Chapter 2. Lebesque Integration

2.1 Definition: When f : [a,b] — R is bounded and X = (g, 1, --,x¢) is a partition
of [a,b], which means that a = 29 < 71 < --- < 2y = b, and I, = [zx_1, %] is the kB
subinterval of X, the upper and lower Riemann sums for f on X are given by

U(f, X) = Yy ML) | i
L(f, X) = Yy m(Ix) T

where M (Iy) = sup {f |t€]k} and m([y) = inf {f ‘ tEIk}, and we define the upper
and lower Riemann integrals of f on [a b] to be

U(f) =inf {U(f,X)| X is a partition of [a,b]}
L(f) =sup {L(f, X)| X is a partition of [a,d]},

We say that a function f : [a,b] — R is Riemann integrable on [a, b] when f is bounded
and U(f) = L(f). In this case, we define the Riemann integral of f on [a, b] to be

/abf B /abf(x) dz = U(f) = L(f).

2.2 Theorem: (An Equivalent Definition of Integrability) Let f : [a,b] — R be bounded.
Then f is integrable if and only if f has the property that for every ¢ > 0 there exists a
partition X of [a,b] such that U(f, X) — L(f, X) <€

Proof: We omit the proof (this was likely proven in a previous course).

2.3 Theorem: (Properties of the Riemann Integral) Let f, g : [a,b] — R be bounded.

(1) If f and g are Riemann integrable on [a,b] and f < g then / f < /
(2) If f and g are Riemann integrable on [a,b] and ¢ € R then the functions cf and f + g

b
are Riemann integrable on [a, b] a.nd/ (cf) = c/ f and / (f+g9) = / f+/

(3) If ¢ € (a,b) then f is Riemann integrable on |a, b] if and on]y if f is Riemann integrable
both on [a,c| and on [c,b] and, in this case, / f= / f +/ f-

(4) If f(x) = g(x) for all but finitely many x e [a, b] then f is Riemann integrable on [a, b]
if and only if g is Riemann integrable on [a,b] and, in this case, /b f= /bg

(5) If f is monotonic then f is Riemann integrable.
(6) If f is continuous then f is Riemann integrable.

Proof: We omit the proof.

2.4 Theorem: (The Fundamental Theorem of Calculus) Let f,g : [a,b] — R. Suppose
that g is differentiable with ¢' = f in [a,b] and that f is Riemann integrable on [a,b]. Then

| f@)dz =g - gla).

Proof: We omit the proof.



2.5 Theorem: (Lebesgue’s Characterization of Riemann Integrability) Let f : [a,b] — R.
Then f is Riemann integrable on |a,b] if and only if f is bounded and the set of all points
in [a, b] at which f is discontinuous has measure zero.

Proof: For an interval I with I N [a,b] # (), define the oscillation of f on [a,b] to be
Q1) =sup { f(z) — f(y) |2,y € IN[a, 8]} = M(I) — m(I)

where M(I) = sup {f(z) |z € IN[a,b]} and m(I) = inf { f(z) |2 € I N [a,b]}. Note that
for z € [a,b], Q(x — h,x + h) is increasing with h, and define the oscillation of f at = to
be
= lim Q(z — h, h
w(z) Jim, (z x+h).
Verify that f is continuous at z if and only if w(z) = 0, and so the set of points at which
f is discontinuous is

D ={z¢€ [a,b]|w(z >0}—UD where D, = {z€[a,b] |w(z) > 1}.

We claim that each set D, is closed (hence compact). Suppose, for a contradiction, that

D,, is not closed. Choose a sequence (xg)g>1 in D, With x, — x but x ¢ D,. Since

x ¢ D,, we have w( ) < -, that is hhm+ Q(x —h,zp) < - so we can choose h > 0 such that
0

Qxr—h,z+h) < =+ Smce x — x, we can choose k so that |2k — || < % and then we have
(a:k g,xk—f— ) C (3: h,x+h) and hence w(zy) < Q(xk—Q,xk—I— ) < Q(m k,x+h) < 5.
But this means that xy ¢ D, giving the desired contradiction. Thus each D,, is closed.
Since D = Ufle D,,, with each D,, closed, and D; C Dy C Dj---, it follows that D is
measurable (indeed D € F;s) with A(D) = nli_)rgO A(Dy,).

Let f be bounded and suppose that A(D) > 0. Since A(D) = lim D,, we can choose

n—oo

n > 1 such that A(D,) > 0, say \(D,,) = m > 0. Let X = (zg,x1,--,x¢) be any parti-
tion of [a,b], and let Iy = [zx_1,xk]. Note that if I N D,, # () then for x € Iy N D,, we
have w(z) > + and hence M (I,)—m(I;) = Q(I;) > w(z) > L. Also note that D,, C |J I
where K = {k|[kﬂDn # 0}, and so we have ek

U(f, X) — L(f, X) (M (k) =m(Ix)) x| = > (M (L) =m(Ix)) ]

keK

I
3 bl
'“ 1M~

1
> k| = tND) = 2.
keK

Since U(f, X) — L(f, X) > ™ for every partition X of [a, b], it follows (from Theorem 2.2)
that f is not Riemann integral on [a, b].

Now suppose that f is bounded and that A\(D) = 0. Let € > 0 and choose n € Z* such
that w < € where M = sup {f(z)| € [a,b]} and m = inf {f(z) |z € [a,b]}.
Since A(D) = 0 and D,, € D, we also have A\(D,,) = 0. Choose disjoint open intervals
I, 15,15, - - such that D,, C Upe, Iy and Y oo [Ix] < % Since D,, is compact, we can
choose ¢ € Z* such that D,, C U£:1 Ij. Let J, = I N [a,b], and note that D,, C Uf;:l J;
and Zizl |Jk| < L. Let E = [a,b] \ Uizl Ji and note that E is a finite union of disjoint
closed intervals in [a,b] (so E is compact), and E is disjoint from D,,.



We claim that we can choose § > 0 such that for every nonempty interval L in F with
|L| < & we have Q(L) < L. For each € E we have z ¢ D,, so that w(z) < 1, and so

we can choose h, > 0 such that Q(z—h,,x+h,) < % Since E' is compact, we can choose

ha,

hz . T x
T1,T2, -+, 2, € E such that E C (J;_, (:L'k—T’“,xk—}— 5 ) Letézmln{h;,“-,hj

Then for every nonempty interval L in F with |L| < ¢, we can choose an index k such that
LN (ack — h%,x;ﬁ— h%) # () and then, since |L| < § < h;’“ , we have L C (xp — hg, v + hy)
so that Q(L) < Q(zk — hi, zx + hi) < +, as claimed.

Let X be a partition of [a, b] which includes all the endpoints of the intervals Jy, - -, Jy
along with some additional endpoints chosen from E so that the subintervals of X include
all the closed intervals Ji,---,.J, along with additional closed intervals Lq,---,L,, in F
with each |Lg| < 0. Then we have

U(f, X) = L(f,X) = él(M(jk)—m(jk) | Ji| + ké(M(Lk)—m(Lk)) | L]

/l m
<(M=m) Y [+ 2 35 (L] < Mz b o
k=1 k=1

n n

Thus (by Theorem 2.2) f is Riemann integrable.

2.6 Example: The function f : [0,1] — [0,1] defined by f(z) = 1 when z € Q and
f(z) = 0 when z ¢ Q is discontinuous everywhere in [0, 1], and is not Riemann integrable.

2.7 Example: The function f : [0,1] — [0,1] given by f(%) = 7 when a,b € Z with
0 <a <band ged(a,b) =1, and f(x) = 0 when z ¢ Q, is discontinuous at all rational
points, and is Riemann integrable.

2.8 Example: Define s : R — [0,1] by s(z) = 0 for x < 0 and s(x) = 1 for z > 0. Let
Qn[0,1] = {a1,a2,as,---} and define f : [0,1] = [0,1] by f(z) = 3 &%) Then f is

2F
k=1
increasing with jump discontinuities at all rational points, and f is Riemann integrable.

2.9 Example: Given a Cantor set C' = [0, 1]\ U, where U = |J I) with the sets I} being
k=1

the disjoint open intervals from Example 1.17, we can construct a corresponding Cantor
function f : [0,1] — [0,1] with f(z) = § on Iy, f(z) = } on Lo, f(z) = 2 on I3, f(z) = &

on Iy, f(z) = % on Iy, f(z) = g on Ig, f(z) = % on I7 and so on, and then extending f to
make it continuous on all of [0,1]. Then f is continuous and nondecreasing with f'(x) =0

forall x € U.

2.10 Example: When C = [0,1] \ U is a Cantor set and f : [0,1] — [0,1] is the corre-
sponding Cantor function (as in the previous example), the function g : [0, 1] — [0, 2] given
by g(x) = x + f(z) is a homeomorphism. Note that g sends each component interval of U
to an interval of the same size, so that we have A(g(U)) = A(U).

In the case that C is the standard Cantor set we have A(g(U)) = A(U) = 1. It follows
that A(g(C)) =2—A(U) = 1, so g sends a set of measure zero to a set of measure 1. Also
note that if we choose a nonmeasurable set B C g(C) and let A = g=(B), then A C C

so that A is a measurable set with measure zero, but g sends A to the nonmeasurable set
9(A) = B.



2.11 Example: Given a Cantor set C' = [0, 1]\U where U is the disjoint union U = |J I,
k=1

choose intervals J, & I so that Jy has the same centre as I, with |Ji| = %\Ik], then cﬂoose
continuous functions fi : [0,1] — [0, 1] such that f(x) = 0 outside J and f(z) = 1 at

the midpoint of Ji and then let f(z) = >  fi(x) for all z € [0,1]. Then f is continuous
k=1

in U and discontinuous in C. When /\(C')_> 0, f is not Riemann integrable. If we define
g(x) = > / fr(t) dt then g is differentiable with ¢’ = f in [a, b].
k=1J0

2.12 Example: Let QNJ0,1] = {al,az, -}. Define f : [0,1] - R by f(z) = Z (z— ak) (@=an)'’®

Then f is increasing with f/(z) = Z (2= gkg)k when z ¢ Q and f'(z) = o When r e Q.

Verify that f'(z) > & for all . The map f sends the interval [0, 1] homeomorphically to
an interval [a,b] and the inverse map ¢ : [a,b] — [0, 1] is increasing and differentiabe with
g'(x) =0 for all z € Q and ¢'(x) < 3 for all z. Note that ¢’ cannot be Riemann integrable

because if it was then we would have / g = g(b) — g(a) = 1 but, because g'(z) = 0 for
all x € Q, all of the lower Riemann sum% are zero.

2.13 Definition: For £ C A C R, the characteristic function for £ on A is the
function X, : A — {0,1} given by

(2) = 1,ifxekFE,
BTN 0 e g B

For a,b € R with a < b, a step function on [a, ] is a function s : [a,b] — R of the form

n

s = Z CkXIIc

k=1

n
where n € Z7, each ¢, € R, and the sets I, are disjoint intervals with |J I = [a,b]. The
k=1
numbers ¢, and the intervals I are uniquely determined from s if we require that Ix_; is

to the left of I, and c;_1 # cx for 1 < k < n, and then we have I, = s~ !(cy).

n

2.14 Theorem: For the step function on [a,b] given by s = kX, , we have

k=1
/ s—/ dx— ck\lk|.
=1

For a bounded function f : [a,b] — R we have

U(f):inf{/abs
L(f)zsup{/abs

We say that f is Riemann integrable on [a,b] when U(f) = L(f), and in this case we
define the Riemann integral of f on [a,b] to be

/ / f(e)de = U(f) = L(f).

s is a step function on |a,b] with s > f},

s is a step function on [a,b] with s < f}.



2.15 Definition: We shall find it useful on occasion to allow our functions to take the
values £00 so we use the set of extended real numbers [—o00,00] = RU {—o00,00}. In
[—00, 00|, the open balls are the open intervals B(—oo,r) = (—oo, —%), B(oo,r) = (%, oo)
and B(a,r) = (a —r,a +r) with a € R. For A C [—o00, 0], we say that A is open in
[—00, 00] when for every a € A there exists r > 0 such that B(a,r) C A. Verify that every
open set in [—00, 00| is a finite or countable union of disjoint open intervals, where each
open inerval is of one of the forms 0, (a,b), (—o00,a), (a,o0), (—00, ), [—c0,a), (a,0]
or [—oo, 00| where a,b € R. We also use (partially-defined) addition and multiplication
operations on [—00, 00|, as usual, leaving certain sums and products undefined. We do not

define the expressions oo + (—00), —00 4 00, 0+ (+00) and (+o0) - 0.

2.16 Definition: For f : ACR — B C [—00, 0], we say that f is measurable (in A)
when f~1(U) is measurable for every open set U in [—o0,00] (or equivalently for every
open set U in B). Note that in particular, in order for f to be measurable, the set A must
be measurable because A = f~!([—o0, o0]).

2.17 Note: If f : ACR — B C [—00, 00| is measurable and ¢ : B C [—00, 00| — [—00, 00|
is continuous, then the composite g o f : A C R — [—00, 0] is measurable because, for
every open set U in [—oo, 0], o~ 1(U) is open in B since ¢ is continuous, and hence the
set (po f)~HU) = f~1(¢~*(U)) is measurable since the function f is measurable.

2.18 Theorem: Let A C R be measurable and let f : A — [—00, 0], Then

f is measurable <= f ((a, 00 ) is measurable for all a € R
~!(Ja, 00]) is measurable for all a € R

~!([~00,a)) is measurable for all a € R
([ 00, a ) is measurable for all a € R

Proof: We shall prove the first equivalence (the others are similar). If f is measurable
then f~1(U) is measurable for every open set U C [—o00,00] so, in particular, f_l((a, oo])
is measurable for every a € R. Suppose, conversely, that f _1((a, oo]) is measurable for
every a € R. Then for every a,b € R with a < b, each of the following sets is measurable.

~H([o0,a]) = IRi\f *((a, 00]),

([ oo,a)) ([—oo,a—l]) Uffl((a—l,a),

f 1(@, b) f ([—OO,b)) mf_l((a7 OO])

Since every open U set in [—00, o] is a finite or countable union of sets Uy, each of which

is of one of the forms [—c0, a), (a,b), (a, 0], and because f~(Upe; Ur) = Upey f7H(Us),
it follows that f~1(U) is measurable for every open set U in [—oo, oc].



2.19 Theorem: Let E C A C R with A measurable, and let f : A — [—00, 00].

(1) The function X, : A — {0, 1} is measurable if and only if the set E' is measurable.
(2) If f is continuous then f is measurable.
(3) If f is monotonic then f is measurable.

Proof: To prove Part (1), note that if £ is not measurable then neither is x p because
-1 ((O, 2)) = E, and if F' is measurable then so is X, because for all sets U in [—00, 00,
the set f~1(U) is equal to one of the measurable sets (), E, A\ E or A.

To prove Part (2), suppose that f is continuous and let U be any open set in [—o0, oo].
Since f is continuous and U is open, the set f~!(U) is open in A. Since f~(U) is open
in A, we can choose an open set V in R such that f~*(U) = V N A, which is measurable.

To prove Part (3), suppose that f is monotonic, say f is increasing. Let a € R. For
all z,y € A, if z € f~!((a,00]) and y > z then f(y) > f(z) > a so that y € f~*((a, x]).
It follows that the set f~!((a,o0]) must a set of one of the forms @), AN (b, 0], AN [b, 0]
or A, and so f~! ((a, oo]) is measurable.

2.20 Definition: Given a function f: A C R — [—00,o0], we define f1 : A — [—o00, 0]
and f~ : A = [—00, 00| by

gy = JT@) (@) 20,
(@) {  if f(z) <0,

2.21 Theorem: (Operations on Measurable Functions) Let f,g: A C R — [—o0, 0] be
measurable functions, and let ¢ € R. Then each of the following fuctions are measurable

cf s f+g, fg, Ifl. FFo ™

provided they are well-defined.

Proof: We give the proof in the case that f,g : A — R, and we leave it as an exercise to
deal with the case in which f and g take infinite values. Suppose that f,g: A — R. The
function ¢ : R — R given by ¢(z) = cz is continuous and so the the function c¢f = po f
is measurable, as in Note 2.17.

The function f + g is measurable because for all a € R we have

(f +9)7 ((a,q]) = {z € A|f(z) + g(z) > a}

= U {f(:t) > r and g(z) >a—fr}
reQ

—U roo] Ng~ 1(&—7“,00]),

reQ

which is measurable.

The function ¢ : R — R given by ¢(z) = z* is continuous so, as in Note 2.17, for every
measurable function h : A — R, the function h? = @ o h is also measurable. It follows that
the function fg = 5 ((f +¢)* — (f — 9)?) is measurable.

The function ¢ : R — R given by ¢(z) = |z| is continuous so, as in Note 2.17,
the function |f| = ¢ o f is measurable, hence so are the functions f* = %(|f| + f) and

(£ - 5).

2



2.22 Theorem: (Decomposition) Let A = J,—, Ay where the sets Ay, are disjoint mea-
surable sets in R, and let f : A — [—o00,00|. Then f is measurable (in A) if and only if
the restriction of f to each of the sets Ay is measurable (in Ay).

Proof: Let fi : Ax — [—o00, 00| be the restriction of f to Ax. For U C [—o0, 0] open,
since f; ' (U) = f~1(U) N Ay, it follows that if f is measurable then so is each f,, and since
FHU) = U, fi 1(U) it follows that if each f; is measurable then so is f.

2.23 Theorem: (Limits of Measurable Functions) Let f, : A C R — [—00, 00| be measur-
able for eachn € Z*. Then each of the following functions are well-defined and measurable:

sup{fu|n € Z*}, inf{f,|n € Z*}, limsup{f,}, liminf{f,}.
n— 00 =00

Proof: Let g = sup{fu|n € ZT}. For x € A and a € R we have

z€g '((a,0]) < g(z) >a < sup{faln€ZT} >a

< fu(z) >aforsomen € Zt = z¢€ Ej fn ' ((a,00]).

n=1

Thus for all @ € R we have g~—! ((a, oo]) =U f ! ((a, oo]), which is measurable. Similarly,
n=1

when h = inf{f,|n € Z*} and a € R we have h™!([a,<]) = f,fl([a,oo]), which is
n=1

measurable. Also, we have

limsup f,, = inf { sup{ fu|n > 1}, sup{fn|n > 2},sup{ fu|n > 3},--- } and

n— oo

liminf f,, = sup { inf{fu[n > 1}, inf{fuln > 2}, inf{fuln >3}, }.
n—oo

It follows that limsup f,, and liminf f,, are measurable.
n—oo n—00

2.24 Definition: Let A C R be measurable. We say that a property or statement holds
for almost every (written a.e.) x € A, or almost everywhere (written a.e.) in A, when
the property or statement holds for every x € A\ E for some set £ C A with A(E) = 0.
For example, for functions f,g: A — [—o0, 0], we say that f(z) = g(z) for a.e. z € A (or
f =g ae. in A) when f(z) = g(x) for every x € A\ E for some set £ C A with \(F) = 0.

2.25 Theorem: Let A C R be measurable and let f,g: A — [—o0, 0].

(1) If A\(A) = 0 then f is measurable.
(2) If f =g a.e. in A then f is measurable if and only if g is measurable.

Proof: The proof is left as an exercise.



2.26 Definition: Let A C R. A simple function on A is a function s : A — R of the

form
n

S:ZCkXAk

k=1

n
where n € Z*, each ¢, € R, and the sets Ay, are disjoint measurable sets with (] Ay = A.
k=1
The numbers ¢, and sets Ay are uniquely determined from the function s if we require

that ¢; < co < -+ < ¢y, and then we have A;, = s71(cp).

2.27 Definition: For the nonnegative simple function s : A C R — [0,00) given by

n

s= >y kX 5 the (Lebesgue) integral of s on A is defined to be

_ /As(:c)d:c:/As:/AsdA:kzijlckA(Ak).

Note that the value of the integral does not depend on whether or not the numbers ¢ are
distinct because if ¢, = ¢; then cxA(Ag) + g A(A;) = ¢k ()\(Ak) + )\(Al)) = cpAN(Ag U 4)).

2.28 Theorem: (Properties of Integration for Non-negative Simple Functions)
Let r;s : ACR — [0,00) be nonnegative simple functions, and let ¢ € R.

(1)1fr<stben/r</
(2) Wehave/Acs :cAsandA(r+s)=[4r+As

(3) If A= BUC, where B and C are disjoint and measurable, then / 5= / s +/ 5.
A B c

(4) If B C A is measurable then / s = / CED

(5) If \(A) =0 then [ s=0.
A

(6) If r = s a.e. inAthen/r:/s,andjf/T:Othenrzoa.e. in A.
A A A

Proof: We shall prove Parts (1) and (2) and leave the proofs of the remaining parts as

n m
an exercise. Let r = > arX , and s = ) leBz and let Ck; = A N B;. Note that the
k=1 =1

n

sets C; are disjoint with |J Cry = U (Ax N By) = ( U Ak) NB; = ANDB; = By and it

k=1 k=1 =1
follows that Xe,, = Xg, and that Y A(Ck;) = A(B;). Similary, we have |J Cj; = Ay,
k=1 % k=1 1=1

l; Xck,l - XAk and l; )‘(Ck,l) = )\(Ak)

To prove Part (1)_, suppose that r < s. For all pairs (k,[) with C; # 0, we can choose
x € Ck,; and then we have a; = r(z) < s(s) = b;. It follows that

/AT = i ak)\(Ak) = i Qg g )\(Ck:,l) = Zak)\((]k’l) = Z ak)\((]k’l)

k=1 k=1 =1 Kl k03 Cra#0
<Y BACR) = SBACK) = S b3S ACr) = S BA(BY) :/ 5
k,lBCk,l7é(2) k,l =1 k=1 =1 A



The first formula in Part (2) is clear. Let us prove the second formula. We have

n

m n m n
r+s=>5% akXAk + l; leBz = kgl ag . XCM + ; by k§1 XCk,z = %(ak + bi)X

k=1 Ck,

and so

/A(?“—}—S) = (ak+bl))\(C’kl) Zak)\(Ckl) +Zbl)\(0kl)

k1l k,l

= % 0 £ MO + X b & MG
i s+ e = [ [ s

2.29 Note: Given any nonnegative measurable function f : A C R — [0, 00|, we can
construct an increasing sequence {s,} of nonnegative simple functions s, : A — [0, 00)
with s, — f pointwise in A as follows. For n € Z™, we let

2n

= [ S ) < g with ke {120 021,
Splx) =
n ,if f(z) >n

n2™

that is s,, = Z PLx

AL where A;, = f_l[kzjl , 2n) for 1 <k < n2" and A,0n = f~1[n, 00].

We remark that if f is bounded then s,, — f uniformly in A.

2.30 Definition: For a nonnegative measurable function f : A C R — [0, 0], we define
the (Lebesgue) integral of f on A to be

/f dx—/f /fd)\—sup{/s

We say that f: A — [0,00] is (Lebesgue) integrable (on A) when / f < oo.
A

s is a simple function on A with 0 < s < f}.

2.31 Theorem: (Properties of Integration for Non-negative Measurable Functions)
Let f,g: A CR — [0,00] be non-negative measurable functions and let ¢ € R. Then

(1)If f < g on A then f</
(2)Wehave/cf —c/fand/f—i—g /f+/

(3) If A= BUC, where B and C' are disjoint and measurable, then /Afz/Bf%—/Cf.
(4) If B C A is measurable then/Bf:/Af-XB.

(5) If)\(A):Othen/Af:O.

(6) If f =g a.e. inAthen/f:/g,and/f:()thenf:()a.e. in A.
A A A

Proof: All parts follow fairly easily from the analogous parts of Theorem 2.28 except for
the second formula in Part (2). We shall return to the proof of this formula later.



2.32 Theorem: (Fatou’s Lemma) Let f, : A C R — [0,00] be nonnegative measurable
functions for n € Z*. Then

n—oo

/ liminf f, < hm mf fn-
A A

Proof: By the definition of the integral on the left, it suffices to prove that for every

nonnegative simple function s on A with s < liminf f,, we have / s < liminf [ f,. Let

m
s be any nonnegative simple function on A with s < liminf f,,. Write s = > apXx 4, - For
all z € Ay we have a; = s(x) < liminf f,,(x), and it follows that for all 0 < r < 1 there
n—oo

exists n € ZT such that for all [ > n we have fi(x) > rag. Let 0 <r < 1. For k,n € Z™,
let

= {z € Ay|fi(z) > ray for all I > n} = fi rag, ool
I>n

oo
Note that each set By, is measurable with By 1 C By o C Br3 C --- and |J Bgn = Ag.
n=1

It follows that A(Ax) = lim A(Bg,,). For all x € By, we have fj(z) > ray for all l > n
n— oo

m
so that, in particular, f,,(z) > ra. It follows that f, > > ragX B hence
k=1 fon

/ fn > i ragA(Bgn)-
A k=1

Taking the lim inf on both sides gives

liminf/ fn > lim Z ragA(Bgn) = Z rag\(Ax) = 7’/ S.
A

n—oo

Since 0 < r < 1 was arbitrary, it follows that lim inf / fn > / s, as required.
2.33 Corollary: Let f, : A C R — [0,00] be nonnegative measurable functions for
n € Z*. Suppose that the pointwise limit lim f,(z) exists with f,(x) < lim f,(x) for
n—oo n—oo
all x € A. Then
/ lim f, = lim fn.
A

n—oo n—oo

Proof: For all n € ZT, since f,, < lim f,, we have / Jn < / lim f,,. Taking the lim sup
n—oo A

A n—oo

limsup/ Jn < / lim f, .
By Fatou’s Lemma, we also have
/ lim f, = / liminf f,, <lim inf/ fn-
2.34 Corollary: (Lebesgue’s Monotone Convergence Theorem) Let f, : A CR — [0, 00]
be nonnegative measurable functions such that { f,(x)} is increasing for every x € A. Then

/ lim f, = lim fn.
An—>oo n—oo

Proof: This is a special case of the previous Corollary.

gives
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2.35 Note: We now return to the proof of the second formula in Part (2) of Theorem
2.30. We suppose that f,g : A C R — [0,00] are nonnegative measurable functions, and

we need to prove that
/U+w=/f+/g
A A A

Proof: Using the construction described in Note 2.28, choose increasing sequences {r,, } and

{sn} of nonnegative simple functions on A such that lim r, = f and hm $n = ¢g. Then
n—oo

the sequence {r,, + s,} is also increasing with lim (r, + s,) = f + g. By the Monotone
n—oo

Convergence Theorem, along with Part (2) of Theorem 2.27, we have

/(f_|_g):/ lim (r, + s,) = lim (rn+sn ) = lim (/Tn /Sn)
A A Moo n—00 n—00
= lim rn—l—hm/sn_/hmrn /liman/f+/g

2.36 Corollary: Let A C R be measurable and let {f,} be a sequence of nonnegative
measurable functions f, : A — [0,00]. Then

%fn: i fn-
An—1 n=1JA

Proof: This follows by applying Lebesgue’s Monotone Convergence Theorem to the se-

quence of partial sums S, (z) = > fi(x).
k=1

2.37 Corollary: Let A = |J Ay where the sets A,, are measurable and disjoint, and let
k=1
f:A—0,00] be nonnegative and measurable. Then

/fo

Proof: This follows from the above corollary using f, = f - X N

2.38 Remark: For a o-algebra C, a measure on C is a function p : C — [0, 00| such that
(1) u(0) = 0, and
(2) if A1, As, As,--- € C are disjoint then u( U Ak) — 3 u(Ap).

k=1 k=1

When M is the o-algebra of Lebesgue measurable sets in R, and f : R — [0, 00] is any
nonnegative measurable function on R, the above corollary shows that we can define a

/
A
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2.39 Definition: For a measurable function f : A C R — [—00,00|, we say that f is
(Lebesgue) integrable (on A) when the functions f* and f~ are both Lebesgue integrable
on A and, in this case, we define the (Lebesgue) integral of f on A to be

Jire= g ra= o= [
In the case that A = [a,b] we also write /A F(x)da as / f(x) da.

2.40 Note: For f: A CR — [—00, 0], f is integrable if and only if |f| is integrable.
2.41 Theorem: (Integration) Let f,g: A C R — [—00, 00| be integrable and let ¢ € R.

[ 4= [1n.

(2)Iff<gthen/f<

(S)Wehave/cf —c/fand/ (f+g9) = /f+/

(4) If A = BUC where B and C are disjoint and measurable then / f= / f+ / f.
A B c

(1) We have

(5) If B C A is measurable then/ f:/f-X .
B A B
(6) If)\(A):Othen/sz
A

(7) If f =g a.e. onAthen/f:/g,andif/|f]=0thenf:Oa.e. in A.
A A A

Proof: The proof is left as an exercise.

2.42 Theorem: (Lebesgue’s Dominated Convergence Theorem) Let A C R be a mea-

surable set and let f, : A — [—00,00] be measurable functions for n € Z*. Suppose the

pointwise limit lim f,(z) exists for all x € A. Suppose there exists an integrable function
n—oo

g: A —[0,00] such that |f,(z)| < g(z) for allm € Z*, x € A. Then

/ lim f, = lim fn.
A

n—oo n—oo
Proof: Let f = lim f,. Note that since —g < f,, § g for all n we gave —g < f < g so
n—oo
that f is integrable. By Fatou’s Lemma, applied to the function g + f,,, we have

/g—l—/ lim fn:/liminf(g—l—fn)Sliminf/(g—an):/g+liminffn.

n—oo

It follows, since [, g < oo, that

liminf/ fnZ/ lim f,.

By Fatou’s Lemma, applied to the function g — f,,, we have

/ /Anlggofn—/ lim inf(g — f») <hmmf/(g—fn) =/ —1172risolip/ fn-

It follows, since [, g < oo, that
limsup/ Jn < / lim f,.
n—ooo JA 4 00
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2.43 Theorem: Let f : [a,b] — R be bounded and Riemann integral. Then f is also
measurable and Lebesgue integrable, and the two kinds of integral are equal.

Proof: I may include a proof later.

2.44 Remark: I may include a discussion of complex-valued functions f : A CR — C
later.
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