Chapter 3. The Lp Spaces

3.1 Definition: Let F = R or C. Let W be a vector space over F. An inner product
over IF is a function (, ) : W x W — F (meaning that if u,v € W then (u,v) € F) such
that for all u,v,w € W and all t € F we have

(1) (Sesquilinearity) (u + v, w) = (u,w) + (v, w) , (tu,v) =t {u,v),

(u,v +w) = (u,v) + (vuw) , (u,tv) =t (u,v),
(2) (Conjugate Symmetry) (u,v) = (v, u), and
(3) (Positive Definiteness) (u,u) > 0 with (u,u) =0 <= u =0.
For u,v € W, (u,v) is called the inner product of u with v. An inner product space
over [ is a vector space over F equipped with an inner product. Given two inner product
spaces U and V over F, a linear map L : U — V is called a homomorphism of inner

product spaces (or we say that L preserves inner product) when (L(z), L(y)) = (z,y)
forall z,y € U.

3.2 Theorem: Let W be an inner product space over F = R or C and let u,v € W. Then
if (x,u) = (z,v) for all x € U, or if (u,x) = (v,x) for all x € U then u = v.

Proof: Suppose that (z,u) = (z,v) for all x € U. Then (x,u —v) = (x,u) — (x,v) = 0 for
all x € U. In particular, taking x = u — v we have (u — v,u —v) =0, so u — v = 0 hence
u = v. Similarly, if (u,z) = (v,z) for all x € U then u = v.

3.3 Definition: Let F = R or C. Let W be a vector space over F. A norm on W is a
map || || : W — R such that for all u,v € W and all t € F we have

(1) (Scaling) |[tul| = [¢] |[ul],

(2) (Positive Definiteness) [lul| > 0 with ([lu]| =0 < u=0), and

(3) (Triangle Inequality) |lu + v|| < |Ju|| + [|v].

For uw € W the real number ||u|| is called the norm (or length) of u, and we say that
u is a unit vector when ||u|]| = 1. A normed linear space over F is a vector space
over F equipped with a norm. Given two normed linear spaces U and V over F, a linear
map L : U — V is called a homomorphism of normed linear spaces (or we say that L
preserves norm) when ||L(z)|| = ||z| for all z € U.

3.4 Theorem: Let F =R or C. Let W be an inner product space over F. For u € W

define ||u|| = v/{u,u). Then for all u,v € W and all t € F we have

(1) (Scaling) [|tu]| =[] |[u]],

(2) (Positive Definiteness) |[ul > 0 with ([lu]| =0 <= u=0),

(3) l|u % v]* = |Jull* £ 2 Re(u, v) + [|v]|?,

(4) (Pythagoras’ Theorem) if (u,v) = 0 then ||u+ v||? = [Ju]|* + ||v||?,

(5) (Parallelogram Law) |ju + v||? + |lu — v[|* = 2|ul|* + 2||v]|?,

(6) (Polarization Identity) if F = R then (u,v) = % (||u+v|*> — ||u — v||?) and
if F = C then (u,v) = +(|lu+v[]® +ilju+iv|]|? — [Ju—v||* —il|u —v|?),

(7) (The Cauchy-Schwarz Inequality) |(u, v)| <||u|| ||v|| with |(u,v)|=|u|| ||v|| if and only if
{u,v} is linearly dependent, and

(8) (The Triangle Inequality) |||ull — |lv||| < [Ju+ v|| < |lull + [|v].

In particular, || || is a norm on W.



Proof: We only prove Part (7) and part of Part (8). To prove Cauchy’s Inequality, suppose

first that {u, v} is linearly dependent. Then one of x and y is a multiple of the other, say

v=tuwith t € F. Then [(u,v)| = [{u, tu)| = [#(u,w)| = [t| |[ul]® = [ull [[tu] = ull [Jv]]
Next we suppose that {u, v} is linearly independent. Then 1-v+t¢-u # 0 for all t € F,

so in particular v — <|1;—|“2> u # 0. Thus we have
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= <U,’U> - % (v,u) - % <u7v> + ‘(|1:;‘1|1/2> Tﬁ;‘qrg (u,u)
2 L)
= [vlI* = “ripe

so that (=45 < ||v]|* and hence |(u, v)| < ul |[v]|. This proves Part (7).

Using Parts (3) and (7), and the inequality |Re(z)| < |z| for z € C (which follows
from Pythagoras’ Theorem in R?), we have

lu+]* = flull* + 2Refu, v) + [[o]|* < Jull* + 2w, v)| + [[o]|?
2
< lull® + 2[lull ol + ol = (llell + lv])"

Taking the square root on both sides gives ||u + v|| < ||u|| + ||v]]-

3.5 Definition: A metric on a set X is a function d : X x X — R such that, for all
x,y,z € X we have

(1) (Positive Definiteness) d(x,y) > 0 with d(z,y) =0 <= z =y,
(2) (Symmetry) d(z,y) = d(y, x) and
(3) (Triangle Inequality) d(z, z) < d(x,y) + d(y, 2).

A set with a metric is called a metric space.

3.6 Definition: A topology on a set X is a set 7 of subsets of X such that

(HPeTand X €T,
(2)ifUeTandV eT thenUNV €T, and

(3) if K is a set and U, € T for each k € K then |J Up € T.
keK

For a subset A C X, we say that A is open (in X) when A € T and we say that A is
closed (in X) when X \ A € T. A set with a topology is called a topological space.

3.7 Note: Given an inner product on a vector space V over F = R or C, Theorem 3.4
shows that we can define an associated norm on V' by letting ||z|| = /(z,z) for x € V.
Given a norm on a vector space V', verify that we can define an associated metric on
any subset X C V by letting d(x,y) = ||z — y|| for z,y € X.
Given a metric on a set X, verify that we can define an associated topology on X by
stipulating that a subset A C X is open when it has the property that for all a € A there
exists r > 0 such that B(a,r) C A, where B(a,r) = {z € X|d(z,a) < r}.



3.8 Definition: Let {z,},>1 be a sequence in a metric space X. We say that the sequence

{z,} converges in X when there exists a € X such that lim z,, = a, that is when
n—oo

JaeX Ve>03IneZt VkeZ® (k> n= d(z,,a) <e).
We say that {z,} is Cauchy when
Ve>03IneZt Vk,leZ™ (k:,l >n = d(xg,z) < e).

3.9 Note: Verify that, in a metric space, if a sequence converges then it is Cauchy.

3.10 Definition: A metric space X is called complete when, in X, every Cauchy se-
quence converges. A complete normed linear space is called a Banach space and a
complete inner-product space is called a Hilbert space.

3.11 Theorem: (The Completeness of R™) The metric space R™ is complete.
Proof: We omit the proof.

3.12 Definition: Let R“ denote the set of all sequences x = {x1,z2,x3,- -} with each
zr € R. For x € R and for 1 < p < oo let

lzllp = (3 lexf?)™" , and

|z]loc = sup {|ax||k € Z7 }.

Let
ly = {z € R¥|||z||, < oo} , and

loo = {z € R”|||2]|00 < 00}

3.13 Definition: Let A C R be measurable. Let M(A) denote the set of all measurable
functions f: A — [—o00,00]. For f € M(A) and for 1 < p < o0, let

1/p
1l = ( / |f|P) and

|l = inf {a > 0A(If](a,oc]) = 0}.

where |f|7!(a, 0] = {x € A[|f(z)] > a}. Let

Ly(4) = {f € M(A)|fll, <o} / ~ , and
Loo(4) = {1 € M(A)|If o0 < o0}/ ~

where ~ is the equivalence relation given by f ~ g <= f =g a.e. in A.

3.14 Remark: The reason that we quotient by the equivalence relation in the above
definition is that we want || f||, to define a norm on L,(A) and the quotient is necessary
to ensure that || f||, is positive definite (see Part 6 of Theorem 2.30).



3.15 Lemma: Let f: A C R — [—00,00] be measurable. Then {z € A||f(z)| > || f]lo}
has measure zero.

Proof: We claim that for all y > || f||oc we have A(|f]7'(y,00]) = 0. Let y > || |- By the
definition of || f||o We can choose a with || f||oo < a < y such that A(|f|~*(a, 00]) = 0. Since
a < y we have (y, 0] C (a,00], so |f|7*(y,00] C |f|7(a, o0], hence A(|f|*(y,<]) = 0, as
claimed.

Let B = {zcA||f(z)|>fllo} and let B, = {z € A||f(@)|>|fllc+ 1} for n € Z*.

Then each B,, is measurable with B; C By C B3 C ---, and we have |J B, = B. By the
n=1

above claim, we have A\(B,,) = 0 for all n € Z* and so A\(B) = li_>m A(By) =0.

3.16 Definition: For p,q € [1, 0] we say that p and ¢ are conjugate when % + % =1
where we use the convention that é = 0 so that 1 and oo are conjugate.

3.17 Lemma: Let p,q € (1,00) with %4—% = 1. Then for all a,b > 0 we have ab < %—f—%.

Proof: Note that for p,q € (1,00) we have

1 1

to=le= (=1- =22 = qp-1)=p <= plg—1)=q

Q|

1
P
For z,y > 0 we have

—1

y = 2P — yl= 24— y! = 2P — yp(q—l) — P e yq—l — 2

so the functions f(z) = 2P~ ! and g(y) = y?~! are inverses of each other. By considering
the area under y = f(x) with 0 < 2 < a and the area to the left of y = f(z) with0 <y <b
we see that

a b

a b
ab < 2P~ Ldx / =1 gy = [l :cp] + [l q] =a 4
B /aczo i y=0 / S U PR R PR T

3.18 Theorem: (Hoélder’s Inequality) Let p,q € [1, 00] with zla + é =1 and let A CR be
measurable.

(1) For all z,y € RY we have |lzyll1 < ||=|,llyllq-
(2) For all f,g € M(A) for which fg is defined, we have ||fg|1 < | fllpllgllq-

Proof: To prove Part (1) in the case that p,q € (1,00), let x,y € R¥. If x = 0 or y = 0 the
equality holds, so suppose that x,y # 0. For each index k, apply the above lemma using

o) N
@ = 1o, and b= - to get

|z kY| |z [P |y|4
lzllpllylle ~ pllzllp  dqllyllg

Sum over k to get
lzyll1 =5 llyllg

1
< =141y,
lzllpllylle = pllzln — allylla P

1
tq



To prove Part (2) in the case that p,q € (1,00), let f,g € M(R). If || f|[, =0 or ||g|l; =0
then the equality holds (with both sides equal to 0), so suppose that || f||,, ||g]l; # 0. For

each x € A, apply the above lemma using a = lﬁc}ﬁi‘ and b = ‘ﬁ’;—‘ﬁi' to get

F@e@)| _ 1f@P  |g@)]
1 Tololle = 2171 dllglle

Integrate over A to get

Ifgll AR lgllg
£ 1Illglle — pllAlE  allgllg

To prove Part (1) in the case that p = 1 and ¢ = oo, let x,y € R¥. Note that |yx| < ||y]lco
for all indices k and so

+

B =
Q|
—_

o0 o0
eyl = kZ_fl |rlly| < k; 2] [Ylloo = lll1llylloo-

Finally, to prove Part (2) in the case that p = 1 and ¢ = oo, let f,g € M(A). Let
B ={z € Allg(@)| < gl } and let C = {z € A|g(x)| > ||g]lo }- Note that B and C are
disjoint and measurable with A = B U C and that A(C') = 0 by Lemma 3.15. Thus

W%zAUMZéWMSLWMMZAWMMZWMMw

3.19 Theorem: (Minkowski’s Inequality) Let p € [1, 00| and let A C R be measurable.

(1) For all z,y € R¥ we have ||z + y|l, < ||zl + [[yll,-
(2) For all f,g € M(A) for which f + g is defined, we have ||f + gll, < | fll, + lg]l»-

Proof: To Prove Part (1) in the case that p = 1, note that when z,y € R¥ we have

oo o0 oo o0
[z +yll = kZI |k + yi| < kZl k] + |yl = kzl || + kzl gkl = llzlly +lyll

To prove Part (2) in the case that p = 1, note that when f, g, f + g € M(A) we have

Hf+ﬂhz[bf+mS[Jﬂ+kﬂ=[ﬂﬂ+[!m=Hm1+Mh-

To prove Part (1) in the case that p € (1,00), let x,y € R and let ¢ be the conjugate of
p so that % =1- % = pp%l. For each index k& we have

2k + ykl? = |zk + el o+ ueP ™ < (Jok] + Jyel) loe + el
= |zk| |lze + ye P~ + lywl 2k + yel?
Sum over k then apply Holder’s Inequality to get

o+ yl < ||lotle+y1|| + ol + w7 < Dl
= (llellp + ll, )

o (r=1)/p »
= (el + gl ) ( 3 Fow+ael?) ™ = (el + ol )l + g

24917 | + ol |l w7

o0 1/q
e+ | = (el + ol ) ( Xl + el @)

5



To prove Part (2) in the case that p € (1,00), let f,g,f + g € M(A) and let ¢ be the

conjugate of p so that % =1- % = %. For each x € A we have

[f(2) + 9@ = f(2) +g(@)|1f(2) + g(@)P~" < (If (@) + lg(@)]) | f(z) + g(x) P~
= f @) If (@) + g@)IP~" + lg(@)] 1 f (z) + g(z) P~

Integrate over A then apply Holder’s Inequality to get
1+ gl < 17115 + g7 | + ol 17 + g7 < 071 £ +gp?
p—1 a(p—1) e
= (171 -+ lgl ) |15 + 27| = (W51 + gl ) (17 +107)
o\ =1/ bt
= (W7l o) ([ 1740P) " = (17l Nl 7 + sl

£+ | + Dl
q q

To prove Part (1) in the case that p = oo, note that if x,y € £ then we have

12 4+ ylloo = sup |zx + yi| < sup (Jax] + [yel) < sup|ar| +sup [ye| = [[2]loo + [[¥loo-
E>1 E>1 E>1 E>1

To prove Part (2) in the case that p = oo, let f,g € M(A). For all x € A, note that if

|f(@) + g(@)| > [ flloc + llglloc then [f(2)] +|g(x)| = |f(z) + g(z)] > [If]loc + ll9lloc and
hence either |f(z)| > ||f]lco or |g(2)] > ||g]|co- This shows that

{zeAl|f(2) +9(@)] > I fllec + llgllc } € {z€A|If(@)] > Il } U {z € A[lg()] > [lg]l}-

By Lemma 3.15, the two sets on the right both have measure zero, and so the set on the left
has measure zero. By the definition of || f + gl|o it follows that ||f 4+ gllco < ||.flloo + ||9]]co-

3.20 Corollary: Let p € [1,00| and let A C R be measurable. Then ¢, and L,(A)
are normed linear spaces using their p-norms. Also, {5 is an inner product space using
(T,y) = D peq TrYk, and La(A)is an inner product space using (f,g) = [, fg.

Proof: We leave the proof for the ¢, spaces as an exercise, and provide the proof for
L,(A). Let M(A, [—00,0]) be the set of measurable functions f: A— [—00, 00| (which is
not a vector space because addition is not defined) and let M(A,R) be the vector space

of measurable functions f: A — R. Let L,(A) = {f € M(A,[-o0,00]|[|f], < oo}/w

and let L,(A,R) = {f € M(A,R)|||f]l, < oo}/w, where f ~ g when f =g ae. in A.

Note that when f e M(A,[—o0,00]) with || f||, < oo, we have |f(z)| < oo for a.e. z€ A,
so we can identify L, (A, [—oo,00]) with L,(A,R). Let W = {f € M(A,R)|||f]l, < oo}
and V = {feW ‘ f=0ae. in A}. Note that W is a subspace of M(A,R) because of
Minkowski’s Inequality (if f,g € W then f+g€ W because | f+gll, < | fll,+]gll,), and
note that V' is a subspace of W. It follows that L,(A,R) is a vector space, indeed it is
the quotient space L,(A,R) = W/V. It is easy to see that the p-norm is well-defined on
L,(A,R) and it satisfies all the axioms (with the Triangle Inequality following directly from
Minkowski’s Inequality). Finally note that when f, g € Lo(A,R), Holder’s Inequality gives
Lalfgl =||I/] \g[Hl < | fll2llgll2 < oo so that fg is integrable, and so the inner product

(f.9)=] 4 fg is well-defined. Tt is easy to see that it satisfies the inner product axioms.



3.21 Theorem: Let p € [1,00] and let A C R be measurable. Then the normed linear
spaces ¢, and L,(A) are complete.

Proof: We leave the proof that ¢, is complete as an exercise. To prove that L,(A) is
complete in the case that p < oo, let (f,,)n>1 be a Cauchy sequence in L,(A). This means
that for all € > 0 there exists m € Z* such that k,i > m = ||fx — fill, < €. Choose a
subsequence ( fy, )k>1 with the property that ank+1 — frn Hp < 2% for all K > 1. For each

(e Zt, let
£
= Z ’fnk+1 _fnk}
k=1

and let g = Zlim ge (note that the limit exists because (gy(x))¢>1 is increasing for all z € A).
—>00 -

By Minkowski’s Inequality, for all £ € ZT we have

4 4
Jovlly < 3 s = Frallp < 3 <

By Fatou’s Lemma,
lolly = [ dot = [ i loee < tgmint [ gl = imnt ol < 1
so that g € L,(A). Because ||g||, is finite, it follows that g is finite a.e. in A, so the sum
> ‘fnk“ — fnk| converges a.e. in A, hence the sum Y (fn,,, — fn,) converges a.e. in A4,
and hence the sequence (fy,)¢>1 converges a.e. in A because fn, = fn, + > (fapir — o )-
=1
We define f : A — R by
lim f,,(x) , if the limit exists in R, and
fla) =4
0 , otherwise.

We claim that f € L,(A) and that lim f, = f in L,(A). Let ¢ > 0. Choose m € Z" so
n—oo

that for all k,i > m we have ||fi — fil|, < e. Then for all £ such that ny > m we have
| fnr — fmllp < €. By Fatou’s Lemma,

I = fully = [ 17 =g = [ Jim Ve fol
< hmmf/ | frne — fml?P hmmf I fr, = fmllh < €

so that ||f — fmllp < €. This shows that for all € > 0 there exists m € Z* such that for all
n > m we have ||f — f,||, < e. It will follow that lim f, = f in L,(A) once we show that
n—oo

f € L,(A). Taking e = 1 and choosing m as above so that || f — f,|| < 1, Minkowski’s
Inequality gives |[fll, < [If = fullp + [[fmllp < 14 [[fmllp < oo so that f € Ly(A), as
required.



Now let us prove that Lo (A) is complete. Let (f,)n>1 be a Cauchy sequence in
Lo (A). Let B, = {acEA H frlz)> an||oo} and Cy; = {a:EA ‘ | fe(2)—fi(x)] > ||fk—fl]|oo}.
By Lemma 3.15, the sets B,, and C},; all have measure zero. Let E be the union of all the
sets By, and Cy ;. Since E is a countable union of sets of measure zero, we have A\(E) = 0.
Given € >0, since (f,,)n>1 is Cauchy in Lo (A) we can choose m € Z™ so that for all k,[>m
we have || fx — fillo < €. Then for all k,1 > m we have |fi(z) — fi(z)| < || fx — filloo < € for

all z€ A\E. Tt follows, by the Cauchy criterion for uniform convergence, that the sequence
(fn) converges uniformly in A\ E. Define f: A — R by

lim f,(z),ifzec A\FE

0 ,ifx e F.

We claim that f € Lo(A) and that lim f, = f in Lo (A). Given € > 0, since (f,)
n— o0

converges uniformly to f in A\ E, we can choose m € Z" so that for all n > m we have
|fn(x) — f(x)| < eforall z€ A\ FE hence ||f, — fllco < € since A(E) = 0. This shows that
for all € > 0 there exists m € Z* such that for all n > m we have ||f — f||oc < €. Taking
e = 1 and choosing m as above, we have ||f,, — f|loo < 1 so by Minkowski’s Inequality

[flloe < 1f = fmlloo + 1 fmlloc < 1+ [[fmlloc and so f € Loo(A).

3.22 Theorem: Let 1 <p < g < oo and let A C R be measurable. Then

(1) ¢, C ¢y, and

(2) if A\(A) < oo then Ly(A) C L,(A).

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that

A(A) < oo. Consider first the case that ¢ < oco. Let f € Ly(A). Then by Holder’s
Inequality, for any u,v > 1 with % + % =1 we have

i, = (/A |f|p“) e

Choose v = % and, toget £ =1 -1 =1—-2 =292 choose v = —L-. Then
P v u q q q—p

<l

u

1= [ 1 =g

p/a
115 < (/A |f’fI> A(A) P/ = [FdlFA A(A)a=P)/a

so that [[£]l, < £, A(A)7F. Thus |[£]}, < oo s0 f € L,(A),
Now consider the case that ¢ = 0o. Let f € Loo(A). Let B = {z € Al|f(z)] < || flls }
and C = {z € A||f(z)| > | fll }- By Lemma 3.15 we have A(C) = 0, so

12 = /A P = /B £ < /B 1712 = 1£% A(B) = [1£11% AA)

s0 that ||, < | flloe ACA)/7. Thus [| ], < 00 s0 f € Ly(A).



3.23 Theorem: Let 1 <p < q<r <oo and let A C R be measurable. Then

(1) ¢,N et Cly C A+ 4Ly, and

(2) Ly(A) N Ly (A) C Ly(A) C L, (4) + L, (A).

Proof: Part (1) follows as an immediate corollary of Theorem 3.22. Let us prove Part (2).
First we claim that Ly(A) € L,(A) + L,(A). Let f € Ly(A). Let B = {z € A||f(z)| > 1}
and let C = {z € A“f(.%‘)| <1}. Let g = f-Xgand h = f-X_ sothat f =g+ h. Note
that g € L,(A) because

lgll? = /A 9P = /B P < /B £l < /A 1= 117118 < oo,

note that h € Lo (A) because |h(x)| < 1 for all x € A so that ||h]| < 1, and note that
when r < oo we have h € L,.(A) because

Inl = [ = [ 1< [1s< [ =1s1g < .

Thus we have L,(A) C L,(A) + L,(A) as claimed.

Next we claim that L,(A) N L,(A) € L,(A). Let f € L,(A) N L,(A). Suppose first
that » < oo. Note that for any 0 < k,l € R with k 4+ = ¢ and for any 1 < u,v € R with
% + % = 1, Holder’s Inequality gives

1/u 1/v
1915 = [ 1717 < IRl 10 = ( / rf|k“) ( / |f|’”) |

We solve the equations k + [ = ¢, % + % =1, ku =p and [v =r to get

and v = I=2
r—q a—p

L — pr—a) = r(g—p) =12
r—p r—p

and note that since 1 < p < ¢ <7 < oo we have k,l >0 and 1 < u,v < oo. Thus

1/u 1/v k/p lr
||f||3§( / |f|’““) ( / |f|“’) :( / |f|p) ( / |f|7") — AL < oo.

When 7 = oo, we let B = {z € A||f(2)] > ||f|lo} and C = {z € A||f(z)| < | flls}, and
then by Lemma 3.15 we have A\(B) = 0, and so

12 = /A 1l = /O 1l = /C P < e /C P < IFIZIFIE? < co.

This proves that L,(A) N L,(A) C L,(A) as claimed.



3.24 Definition: A metrix space is called separable when it contains a countable dense
subset.

3.25 Theorem: Let 1 < p < oo and let a < b.

(1) ¢, is separable but {, is not.
(2) L,([a,b]) is separable but Ly ([a,b]) is not.

Proof: We leave the proof of Part (1) as an exercise. We sketch a proof of Part (2) leaving
the details as an exercise. To show that L,[a, b] is separable, we shall show that Q[z] is dense
in L,[a,b] by showing that a given function f € L,[a,b] can be approximated, arbitrarily
closely in the p-norm, by a polynomial in Q[z]. Since f = f* — f~ it suffices to consider
the case that f is nonnegative. By Note 2.28, together with the Monotone Convergence
Theorem, we can approximate a given nonnegative function f € Ly[a, b], arbitrarily closely
in the p-norm, using a nonnegative simple function since we can construct an increasing
sequence of simple functions s, : [a,b] — [0,00) with s,, — f pointwise on [a,b]. We can
approximate a given nonnegative simple function s : [a,b] — [0, 00), arbitrarily closely in
the p-norm, using a nonnegative step function r : [a,b] — [0,00) because we can cover
a measurable set A C [a,b] by a disjoint union of intervals J; C [a,b] so that X , is
approximated by > X R We can then approximate a given step function r : [a, b] — [0, 00),
arbitrarily closely in the p-norm, using a continuous function because for any interval J, the
step function x ; can be approximated arbitrarily closely in the p-norm by a piecewise linear
function. This shows that the set of continuous functions Cla, b] is dense in L, [a, b], using
the p-norm. On the other hand, using the co-norm (which agrees with the supremum norm
for continuous functions), Q[z] is dense in R[z|, and we know from the Stone-Weirstrass
Theorem that R|z] is dense in C[a,b]. Since Q[x] is dense in C|[a, b] using the oco-norm, it
is also dense using the p-norm by the formula || f||, < (b— a)'/?| f||s which is obtained in
the proof of Theorem 3.22.

We claim that L[a,b] is not separable. Let S be any dense subset of Ll[a,b].
We must show that S is uncountable. For each kK € N let x, = b — b;,f‘ so that we have
a=xy <z <xT2 <---<b. Let {0,1}* denote the set of binary sequences o = (a1, ag, - - )

where each oy, € {0,1}. For each a € {0,1}¥, let so, = > agX and note that when
k=1

[Tr—1,Tk)

a # [ we have ||sq — sgllec = 1. Since S is dense in Lo [a, b, for each o € {0,1}* we can
choose f, € S such that [|sq — falloo < 3. Define F : {0,1}* — S by F(a) = fa. Note
that F is injective because when a # 8 we have

L= |lsa = sgllec < lI5a = falloo + 1fa = folloo + 15 = s8llec < 5+ [Ifa = follo + 3

so that || fo — f3llsc > 0. Since F is injective we have S| > [{0,1}*| = 2%, and so § is
uncountable, as required.

3.26 Remark: I may include a discussion of the complex-valued L,, spaces L, (A, C) later.
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