
Chapter 4. Banach and Hilbert Spaces

4.1 Definition: Let W be an inner product space over F = R or C. For a subset A ⊆W ,
we say that A is orthogonal when 〈u, v〉 = 0 for all u, v ∈ A with u 6= v, and we say that
A is orthonormal when A is orthogonal with ‖u‖ = 1 for every u ∈ A.

4.2 Theorem: Let W be an inner product space over F = R or C. Let A ⊆W .

(1) If A is an orthogonal set of nonzero vectors then for x ∈ SpanA with say x =
n∑
k=1

ckuk

where ck ∈ F and uk ∈ A, we have ck = 〈x, uk〉/‖uk‖2 for all indices k, and in particular,
A is linearly independent.

(2) If A is orthonormal then for x ∈ SpanA with say x =
n∑
k=1

ckuk where ck ∈ F and

uk ∈ A, we have ck = 〈x, uk〉 for all k, and in particular, A is linearly independent.

Proof: To prove Part (1), suppose that A is an orthogonal set of nonzero vectors and let

x =
n∑
j=1

cjuj with each cj ∈ F and each uj ∈ A. Then for all indices k, since 〈uj , uk〉 = 0

whenever j 6= k we have 〈x, uk〉 =
〈 n∑
j=1

cjuj , uk

〉
=

n∑
j=1

cj〈uj , uk〉 = ck〈uk, uk〉 = ck‖uk‖2

and so ck = 〈x,uk〉
‖uk‖2 , as required. In particular, when x = 0 we find that ck = 0 for all k,

and this shows that A is linearly independent. This proves Part (1), and Part (2) follows
immediately from Part (1).

4.3 Theorem: (The Gram-Schmidt Procedure) LetW be a finite or countable dimensional
inner product space over F = R or C. Let A = {u1, u2, · · ·} be an ordered basis for W .

Let v1 = u1 and for n ≥ 2 let vn = un −
n−1∑
k=1

〈un, vk〉
‖vk‖2

vk. Then the set B = {v1, v2, · · ·}

is an orthogonal basis for W with the property that for every index n ≥ 1 we have
Span{v1, · · · , vn} = Span{u1, · · · , un}.
Proof: We prove, by induction on n, that {v1, v2, · · · , vn} is an orthogonal basis for
Span{u1, u2, · · · , un}. When n = 1 this is clear since v1 = u1. Let n ≥ 2 and sup-
pose, inductively, that {v1, · · · , vn−1} is an orthogonal basis for Span{u1, · · · , un−1}. Since

vn = un −
∑n−1
k=1

〈un,vk〉
‖vk‖2 vk, we see that un is equal to vn plus a linear combination of the

vectors v1, · · · , vn−1, and so we have Span{v1, · · · , vn−1, vn} = Span{v1, · · · , vn−1, un}. By
the induction hypothesis, we have Span{v1, · · · , vn−1} = Span{u1, · · · , un−1} so we have

Span{v1, · · · , vn−1, vn} = Span{v1, · · · , vn−1, un} = Span{u1, · · · , un−1, un}.

It remains to show that the set {v1, v2, · · · , vn} is an orthogonal set. By the induction
hypothesis, we have 〈vj , vk〉 = 0 for all 1 ≤ j, k < n, so it suffices to show that 〈vn, vk〉 = 0
for all indices 1 ≤ k < n and indeed, for 1 ≤ k < n we have

〈vn, vk〉 =
〈
un −

n−1∑
j=1

〈un,vj〉
‖vj‖2 vj , vk

〉
= 〈un, vk〉 −

n−1∑
j=1

〈un,vj〉
‖vj‖2 〈vj , vk〉

= 〈un, vk〉 −
〈un, vk〉
‖vk‖2

〈vk, vk〉 = 0.
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4.4 Corollary: Every finite or countable dimensional inner product space W over F = R
or C has an orthonormal basis.

Proof: The proof is left as an exercise.

4.5 Remark: It is not the case that every uncountable dimensional inner product space
has an orthonormal basis. For example, we shall see below that an infinite dimensional
separable Hilbert space does not have an orthonormal basis.

4.6 Corollary: Let W be a finite or countable dimensional inner product space over
F = R or C. Let U ⊆ W be a finite dimensional subspace. Then every orthogonal (or
orthonormal) basis A for U extends to an orthogonal (or orthonormal) basis for W .

Proof: The proof is left as an exercise.

4.7 Remark: The above corollary does not hold in general in the case that the subspace
U is countable dimensional, as we shall soon see in Example 4.12.

4.8 Corollary: Let F = R or C and let U and V be finite or countable dimensional inner
product spaces over F. Then U and V are isomorphic (as inner product spaces) if and
only if dim(U) = dim(V ). In particular, if dim(U) = n then U is isomorphic to Fn and if
dim(U) = ℵ0 then U is isomorphic to F∞.

Proof: The proof is left as an exercise.

4.9 Definition: Let W be an inner product space over F = R or C. For a subspace
U ⊆W , we define the orthogonal complement of U in W to be the set

U⊥ =
{
x ∈W

∣∣〈x, u〉 = 0 for all u ∈ U
}
.

4.10 Theorem: Let W be an inner product space over F = R or C. Let U ⊆ W be a
subspace. Then

(1) U⊥ is a subspace of W ,
(2) if A is a basis for U then U⊥ =

{
x ∈W

∣∣〈x, u〉 = 0 for all u ∈ U
}

,
(3) U ∩ U⊥ = {0}, and
(4) U ⊆ (U⊥)⊥.

(5) if U is finite dimensional then U ⊕ U⊥ = W , and
(6) if U ⊕ U⊥ = W then U = (U⊥)⊥.

Proof: We leave the proofs of Parts (1) to (4) as an exercise. To prove Part (5), suppose
that U is finite-dimensional. Let A = {u1, u2, · · · , un} be an orthonormal basis for A. We
need to show that for every x ∈W there exist unique vectors u, v ∈W with u ∈ U , v ∈ U⊥
and u + v = x. First we prove uniqueness. Let x ∈ W , and suppose that u ∈ U , v ∈ U⊥
and u+ v = x. Note that for all indices k we have

〈x, uk〉 = 〈u+ v, uk〉 = 〈u, uk〉+ 〈v, uk〉 = 〈u, uk〉.

and so, by Theorem 4.2, we have

u =
n∑
k=1

〈u, uk〉uk =
n∑
k=1

〈x, uk〉uk.
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This proves uniqueness, since given x ∈W , the vector u must be given by u =
n∑
k=1

〈x, uk〉uk
and then the vector v must be given by v = x− u.

To prove existence, let x ∈W and choose u and v to be the vectors u =
n∑
k=1

〈x, uk〉uk

and v = x − u. Then we have u ∈ U and u + v = x, so it suffices to show that v ∈ U⊥.
For all indices k we have

〈v, uk〉 = 〈x− u, uk〉 = 〈x, uk〉 − 〈u, uk〉 = 〈x, uk〉 −
〈 n∑
j=1

〈x, uj〉uj , uk
〉

= 〈x, uk〉 −
n∑
j=1

〈x, uj〉〈uj , uk〉 = 〈x, uk〉 −
n∑
j=1

〈x, uj〉δj,k = 〈x, uk〉 − 〈x, uk〉 = 0.

Since 〈v, uk〉 = 0 for all 1 ≤ k ≤ n, from Part (2) we have v ∈ U⊥. This proves Part (5).
To prove Part (6). Suppose that U ⊆ (U⊥)⊥. We know, from Part 4, that U ⊆ (U⊥)⊥.

Let x ∈ (U⊥)⊥. Choose u, v ∈ W with u ∈ U , v ∈ U⊥ such that u + v = x. Since
u ∈ U ⊆ (U⊥)⊥ and x ∈ (U⊥)⊥, we have v = x−u ∈ (U⊥)⊥. Since v ∈ U⊥∩(U⊥)⊥ = {0},
we have v = 0 so that x = u+ v = u ∈ U .

4.11 Remark: Parts (5) and (6) of the above theorem do not always hold when U is
infinite dimensional, as the following example shows.

4.12 Example: Let F = R or C. Let W = F∞ and let U =
{
a ∈ F∞

∣∣ ∞∑
k=1

ak = 0
}

. Note

that W is a countable-dimensional inner product space with standard basis {e1, e2, e3, · · ·}
and U is a countable-dimensional proper subspace of W with basis A = {u1, u2, u3, · · ·}
where uk = e1 − ek+1 = (1, 0, · · · , 0,−1, 0, · · ·). We have

U⊥ =
{
x ∈W

∣∣〈x, uk〉 = 0 for all k
}

=
{
x ∈W

∣∣〈x, e1 − ek+1〉 = 0 for all k
}

=
{
x ∈W

∣∣x1 = xk+1 for all k
}

=
{
x ∈W

∣∣x1 = x2 = x3 = · · ·
}

= {0}

because for x ∈ F∞ we have xn = 0 for all but finitely many indices n. Notice that in
this example we have U ⊂6= (UT )T = W and U ⊕ U⊥ = U ⊕ {0} = U ⊂6= W . Also notice

that, although we could apply the Gram-Schmidt Procedure to the basis A to obtain an
orthogonal basis B = {v1, v2, · · ·} for U , the basis B cannot be extended to an orthogonal
basis for W because there is no nonzero vector 0 6= x ∈W with 〈x, vk〉 for all k.

4.13 Definition: Let W be an inner product space over F = R or C. Let U ⊆ W be a
subspace such that W = U ⊕ U⊥. For x ∈ W , we define the orthogonal projection of
x onto U , denoted by ProjU (x), as follows. Since W = U ⊕ U⊥, we can choose unique
vectors u, v ∈W with u ∈ U , v ∈ V and u+ v = x. We then define

ProjU (x) = u.

Since U = (U⊥)⊥, for u and v as above we have ProjU⊥(x) = v. When y ∈ W and
U = Span{y}, we also write Projy(x) = ProjU (x).

4.14 Note: Let W be an inner product space over F = R or C. Let U be a finite
dimensional subspace of W . Let A = {u1, u2, · · · , un} be an orthogonal basis for U . Then
for x ∈W , as in the proof of Part (5) of Theorem 4.15, we see that

ProjU (x) =
n∑
k=1

〈x, uk〉
‖uk‖2

uk.
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4.15 Example: As an exercise, show that for A ∈ Mn×m(C) and U = Col(A), given
x ∈ Cn there exists y ∈ Cm such that A∗Ay = A∗x and that for any such y we have
ProjU (x) = Ay. In particular, when rank(A) = m show that A∗A is invertible so that
ProjU (x) = A(A∗A)−1A∗x.

4.16 Theorem: Let W be an inner product space over F = R or C. Let U ⊆ W be a
subspace of W such that W = U ⊕U⊥. Let x ∈W . Then ProjU (x) is the unique point in
U which is nearest to x.

Proof: Let u, v ∈ W be the vectors with u ∈ U , v ∈ V and u + v = x, so that we have
ProjU (x) = u. Let w ∈ U with w 6= u. Since 〈w−u, x−u〉 = 〈w−u, v〉 = 〈w, v〉−〈u, v〉 = 0,
Pythagoras’ Theorem gives

‖x− w‖2 = ‖(x− u)− (w − u)‖2 = ‖x− u‖2 + ‖w − u‖2 > ‖x− u‖2

and so ‖x− w‖ > ‖x− u‖.

4.17 Definition: Let W be a vector space over F = R or C. For a subset S ⊆W , we say
that S is convex when for all a, b ∈ S we have a+ t(b− a) ∈ S for all 0 ≤ t ≤ 1.

4.18 Theorem: Let H be a Hilbert space over F = R or C. Let S ⊆ H be nonempty,
closed and convex. Then for every a ∈ H there exists a unique point b ∈ S which is nearest
to a, that is such that ‖a− b‖ ≤ ‖a− x‖ for all x ∈ S.

Proof: Let a ∈ H. Let d = dist(a, S) = inf
{
‖x− a‖

∣∣x ∈ S}. Choose a sequence {xn} in
S so that ‖xn − a‖ → d, hence ‖xn − a‖2 → d2. Let ε > 0 and choose m ∈ Z+ so that for

all n ≥ m we have ‖xn − a‖2 ≤ d2 + ε2

4 . Let k, l ≥ m. By the Parallelogram Law we have∥∥(xk − a) + (xl − a)
∥∥2 +

∥∥(xk − a)− (xl − a)
∥∥2 = 2

∥∥xk − a∥∥2 + 2
∥∥xl − a∥∥2

Since S is convex, we have xk+xl

2 ∈ S, hence
∥∥xk+xl

2 − a
∥∥ ≥ d, and so∥∥xk − xl∥∥2 =

∥∥(xk − a)− (xk − a)
∥∥2

= 2
∥∥xk − a∥∥2 + 2

∥∥xl − a∥∥2 − ∥∥(xk − a) + (xk − a)
∥∥2

= 2
∥∥xk − a∥∥2 + 2

∥∥xl − a∥∥2 − 4
∥∥xk+xl

2 − a
∥∥2

≤ 2
(
d2 + ε2

4

)
+ 2
(
d2 + ε2

4

)
− 4d2 = ε2.

so that ‖xk −xl‖ ≤ ε. This shows that the sequence {xn} is Cauchy. Since H is complete,
{xn} converges in H, and since S is closed in H, the limit lies in S. Let b = lim

n→∞
xn ∈ S.

Since b ∈ S we have ‖b−a‖ ≥ d, and we have ‖b−a‖ ≤ ‖b−xn‖+ ‖xn−a‖ for all n ∈ Z+

so that ‖b − a‖ ≤ lim
n→∞

(
‖b − xn‖ + ‖xn − a‖

)
= d, and so ‖b − a‖ = d. This shows that

‖b− a‖ ≥ ‖x− a‖ for all x ∈ S. Finally, we note that the point b is unique because given
c ∈ S with ‖c− a‖ = d, since S is convex we have b+c

2 ∈ S so that
∥∥ b+c

2 − a
∥∥ ≥ d, and so

the Parallelogram Law gives

‖b− c‖2 =
∥∥(b− a)− (c− a)

∥∥2 = 2‖b− a‖2 + 2‖c− a‖2 −
∥∥(b− a) + (c− a)

∥∥
= 4d2 − 4

∥∥ b−c
2 − a

∥∥2 ≤ 4d2 − 4d2 = 0

so that ‖b− c‖ = 0 hence b = c.
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4.19 Theorem: Let H be a Hilbert space over F = R or C. Let U ⊆ H be a closed
subspace. Then we have H = U ⊕ U⊥. This means that for all x ∈ H there exist unique
points u ∈ U and v ∈ U⊥ such that u+ v = x. In this case, the point u is the unique point
in U nearest to x.

Proof: Let x ∈ H. Since U is a vector space it is convex, so by the previous theorem
there is a unique point u ∈ U which is nearest to x. Let u be this nearest point and
let v = x − u so that u + v = x. We claim that v ∈ U⊥. Suppose, for a contradiction,
that v /∈ U⊥. Choose u1 ∈ U with 〈v, u1〉 6= 0. Write 〈v, u1〉 = reiθ with r > 0 and
θ ∈ R (when F = R we have eiθ = ±1) and let u2 = eiθu1. Note that u2 ∈ U and
〈v, u2〉 = 〈v, eiθu1〉 = e−iθ〈v, u1〉 = e−iθr eiθ = r > 0. For all t ∈ R we have∥∥x− (u+ tu2)

∥∥2 = ‖v − tu2‖2 = ‖v‖2 − 2tRe〈v, u2〉+ t2‖u2‖2 = ‖v‖2 − 2r t+ ‖u2‖2t2.

It follows that for small t > 0 we have
∥∥x − (u + tu2)

∥∥2 ≤ ‖v‖2 = ‖x − u‖2 which is not
possible, since u is the point in U which is nearest to x.

It remains to show that the points u ∈ U and v ∈ U⊥ with u + v = x, which we
found in the previous paragraph, are the only such points. Let x ∈ H. Suppose that
u ∈ U , v ∈ U⊥ and u + v = x. We claim that u must be equal to the (unique) point in
U which is nearest to x. Let u′ ∈ U with u′ 6= u. Since v ∈ U⊥ and u′ − u ∈ U we have
〈x− u, u′ − u〉 = 〈v, u′ − u〉 = 0 and so∥∥x− u′∥∥2 =

∥∥(x− u)− (u′ − u)
∥∥2 = ‖x− u‖2 − 2 Re〈x− u, u′ − u〉+ ‖u′ − u‖2

= ‖x− u‖+ ‖u′ − u‖ > ‖x− u‖2

so that ‖x− u′‖ > ‖x− u‖. Thus u is the point in U which is nearest to x, as required.

4.20 Theorem: Every inner product space contains a maximal orthonormal set.

Proof: Let W be an inner product space. Let S be the set of all orthonormal sets in W ,
ordered by inclusion. If C is a chain in S (that is a totally ordered subset of S) then

⋃
C

is an upper bound for C in S. Since every chain in S has an upper bound, it follows from
Zorn’s Lemma that S has a maximal element.

4.21 Theorem: Let H be a Hilbert space over F = R or C. Let A be an orthonormal set
in H and let U = Span

F
A. Then A is maximal if and only if U is dense in H.

Proof: If A is not maximal then we can choose v ∈ U⊥ with ‖v‖ = 1 (so that A ∪ {v} is
orthonormal) and then for all u ∈ U , since 〈v, u〉 = 0, we have ‖u− v‖2 = ‖u‖2 + ‖v‖2 ≥
‖v‖2 = 1. Thus U is not dense in H, indeed there is no u ∈ U with ‖u− v‖ ≤ 1

2 .

Suppose, conversely, that U is not dense in H, that is U 6= H. Note that U is a vector
space, indeed given a, b ∈ U we can choose {xn} and {yn} with xn → a and yn → b in
H and then (xn + yn) → (a + b) so that a + b ∈ U , and for c ∈ F we have cxn → ca so

that ca ∈ U . By the above theorem, we have H = U ⊕ U⊥. Since H 6= U we must have

U
⊥ 6= {0}. Choose v ∈ U⊥ with ‖v‖ = 1. Since 〈v, u〉 = 0 for all u ∈ U we certainly have
〈v, u〉 = 0 for all u ∈ U , so the set A ∪ {v} is orthonormal. And we cannot have v ∈ U
since U ∩ U⊥ = {0}, and so A ⊂6= A ∪ {v} so that A is not maximal.
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4.22 Theorem: Let H be a Hilbert space over F = R or C. Let A be a maximal
orthonormal set in H. Then H is separable if and only if A is at most countable.

Proof: Suppose that A is uncountable. Let S be any dense subset of H. For each u ∈ A
choose su ∈ S with ‖su − u‖ ≤

√
2
4 . For u, v ∈ A with u 6= v we have ‖u‖ = 1 and ‖v‖ = 1

and 〈u, v〉 = 0 so that ‖u− v‖2 = ‖u‖2 + ‖v‖2 = 2 and so

‖su−sv‖ =
∥∥(su−u)+(u−v)+(v−sv)

∥∥ ≥ ‖u−v‖−(‖su−u‖+‖sv−v‖) =
√

2−
√
2
4 −

√
2
4 > 0

so that su 6= sv. Thus S is uncountable so H is not separable.

Suppose, conversely, that A = {u1, u2, · · ·} is finite or countable. By the above theo-
rem, U = Span

F
A is dense in H. Note that SpanQA is dense in SpanRA and SpanQ[i]

A
is dense in SpanCA. Indeed given c1, c2, · · · , cn ∈ F (where F = R or C) we can choose
r1, r2, · · · , rn ∈ P (where P = Q or Q[i]) such that |rk − ck| < ε

n and then

∥∥∥ n∑
k=1

rkuk −
n∑
k=1

ckuk

∥∥∥ =
∥∥∥ n∑
k=1

(rk − ck)uk

∥∥∥ ≤ n∑
k=1

∥∥(rk − ck)uk
∥∥

=
n∑
k=1

|rk − ck| ‖uk‖ =
n∑
k=1

|rk − ck| < ε.

4.23 Theorem: Let H be a separable Hilbert space over F = R or C, let A = {u1, u2, · · ·}
be a countable orthonormal set in H, and let U = Span

F
A. Then the following are

equivalent.

(1) A is maximal.

(2) U is dense in H.

(3) For every x ∈ H we have x =
∞∑
k=1

〈x, uk〉uk in H.

(4) For every x ∈ H we have ‖x‖2 =
∞∑
k=1

∣∣〈x, uk〉∣∣2 in R.

(5) For all x, y ∈ H we have 〈x, y〉 =
∞∑
k=1

〈x, uk〉〈y, uk〉.

Proof: The equivalence of Parts (1) and (2) follows from Theorem 4.21. Let us prove
that (2) implies (3). Suppose that U is dense in H. Let x ∈ H. For each n ∈ Z+, let

Un = Span{u1, u2, · · · , un} and let wn = ProjUn
(x) =

n∑
k=1

〈x, uk〉uk. Let ε > 0. Since U is

dense in H we can choose u ∈ U with ‖u− x‖ < ε. Say u =
m∑
k=1

ckuk. For all n ≥ m, since

u ∈ Un and wn is the point in Un nearest to x we have ‖wn − x‖ ≤ ‖u − x‖ < ε. Thus

lim
n→∞

wn = x in H. This means that x =
∞∑
k=1

〈x, uk〉uk in H.

Let us prove that (3) implies (4). Suppose that for every x ∈ H we have x = lim
n→∞

wn

where wn =
n∑
k=1

〈x, uk〉uk. Note that

‖wn‖2 =
〈 n∑
k=1

〈x, uk〉uk ,
n∑̀
=1

〈x, u`〉u`
〉

=
n∑
k=1

n∑̀
=1

〈x, uk〉〈x, u`〉δk,` =
n∑
k=1

∣∣〈x, uk〉∣∣2.
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Let ε > 0. Choose m ∈ Z+ such that for all n ≥ m we have ‖wn − x‖ < ε. By the

Triangle Inequality, for all n ≥ m we have
∥∥∥|wn‖ − ‖x‖∣∣∣ ≤ ‖wn − x‖ < ε. This shows that

lim
n→∞

‖wn‖ = ‖x‖ in R, hence ‖x‖2 = lim
n→∞

‖wn‖2 =
∞∑
k=1

∣∣〈x, uk〉∣∣2 in R.

Next we prove that (4) implies (5). Suppose that (4) holds. Let x, y ∈ H. Let

xn =
n∑
k=1

〈x, uk〉uk and yn =
n∑
k=1

〈y, uk〉uk. Note that

〈xn, yn〉 =
〈 n∑
k=1

〈x, uk〉uk ,
n∑̀
=1

〈y, uk〉uk
〉

=
n∑
k=1

n∑̀
=1

〈x, uk〉〈y, u`〉δk,` =
n∑
k=1

〈x, uk〉〈y, uk〉

and note that for c ∈ C we have xn + cyn =
n∑
k=1

〈x + cy, uk〉uk. Since (4) holds, we

have lim
n→∞

‖xn‖2 = ‖x‖2, lim
n→∞

‖yn‖2 = ‖y‖2, and lim
n→∞

‖xn + cyn‖2 = ‖x + cy‖2. By the

Polarization Identity,

〈x, y〉 = 1
4

(
‖x+ y‖2 + i ‖x+ iy‖2 − ‖x− y‖2 − i ‖x− iy‖2

)
= lim
n→∞

1
4

(
‖xn + yn‖2 + i ‖xn + iyn‖2 − ‖xn − yn‖2 − i ‖xn − iyn‖2

)
= lim
n→∞

〈
xn, yn〉 =

∞∑
k=1

〈x, uk〉〈y, uk〉.

Note that (4) follows immediately from (5) by taking y = x. We finish the proof by

proving that (4) implies (2). Suppose that for all x ∈ H we have ‖x‖2 =
∞∑
k=1

∣∣〈x, uk〉∣∣2.

As above, let wn = ProjUn
=

n∑
k=1

〈x, uk〉uk so that ‖wn‖2 =
n∑
k=1

∣∣〈x, uk〉∣∣2. Then we have

lim
n→∞

‖wn‖2 = ‖x‖2. Given ε > 0, choose n ∈ Z+ so that ‖x‖2 − ‖wn‖2 < ε2. Since

wn = ProjUn
(x) we have wn ∈ Un and x − wn ∈ Un

⊥ so that 〈x − wn, wn〉 = 0. By
Pythagoras’ Theorem, ‖x− wn‖2 = ‖x‖2 − ‖wn‖2 < ε2, hence ‖x = wn‖ < ε. Since ε > 0
was arbitrary and wn ∈ U , this shows that U is dense in H.

4.24 Definition: A maximal orthonormal set in a Hilbert space H (over R or C) is called
a Hilbert basis for H (over R or C).

4.25 Theorem: Let H be an infinite dimensional separable Hilbert space over F, where
F = R or C, and let A = {u1, u2, u3, · · ·} be a countable Hilbert basis for H.

(1) For all x ∈ H, if x =
∞∑
k=1

akuk and x =
∞∑
k=1

bkuk then ak = bk = 〈x, uk〉.

(2) For all ck ∈ F,
∞∑
k=1

ckuk converges in H if and only if
∞∑
k=1

|ck|2 converges in R.

(3) The map φ : H → `2(F ) given by φ(x) =
(
〈x, u1〉, 〈x, u2〉, · · ·

)
is an inner product

space isomorphism.

Proof: The proof is left as an exercise.
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4.26 Definition: When U and V are normed linear spaces over F = R or C, a linear map
L : U → V is also called a linear operator, and a linear map f : U → F is also called a
linear functional on U .

4.27 Definition: Let U and V be normed linear spaces over F = R or C, and let L : U → V
be a linear operator. The operator norm of L is given by

‖L‖op = sup
{
‖Lx‖

∣∣∣x∈U with ‖x‖≤1
}

and we say that L is bounded when ‖L‖op <∞. Since Lx = ‖x‖L
(
x
‖x‖
)

for all 0 6= x ∈ U ,

it follows that
‖Lx‖ ≤ ‖L‖op ‖x‖ for all x ∈ U.

4.28 Theorem: Let U and V be normed linear spaces and let L : U → V be a linear
operator. Then the following are equivalent.

(1) L is continuous at 0.
(2) L is bounded.
(3) L is uniformly continuous in X.

Proof: Suppose that L is continuous at 0. Choose δ > 0 so that ‖x‖ ≤ δ =⇒ ‖Lx‖ ≤ 1.
Then ‖x‖ ≤ 1 =⇒ ‖δx‖ ≤ δ =⇒ ‖L(δx)‖ ≤ 1 =⇒ ‖L(x)‖ = 1

δ ‖L(δx)‖ ≤ 1
δ so ‖L‖op ≤ 1

δ .
Now suppose that L is bounded. For x, y ∈ U we have∥∥Lx− Ly∥∥ =

∥∥L(x− y)
∥∥ =

∥∥∥L( x−y
‖x−y‖

)∥∥∥ ‖x− y‖ ≤ ‖L‖op‖y − x‖.
Thus given ε > 0 we can choose δ = 1

‖L‖op+1 and then ‖x− y‖ < δ =⇒ ‖Lx− Ly‖ < ε.

Finally, we note that if L is uniformly continuous in U then L is continuous at 0.

4.29 Theorem: (The Uniform Boundedness Principle) Let U be a Banach space and let
V be a normed linear space. Let S be a set of bounded linear operators L : U → V .
Suppose that for every x ∈ U there exists mx ≥ 0 such that ‖Lx‖ ≤ mx for all L ∈ S.
Then there exists m ≥ 0 such that ‖L‖op ≤ m for all L ∈ S.

Proof: For each n ∈ Z+, let An =
{
x∈U

∣∣ ‖Lx‖≤n for all L∈S
}

. Note that An is closed

because the sets {x∈U
∣∣ ‖Lx‖ ≤ n

}
are closed for each L ∈ S, and An is the intersection

of these sets. By the hypothesis of the theorem, we have U =
⋃∞
n=1An. By the Baire

Category Theorem (since U is complete), the sets An cannot all be nowhere dense. Choose
n ∈ Z+ so that An is not nowhere dense. Chose a ∈ An and r > 0 so that B(a, r) ⊆ An.
For all x ∈ U , if x ∈ B(a, r) then x ∈ An so we have ‖L(x)‖ ≤ n for all L ∈ S. If ‖x‖ < r
then x+ a ∈ B(a, r) and a ∈ B(a, r) and so

‖L(x)‖ = ‖L(x+ a)− L(a)‖ ≤ ‖L(x+ a)‖+ ‖L(a)‖ ≤ 2n for all L ∈ S.

For all L ∈ S and x ∈ U , if ‖x‖ ≤ 1 then ‖rx‖ ≤ r and so ‖L(x)‖ = 1
r ‖L(rx)‖ ≤ 2n

r . Thus
we have ‖L‖op ≤ 2n

r for all L ∈ S.
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4.30 Theorem: (Condensation of Singularities) Let U be a Banach space and let V be a
normed linear space. For each m,n ∈ Z+, let Lm,n : U → V be a bounded linear operator.
Suppose that for each m ∈ Z+ there exists xm ∈ U such that lim sup

n→∞
‖Lmn(xm)‖ = ∞.

Then the set E =
{
x ∈ U

∣∣∣ lim sup
n→∞

‖Lmn(x)‖ =∞ for all m ∈ Z+
}

is a dense Gδ set.

Proof: Fix m ∈ Z+. For each ` ∈ Z+, let A` =
{
x∈U

∣∣ ‖Ln,m(x)‖ ≤ ` for all n ∈ Z+
}

and
note that each set A` is closed. As in the proof of the Uniform Boundedness Principle, if one
of the sets A` was not nowhere dense then we could choose m ≥ 0 such that ‖Lm,n‖ ≤ m
for all n ∈ Z+. But then for all x ∈ U we would have ‖Lm,n(x)‖ ≤ m‖x‖ for all n so
that lim sup

n→∞
‖Lm,n(x)‖ ≤ m‖x‖, contradicting the hypothesis of the theorem. Thus all of

the sets A` must be nowhere dense. Let Bm =
∞⋃
`=1

A` =
{
x∈U

∣∣ lim sup
n→∞

‖Lm,n(x)‖ <∞
}

and let C =
∞⋃
m=1

Bm =
{
x∈U

∣∣ lim sup
n→∞

‖Lm,n(x)‖ <∞ for some m ∈ Z+
}

, and note that

E = U \C. Then C is a countable union of closed nowhere dense sets, so E is a countable
intersection of open dense sets. By the Baire Category Theorem, E is dense.
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