
Chapter 3. The Lp Spaces

3.1 Definition: Let F = R or C. Let W be a vector space over F. An inner product
over F is a function 〈 , 〉 : W ×W → F (meaning that if u, v ∈ W then 〈u, v〉 ∈ F) such
that for all u, v, w ∈W and all t ∈ F we have

(1) (Sesquilinearity) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 , 〈tu, v〉 = t 〈u, v〉,
〈u, v + w〉 = 〈u, v〉+ 〈vuw〉 , 〈u, tv〉 = t 〈u, v〉,

(2) (Conjugate Symmetry) 〈u, v〉 = 〈v, u〉, and
(3) (Positive Definiteness) 〈u, u〉 ≥ 0 with 〈u, u〉 = 0 ⇐⇒ u = 0.

For u, v ∈ W , 〈u, v〉 is called the inner product of u with v. An inner product space
over F is a vector space over F equipped with an inner product. Given two inner product
spaces U and V over F, a linear map L : U → V is called a homomorphism of inner
product spaces (or we say that L preserves inner product) when

〈
L(x), L(y)

〉
= 〈x, y〉

for all x, y ∈ U .

3.2 Theorem: Let W be an inner product space over F = R or C and let u, v ∈W . Then
if 〈x, u〉 = 〈x, v〉 for all x ∈ U , or if 〈u, x〉 = 〈v, x〉 for all x ∈ U then u = v.

Proof: Suppose that 〈x, u〉 = 〈x, v〉 for all x ∈ U . Then 〈x, u− v〉 = 〈x, u〉 − 〈x, v〉 = 0 for
all x ∈ U . In particular, taking x = u− v we have 〈u− v, u− v〉 = 0, so u− v = 0 hence
u = v. Similarly, if 〈u, x〉 = 〈v, x〉 for all x ∈ U then u = v.

3.3 Definition: Let F = R or C. Let W be a vector space over F. A norm on W is a
map ‖ ‖ : W → R such that for all u, v ∈W and all t ∈ F we have

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with

(
‖u‖ = 0 ⇐⇒ u = 0

)
, and

(3) (Triangle Inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
For u ∈ W the real number ‖u‖ is called the norm (or length) of u, and we say that
u is a unit vector when ‖u‖ = 1. A normed linear space over F is a vector space
over F equipped with a norm. Given two normed linear spaces U and V over F, a linear
map L : U → V is called a homomorphism of normed linear spaces (or we say that L
preserves norm) when

∥∥L(x)
∥∥ = ‖x‖ for all x ∈ U .

3.4 Theorem: Let F = R or C. Let W be an inner product space over F. For u ∈ W
define ‖u‖ =

√
〈u, u〉. Then for all u, v ∈W and all t ∈ F we have

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with

(
‖u‖ = 0 ⇐⇒ u = 0

)
,

(3) ‖u± v‖2 = ‖u‖2 ± 2 Re〈u, v〉+ ‖v‖2,
(4) (Pythagoras’ Theorem) if 〈u, v〉 = 0 then ‖u+ v‖2 = ‖u‖2 + ‖v‖2,
(5) (Parallelogram Law) ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2,
(6) (Polarization Identity) if F = R then 〈u, v〉 = 1

4

(
‖u+ v‖2 − ‖u− v‖2

)
and

if F = C then 〈u, v〉 = 1
4

(
‖u+ v‖2 + i‖u+ iv‖2 − ‖u− v‖2 − i‖u− iv‖2

)
,

(7) (The Cauchy-Schwarz Inequality) |〈u, v〉|≤‖u‖ ‖v‖ with |〈u, v〉|=‖u‖ ‖v‖ if and only if
{u, v} is linearly dependent, and

(8) (The Triangle Inequality)
∥∥|u‖ − ‖v‖∣∣ ≤ ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

In particular, ‖ ‖ is a norm on W .
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Proof: We only prove Part (7) and part of Part (8). To prove Cauchy’s Inequality, suppose
first that {u, v} is linearly dependent. Then one of x and y is a multiple of the other, say
v = tu with t ∈ F. Then |〈u, v〉| = |〈u, tu〉| =

∣∣ t 〈u, u〉∣∣ = |t| ‖u‖2 = ‖u‖ ‖tu‖ = ‖u‖ ‖v‖.
Next we suppose that {u, v} is linearly independent. Then 1 ·v+ t ·u 6= 0 for all t ∈ F,

so in particular v − 〈v,u〉|u|2 u 6= 0. Thus we have

0 <
∥∥∥v − 〈v,u〉‖u‖2 u

∥∥∥2 =
〈
v − 〈v,u〉‖u‖2 u , v −

〈v,u〉
‖u‖2 u

〉
= 〈v, v〉 − 〈v,u〉‖u‖2 〈v, u〉 −

〈v,u〉
‖u‖2 〈u, v〉+ 〈v,u〉

‖u‖2
〈v,u〉
‖u‖2 〈u, u〉

= ‖v‖2 − |〈u,v〉|
2

‖u‖2

so that |〈u,v〉|
2

‖u‖2 < ‖v‖2 and hence |〈u, v〉| ≤ ‖u‖ ‖v‖. This proves Part (7).

Using Parts (3) and (7), and the inequality |Re(z)| ≤ |z| for z ∈ C (which follows
from Pythagoras’ Theorem in R2), we have

‖u+ v‖2 = ‖u‖2 + 2 Re〈u, v〉+ ‖v‖2 ≤ ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 =
(
‖u‖+ ‖v‖

)2
.

Taking the square root on both sides gives ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

3.5 Definition: A metric on a set X is a function d : X × X → R such that, for all
x, y, z ∈ X we have

(1) (Positive Definiteness) d(x, y) ≥ 0 with d(x, y) = 0 ⇐⇒ x = y,
(2) (Symmetry) d(x, y) = d(y, x) and
(3) (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z).

A set with a metric is called a metric space.

3.6 Definition: A topology on a set X is a set T of subsets of X such that

(1) ∅ ∈ T and X ∈ T ,
(2) if U ∈ T and V ∈ T then U ∩ V ∈ T , and
(3) if K is a set and Uk ∈ T for each k ∈ K then

⋃
k∈K

Uk ∈ T .

For a subset A ⊆ X, we say that A is open (in X) when A ∈ T and we say that A is
closed (in X) when X \A ∈ T . A set with a topology is called a topological space.

3.7 Note: Given an inner product on a vector space V over F = R or C, Theorem 3.4
shows that we can define an associated norm on V by letting ‖x‖ =

√
〈x, x〉 for x ∈ V .

Given a norm on a vector space V , verify that we can define an associated metric on
any subset X ⊆ V by letting d(x, y) = ‖x− y‖ for x, y ∈ X.

Given a metric on a set X, verify that we can define an associated topology on X by
stipulating that a subset A ⊆ X is open when it has the property that for all a ∈ A there
exists r > 0 such that B(a, r) ⊆ A, where B(a, r) =

{
x ∈ X

∣∣d(x, a) < r
}

.
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3.8 Definition: Let {xn}n≥1 be a sequence in a metric space X. We say that the sequence
{xn} converges in X when there exists a ∈ X such that lim

n→∞
xn = a, that is when

∃ a∈X ∀ ε>0 ∃n∈Z+ ∀k∈Z+
(
k ≥ n =⇒ d(xn, a) < ε

)
.

We say that {xn} is Cauchy when

∀ ε>0 ∃n∈Z+ ∀ k, l∈Z+
(
k, l ≥ n =⇒ d(xk, xl) < ε

)
.

3.9 Note: Verify that, in a metric space, if a sequence converges then it is Cauchy.

3.10 Definition: A metric space X is called complete when, in X, every Cauchy se-
quence converges. A complete normed linear space is called a Banach space and a
complete inner-product space is called a Hilbert space.

3.11 Theorem: (The Completeness of Rn) The metric space Rn is complete.

Proof: We omit the proof.

3.12 Definition: Let Rω denote the set of all sequences x = {x1, x2, x3, · · ·} with each
xk ∈ R. For x ∈ Rω and for 1 ≤ p <∞ let

‖x‖p =
( ∞∑
k=1

|xk|p
)1/p

, and

‖x‖∞ = sup
{
|xk|

∣∣k ∈ Z+
}
.

Let
`p =

{
x ∈ Rω

∣∣‖x‖p <∞} , and

`∞ =
{
x ∈ Rω

∣∣‖x‖∞ <∞
}
.

3.13 Definition: Let A ⊆ R be measurable. Let M(A) denote the set of all measurable
functions f : A→ [−∞,∞]. For f ∈M(A) and for 1 ≤ p <∞, let

‖f‖p =

(∫
A

|f |p
)1/p

, and

‖f‖∞ = inf
{
a ≥ 0

∣∣∣λ(|f |−1(a,∞]
)

= 0
}
.

where |f |−1(a,∞] =
{
x ∈ A

∣∣|f(x)| > a
}

. Let

Lp(A) =
{
f ∈M(A)

∣∣∣‖f‖p <∞}/ ∼ , and

L∞(A) =
{
f ∈M(A)

∣∣∣‖f‖∞ <∞
}/
∼

where ∼ is the equivalence relation given by f ∼ g ⇐⇒ f = g a.e. in A.

3.14 Remark: The reason that we quotient by the equivalence relation in the above
definition is that we want ‖f‖p to define a norm on Lp(A) and the quotient is necessary
to ensure that ‖f‖p is positive definite (see Part 6 of Theorem 2.30).
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3.15 Lemma: Let f : A ⊆ R → [−∞,∞] be measurable. Then
{
x∈A

∣∣|f(x)|> ‖f‖∞
}

has measure zero.

Proof: We claim that for all y > ‖f‖∞ we have λ
(
|f |−1(y,∞]

)
= 0. Let y > ‖f‖∞. By the

definition of ‖f‖∞ we can choose a with ‖f‖∞ ≤ a < y such that λ
(
|f |−1(a,∞]

)
= 0. Since

a < y we have (y,∞] ⊆ (a,∞], so |f |−1(y,∞] ⊆ |f |−1(a,∞], hence λ
(
|f |−1(y,∞]

)
= 0, as

claimed.
Let B =

{
x∈A

∣∣ |f(x)|>‖f‖∞
}

and let Bn =
{
x∈A

∣∣ |f(x)|>‖f‖∞+ 1
n

}
for n ∈ Z+.

Then each Bn is measurable with B1 ⊆ B2 ⊆ B3 ⊆ · · ·, and we have
∞⋃
n=1

Bn = B. By the

above claim, we have λ(Bn) = 0 for all n ∈ Z+ and so λ(B) = lim
n→∞

λ(Bn) = 0.

3.16 Definition: For p, q ∈ [1,∞] we say that p and q are conjugate when 1
p + 1

q = 1

where we use the convention that 1
∞ = 0 so that 1 and ∞ are conjugate.

3.17 Lemma: Let p, q ∈ (1,∞) with 1
p+ 1

q = 1. Then for all a, b ≥ 0 we have ab ≤ ap

p + bq

q .

Proof: Note that for p, q ∈ (1,∞) we have

1
p + 1

q = 1 ⇐⇒ 1
q = 1− 1

p = p−1
p ⇐⇒ q(p− 1) = p ⇐⇒ p(q − 1) = q.

For x, y ≥ 0 we have

y = xp−1 ⇐⇒ yq = xq(p−1) ⇐⇒ yq = xp ⇐⇒ yp(q−1) = xp ⇐⇒ yq−1 = x

so the functions f(x) = xp−1 and g(y) = yq−1 are inverses of each other. By considering
the area under y = f(x) with 0 ≤ x ≤ a and the area to the left of y = f(x) with 0 ≤ y ≤ b
we see that

ab ≤
∫ a

x=0

xp−1 dx+

∫ b

y=0

yq−1 dy =
[
1
p x

p
]a
x=0

+
[
1
q y

q
]b
y=0

= ap

p + bq

q .

3.18 Theorem: (Hölder’s Inequality) Let p, q ∈ [1,∞] with 1
p + 1

q = 1 and let A ⊆ R be
measurable.

(1) For all x, y ∈ Rω we have ‖xy‖1 ≤ ‖x‖p‖y‖q.
(2) For all f, g ∈M(A) for which fg is defined, we have ‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof: To prove Part (1) in the case that p, q ∈ (1,∞), let x, y ∈ Rω. If x = 0 or y = 0 the
equality holds, so suppose that x, y 6= 0. For each index k, apply the above lemma using

a = |xk|
‖x‖p and b = |yk|

‖y‖q to get

|xkyk|
‖x‖p‖y‖q

≤ |xk|
p

p‖x‖pp
+
|y|q

q‖y‖qq
.

Sum over k to get

‖xy‖1
‖x‖p‖y‖q

≤
‖x‖pp
p‖x‖pp

+
‖y‖qq
q‖y‖qq

= 1
p + 1

q = 1 .
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To prove Part (2) in the case that p, q ∈ (1,∞), let f, g ∈ M(R). If ‖f‖p = 0 or ‖g‖q = 0
then the equality holds (with both sides equal to 0), so suppose that ‖f‖p, ‖g‖q 6= 0. For

each x ∈ A, apply the above lemma using a = |f(x)|
‖f‖p and b = |g(x)|

‖g‖q to get

|f(x)g(x)|
‖f‖p‖g‖q

≤ |f(x)|p

p‖f‖p
+
|g(x)|q

q‖g‖q
.

Integrate over A to get

‖fg‖1
‖f‖p‖g‖q

≤
‖f‖pp
p‖f‖pp

+
‖g‖qq
q‖g‖qq

= 1
p + 1

q = 1 .

To prove Part (1) in the case that p = 1 and q =∞, let x, y ∈ Rω. Note that |yk| ≤ ‖y‖∞
for all indices k and so

‖xy‖1 =
∞∑
k=1

|xk‖yk| ≤
∞∑
k=1

|xk| ‖y‖∞ = ‖x‖1‖y‖∞.

Finally, to prove Part (2) in the case that p = 1 and q = ∞, let f, g ∈ M(A). Let
B =

{
x ∈ A

∣∣|g(x)| ≤ ‖g‖∞
}

and let C =
{
x ∈ A

∣∣g(x)| > ‖g‖∞
}

. Note that B and C are
disjoint and measurable with A = B ∪ C and that λ(C) = 0 by Lemma 3.15. Thus

‖fg‖1 =

∫
A

|f‖g| =
∫
B

|f‖g| ≤
∫
B

|f | ‖g‖∞ =

∫
A

|f | ‖g‖∞ = ‖f‖1‖g‖∞.

3.19 Theorem: (Minkowski’s Inequality) Let p ∈ [1,∞] and let A ⊆ R be measurable.

(1) For all x, y ∈ Rω we have ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
(2) For all f, g ∈M(A) for which f + g is defined, we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p.
Proof: To Prove Part (1) in the case that p = 1, note that when x, y ∈ Rω we have

‖x+ y‖1 =
∞∑
k=1

|xk + yk| ≤
∞∑
k=1

|xk|+ |yk| =
∞∑
k=1

|xk|+
∞∑
k=1

|yk| = ‖x‖1 + ‖y‖1.

To prove Part (2) in the case that p = 1, note that when f, g, f + g ∈M(A) we have

‖f + g‖1 =

∫
A

|f + g| ≤
∫
A

|f |+ |g| =
∫
A

|f |+
∫
A

|g| = ‖f‖1 + ‖g‖1.

To prove Part (1) in the case that p ∈ (1,∞), let x, y ∈ Rω and let q be the conjugate of
p so that 1

q = 1− 1
p = p−1

p . For each index k we have

|xk + yk|p = |xk + yk| |xk + yk|p−1 ≤
(
|xk|+ |yk|

)
|xk + yk|p−1

= |xk| |xk + yk|p−1 + |yk| |xk + yk|p−1.

Sum over k then apply Hölder’s Inequality to get

‖x+ y‖pp ≤
∥∥∥|x| |x+ y|p−1

∥∥∥
1
+
∥∥∥y| |x+ y|p−1

∥∥∥
1
≤ ‖x‖p

∥∥∥|x+ y|p−1
∥∥∥
q
+ ‖y‖p

∥∥∥|x+ y|p−1
∥∥∥
q

=
(
‖x‖p + ‖y‖q

)∥∥∥|x+ y|p−1
∥∥∥
q

=
(
‖x‖p + ‖y‖p

)( ∞∑
k=1

|xk + yk|q(p−1)
)1/q

=
(
‖x‖p + ‖y‖p

)( ∞∑
k=1

|xk + yk|p
)(p−1)/p

=
(
‖x‖p + ‖y‖p

)
‖x+ y‖p−1p .
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To prove Part (2) in the case that p ∈ (1,∞), let f, g, f + g ∈ M(A) and let q be the
conjugate of p so that 1

q = 1− 1
p = p−1

p . For each x ∈ A we have

|f(x) + g(x)|p = |f(x) + g(x)| |f(x) + g(x)|p−1 ≤
(
|f(x)|+ |g(x)|

)
|f(x) + g(x)|p−1

= |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1.

Integrate over A then apply Hölder’s Inequality to get

‖f + g‖pp ≤
∥∥∥|f | |f + g|p−1

∥∥∥
1
+
∥∥∥g| |f + g|p−1

∥∥∥
1
≤ ‖f‖p

∥∥∥|f + g|p−1
∥∥∥
q
+ ‖g‖p

∥∥∥|f + g|p−1
∥∥∥
q

=
(
‖f‖p + ‖g‖p

)∥∥∥|f + g|p−1
∥∥∥
q

=
(
‖f‖p + ‖g‖p

)(∫
A

|f + g|q(p−1)
)1/q

=
(
‖f‖p + ‖g‖p

)(∫
A

|f + g|p
)(p−1)/p

=
(
‖f‖p + ‖g‖p

)
‖f + g‖p−1p .

To prove Part (1) in the case that p =∞, note that if x, y ∈ `∞ then we have

‖x+ y‖∞ = sup
k≥1
|xk + yk| ≤ sup

k≥1

(
|xk|+ |yk|

)
≤ sup

k≥1
|xk|+ sup

k≥1
|yk| = ‖x‖∞ + ‖y‖∞.

To prove Part (2) in the case that p = ∞, let f, g ∈ M(A). For all x ∈ A, note that if∣∣f(x) + g(x)
∣∣ > ‖f‖∞ + ‖g‖∞ then |f(x)| + |g(x)| ≥

∣∣f(x) + g(x)
∣∣ > ‖f‖∞ + ‖g‖∞ and

hence either |f(x)| > ‖f‖∞ or |g(x)| > ‖g‖∞. This shows that{
x∈A

∣∣|f(x) + g(x)| > ‖f‖∞ + ‖g‖∞
}
⊆
{
x∈A

∣∣|f(x)| > ‖f‖∞
}
∪
{
x∈A

∣∣|g(x)| > ‖g‖∞
}
.

By Lemma 3.15, the two sets on the right both have measure zero, and so the set on the left
has measure zero. By the definition of ‖f + g‖∞ it follows that ‖f + g‖∞ ≤ ‖f‖∞+ ‖g‖∞.

3.20 Corollary: Let p ∈ [1,∞] and let A ⊆ R be measurable. Then `p and Lp(A)
are normed linear spaces using their p-norms. Also, `2 is an inner product space using
〈x, y〉 =

∑∞
k=1 xkyk, and L2(A)is an inner product space using 〈f, g〉 =

∫
A
fg.

Proof: We leave the proof for the `p spaces as an exercise, and provide the proof for
Lp(A). Let M(A, [−∞,∞]) be the set of measurable functions f : A→ [−∞,∞] (which is
not a vector space because addition is not defined) and let M(A,R) be the vector space

of measurable functions f : A → R. Let Lp(A) =
{
f ∈ M(A, [−∞,∞]

∣∣ ‖f‖p < ∞}/∼
and let Lp(A,R) =

{
f ∈M(A,R)

∣∣ ‖f‖p <∞}/∼, where f ∼ g when f = g a.e. in A.

Note that when f ∈M(A, [−∞,∞]) with ‖f‖p <∞, we have |f(x)|<∞ for a.e. x ∈A,
so we can identify Lp(A, [−∞,∞]) with Lp(A,R). Let W =

{
f ∈M(A,R)

∣∣ ‖f‖p <∞}
and V =

{
f ∈W

∣∣ f = 0 a.e. in A
}

. Note that W is a subspace of M(A,R) because of
Minkowski’s Inequality (if f, g ∈ W then f+g ∈W because ‖f+g‖p ≤ ‖f‖p+‖g‖p), and
note that V is a subspace of W . It follows that Lp(A,R) is a vector space, indeed it is
the quotient space Lp(A,R) = W/V . It is easy to see that the p-norm is well-defined on
Lp(A,R) and it satisfies all the axioms (with the Triangle Inequality following directly from
Minkowski’s Inequality). Finally note that when f, g ∈ L2(A,R), Hölder’s Inequality gives∫
A
|fg| =

∥∥|f | |g|∥∥
1
≤ ‖f‖2‖g‖2 < ∞ so that fg is integrable, and so the inner product

〈f, g〉 =
∫
A
fg is well-defined. It is easy to see that it satisfies the inner product axioms.
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3.21 Theorem: Let p ∈ [1,∞] and let A ⊆ R be measurable. Then the normed linear
spaces `p and Lp(A) are complete.

Proof: We leave the proof that `p is complete as an exercise. To prove that Lp(A) is
complete in the case that p <∞, let (fn)n≥1 be a Cauchy sequence in Lp(A). This means
that for all ε > 0 there exists m ∈ Z+ such that k, l ≥ m =⇒ ‖fk − fl‖p < ε. Choose a
subsequence (fnk

)k≥1 with the property that
∥∥fnk+1

− fnk

∥∥
p
≤ 1

2k
for all k ≥ 1. For each

` ∈ Z+, let

g` =
∑̀
k=1

∣∣fnk+1
− fnk

∣∣
and let g = lim

`→∞
g` (note that the limit exists because (g`(x))`≥1 is increasing for all x ∈ A).

By Minkowski’s Inequality, for all ` ∈ Z+ we have

‖g`‖p ≤
∑̀
k=1

‖fnk+1
− fnk

‖p ≤
∑̀
k=1

1
2k
< 1.

By Fatou’s Lemma,

‖g‖pp =

∫
A

|g|p =

∫
A

lim
`→∞

|g`|p ≤ lim inf
`→∞

∫
A

|g`|p = lim inf
`→∞

‖g`‖pp ≤ 1

so that g ∈ Lp(A). Because ‖g‖p is finite, it follows that g is finite a.e. in A, so the sum∑∣∣fnk+1
− fnk

∣∣ converges a.e. in A, hence the sum
∑(

fnk+1
− fnk

)
converges a.e. in A,

and hence the sequence (fn`
)`≥1 converges a.e. in A because fn`

= fn1 +
`−1∑
k=1

(
fnk+1

−fnk

)
.

We define f : A→ R by

f(x) =

{
lim
`→∞

fn`
(x) , if the limit exists in R, and

0 , otherwise.

We claim that f ∈ Lp(A) and that lim
n→∞

fn = f in Lp(A). Let ε > 0. Choose m ∈ Z+ so

that for all k, l ≥ m we have ‖fk − fl‖p ≤ ε. Then for all k such that nk ≥ m we have
‖fnk

− fm‖p ≤ ε. By Fatou’s Lemma,

‖f − fm‖pp =

∫
A

|f − fm|p =

∫
A

lim
k→∞

|fnk
− fm|p

≤ lim inf
k→∞

∫
A

|fnk
− fm|p = lim inf

k→∞
‖fnk

− fm‖pp ≤ εp

so that ‖f − fm‖p ≤ ε. This shows that for all ε > 0 there exists m ∈ Z+ such that for all
n ≥ m we have ‖f − fn‖p ≤ ε. It will follow that lim

n→∞
fn = f in Lp(A) once we show that

f ∈ Lp(A). Taking ε = 1 and choosing m as above so that ‖f − fm‖ ≤ 1, Minkowski’s
Inequality gives ‖f‖p ≤ ‖f − fm‖p + ‖fm‖p ≤ 1 + ‖fm‖p < ∞ so that f ∈ Lp(A), as
required.
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Now let us prove that L∞(A) is complete. Let (fn)n≥1 be a Cauchy sequence in
L∞(A). Let Bn =

{
x∈A

∥∥ fn(x)>‖fn‖∞
}

and Ck,l =
{
x∈A

∣∣ |fk(x)−fl(x)|>‖fk−fl‖∞
}

.
By Lemma 3.15, the sets Bn and Ck,l all have measure zero. Let E be the union of all the
sets Bn and Ck,l. Since E is a countable union of sets of measure zero, we have λ(E) = 0.
Given ε>0, since (fn)n≥1 is Cauchy in L∞(A) we can choose m∈Z+ so that for all k, l≥m
we have ‖fk−fl‖∞ ≤ ε. Then for all k, l ≥ m we have |fk(x)−fl(x)| ≤ ‖fk−fl‖∞ ≤ ε for
all x∈A\E. It follows, by the Cauchy criterion for uniform convergence, that the sequence
(fn) converges uniformly in A \ E. Define f : A→ R by

f(x) =

{
lim
n→∞

fn(x) , if x ∈ A \ E

0 , if x ∈ E.

We claim that f ∈ L∞(A) and that lim
n→∞

fn = f in L∞(A). Given ε > 0, since (fn)

converges uniformly to f in A \ E, we can choose m ∈ Z+ so that for all n ≥ m we have
|fn(x)− f(x)| ≤ ε for all x∈A\E hence ‖fn − f‖∞ ≤ ε since λ(E) = 0. This shows that
for all ε > 0 there exists m ∈ Z+ such that for all n ≥ m we have ‖f − fn‖∞ ≤ ε. Taking
ε = 1 and choosing m as above, we have ‖fm − f‖∞ ≤ 1 so by Minkowski’s Inequality
‖f‖∞ ≤ ‖f − fm‖∞ + ‖fm‖∞ ≤ 1 + ‖fm‖∞ and so f ∈ L∞(A).

3.22 Theorem: Let 1 ≤ p < q ≤ ∞ and let A ⊆ R be measurable. Then

(1) `p ⊆ `q, and
(2) if λ(A) <∞ then Lq(A) ⊆ Lp(A).

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that
λ(A) < ∞. Consider first the case that q < ∞. Let f ∈ Lq(A). Then by Hölder’s
Inequality, for any u, v > 1 with 1

u + 1
v = 1 we have

‖f‖pp =

∫
A

|f |p =
∥∥∥|f |p∥∥∥

1
≤
∣∣∣∥∥∥f |p∥∥∥

u

∥∥∥1
∥∥∥
v

=

(∫
A

|f |pu
)1/u

λ(A)1/v.

Choose u = q
p and, to get 1

v = 1− 1
u = 1− p

q = q−p
q , choose v = q

q−p . Then

‖f‖pp ≤
(∫

A

|f |q
)p/q

λ(A)(q−p)/q = ‖f‖pq λ(A)(q−p)/q

so that ‖f‖p ≤ ‖f‖q λ(A)
1
p−

1
q . Thus ‖f‖p <∞ so f ∈ Lp(A).

Now consider the case that q =∞. Let f ∈ L∞(A). Let B =
{
x ∈ A

∣∣|f(x)| ≤ ‖f‖∞
}

and C =
{
x ∈ A

∣∣|f(x)| > ‖f‖∞
}

. By Lemma 3.15 we have λ(C) = 0, so

‖f‖pp =

∫
A

|f |p =

∫
B

|f |p ≤
∫
B

‖f‖p∞ = ‖f‖p∞ λ(B) = ‖f‖p∞ λ(A)

so that ‖f‖p ≤ ‖f‖∞ λ(A)1/p. Thus ‖f‖p <∞ so f ∈ Lp(A).
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3.23 Theorem: Let 1 ≤ p < q < r ≤ ∞ and let A ⊆ R be measurable. Then
(1) `p ∩ `r ⊆ `q ⊆ `p + `r, and
(2) Lp(A) ∩ Lr(A) ⊆ Lq(A) ⊆ Lp(A) + Lr(A).

Proof: Part (1) follows as an immediate corollary of Theorem 3.22. Let us prove Part (2).
First we claim that Lq(A) ⊆ Lp(A) +Lr(A). Let f ∈ Lq(A). Let B =

{
x ∈ A

∣∣|f(x)| > 1
}

and let C =
{
x ∈ A

∣∣|f(x)| ≤ 1
}

. Let g = f · χ
B

and h = f · χ
C

so that f = g + h. Note
that g ∈ Lp(A) because

‖g‖pp =

∫
A

|g|p =

∫
B

|f |p ≤
∫
B

|f |q ≤
∫
A

|f |q = ‖f‖qq <∞,

note that h ∈ L∞(A) because |h(x)| ≤ 1 for all x ∈ A so that ‖h‖∞ ≤ 1, and note that
when r <∞ we have h ∈ Lr(A) because

‖h‖rr =

∫
A

|h|r =

∫
C

|f |r ≤
∫
C

|f |q ≤
∫
A

|f |q = ‖f‖qq <∞.

Thus we have Lq(A) ⊆ Lp(A) + Lr(A) as claimed.
Next we claim that Lp(A) ∩ Lr(A) ⊆ Lq(A). Let f ∈ Lp(A) ∩ Lr(A). Suppose first

that r < ∞. Note that for any 0 < k, l ∈ R with k + l = q and for any 1 < u, v ∈ R with
1
u + 1

v = 1, Hölder’s Inequality gives

‖f‖qq =

∫
A

|f |q ≤
∥∥|f |k‖u∥∥|f |l‖v =

(∫
A

|f |ku
)1/u(∫

A

|f |lv
)1/v

.

We solve the equations k + l = q, 1
u + 1

v = 1, ku = p and lv = r to get

k = p(r−q)
r−p , l = r(q−p)

r−p , u = r−p
r−q and v = r−p

q−p

and note that since 1 ≤ p < q < r <∞ we have k, l > 0 and 1 < u, v <∞. Thus

‖f‖qq ≤
(∫

A

|f |ku
)1/u(∫

A

|f |lv
)1/v

=

(∫
A

|f |p
)k/p(∫

A

|f |r
)l/r

= ‖f‖kp‖f‖lr <∞.

When r = ∞, we let B =
{
x ∈ A

∣∣|f(x)| > ‖f‖∞
}

and C =
{
x ∈ A

∣∣|f(x)| ≤ ‖f‖∞
}

, and
then by Lemma 3.15 we have λ(B) = 0, and so

‖f‖qq =

∫
A

|f |q =

∫
C

|f |q =

∫
C

|f |p|f |q−p ≤ ‖f‖q−p∞
∫
C

|f |p ≤ ‖f‖pp‖f‖q−p∞ <∞.

This proves that Lp(A) ∩ Lr(A) ⊆ Lq(A) as claimed.
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3.24 Definition: A metrix space is called separable when it contains a countable dense
subset.

3.25 Theorem: Let 1 ≤ p <∞ and let a < b.

(1) `p is separable but `∞ is not.
(2) Lp

(
[a, b]

)
is separable but L∞

(
[a, b]

)
is not.

Proof: We leave the proof of Part (1) as an exercise. We sketch a proof of Part (2) leaving
the details as an exercise. To show that Lp[a, b] is separable, we shall show that Q[x] is dense
in Lp[a, b] by showing that a given function f ∈ Lp[a, b] can be approximated, arbitrarily
closely in the p-norm, by a polynomial in Q[x]. Since f = f+ − f− it suffices to consider
the case that f is nonnegative. By Note 2.28, together with the Monotone Convergence
Theorem, we can approximate a given nonnegative function f ∈ Lp[a, b], arbitrarily closely
in the p-norm, using a nonnegative simple function since we can construct an increasing
sequence of simple functions sn : [a, b] → [0,∞) with sn → f pointwise on [a, b]. We can
approximate a given nonnegative simple function s : [a, b] → [0,∞), arbitrarily closely in
the p-norm, using a nonnegative step function r : [a, b] → [0,∞) because we can cover
a measurable set A ⊆ [a, b] by a disjoint union of intervals Jk ⊆ [a, b] so that χ

A
is

approximated by
∑
χ
Jk

. We can then approximate a given step function r : [a, b]→ [0,∞),

arbitrarily closely in the p-norm, using a continuous function because for any interval J , the
step function χ

J
can be approximated arbitrarily closely in the p-norm by a piecewise linear

function. This shows that the set of continuous functions C[a, b] is dense in Lp[a, b], using
the p-norm. On the other hand, using the∞-norm (which agrees with the supremum norm
for continuous functions), Q[x] is dense in R[x], and we know from the Stone-Weirstrass
Theorem that R[x] is dense in C[a, b]. Since Q[x] is dense in C[a, b] using the ∞-norm, it
is also dense using the p-norm by the formula ‖f‖p ≤ (b− a)1/p‖f‖∞ which is obtained in
the proof of Theorem 3.22.

We claim that L∞[a, b] is not separable. Let S be any dense subset of L∞[a, b].
We must show that S is uncountable. For each k ∈ N let xk = b − b−a

2k
so that we have

a = x0 < x1 < x2 < · · · < b. Let {0, 1}ω denote the set of binary sequences α = (α1, α2, · · ·)
where each αk ∈ {0, 1}. For each α ∈ {0, 1}ω, let sα =

∞∑
k=1

αkχ[xk−1,xk)
and note that when

α 6= β we have ‖sα − sβ‖∞ = 1. Since S is dense in L∞[a, b], for each α ∈ {0, 1}ω we can
choose fα ∈ S such that ‖sα − fα‖∞ < 1

2 . Define F : {0, 1}ω → S by F (α) = fα. Note
that F is injective because when α 6= β we have

1 = ‖sα − sβ‖∞ ≤ ‖sα − fα‖∞ + ‖fα − fβ‖∞ + ‖fβ − sβ‖∞ < 1
2 + ‖fα − fβ‖∞ + 1

2

so that ‖fα − fβ‖∞ > 0. Since F is injective we have |S| ≥
∣∣{0, 1}ω∣∣ = 2ℵ0 , and so S is

uncountable, as required.

3.26 Remark: I may include a discussion of the complex-valued Lp spaces Lp(A,C) later.
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