with standard basis {e1, ez, €3, -}
and U is a countable-dimensional proper subspace of W with basis A = {uy,us,us,- -}
where u = e —ex+1 = (1,0,---,0,—1,0,---). We have

Ut ={zeW|[(z,u) =0 for all k} = {z € W|(z,e1 — exy1) = 0 for all k}
:{xGW‘xl = x4 for all k:}: {xEW’xl :x2:x3:-~-} = {0}

because for z € F>* we have z,, = 0 for all but finitely many indices n. Notice that in
this example we have U % UHT =W and U U+ =Ua {0} =U % W. Also notice
that, although we could apply the Gram-Schmidt Procedure to the basis A to obtain an
orthogonal basis B = {vy,ve, -} for U, the basis B cannot be extended to an orthogonal
basis for W because there is no nonzero vector 0 # x € W with (z,vy) for all k.

4.13 Definition: Let W be an inner product space over F = R or C. Let U C W be a
subspace such that W = U @ UL. For € W, we define the orthogonal projection of
x onto U, denoted by Proj; (), as follows. Since W = U @ UL, we can choose unique
vectors u,v € W with u € U, v € V and v + v = . We then define

Projy (z) = u.
Since U = (U+)+, for u and v as above we have Proj;.(z) = v. When y € W and
U = Span{y}, we also write Proj, (z) = Proj;(z).

4.14 Note: Let W be an inner product space over F = R or C. Let U be a finite
dimensional subspace of W. Let A = {uy,us,--,u,} be an orthogonal basis for U. Then
for z € W, as in the proof of Part (5) of Theorem 4.15, we see that

<x7 uk> u

Projy(z) = >

i1 |luel?
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4.15 Example: As an exercise, show that for A € M, «,,,(C) and U = Col(A), given
x € C" there exists y € C™ such that A*Ay = A*x and that for any such y we have

Proj;(z) = Ay. In particular, when rank(A) = m show that A*A is invertible so that
Proj; (x) = A(A*A) "1 A*x.

4.16 Theorem: Let W be an inner product space over F = R or C. Let U C W be a
subspace of W such that W = U @ U*t. Let x € W. Then Proj;;(x) is the unique point in
U which is nearest to x.

Proof: Let u,v € W be the vectors with u € U, v € V and u 4+ v = x, so that we have
Projy(x) = u. Let w € U with w # u. Since (w—wu,x—u) = (w—u,v) = (w,v)—(u,v) =0,
Pythagoras’ Theorem gives

lz —wl* =z —w) = (w = w)|* = |z — ul* + |w —ul|* > [lz — ul

and so ||z —w]| > ||z — u]|.

4.17 Definition: Let W be a vector space over F = R or C. For a subset S C W, we say
that S is convex when for all a,b € S we have a +t(b—a) € S for all 0 <t < 1.

4.18 Theorem: Let H be a Hilbert space over F = R or C. Let S C H be nonempty,
closed and convex. Then for every a € H there exists a unique point b € S which is nearest
to a, that is such that ||a — b|| < |la — z|| for all x € S.

Proof: Let a € H. Let d = dist(a,S) = inf {||lz — a|| | € S}. Choose a sequence {z,,} in
S so that ||z, — al| — d, hence |z, — al|> — d?. Let € > 0 and choose m € Z* so that for
all n > m we have ||z,, —al|* < d? + %. Let k,I > m. By the Parallelogram Law we have

o )+ G- )|+ e @) — (o1~ ) = 2 — al]* + 2l

Since S is convex, we have “T“” € S, hence H“T“” — aH > d, and so

ok —a” = |k — @) = (2~ o)
= QH:Bk — aH2 + 2||xl - aH2 - H(mk —a)+ (zr — a)”2
=2l = al*+ 2 o - 22 — o
<P+ S) +2(R2+ ) —4d2 = €2

so that ||z — z;]| < e. This shows that the sequence {x,} is Cauchy. Since H is complete,

{z,} converges in H, and since S is closed in H, the limit lies in S. Let b = lim z, € S.
n—oo

Since b € S we have ||b—al| > d, and we have ||b—al| < ||b—2,]| + ||z, —a| for alln € ZT
so that [|b—a|| < lim (||b — z,|| + |z — a||) = d, and so ||b — a|| = d. This shows that
n—oo

|b —a|| > ||z — a| for all z € S. Finally, we note that the point b is unique because given
c € S with ||c — a|| = d, since S is convex we have %< € S so that ||25¢ — a|| > d, and so
the Parallelogram Law gives

bl = |6~ a) ~ (e~ a)][* = 216~ all* +2llc — all* ~ || (b~ a) + (¢ ~ a)|

— 4d? — 4| %5¢ — a|* < 4d® — 4d2 = 0

so that ||b — ¢|| = 0 hence b = c.



4.19 Theorem: Let H be a Hilbert space over F = R or C. Let U C H be a closed
subspace. Then we have H = U @ U+. This means that for all x € H there exist unique
points u € U and v € UL such that u+v = z. In this case, the point u is the unique point
in U nearest to x.

Proof: Let x € H. Since U is a vector space it is convex, so by the previous theorem
there is a unique point © € U which is nearest to x. Let u be this nearest point and
let v = — u so that u +v = 2. We claim that v € UL. Suppose, for a contradiction,
that v ¢ U+. Choose u; € U with (v,u1) # 0. Write (v,u;) = re?® with » > 0 and
6 € R (when F = R we have ¢ = +1) and let up = eu;. Note that uy € U and

(v,u9) = (v,euy) = e (v, u1) = e re? =r > 0. For all t € R we have

2
[ = (u+tua) | = [lo — tuz||* = [|v]|* — 2t Re(v, ug) + ¢*[Juz||* = [Jv]|* — 2rt + ||luz|*t*.

It follows that for small ¢ > 0 we have ||z — (u + tug)H2 < ||v]|* = ||z — u||* which is not
possible, since u is the point in U which is nearest to x.

It remains to show that the points u € U and v € U+ with v + v = x, which we
found in the previous paragraph, are the only such points. Let x € H. Suppose that
u €U, v €Ut and u+ v = 2. We claim that u must be equal to the (unique) point in
U which is nearest to z. Let v/ € U with v # u. Since v € U+ and v/ — u € U we have
(x —u,u’ —u) = (v,u’ —u) =0 and so

|2 — u'”2 =[[(z —u) — (v - U)H2 = ||z — ul|®* — 2Re(x — u, v’ —u) + ||Ju' — ul?

= llo —ul + [lu" = vl > [|lz — ull?

so that ||z — u/|| > ||z — u||. Thus u is the point in U which is nearest to x, as required.
4.20 Theorem: Every inner product space contains a maximal orthonormal set.

Proof: Let W be an inner product space. Let S be the set of all orthonormal sets in W,
ordered by inclusion. If C' is a chain in S (that is a totally ordered subset of S) then |JC
is an upper bound for C' in S. Since every chain in S has an upper bound, it follows from
Zorn’s Lemma that S has a maximal element.

4.21 Theorem: Let H be a Hilbert space over F = R or C. Let A be an orthonormal set
in H and let U = Span, A. Then A is maximal if and only if U is dense in H.

Proof: If A is not maximal then we can choose v € U+ with |[v|| = 1 (so that AU {v} is
orthonormal) and then for all u € U, since (v,u) = 0, we have ||Ju — v|* = [Jul|* + ||v]|* >
|v[|? = 1. Thus U is not dense in H, indeed there is no u € U with |ju — v|| < 3.

Suppose, conversely, that U is not dense in H, that is U # H. Note that U is a vector
space, indeed given a,b € U we can choose {z,} and {y,} with z, — a and y,, — b in
H and then (z,, + y,) — (a +b) so that a + b € U, and for ¢ € F we have cx,, — ca so
that ca € U. By the above theorem, we have H = U @ UL. Since H # U we must have
T # {0}. Choose v € U with |lv]| = 1. Since (v,u) = 0 for all u € U we certainly have
(v,u) = 0 for all uw € U, so the set AU {v} is orthonormal. And we cannot have v € U
since U N U+ = {0}, and so A % AU {v} so that A is not maximal.



4.22 Theorem: Let H be a Hilbert space over F = R or C. Let A be a maximal
orthonormal set in H. Then H is separable if and only if A is at most countable.

Proof: Suppose that A is uncountable. Let S be any dense subset of H. For each u € A
choose s, € S with ||s, —u|| < ‘/Ti. For u,v € A with u # v we have ||u|| =1 and [jv]| =1
and (u,v) = 0 so that |Ju —v[|? = ||ul|? + ||v]|> = 2 and so

Isu—s0ll = || (su—t)+(u—v)+(v—s,)|| > [u—v[|—(|su—ull+][ss—v]) = V2—2 22 >0

so that s, # s,. Thus S is uncountable so H is not separable.

Suppose, conversely, that A = {uy,us, -} is finite or countable. By the above theo-
rem, U = Span A is dense in H. Note that SpanQA is dense in Spany.A and SpanQ[i]A
is dense in Spani.A. Indeed given ci,c2,---,c, € F (where F = R or C) we can choose
71,72, , Ty € P (where P = Q or Qli]) such that |ry —cx| < & and then

n n n n
‘ > TRUE — CkukH = H > (rk _Ck:)usz < 3 e = cr)ug|
f=1 k=1 k=1 k=1
n n
= > Ime —arl fluell = X2 |ri — ekl <e
k=1 k=1

4.23 Theorem: Let H be a separable Hilbert space over F = R or C, let A = {uy,us,---}
be a countable orthonormal set in H, and let U = Span, A. Then the following are
equivalent.

(1) A is maximal.
(2) U is dense in H.

(3) For every x € H we have x = ) (x,u)ug in H.
k=1

(4) For every x € H we have ||z||? = > ’(x,uk>’2 in R.
k=1

(5) For all z,y € H we have (z,y) = > (x, ur)(y, ug).
k=1

Proof: The equivalence of Parts (1) and (2) follows from Theorem 4.21. Let us prove
that (2) implies (3). Suppose that U is dense in H. Let € H. For each n € Z*, let

Un = Span{uy, ug,---,u,} and let w, = Projy (z) = > (2, ux)uy. Let € > 0. Since U is
k=1

m
dense in H we can choose u € U with |ju —z| < e. Say u = > cgug. For all n > m, since

u € U, and wy, is the point in U,, nearest to x we have ||w, — z|| < |lu — x| < €. Thus

lim w, =z in H. This means that x = ) (x, ux)uy in H.
Let us prove that (3) implies (4). Suppose that for every x € H we have z = lim w,

n—oo
n

where w, = > (z, ug)ug. Note that
k=1

n

il = (32 G upyur, 3 (o uehur) = 32 32 (o)) = 3 | )

k=1 (=1 k=1/¢=1 k=1

(=}



Let ¢ > 0. Choose m € ZT such that for all n > m we have ||lw, — z| < e¢. By the

Triangle Inequality, for all n > m we have ‘|wn|| — ||x||‘ < ||lwy, — x| < €. This shows that
oo
: : : 2,
lim ||wy| = [|z]] in R, hence [|z]|? = lim [w,|* = > [{z,u)|” in R.
n—oo n—oo k=1

Next we prove that (4) implies (5). Suppose that (4) holds. Let z,y € H. Let

n

Tp = Y. {(x,up)ur and y, = > (y, ur)ur. Note that
k=1 k=1

s = (30 (e, 3 G udun) = 32 3 (@ wn) (g udOne = 3 o, ) (s )

k=1 (=1 k=1/¢=1 k=1

and note that for ¢ € C we have z, + cy, = Y (x + cy,ug)ug. Since (4) holds, we
k=1

I* = llyll*, and lim [l + cyn|* = |2 + cyl®. By the
n—oo

have lim [|z,]|* = ||z||*, lim |y
n— oo n—oo

Polarization Identity,

(w.) = 3 (Il + gl + i o+ iyl — o — yll* =i l2 — iy]?)

= 1im 4 (e + yall® + i o0 + inl® = 20 = yal® = i o0 — iyal?)
n—oo

= lim (zn,yn) = Y (2, u)(y, uk).
n—oo k=1

Note that (4) follows immediately from (5) by taking y = z. We finish the proof by

oo

proving that (4) implies (2). Suppose that for all z € H we have ||z]|? = > |(a:,uk>|2
k=1

As above, let w, = Proj; = Y (z,up)uy so that [lw,|* = Y ‘(x,uk)f Then we have

k=1 k=1
lim ||w,||* = |lz||>. Given € > 0, choose n € ZT so that ||z||*> — ||w,|* < €2. Since
n—oo

wy, = Projy (x) we have w, € U, and z — w, € U, so that (x — wp,wy,) = 0. By
Pythagoras’ Theorem, ||z — w,||? = ||z|* — ||w.||* < €2, hence ||z = w,| < €. Since € > 0
was arbitrary and w,, € U, this shows that U is dense in H.

4.24 Definition: A maximal orthonormal set in a Hilbert space H (over R or C) is called
a Hilbert basis for H (over R or C).

4.25 Theorem: Let H be an infinite dimensional separable Hilbert space over I, where
F =R or C, and let A = {uy,us,us,---} be a countable Hilbert basis for H.

(1) For allz € H, ifx = ) aguy and x = >, byug then ap = by, = (z,uy).
k=1 k=1

o0 [&.°]
(2) For all ¢, € F, Y cpuy converges in H if and only if > |cx|? converges in R.
k=1 k=1

(3) The map ¢ : H — (5(F) given by ¢(z) = ({z,u1), (x,us),--) is an inner product
space isomorphism.

Proof: The proof is left as an exercise.



4.26 Definition: When U and V' are normed linear spaces over F = R or C, a linear map
L :U — V is also called a linear operator, and a linear map f : U — I is also called a
linear functional on U.

4.27 Definition: Let U and V be normed linear spacesover F = Ror C, andlet L : U — V
be a linear operator. The operator norm of L is given by

I llop = sup { | L] | 2 with 2] <1}

and we say that L is bounded when ||L||,, < co. Since Lz = ||z| L(ﬁ) forall0 # x € U,
it follows that
| Lz|| < ||L|op |||l for all z € U.

4.28 Theorem: Let U and V be normed linear spaces and let L : U — V be a linear
operator. Then the following are equivalent.

(1) L is continuous at 0.
(2) L is bounded.
(3) L is uniformly continuous in X.

Proof: Suppose that L is continuous at 0. Choose § > 0 so that ||z|| < § = ||Lz| < 1.
Then [|lz|| < 1= |6z < 6 = ||L(6z)|| < 1 == ||L(z)|| = 5 [|L(dz)[| < 5 so [[L]lop < 3
Now suppose that L is bounded. For z,y € U we have

|22 = Lyl| = ||LG = )| = | £ (=) || Iz = w1l < WLlloplly — =1

Thus given € > 0 we can choose § = W and then ||z —y|| < d = ||[Lz — Ly|| <e.
op
Finally, we note that if L is uniformly continuous in U then L is continuous at 0.

4.29 Theorem: (The Uniform Boundedness Principle) Let U be a Banach space and let
V' be a normed linear space. Let S be a set of bounded linear operators L : U — V.
Suppose that for every x € U there exists m, > 0 such that ||Lz|| < m, for all L € S.
Then there exists m > 0 such that ||L|,, <m for all L € S.

Proof: For each n € ZT, let A, = {x €U ||| Lz| <n for all L€ S}. Note that A, is closed
because the sets {z €U | ||Lz|| < n} are closed for each L € S, and A, is the intersection
of these sets. By the hypothesis of the theorem, we have U = |J;_; A,,. By the Baire
Category Theorem (since U is complete), the sets A,, cannot all be nowhere dense. Choose
n € ZT so that A, is not nowhere dense. Chose a € A,, and r > 0 so that B(a,r) C A,.
For all z € U, if x € B(a,r) then x € A,, so we have ||L(z)|| <n forall L € S. If ||z]| < r
then z + a € B(a,r) and a € B(a,r) and so

IL@)| = [ L(z + a) = L(a)[| < | L(z + a)|[ + [ L(a)|| < 2n forall L € S.

Forall L € Sand z € U, if ||z| <1 then |rz|| < r and so | L(z)|| = L ||L(rz)| < 22. Thus
we have [|L[|o, < 22 for all L € S.



4.30 Theorem: (Condensation of Singularities) Let U be a Banach space and let V' be a
normed linear space. For each m,n € ", let L, , : U — V be a bounded linear operator.
Suppose that for each m € Z* there exists x,, € U such that limsup || Ly, (zm)| = .

n—oo

Then the set E = {:1; eU

lim sup || Ly, (2)|| = 0o for all m € Z+} is a dense Gs set.

n—oo

Proof: Fix m € Z*. For each ¢ € ZT, let Ay = {x €U | || Lp,m(x)|| < ¢ for all n € Z"} and

note that each set Ay is closed. As in the proof of the Uniform Boundedness Principle, if one

of the sets A, was not nowhere dense then we could choose m > 0 such that ||L,, | < m

for all n € ZT. But then for all z € U we would have || L, »(z)| < m|z| for all n so

that imsup || L, »(z)|| < m|/z||, contradicting the hypothesis of the theorem. Thus all of
n— oo

the sets Ay must be nowhere dense. Let B, = |J 4s = {x€U| limsup || Ly, n(2)]| < oo}
/=1 n— 00

and let C' = U By, ={zeU| hmsup | Ly,n(2)| < oo for some m € Z* }, and note that

E=U\C. Then Cisa Countable union of closed nowhere dense sets, so E is a countable
intersection of open dense sets. By the Baire Category Theorem, FE is dense.



