

Chapter 3. The L_p Spaces

3.1 Definition: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let W be a vector space over \mathbb{F} . An **inner product** over \mathbb{F} is a function $\langle \cdot, \cdot \rangle : W \times W \rightarrow \mathbb{F}$ (meaning that if $u, v \in W$ then $\langle u, v \rangle \in \mathbb{F}$) such that for all $u, v, w \in W$ and all $t \in \mathbb{F}$ we have

- (1) (Sesquilinearity) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$, $\langle tu, v \rangle = t \langle u, v \rangle$,
 $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$, $\langle u, tv \rangle = \bar{t} \langle u, v \rangle$,
- (2) (Conjugate Symmetry) $\langle u, v \rangle = \overline{\langle v, u \rangle}$, and
- (3) (Positive Definiteness) $\langle u, u \rangle \geq 0$ with $\langle u, u \rangle = 0 \iff u = 0$.

For $u, v \in W$, $\langle u, v \rangle$ is called the inner product of u with v . An **inner product space** over \mathbb{F} is a vector space over \mathbb{F} equipped with an inner product. Given two inner product spaces U and V over \mathbb{F} , a linear map $L : U \rightarrow V$ is called a **homomorphism** of inner product spaces (or we say that L **preserves inner product**) when $\langle L(x), L(y) \rangle = \langle x, y \rangle$ for all $x, y \in U$.

3.2 Theorem: Let W be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} and let $u, v \in W$. Then if $\langle x, u \rangle = \langle x, v \rangle$ for all $x \in U$, or if $\langle u, x \rangle = \langle v, x \rangle$ for all $x \in U$ then $u = v$.

Proof: Suppose that $\langle x, u \rangle = \langle x, v \rangle$ for all $x \in U$. Then $\langle x, u - v \rangle = \langle x, u \rangle - \langle x, v \rangle = 0$ for all $x \in U$. In particular, taking $x = u - v$ we have $\langle u - v, u - v \rangle = 0$, so $u - v = 0$ hence $u = v$. Similarly, if $\langle u, x \rangle = \langle v, x \rangle$ for all $x \in U$ then $u = v$.

3.3 Definition: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let W be a vector space over \mathbb{F} . A **norm** on W is a map $\| \cdot \| : W \rightarrow \mathbb{R}$ such that for all $u, v \in W$ and all $t \in \mathbb{F}$ we have

- (1) (Scaling) $\|tu\| = |t| \|u\|$,
- (2) (Positive Definiteness) $\|u\| \geq 0$ with $(\|u\| = 0 \iff u = 0)$, and
- (3) (Triangle Inequality) $\|u + v\| \leq \|u\| + \|v\|$.

For $u \in W$ the real number $\|u\|$ is called the **norm** (or **length**) of u , and we say that u is a **unit vector** when $\|u\| = 1$. A **normed linear space** over \mathbb{F} is a vector space over \mathbb{F} equipped with a norm. Given two normed linear spaces U and V over \mathbb{F} , a linear map $L : U \rightarrow V$ is called a **homomorphism** of normed linear spaces (or we say that L **preserves norm**) when $\|L(x)\| = \|x\|$ for all $x \in U$.

3.4 Theorem: Let $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let W be an inner product space over \mathbb{F} . For $u \in W$ define $\|u\| = \sqrt{\langle u, u \rangle}$. Then for all $u, v \in W$ and all $t \in \mathbb{F}$ we have

- (1) (Scaling) $\|tu\| = |t| \|u\|$,
- (2) (Positive Definiteness) $\|u\| \geq 0$ with $(\|u\| = 0 \iff u = 0)$,
- (3) $\|u \pm v\|^2 = \|u\|^2 \pm 2 \operatorname{Re}\langle u, v \rangle + \|v\|^2$,
- (4) (Pythagoras' Theorem) if $\langle u, v \rangle = 0$ then $\|u + v\|^2 = \|u\|^2 + \|v\|^2$,
- (5) (Parallelogram Law) $\|u + v\|^2 + \|u - v\|^2 = 2\|u\|^2 + 2\|v\|^2$,
- (6) (Polarization Identity) if $\mathbb{F} = \mathbb{R}$ then $\langle u, v \rangle = \frac{1}{4}(\|u + v\|^2 - \|u - v\|^2)$ and
if $\mathbb{F} = \mathbb{C}$ then $\langle u, v \rangle = \frac{1}{4}(\|u + v\|^2 + i\|u + iv\|^2 - \|u - v\|^2 - i\|u - iv\|^2)$,
- (7) (The Cauchy-Schwarz Inequality) $|\langle u, v \rangle| \leq \|u\| \|v\|$ with $|\langle u, v \rangle| = \|u\| \|v\|$ if and only if $\{u, v\}$ is linearly dependent, and
- (8) (The Triangle Inequality) $\|u\| - \|v\| \leq \|u + v\| \leq \|u\| + \|v\|$.

In particular, $\| \cdot \|$ is a norm on W .

Proof: We only prove Part (7) and part of Part (8). To prove Cauchy's Inequality, suppose first that $\{u, v\}$ is linearly dependent. Then one of x and y is a multiple of the other, say $v = tu$ with $t \in \mathbb{F}$. Then $|\langle u, v \rangle| = |\langle u, tu \rangle| = |\overline{t} \langle u, u \rangle| = |t| \|u\|^2 = \|u\| \|tu\| = \|u\| \|v\|$.

Next we suppose that $\{u, v\}$ is linearly independent. Then $1 \cdot v + t \cdot u \neq 0$ for all $t \in \mathbb{F}$, so in particular $v - \frac{\langle v, u \rangle}{\|u\|^2} u \neq 0$. Thus we have

$$\begin{aligned} 0 &< \left\| v - \frac{\langle v, u \rangle}{\|u\|^2} u \right\|^2 = \left\langle v - \frac{\langle v, u \rangle}{\|u\|^2} u, v - \frac{\langle v, u \rangle}{\|u\|^2} u \right\rangle \\ &= \langle v, v \rangle - \frac{\langle v, u \rangle}{\|u\|^2} \langle v, u \rangle - \frac{\langle v, u \rangle}{\|u\|^2} \langle u, v \rangle + \frac{\langle v, u \rangle}{\|u\|^2} \frac{\langle v, u \rangle}{\|u\|^2} \langle u, u \rangle \\ &= \|v\|^2 - \frac{|\langle u, v \rangle|^2}{\|u\|^2} \end{aligned}$$

so that $\frac{|\langle u, v \rangle|^2}{\|u\|^2} < \|v\|^2$ and hence $|\langle u, v \rangle| \leq \|u\| \|v\|$. This proves Part (7).

Using Parts (3) and (7), and the inequality $|\operatorname{Re}(z)| \leq |z|$ for $z \in \mathbb{C}$ (which follows from Pythagoras' Theorem in \mathbb{R}^2), we have

$$\begin{aligned} \|u + v\|^2 &= \|u\|^2 + 2 \operatorname{Re} \langle u, v \rangle + \|v\|^2 \leq \|u\|^2 + 2|\langle u, v \rangle| + \|v\|^2 \\ &\leq \|u\|^2 + 2\|u\| \|v\| + \|v\|^2 = (\|u\| + \|v\|)^2. \end{aligned}$$

Taking the square root on both sides gives $\|u + v\| \leq \|u\| + \|v\|$.

3.5 Definition: A **metric** on a set X is a function $d : X \times X \rightarrow \mathbb{R}$ such that, for all $x, y, z \in X$ we have

- (1) (Positive Definiteness) $d(x, y) \geq 0$ with $d(x, y) = 0 \iff x = y$,
- (2) (Symmetry) $d(x, y) = d(y, x)$ and
- (3) (Triangle Inequality) $d(x, z) \leq d(x, y) + d(y, z)$.

A set with a metric is called a **metric space**.

3.6 Definition: A **topology** on a set X is a set \mathcal{T} of subsets of X such that

- (1) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$,
- (2) if $U \in \mathcal{T}$ and $V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$, and
- (3) if K is a set and $U_k \in \mathcal{T}$ for each $k \in K$ then $\bigcup_{k \in K} U_k \in \mathcal{T}$.

For a subset $A \subseteq X$, we say that A is **open** (in X) when $A \in \mathcal{T}$ and we say that A is **closed** (in X) when $X \setminus A \in \mathcal{T}$. A set with a topology is called a **topological space**.

3.7 Note: Given an inner product on a vector space V over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , Theorem 3.4 shows that we can define an associated norm on V by letting $\|x\| = \sqrt{\langle x, x \rangle}$ for $x \in V$.

Given a norm on a vector space V , verify that we can define an associated metric on any subset $X \subseteq V$ by letting $d(x, y) = \|x - y\|$ for $x, y \in X$.

Given a metric on a set X , verify that we can define an associated topology on X by stipulating that a subset $A \subseteq X$ is open when it has the property that for all $a \in A$ there exists $r > 0$ such that $B(a, r) \subseteq A$, where $B(a, r) = \{x \in X \mid d(x, a) < r\}$.

3.8 Definition: Let $\{x_n\}_{n \geq 1}$ be a sequence in a metric space X . We say that the sequence $\{x_n\}$ **converges** in X when there exists $a \in X$ such that $\lim_{n \rightarrow \infty} x_n = a$, that is when

$$\exists a \in X \ \forall \epsilon > 0 \ \exists n \in \mathbb{Z}^+ \ \forall k \in \mathbb{Z}^+ \ (k \geq n \implies d(x_n, a) < \epsilon).$$

We say that $\{x_n\}$ is **Cauchy** when

$$\forall \epsilon > 0 \ \exists n \in \mathbb{Z}^+ \ \forall k, l \in \mathbb{Z}^+ \ (k, l \geq n \implies d(x_k, x_l) < \epsilon).$$

3.9 Note: Verify that, in a metric space, if a sequence converges then it is Cauchy.

3.10 Definition: A metric space X is called **complete** when, in X , every Cauchy sequence converges. A complete normed linear space is called a **Banach space** and a complete inner-product space is called a **Hilbert space**.

3.11 Theorem: (The Completeness of \mathbb{R}^n) *The metric space \mathbb{R}^n is complete.*

Proof: We omit the proof.

3.12 Definition: Let \mathbb{R}^ω denote the set of all sequences $x = \{x_1, x_2, x_3, \dots\}$ with each $x_k \in \mathbb{R}$. For $x \in \mathbb{R}^\omega$ and for $1 \leq p < \infty$ let

$$\begin{aligned} \|x\|_p &= \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p}, \text{ and} \\ \|x\|_\infty &= \sup \{|x_k| \mid k \in \mathbb{Z}^+\}. \end{aligned}$$

Let

$$\begin{aligned} \ell_p &= \{x \in \mathbb{R}^\omega \mid \|x\|_p < \infty\}, \text{ and} \\ \ell_\infty &= \{x \in \mathbb{R}^\omega \mid \|x\|_\infty < \infty\}. \end{aligned}$$

3.13 Definition: Let $A \subseteq \mathbb{R}$ be measurable. Let $\mathcal{M}(A)$ denote the set of all measurable functions $f : A \rightarrow [-\infty, \infty]$. For $f \in \mathcal{M}(A)$ and for $1 \leq p < \infty$, let

$$\begin{aligned} \|f\|_p &= \left(\int_A |f|^p \right)^{1/p}, \text{ and} \\ \|f\|_\infty &= \inf \left\{ a \geq 0 \mid \lambda(|f|^{-1}(a, \infty]) = 0 \right\}. \end{aligned}$$

where $|f|^{-1}(a, \infty] = \{x \in A \mid |f(x)| > a\}$. Let

$$\begin{aligned} L_p(A) &= \left\{ f \in \mathcal{M}(A) \mid \|f\|_p < \infty \right\} / \sim, \text{ and} \\ L_\infty(A) &= \left\{ f \in \mathcal{M}(A) \mid \|f\|_\infty < \infty \right\} / \sim \end{aligned}$$

where \sim is the equivalence relation given by $f \sim g \iff f = g$ a.e. in A .

3.14 Remark: The reason that we quotient by the equivalence relation in the above definition is that we want $\|f\|_p$ to define a norm on $L_p(A)$ and the quotient is necessary to ensure that $\|f\|_p$ is positive definite (see Part 6 of Theorem 2.30).

3.15 Lemma: Let $f : A \subseteq \mathbb{R} \rightarrow [-\infty, \infty]$ be measurable. Then $\{x \in A \mid |f(x)| > \|f\|_\infty\}$ has measure zero.

Proof: We claim that for all $y > \|f\|_\infty$ we have $\lambda(|f|^{-1}(y, \infty)) = 0$. Let $y > \|f\|_\infty$. By the definition of $\|f\|_\infty$ we can choose a with $\|f\|_\infty \leq a < y$ such that $\lambda(|f|^{-1}(a, \infty)) = 0$. Since $a < y$ we have $(y, \infty] \subseteq (a, \infty]$, so $|f|^{-1}(y, \infty] \subseteq |f|^{-1}(a, \infty]$, hence $\lambda(|f|^{-1}(y, \infty)) = 0$, as claimed.

Let $B = \{x \in A \mid |f(x)| > \|f\|_\infty\}$ and let $B_n = \{x \in A \mid |f(x)| > \|f\|_\infty + \frac{1}{n}\}$ for $n \in \mathbb{Z}^+$. Then each B_n is measurable with $B_1 \subseteq B_2 \subseteq B_3 \subseteq \dots$, and we have $\bigcup_{n=1}^{\infty} B_n = B$. By the above claim, we have $\lambda(B_n) = 0$ for all $n \in \mathbb{Z}^+$ and so $\lambda(B) = \lim_{n \rightarrow \infty} \lambda(B_n) = 0$.

3.16 Definition: For $p, q \in [1, \infty]$ we say that p and q are **conjugate** when $\frac{1}{p} + \frac{1}{q} = 1$ where we use the convention that $\frac{1}{\infty} = 0$ so that 1 and ∞ are conjugate.

3.17 Lemma: Let $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then for all $a, b \geq 0$ we have $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$.

Proof: Note that for $p, q \in (1, \infty)$ we have

$$\frac{1}{p} + \frac{1}{q} = 1 \iff \frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} \iff q(p-1) = p \iff p(q-1) = q.$$

For $x, y \geq 0$ we have

$$y = x^{p-1} \iff y^q = x^{q(p-1)} \iff y^q = x^p \iff y^{p(q-1)} = x^p \iff y^{q-1} = x$$

so the functions $f(x) = x^{p-1}$ and $g(y) = y^{q-1}$ are inverses of each other. By considering the area under $y = f(x)$ with $0 \leq x \leq a$ and the area to the left of $y = f(x)$ with $0 \leq y \leq b$ we see that

$$ab \leq \int_{x=0}^a x^{p-1} dx + \int_{y=0}^b y^{q-1} dy = \left[\frac{1}{p} x^p \right]_{x=0}^a + \left[\frac{1}{q} y^q \right]_{y=0}^b = \frac{a^p}{p} + \frac{b^q}{q}.$$

3.18 Theorem: (Hölder's Inequality) Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$ and let $A \subseteq \mathbb{R}$ be measurable.

- (1) For all $x, y \in \mathbb{R}^\omega$ we have $\|xy\|_1 \leq \|x\|_p \|y\|_q$.
- (2) For all $f, g \in \mathcal{M}(A)$ for which fg is defined, we have $\|fg\|_1 \leq \|f\|_p \|g\|_q$.

Proof: To prove Part (1) in the case that $p, q \in (1, \infty)$, let $x, y \in \mathbb{R}^\omega$. If $x = 0$ or $y = 0$ the equality holds, so suppose that $x, y \neq 0$. For each index k , apply the above lemma using $a = \frac{|x_k|}{\|x\|_p}$ and $b = \frac{|y_k|}{\|y\|_q}$ to get

$$\frac{|x_k y_k|}{\|x\|_p \|y\|_q} \leq \frac{|x_k|^p}{p \|x\|_p^p} + \frac{|y_k|^q}{q \|y\|_q^q}.$$

Sum over k to get

$$\frac{\|xy\|_1}{\|x\|_p \|y\|_q} \leq \frac{\|x\|_p^p}{p \|x\|_p^p} + \frac{\|y\|_q^q}{q \|y\|_q^q} = \frac{1}{p} + \frac{1}{q} = 1.$$

To prove Part (2) in the case that $p, q \in (1, \infty)$, let $f, g \in \mathcal{M}(\mathbb{R})$. If $\|f\|_p = 0$ or $\|g\|_q = 0$ then the equality holds (with both sides equal to 0), so suppose that $\|f\|_p, \|g\|_q \neq 0$. For each $x \in A$, apply the above lemma using $a = \frac{|f(x)|}{\|f\|_p}$ and $b = \frac{|g(x)|}{\|g\|_q}$ to get

$$\frac{|f(x)g(x)|}{\|f\|_p\|g\|_q} \leq \frac{|f(x)|^p}{p\|f\|_p} + \frac{|g(x)|^q}{q\|g\|_q}.$$

Integrate over A to get

$$\frac{\|fg\|_1}{\|f\|_p\|g\|_q} \leq \frac{\|f\|_p^p}{p\|f\|_p^p} + \frac{\|g\|_q^q}{q\|g\|_q^q} = \frac{1}{p} + \frac{1}{q} = 1.$$

To prove Part (1) in the case that $p = 1$ and $q = \infty$, let $x, y \in \mathbb{R}^\omega$. Note that $|y_k| \leq \|y\|_\infty$ for all indices k and so

$$\|xy\|_1 = \sum_{k=1}^{\infty} |x_k y_k| \leq \sum_{k=1}^{\infty} |x_k| \|y\|_\infty = \|x\|_1 \|y\|_\infty.$$

Finally, to prove Part (2) in the case that $p = 1$ and $q = \infty$, let $f, g \in \mathcal{M}(A)$. Let $B = \{x \in A \mid |g(x)| \leq \|g\|_\infty\}$ and let $C = \{x \in A \mid |g(x)| > \|g\|_\infty\}$. Note that B and C are disjoint and measurable with $A = B \cup C$ and that $\lambda(C) = 0$ by Lemma 3.15. Thus

$$\|fg\|_1 = \int_A |f| |g| = \int_B |f| |g| \leq \int_B |f| \|g\|_\infty = \int_A |f| \|g\|_\infty = \|f\|_1 \|g\|_\infty.$$

3.19 Theorem: (Minkowski's Inequality) Let $p \in [1, \infty]$ and let $A \subseteq \mathbb{R}$ be measurable.

- (1) For all $x, y \in \mathbb{R}^\omega$ we have $\|x + y\|_p \leq \|x\|_p + \|y\|_p$.
- (2) For all $f, g \in \mathcal{M}(A)$ for which $f + g$ is defined, we have $\|f + g\|_p \leq \|f\|_p + \|g\|_p$.

Proof: To Prove Part (1) in the case that $p = 1$, note that when $x, y \in \mathbb{R}^\omega$ we have

$$\|x + y\|_1 = \sum_{k=1}^{\infty} |x_k + y_k| \leq \sum_{k=1}^{\infty} |x_k| + |y_k| = \sum_{k=1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = \|x\|_1 + \|y\|_1.$$

To prove Part (2) in the case that $p = 1$, note that when $f, g, f + g \in \mathcal{M}(A)$ we have

$$\|f + g\|_1 = \int_A |f + g| \leq \int_A |f| + |g| = \int_A |f| + \int_A |g| = \|f\|_1 + \|g\|_1.$$

To prove Part (1) in the case that $p \in (1, \infty)$, let $x, y \in \mathbb{R}^\omega$ and let q be the conjugate of p so that $\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$. For each index k we have

$$\begin{aligned} |x_k + y_k|^p &= |x_k + y_k| |x_k + y_k|^{p-1} \leq (|x_k| + |y_k|) |x_k + y_k|^{p-1} \\ &= |x_k| |x_k + y_k|^{p-1} + |y_k| |x_k + y_k|^{p-1}. \end{aligned}$$

Sum over k then apply Hölder's Inequality to get

$$\begin{aligned} \|x + y\|_p^p &\leq \left\| |x| |x + y|^{p-1} \right\|_1 + \left\| |y| |x + y|^{p-1} \right\|_1 \leq \|x\|_p \left\| |x + y|^{p-1} \right\|_q + \|y\|_p \left\| |x + y|^{p-1} \right\|_q \\ &= \left(\|x\|_p + \|y\|_q \right) \left\| |x + y|^{p-1} \right\|_q = \left(\|x\|_p + \|y\|_p \right) \left(\sum_{k=1}^{\infty} |x_k + y_k|^{q(p-1)} \right)^{1/q} \\ &= \left(\|x\|_p + \|y\|_p \right) \left(\sum_{k=1}^{\infty} |x_k + y_k|^p \right)^{(p-1)/p} = \left(\|x\|_p + \|y\|_p \right) \|x + y\|_p^{p-1}. \end{aligned}$$

To prove Part (2) in the case that $p \in (1, \infty)$, let $f, g, f + g \in \mathcal{M}(A)$ and let q be the conjugate of p so that $\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$. For each $x \in A$ we have

$$\begin{aligned} |f(x) + g(x)|^p &= |f(x) + g(x)| |f(x) + g(x)|^{p-1} \leq (|f(x)| + |g(x)|) |f(x) + g(x)|^{p-1} \\ &= |f(x)| |f(x) + g(x)|^{p-1} + |g(x)| |f(x) + g(x)|^{p-1}. \end{aligned}$$

Integrate over A then apply Hölder's Inequality to get

$$\begin{aligned} \|f + g\|_p^p &\leq \left\| |f| |f + g|^{p-1} \right\|_1 + \left\| |g| |f + g|^{p-1} \right\|_1 \leq \|f\|_p \left\| |f + g|^{p-1} \right\|_q + \|g\|_p \left\| |f + g|^{p-1} \right\|_q \\ &= (\|f\|_p + \|g\|_p) \left\| |f + g|^{p-1} \right\|_q = (\|f\|_p + \|g\|_p) \left(\int_A |f + g|^{q(p-1)} \right)^{1/q} \\ &= (\|f\|_p + \|g\|_p) \left(\int_A |f + g|^p \right)^{(p-1)/p} = (\|f\|_p + \|g\|_p) \|f + g\|_p^{p-1}. \end{aligned}$$

To prove Part (1) in the case that $p = \infty$, note that if $x, y \in \ell_\infty$ then we have

$$\|x + y\|_\infty = \sup_{k \geq 1} |x_k + y_k| \leq \sup_{k \geq 1} (|x_k| + |y_k|) \leq \sup_{k \geq 1} |x_k| + \sup_{k \geq 1} |y_k| = \|x\|_\infty + \|y\|_\infty.$$

To prove Part (2) in the case that $p = \infty$, let $f, g \in \mathcal{M}(A)$. For all $x \in A$, note that if $|f(x) + g(x)| > \|f\|_\infty + \|g\|_\infty$ then $|f(x)| + |g(x)| \geq |f(x) + g(x)| > \|f\|_\infty + \|g\|_\infty$ and hence either $|f(x)| > \|f\|_\infty$ or $|g(x)| > \|g\|_\infty$. This shows that

$$\{x \in A \mid |f(x) + g(x)| > \|f\|_\infty + \|g\|_\infty\} \subseteq \{x \in A \mid |f(x)| > \|f\|_\infty\} \cup \{x \in A \mid |g(x)| > \|g\|_\infty\}.$$

By Lemma 3.15, the two sets on the right both have measure zero, and so the set on the left has measure zero. By the definition of $\|f + g\|_\infty$ it follows that $\|f + g\|_\infty \leq \|f\|_\infty + \|g\|_\infty$.

3.20 Corollary: Let $p \in [1, \infty]$ and let $A \subseteq \mathbb{R}$ be measurable. Then ℓ_p and $L_p(A)$ are normed linear spaces using their p -norms. Also, ℓ_2 is an inner product space using $\langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k$, and $L_2(A)$ is an inner product space using $\langle f, g \rangle = \int_A f g$.

Proof: We leave the proof for the ℓ_p spaces as an exercise, and provide the proof for $L_p(A)$. Let $\mathcal{M}(A, [-\infty, \infty])$ be the set of measurable functions $f: A \rightarrow [-\infty, \infty]$ (which is not a vector space because addition is not defined) and let $\mathcal{M}(A, \mathbb{R})$ be the vector space of measurable functions $f: A \rightarrow \mathbb{R}$. Let $L_p(A) = \{f \in \mathcal{M}(A, [-\infty, \infty]) \mid \|f\|_p < \infty\} / \sim$ and let $L_p(A, \mathbb{R}) = \{f \in \mathcal{M}(A, \mathbb{R}) \mid \|f\|_p < \infty\} / \sim$, where $f \sim g$ when $f = g$ a.e. in A . Note that when $f \in \mathcal{M}(A, [-\infty, \infty])$ with $\|f\|_p < \infty$, we have $|f(x)| < \infty$ for a.e. $x \in A$, so we can identify $L_p(A, [-\infty, \infty])$ with $L_p(A, \mathbb{R})$. Let $W = \{f \in \mathcal{M}(A, \mathbb{R}) \mid \|f\|_p < \infty\}$ and $V = \{f \in W \mid f = 0 \text{ a.e. in } A\}$. Note that W is a subspace of $\mathcal{M}(A, \mathbb{R})$ because of Minkowski's Inequality (if $f, g \in W$ then $f + g \in W$ because $\|f + g\|_p \leq \|f\|_p + \|g\|_p$), and note that V is a subspace of W . It follows that $L_p(A, \mathbb{R})$ is a vector space, indeed it is the quotient space $L_p(A, \mathbb{R}) = W/V$. It is easy to see that the p -norm is well-defined on $L_p(A, \mathbb{R})$ and it satisfies all the axioms (with the Triangle Inequality following directly from Minkowski's Inequality). Finally note that when $f, g \in L_2(A, \mathbb{R})$, Hölder's Inequality gives $\int_A |fg| = \||f| |g|\|_1 \leq \|f\|_2 \|g\|_2 < \infty$ so that fg is integrable, and so the inner product $\langle f, g \rangle = \int_A f g$ is well-defined. It is easy to see that it satisfies the inner product axioms.

3.21 Theorem: Let $p \in [1, \infty]$ and let $A \subseteq \mathbb{R}$ be measurable. Then the normed linear spaces ℓ_p and $L_p(A)$ are complete.

Proof: We leave the proof that ℓ_p is complete as an exercise. To prove that $L_p(A)$ is complete in the case that $p < \infty$, let $(f_n)_{n \geq 1}$ be a Cauchy sequence in $L_p(A)$. This means that for all $\epsilon > 0$ there exists $m \in \mathbb{Z}^+$ such that $k, l \geq m \implies \|f_k - f_l\|_p < \epsilon$. Choose a subsequence $(f_{n_k})_{k \geq 1}$ with the property that $\|f_{n_{k+1}} - f_{n_k}\|_p \leq \frac{1}{2^k}$ for all $k \geq 1$. For each $\ell \in \mathbb{Z}^+$, let

$$g_\ell = \sum_{k=1}^{\ell} |f_{n_{k+1}} - f_{n_k}|$$

and let $g = \lim_{\ell \rightarrow \infty} g_\ell$ (note that the limit exists because $(g_\ell(x))_{\ell \geq 1}$ is increasing for all $x \in A$).

By Minkowski's Inequality, for all $\ell \in \mathbb{Z}^+$ we have

$$\|g_\ell\|_p \leq \sum_{k=1}^{\ell} \|f_{n_{k+1}} - f_{n_k}\|_p \leq \sum_{k=1}^{\ell} \frac{1}{2^k} < 1.$$

By Fatou's Lemma,

$$\|g\|_p^p = \int_A |g|^p = \int_A \lim_{\ell \rightarrow \infty} |g_\ell|^p \leq \liminf_{\ell \rightarrow \infty} \int_A |g_\ell|^p = \liminf_{\ell \rightarrow \infty} \|g_\ell\|_p^p \leq 1$$

so that $g \in L_p(A)$. Because $\|g\|_p$ is finite, it follows that g is finite a.e. in A , so the sum $\sum |f_{n_{k+1}} - f_{n_k}|$ converges a.e. in A , hence the sum $\sum (f_{n_{k+1}} - f_{n_k})$ converges a.e. in A , and hence the sequence $(f_{n_\ell})_{\ell \geq 1}$ converges a.e. in A because $f_{n_\ell} = f_{n_1} + \sum_{k=1}^{\ell-1} (f_{n_{k+1}} - f_{n_k})$.

We define $f : A \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} \lim_{\ell \rightarrow \infty} f_{n_\ell}(x) & \text{, if the limit exists in } \mathbb{R}, \text{ and} \\ 0 & \text{, otherwise.} \end{cases}$$

We claim that $f \in L_p(A)$ and that $\lim_{n \rightarrow \infty} f_n = f$ in $L_p(A)$. Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ so that for all $k, l \geq m$ we have $\|f_k - f_l\|_p \leq \epsilon$. Then for all k such that $n_k \geq m$ we have $\|f_{n_k} - f_m\|_p \leq \epsilon$. By Fatou's Lemma,

$$\begin{aligned} \|f - f_m\|_p^p &= \int_A |f - f_m|^p = \int_A \lim_{k \rightarrow \infty} |f_{n_k} - f_m|^p \\ &\leq \liminf_{k \rightarrow \infty} \int_A |f_{n_k} - f_m|^p = \liminf_{k \rightarrow \infty} \|f_{n_k} - f_m\|_p^p \leq \epsilon^p \end{aligned}$$

so that $\|f - f_m\|_p \leq \epsilon$. This shows that for all $\epsilon > 0$ there exists $m \in \mathbb{Z}^+$ such that for all $n \geq m$ we have $\|f - f_n\|_p \leq \epsilon$. It will follow that $\lim_{n \rightarrow \infty} f_n = f$ in $L_p(A)$ once we show that $f \in L_p(A)$. Taking $\epsilon = 1$ and choosing m as above so that $\|f - f_m\| \leq 1$, Minkowski's Inequality gives $\|f\|_p \leq \|f - f_m\|_p + \|f_m\|_p \leq 1 + \|f_m\|_p < \infty$ so that $f \in L_p(A)$, as required.

Now let us prove that $L_\infty(A)$ is complete. Let $(f_n)_{n \geq 1}$ be a Cauchy sequence in $L_\infty(A)$. Let $B_n = \{x \in A \mid |f_n(x)| > \|f_n\|_\infty\}$ and $C_{k,l} = \{x \in A \mid |f_k(x) - f_l(x)| > \|f_k - f_l\|_\infty\}$. By Lemma 3.15, the sets B_n and $C_{k,l}$ all have measure zero. Let E be the union of all the sets B_n and $C_{k,l}$. Since E is a countable union of sets of measure zero, we have $\lambda(E) = 0$. Given $\epsilon > 0$, since $(f_n)_{n \geq 1}$ is Cauchy in $L_\infty(A)$ we can choose $m \in \mathbb{Z}^+$ so that for all $k, l \geq m$ we have $\|f_k - f_l\|_\infty \leq \epsilon$. Then for all $k, l \geq m$ we have $|f_k(x) - f_l(x)| \leq \|f_k - f_l\|_\infty \leq \epsilon$ for all $x \in A \setminus E$. It follows, by the Cauchy criterion for uniform convergence, that the sequence (f_n) converges uniformly in $A \setminus E$. Define $f : A \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} \lim_{n \rightarrow \infty} f_n(x) & \text{if } x \in A \setminus E \\ 0 & \text{if } x \in E. \end{cases}$$

We claim that $f \in L_\infty(A)$ and that $\lim_{n \rightarrow \infty} f_n = f$ in $L_\infty(A)$. Given $\epsilon > 0$, since (f_n) converges uniformly to f in $A \setminus E$, we can choose $m \in \mathbb{Z}^+$ so that for all $n \geq m$ we have $|f_n(x) - f(x)| \leq \epsilon$ for all $x \in A \setminus E$ hence $\|f_n - f\|_\infty \leq \epsilon$ since $\lambda(E) = 0$. This shows that for all $\epsilon > 0$ there exists $m \in \mathbb{Z}^+$ such that for all $n \geq m$ we have $\|f - f_n\|_\infty \leq \epsilon$. Taking $\epsilon = 1$ and choosing m as above, we have $\|f_m - f\|_\infty \leq 1$ so by Minkowski's Inequality $\|f\|_\infty \leq \|f - f_m\|_\infty + \|f_m\|_\infty \leq 1 + \|f_m\|_\infty$ and so $f \in L_\infty(A)$.

3.22 Theorem: Let $1 \leq p < q \leq \infty$ and let $A \subseteq \mathbb{R}$ be measurable. Then

- (1) $\ell_p \subseteq \ell_q$, and
- (2) if $\lambda(A) < \infty$ then $L_q(A) \subseteq L_p(A)$.

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that $\lambda(A) < \infty$. Consider first the case that $q < \infty$. Let $f \in L_q(A)$. Then by Hölder's Inequality, for any $u, v > 1$ with $\frac{1}{u} + \frac{1}{v} = 1$ we have

$$\|f\|_p^p = \int_A |f|^p = \left\| |f|^p \right\|_1 \leq \left\| |f|^p \right\|_u \left\| 1 \right\|_v = \left(\int_A |f|^{pu} \right)^{1/u} \lambda(A)^{1/v}.$$

Choose $u = \frac{q}{p}$ and, to get $\frac{1}{v} = 1 - \frac{1}{u} = 1 - \frac{p}{q} = \frac{q-p}{q}$, choose $v = \frac{q}{q-p}$. Then

$$\|f\|_p^p \leq \left(\int_A |f|^q \right)^{p/q} \lambda(A)^{(q-p)/q} = \|f\|_q^p \lambda(A)^{(q-p)/q}$$

so that $\|f\|_p \leq \|f\|_q \lambda(A)^{\frac{1}{p} - \frac{1}{q}}$. Thus $\|f\|_p < \infty$ so $f \in L_p(A)$.

Now consider the case that $q = \infty$. Let $f \in L_\infty(A)$. Let $B = \{x \in A \mid |f(x)| \leq \|f\|_\infty\}$ and $C = \{x \in A \mid |f(x)| > \|f\|_\infty\}$. By Lemma 3.15 we have $\lambda(C) = 0$, so

$$\|f\|_p^p = \int_A |f|^p = \int_B |f|^p \leq \int_B \|f\|_\infty^p = \|f\|_\infty^p \lambda(B) = \|f\|_\infty^p \lambda(A)$$

so that $\|f\|_p \leq \|f\|_\infty \lambda(A)^{1/p}$. Thus $\|f\|_p < \infty$ so $f \in L_p(A)$.

3.23 Theorem: Let $1 \leq p < q < r \leq \infty$ and let $A \subseteq \mathbb{R}$ be measurable. Then

- (1) $\ell_p \cap \ell_r \subseteq \ell_q \subseteq \ell_p + \ell_r$, and
- (2) $L_p(A) \cap L_r(A) \subseteq L_q(A) \subseteq L_p(A) + L_r(A)$.

Proof: Part (1) follows as an immediate corollary of Theorem 3.22. Let us prove Part (2). First we claim that $L_q(A) \subseteq L_p(A) + L_r(A)$. Let $f \in L_q(A)$. Let $B = \{x \in A \mid |f(x)| > 1\}$ and let $C = \{x \in A \mid |f(x)| \leq 1\}$. Let $g = f \cdot \chi_B$ and $h = f \cdot \chi_C$ so that $f = g + h$. Note that $g \in L_p(A)$ because

$$\|g\|_p^p = \int_A |g|^p = \int_B |f|^p \leq \int_B |f|^q \leq \int_A |f|^q = \|f\|_q^q < \infty,$$

note that $h \in L_\infty(A)$ because $|h(x)| \leq 1$ for all $x \in A$ so that $\|h\|_\infty \leq 1$, and note that when $r < \infty$ we have $h \in L_r(A)$ because

$$\|h\|_r^r = \int_A |h|^r = \int_C |f|^r \leq \int_C |f|^q \leq \int_A |f|^q = \|f\|_q^q < \infty.$$

Thus we have $L_q(A) \subseteq L_p(A) + L_r(A)$ as claimed.

Next we claim that $L_p(A) \cap L_r(A) \subseteq L_q(A)$. Let $f \in L_p(A) \cap L_r(A)$. Suppose first that $r < \infty$. Note that for any $0 < k, l \in \mathbb{R}$ with $k + l = q$ and for any $1 < u, v \in \mathbb{R}$ with $\frac{1}{u} + \frac{1}{v} = 1$, Hölder's Inequality gives

$$\|f\|_q^q = \int_A |f|^q \leq \||f|^k\|_u \||f|^l\|_v = \left(\int_A |f|^{ku} \right)^{1/u} \left(\int_A |f|^{lv} \right)^{1/v}.$$

We solve the equations $k + l = q$, $\frac{1}{u} + \frac{1}{v} = 1$, $ku = p$ and $lv = r$ to get

$$k = \frac{p(r-q)}{r-p}, \quad l = \frac{r(q-p)}{r-p}, \quad u = \frac{r-p}{r-q} \text{ and } v = \frac{r-p}{q-p}$$

and note that since $1 \leq p < q < r < \infty$ we have $k, l > 0$ and $1 < u, v < \infty$. Thus

$$\|f\|_q^q \leq \left(\int_A |f|^{ku} \right)^{1/u} \left(\int_A |f|^{lv} \right)^{1/v} = \left(\int_A |f|^p \right)^{k/p} \left(\int_A |f|^r \right)^{l/r} = \|f\|_p^k \|f\|_r^l < \infty.$$

When $r = \infty$, we let $B = \{x \in A \mid |f(x)| > \|f\|_\infty\}$ and $C = \{x \in A \mid |f(x)| \leq \|f\|_\infty\}$, and then by Lemma 3.15 we have $\lambda(B) = 0$, and so

$$\|f\|_q^q = \int_A |f|^q = \int_C |f|^q = \int_C |f|^p |f|^{q-p} \leq \|f\|_\infty^{q-p} \int_C |f|^p \leq \|f\|_p^p \|f\|_\infty^{q-p} < \infty.$$

This proves that $L_p(A) \cap L_r(A) \subseteq L_q(A)$ as claimed.

3.24 Definition: A metric space is called **separable** when it contains a countable dense subset.

3.25 Theorem: Let $1 \leq p < \infty$ and let $a < b$.

- (1) ℓ_p is separable but ℓ_∞ is not.
- (2) $L_p([a, b])$ is separable but $L_\infty([a, b])$ is not.

Proof: We leave the proof of Part (1) as an exercise. We sketch a proof of Part (2) leaving the details as an exercise. To show that $L_p[a, b]$ is separable, we shall show that $\mathbb{Q}[x]$ is dense in $L_p[a, b]$ by showing that a given function $f \in L_p[a, b]$ can be approximated, arbitrarily closely in the p -norm, by a polynomial in $\mathbb{Q}[x]$. Since $f = f^+ - f^-$ it suffices to consider the case that f is nonnegative. By Note 2.28, together with the Monotone Convergence Theorem, we can approximate a given nonnegative function $f \in L_p[a, b]$, arbitrarily closely in the p -norm, using a nonnegative simple function since we can construct an increasing sequence of simple functions $s_n : [a, b] \rightarrow [0, \infty)$ with $s_n \rightarrow f$ pointwise on $[a, b]$. We can approximate a given nonnegative simple function $s : [a, b] \rightarrow [0, \infty)$, arbitrarily closely in the p -norm, using a nonnegative step function $r : [a, b] \rightarrow [0, \infty)$ because we can cover a measurable set $A \subseteq [a, b]$ by a disjoint union of intervals $J_k \subseteq [a, b]$ so that χ_A is approximated by $\sum \chi_{J_k}$. We can then approximate a given step function $r : [a, b] \rightarrow [0, \infty)$, arbitrarily closely in the p -norm, using a continuous function because for any interval J , the step function χ_J can be approximated arbitrarily closely in the p -norm by a piecewise linear function. This shows that the set of continuous functions $C[a, b]$ is dense in $L_p[a, b]$, using the p -norm. On the other hand, using the ∞ -norm (which agrees with the supremum norm for continuous functions), $\mathbb{Q}[x]$ is dense in $\mathbb{R}[x]$, and we know from the Stone-Weirstrass Theorem that $\mathbb{R}[x]$ is dense in $C[a, b]$. Since $\mathbb{Q}[x]$ is dense in $C[a, b]$ using the ∞ -norm, it is also dense using the p -norm by the formula $\|f\|_p \leq (b-a)^{1/p} \|f\|_\infty$ which is obtained in the proof of Theorem 3.22.

We claim that $L_\infty[a, b]$ is not separable. Let S be any dense subset of $L_\infty[a, b]$. We must show that S is uncountable. For each $k \in \mathbb{N}$ let $x_k = b - \frac{b-a}{2^k}$ so that we have $a = x_0 < x_1 < x_2 < \dots < b$. Let $\{0, 1\}^\omega$ denote the set of binary sequences $\alpha = (\alpha_1, \alpha_2, \dots)$ where each $\alpha_k \in \{0, 1\}$. For each $\alpha \in \{0, 1\}^\omega$, let $s_\alpha = \sum_{k=1}^{\infty} \alpha_k \chi_{[x_{k-1}, x_k)}$ and note that when $\alpha \neq \beta$ we have $\|s_\alpha - s_\beta\|_\infty = 1$. Since S is dense in $L_\infty[a, b]$, for each $\alpha \in \{0, 1\}^\omega$ we can choose $f_\alpha \in S$ such that $\|s_\alpha - f_\alpha\|_\infty < \frac{1}{2}$. Define $F : \{0, 1\}^\omega \rightarrow S$ by $F(\alpha) = f_\alpha$. Note that F is injective because when $\alpha \neq \beta$ we have

$$1 = \|s_\alpha - s_\beta\|_\infty \leq \|s_\alpha - f_\alpha\|_\infty + \|f_\alpha - f_\beta\|_\infty + \|f_\beta - s_\beta\|_\infty < \frac{1}{2} + \|f_\alpha - f_\beta\|_\infty + \frac{1}{2}$$

so that $\|f_\alpha - f_\beta\|_\infty > 0$. Since F is injective we have $|S| \geq |\{0, 1\}^\omega| = 2^{\aleph_0}$, and so S is uncountable, as required.

3.26 Remark: I may include a discussion of the complex-valued L_p spaces $L_p(A, \mathbb{C})$ later.