
Chapter 2. Lebesque Integration

2.1 Definition: When f : [a, b] → R is bounded and X = (x0, x1, · · · , x`) is a partition
of [a, b], which means that a = x0 < x1 < · · · < x` = b, and Ik = [xk−1, xk] is the kth

subinterval of X, the upper and lower Riemann sums for f on X are given by

U(f,X) =
∑`
k=1M(Ik) |Ik|

L(f,X) =
∑`
k=1m(Ik) |Ik|

where M(Ik) = sup
{
f(t)

∣∣ t∈Ik} and m(Ik) = inf
{
f(t)

∣∣ t∈Ik}, and we define the upper
and lower Riemann integrals of f on [a, b] to be

U(f) = inf
{
U(f,X)

∣∣X is a partition of [a, b]
}

L(f) = sup
{
L(f,X)

∣∣X is a partition of [a, b]
}
,

We say that a function f : [a, b]→ R is Riemann integrable on [a, b] when f is bounded
and U(f) = L(f). In this case, we define the Riemann integral of f on [a, b] to be∫ b

a

f =

∫ b

a

f(x) dx = U(f) = L(f).

2.2 Theorem: (An Equivalent Definition of Integrability) Let f : [a, b]→ R be bounded.
Then f is integrable if and only if f has the property that for every ε > 0 there exists a
partition X of [a, b] such that U(f,X)− L(f,X) < ε.

Proof: We omit the proof (this was likely proven in a previous course).

2.3 Theorem: (Properties of the Riemann Integral) Let f, g : [a, b]→ R be bounded.

(1) If f and g are Riemann integrable on [a, b] and f ≤ g then

∫ b

a

f ≤
∫ b

a

g.

(2) If f and g are Riemann integrable on [a, b] and c ∈ R then the functions cf and f + g

are Riemann integrable on [a, b] and

∫ b

a

(cf) = c

∫ b

a

f and

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

(3) If c ∈ (a, b) then f is Riemann integrable on [a, b] if and only if f is Riemann integrable

both on [a, c] and on [c, b] and, in this case,

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

(4) If f(x) = g(x) for all but finitely many x ∈ [a, b] then f is Riemann integrable on [a, b]

if and only if g is Riemann integrable on [a, b] and, in this case,

∫ b

a

f =

∫ b

a

g.

(5) If f is monotonic then f is Riemann integrable.
(6) If f is continuous then f is Riemann integrable.

Proof: We omit the proof.

2.4 Theorem: (The Fundamental Theorem of Calculus) Let f, g : [a, b] → R. Suppose
that g is differentiable with g′ = f in [a, b] and that f is Riemann integrable on [a, b]. Then∫ b

a

f(x) dx = g(b)− g(a).

Proof: We omit the proof.
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2.5 Theorem: (Lebesgue’s Characterization of Riemann Integrability) Let f : [a, b]→ R.
Then f is Riemann integrable on [a, b] if and only if f is bounded and the set of all points
in [a, b] at which f is discontinuous has measure zero.

Proof: For an interval I with I ∩ [a, b] 6= ∅, define the oscillation of f on [a, b] to be

Ω(I) = sup
{
f(x)− f(y)

∣∣x, y ∈ I ∩ [a, b]
}

= M(I)−m(I)

where M(I) = sup
{
f(x)

∣∣x ∈ I ∩ [a, b]
}

and m(I) = inf
{
f(x)

∣∣x ∈ I ∩ [a, b]
}

. Note that
for x ∈ [a, b], Ω(x− h, x+ h) is increasing with h, and define the oscillation of f at x to
be

ω(x) = lim
h→0+

Ω(x− h, x+ h).

Verify that f is continuous at x if and only if ω(x) = 0, and so the set of points at which
f is discontinuous is

D =
{
x∈ [a, b]

∣∣ω(x) > 0
}

=
∞⋃
n=1

Dn where Dn =
{
x∈ [a, b]

∣∣ω(x) ≥ 1
n

}
.

We claim that each set Dn is closed (hence compact). Suppose, for a contradiction, that
Dn is not closed. Choose a sequence (xk)k≥1 in Dn with xn → x but x /∈ Dn. Since
x /∈ Dn we have ω(x) < 1

n , that is lim
h→0+

Ω(x−h, xh) < 1
n so we can choose h > 0 such that

Ω(x−h, x+h) < 1
n . Since xk → x, we can choose k so that ‖xk−x‖ < h

2 and then we have(
xk− h

2 , xk+ h
2

)
⊆
(
x−h, x+h

)
, and hence ω(xk) ≤ Ω

(
xk− h

2 , xk+ h
2

)
≤ Ω(x−k, x+h) < 1

n .
But this means that xk /∈ Dn, giving the desired contradiction. Thus each Dn is closed.
Since D =

⋃∞
n=1Dn, with each Dn closed, and D1 ⊆ D2 ⊆ D3 · · ·, it follows that D is

measurable (indeed D ∈ Fδ) with λ(D) = lim
n→∞

λ(Dn).

Let f be bounded and suppose that λ(D) > 0. Since λ(D) = lim
n→∞

Dn we can choose

n ≥ 1 such that λ(Dn) > 0, say λ(Dn) = m > 0. Let X = (x0, x1, · · · , x`) be any parti-
tion of [a, b], and let Ik = [xk−1, xk]. Note that if Ik ∩ Dn 6= ∅ then for x ∈ Ik ∩ Dn we
have ω(x) ≥ 1

n and hence M(Ik)−m(Ik) = Ω(Ik) ≥ ω(x) ≥ 1
n . Also note that Dn ⊆

⋃
k∈K

Ik

where K =
{
k
∣∣ Ik ∩Dn 6= ∅

}
, and so we have

U(f,X)− L(f,X) =
∑̀
k=1

(M(Ik)−m(Ik))|Ik| ≥
∑
k∈K

(M(Ik)−m(Ik))|Ik|

≥ 1
n

∑
k∈K
|Ik| ≥ 1

nλ(D) = m
n .

Since U(f,X)−L(f,X) > m
n for every partition X of [a, b], it follows (from Theorem 2.2)

that f is not Riemann integral on [a, b].

Now suppose that f is bounded and that λ(D) = 0. Let ε > 0 and choose n ∈ Z+ such

that (M−m)+(b−a)
n < ε where M = sup

{
f(x)

∣∣x ∈ [a, b]
}

and m = inf
{
f(x)

∣∣x ∈ [a, b]
}

.
Since λ(D) = 0 and Dn ⊆ D, we also have λ(Dn) = 0. Choose disjoint open intervals
I1, I2, I3, · · · such that Dn ⊆

⋃∞
k=1 Ik and

∑∞
k=1 |Ik| <

1
n . Since Dn is compact, we can

choose ` ∈ Z+ such that Dn ⊆
⋃`
k=1 Ik. Let Jk = Ik ∩ [a, b], and note that Dn ⊆

⋃`
k=1 Jj

and
∑`
k=1 |Jk| <

1
n . Let E = [a, b] \

⋃`
k=1 Jk and note that E is a finite union of disjoint

closed intervals in [a, b] (so E is compact), and E is disjoint from Dn.
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We claim that we can choose δ > 0 such that for every nonempty interval L in E with
|L| < δ we have Ω(L) < 1

n . For each x ∈ E we have x /∈ Dn so that ω(x) < 1
n , and so

we can choose hx > 0 such that Ω(x−hx, x+hx) < 1
n . Since E is compact, we can choose

x1, x2, · · · , xr ∈ E such that E ⊆
⋃r
k=1

(
xk−

hxk

2 , xk +
hxk

2

)
. Let δ = min

{hx1

2 , · · · , hxr

2

}
.

Then for every nonempty interval L in E with |L| < δ, we can choose an index k such that

L∩
(
xk−

hxk

2 , xk+
hxk

2

)
6= ∅ and then, since |L| < δ ≤ hxk

2 , we have L ⊆ (xk−hk, xk+hk)
so that Ω(L) ≤ Ω(xk − hk, xk + hk) < 1

n , as claimed.

Let X be a partition of [a, b] which includes all the endpoints of the intervals J1, · · · , J`
along with some additional endpoints chosen from E so that the subintervals of X include
all the closed intervals J1, · · · , J` along with additional closed intervals L1, · · · , Lm in E
with each |Lk| < δ. Then we have

U(f,X)− L(f,X) =
∑̀
k=1

(M(Jk)−m(Jk) |Jk|+
m∑
k=1

(M(Lk)−m(Lk)) |Lk|

≤ (M −m)
∑̀
k=1

|Jk|+ 1
n

m∑
k=1

|Lk| ≤ M−m
n + b−a

n < ε.

Thus (by Theorem 2.2) f is Riemann integrable.

2.6 Example: The function f : [0, 1] → [0, 1] defined by f(x) = 1 when x ∈ Q and
f(x) = 0 when x /∈ Q is discontinuous everywhere in [0, 1], and is not Riemann integrable.

2.7 Example: The function f : [0, 1] → [0, 1] given by f
(
a
b

)
= 1

b when a, b ∈ Z with
0 ≤ a ≤ b and gcd(a, b) = 1, and f(x) = 0 when x /∈ Q, is discontinuous at all rational
points, and is Riemann integrable.

2.8 Example: Define s : R → [0, 1] by s(x) = 0 for x ≤ 0 and s(x) = 1 for x > 0. Let

Q ∩ [0, 1] = {a1, a2, a3, · · ·} and define f : [0, 1] → [0, 1] by f(x) =
∞∑
k=1

s(x−ak)
2k

. Then f is

increasing with jump discontinuities at all rational points, and f is Riemann integrable.

2.9 Example: Given a Cantor set C = [0, 1] \U , where U =
∞⋃
k=1

Ik with the sets Ik being

the disjoint open intervals from Example 1.17, we can construct a corresponding Cantor
function f : [0, 1]→ [0, 1] with f(x) = 1

2 on I1, f(x) = 1
4 on I2, f(x) = 3

4 on I3, f(x) = 1
8

on I4, f(x) = 3
8 on I5, f(x) = 5

8 on I6, f(x) = 7
8 on I7 and so on, and then extending f to

make it continuous on all of [0, 1]. Then f is continuous and nondecreasing with f ′(x) = 0
for all x ∈ U .

2.10 Example: When C = [0, 1] \ U is a Cantor set and f : [0, 1] → [0, 1] is the corre-
sponding Cantor function (as in the previous example), the function g : [0, 1]→ [0, 2] given
by g(x) = x+ f(x) is a homeomorphism. Note that g sends each component interval of U
to an interval of the same size, so that we have λ

(
g(U)

)
= λ(U).

In the case that C is the standard Cantor set we have λ
(
g(U)

)
= λ(U) = 1. It follows

that λ
(
g(C)

)
= 2− λ(U) = 1, so g sends a set of measure zero to a set of measure 1. Also

note that if we choose a nonmeasurable set B ⊆ g(C) and let A = g−1(B), then A ⊆ C
so that A is a measurable set with measure zero, but g sends A to the nonmeasurable set
g(A) = B.
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2.11 Example: Given a Cantor set C = [0, 1]\U where U is the disjoint union U =
∞⋃
k=1

Ik,

choose intervals Jk ⊂6= Ik so that Jk has the same centre as Ik with |Jk| = 1
2 |Ik|, then choose

continuous functions fk : [0, 1] → [0, 1] such that f(x) = 0 outside Jk and f(x) = 1 at

the midpoint of Jk and then let f(x) =
∞∑
k=1

fk(x) for all x ∈ [0, 1]. Then f is continuous

in U and discontinuous in C. When λ(C) > 0, f is not Riemann integrable. If we define

g(x) =
∞∑
k=1

∫ x

0

fk(t) dt then g is differentiable with g′ = f in [a, b].

2.12 Example: Let Q∩[0, 1] = {a1, a2, · · ·}. Define f : [0, 1]→ R by f(x) =
∞∑
k=1

(x−ak)1/3
2k

.

Then f is increasing with f ′(x) =
∞∑
k=1

(x−ak)−2/3

3·2k when x /∈ Q and f ′(x) =∞ when x ∈ Q.

Verify that f ′(x) ≥ 1
3 for all x. The map f sends the interval [0, 1] homeomorphically to

an interval [a, b] and the inverse map g : [a, b]→ [0, 1] is increasing and differentiabe with
g′(x) = 0 for all x ∈ Q and g′(x) ≤ 3 for all x. Note that g′ cannot be Riemann integrable

because if it was then we would have

∫ b

a

g′ = g(b) − g(a) = 1 but, because g′(x) = 0 for

all x ∈ Q, all of the lower Riemann sums are zero.

2.13 Definition: For E ⊆ A ⊆ R, the characteristic function for E on A is the
function χ

E
: A→ {0, 1} given by

χ
E

(x) =

{
1 , if x ∈ E,
0 , if x /∈ E.

For a, b ∈ R with a < b, a step function on [a, b] is a function s : [a, b]→ R of the form

s =
n∑
k=1

ckχIk

where n ∈ Z+, each ck ∈ R, and the sets Ik are disjoint intervals with
n⋃
k=1

Ik = [a, b]. The

numbers ck and the intervals Ik are uniquely determined from s if we require that Ik−1 is
to the left of Ik and ck−1 6= ck for 1 < k ≤ n, and then we have Ik = s−1(ck).

2.14 Theorem: For the step function on [a, b] given by s =
n∑
k=1

ckχIk
, we have∫ b

a

s =

∫ b

a

s(x) dx =
n∑
k=1

ck|Ik|.

For a bounded function f : [a, b]→ R we have

U(f) = inf

{∫ b

a

s

∣∣∣∣ s is a step function on [a, b] with s ≥ f
}
,

L(f) = sup

{∫ b

a

s

∣∣∣∣ s is a step function on [a, b] with s ≤ f
}
.

We say that f is Riemann integrable on [a, b] when U(f) = L(f), and in this case we
define the Riemann integral of f on [a, b] to be∫ b

a

f =

∫ b

a

f(x) dx = U(f) = L(f).
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2.15 Definition: We shall find it useful on occasion to allow our functions to take the
values ±∞ so we use the set of extended real numbers [−∞,∞] = R ∪ {−∞,∞}. In
[−∞,∞], the open balls are the open intervals B(−∞, r) =

(
−∞,− 1

r

)
, B(∞, r) =

(
1
r ,∞

)
and B(a, r) = (a − r, a + r) with a ∈ R. For A ⊆ [−∞,∞], we say that A is open in
[−∞,∞] when for every a ∈ A there exists r > 0 such that B(a, r) ⊆ A. Verify that every
open set in [−∞,∞] is a finite or countable union of disjoint open intervals, where each
open inerval is of one of the forms ∅, (a, b), (−∞, a), (a,∞), (−∞,∞), [−∞, a), (a,∞]
or [−∞,∞] where a, b ∈ R. We also use (partially-defined) addition and multiplication
operations on [−∞,∞], as usual, leaving certain sums and products undefined. We do not
define the expressions ∞+ (−∞), −∞+∞, 0 · (±∞) and (±∞) · 0.

2.16 Definition: For f : A ⊆ R → B ⊆ [−∞,∞], we say that f is measurable (in A)
when f−1(U) is measurable for every open set U in [−∞,∞] (or equivalently for every
open set U in B). Note that in particular, in order for f to be measurable, the set A must
be measurable because A = f−1

(
[−∞,∞]

)
.

2.17 Note: If f : A ⊆ R→ B ⊆ [−∞,∞] is measurable and ϕ : B ⊆ [−∞,∞]→ [−∞,∞]
is continuous, then the composite ϕ ◦ f : A ⊆ R → [−∞,∞] is measurable because, for
every open set U in [−∞,∞], ϕ−1(U) is open in B since ϕ is continuous, and hence the
set (ϕ ◦ f)−1(U) = f−1

(
ϕ−1(U)

)
is measurable since the function f is measurable.

2.18 Theorem: Let A ⊆ R be measurable and let f : A→ [−∞,∞], Then

f is measurable ⇐⇒ f−1
(
(a,∞]

)
is measurable for all a ∈ R

⇐⇒ f−1
(
[a,∞]

)
is measurable for all a ∈ R

⇐⇒ f−1
(
[−∞, a)

)
is measurable for all a ∈ R

⇐⇒ f−1
(
[−∞, a]

)
is measurable for all a ∈ R

Proof: We shall prove the first equivalence (the others are similar). If f is measurable
then f−1(U) is measurable for every open set U ⊆ [−∞,∞] so, in particular, f−1

(
(a,∞]

)
is measurable for every a ∈ R. Suppose, conversely, that f−1

(
(a,∞]

)
is measurable for

every a ∈ R. Then for every a, b ∈ R with a < b, each of the following sets is measurable.

f−1
(
[−∞, a]

)
= R \ f−1

(
(a,∞]

)
,

f−1
(
[−∞, a)

)
= f−1

(
[−∞, a−1]

)
∪ f−1

(
(a−1, a),

f−1(a, b) = f−1
(
[−∞, b)

)
∩ f−1

(
(a,∞]

)
.

Since every open U set in [−∞,∞] is a finite or countable union of sets Uk, each of which
is of one of the forms [−∞, a), (a, b), (a,∞], and because f−1

(⋃∞
k=1 Uk

)
=
⋃∞
k=1 f

−1(Uk),
it follows that f−1(U) is measurable for every open set U in [−∞,∞].
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2.19 Theorem: Let E ⊆ A ⊆ R with A measurable, and let f : A→ [−∞,∞].

(1) The function χ
E

: A→ {0, 1} is measurable if and only if the set E is measurable.
(2) If f is continuous then f is measurable.
(3) If f is monotonic then f is measurable.

Proof: To prove Part (1), note that if E is not measurable then neither is χ
E

because

χ
E
−1((0, 2)

)
= E, and if E is measurable then so is χ

E
because for all sets U in [−∞,∞],

the set f−1(U) is equal to one of the measurable sets ∅, E, A \ E or A.
To prove Part (2), suppose that f is continuous and let U be any open set in [−∞,∞].

Since f is continuous and U is open, the set f−1(U) is open in A. Since f−1(U) is open
in A, we can choose an open set V in R such that f−1(U) = V ∩A, which is measurable.

To prove Part (3), suppose that f is monotonic, say f is increasing. Let a ∈ R. For
all x, y ∈ A, if x ∈ f−1

(
(a,∞]

)
and y ≥ x then f(y) ≥ f(x) > a so that y ∈ f−1

(
(a,∞]

)
.

It follows that the set f−1
(
(a,∞]

)
must a set of one of the forms ∅, A ∩ (b,∞], A ∩ [b,∞]

or A, and so f−1
(
(a,∞]

)
is measurable.

2.20 Definition: Given a function f : A ⊆ R → [−∞,∞], we define f+ : A → [−∞,∞]
and f− : A→ [−∞,∞] by

f+(x) =

{
f(x) , if f(x) ≥ 0,

0 , if f(x) ≤ 0,
f−(x) =

{
0 , if f(x) ≥ 0,

−f(x) , if f(x) ≤ 0.

2.21 Theorem: (Operations on Measurable Functions) Let f, g : A ⊆ R → [−∞,∞] be
measurable functions, and let c ∈ R. Then each of the following fuctions are measurable

cf , f + g , fg , |f | , f+ , f−

provided they are well-defined.

Proof: We give the proof in the case that f, g : A → R, and we leave it as an exercise to
deal with the case in which f and g take infinite values. Suppose that f, g : A → R. The
function ϕ : R → R given by ϕ(x) = cx is continuous and so the the function cf = ϕ ◦ f
is measurable, as in Note 2.17.

The function f + g is measurable because for all a ∈ R we have

(f + g)−1
(
(a,∞]

)
=
{
x ∈ A

∣∣f(x) + g(x) > a
}

=
⋃
r∈Q

{
f(x) > r and g(x) > a− r

}
=
⋃
r∈Q

(
f−1

(
r,∞]

)
∩ g−1

(
a− r,∞]

)
,

which is measurable.
The function ϕ : R→ R given by ϕ(x) = x2 is continuous so, as in Note 2.17, for every

measurable function h : A→ R, the function h2 = ϕ ◦h is also measurable. It follows that
the function fg = 1

4

(
(f + g)2 − (f − g)2

)
is measurable.

The function ϕ : R → R given by ϕ(x) = |x| is continuous so, as in Note 2.17,
the function |f | = ϕ ◦ f is measurable, hence so are the functions f+ = 1

2

(
|f | + f

)
and

f− = 1
2

(
|f | − f

)
.
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2.22 Theorem: (Decomposition) Let A =
⋃∞
k=1Ak where the sets Ak are disjoint mea-

surable sets in R, and let f : A → [−∞,∞]. Then f is measurable (in A) if and only if
the restriction of f to each of the sets Ak is measurable (in Ak).

Proof: Let fk : Ak → [−∞,∞] be the restriction of f to Ak. For U ⊆ [−∞,∞] open,
since f−1k (U) = f−1(U)∩Ak it follows that if f is measurable then so is each fk, and since
f−1(U) =

⋃∞
k=1 f

−1
k (U) it follows that if each fk is measurable then so is f .

2.23 Theorem: (Limits of Measurable Functions) Let fn : A ⊆ R→ [−∞,∞] be measur-
able for each n ∈ Z+. Then each of the following functions are well-defined and measurable:

sup{fn
∣∣n ∈ Z+} , inf{fn

∣∣n ∈ Z+} , lim sup
n→∞

{fn} , lim inf
n→∞

{fn}.

Proof: Let g = sup{fn|n ∈ Z+}. For x ∈ A and a ∈ R we have

x ∈ g−1
(
(a,∞]

)
⇐⇒ g(x) > a ⇐⇒ sup{fn|n ∈ Z+} > a

⇐⇒ fn(x) > a for some n ∈ Z+ ⇐⇒ x ∈
∞⋃
n=1

fn
−1((a,∞]

)
.

Thus for all a ∈ R we have g−1
(
(a,∞]

)
=
∞⋃
n=1

fn
−1((a,∞]

)
, which is measurable. Similarly,

when h = inf{fn
∣∣n ∈ Z+} and a ∈ R we have h−1

(
[a,∞]

)
=
∞⋂
n=1

fn
−1([a,∞]

)
, which is

measurable. Also, we have

lim sup
n→∞

fn = inf
{

sup{fn|n ≥ 1}, sup{fn|n ≥ 2}, sup{fn|n ≥ 3}, · · ·
}

and

lim inf
n→∞

fn = sup
{

inf{fn|n ≥ 1}, inf{fn|n ≥ 2}, inf{fn|n ≥ 3}, · · ·
}
.

It follows that lim sup
n→∞

fn and lim inf
n→∞

fn are measurable.

2.24 Definition: Let A ⊆ R be measurable. We say that a property or statement holds
for almost every (written a.e.) x ∈ A, or almost everywhere (written a.e.) in A, when
the property or statement holds for every x ∈ A \ E for some set E ⊆ A with λ(E) = 0.
For example, for functions f, g : A→ [−∞,∞], we say that f(x) = g(x) for a.e. x ∈ A (or
f = g a.e. in A) when f(x) = g(x) for every x ∈ A\E for some set E ⊆ A with λ(E) = 0.

2.25 Theorem: Let A ⊆ R be measurable and let f, g : A→ [−∞,∞].

(1) If λ(A) = 0 then f is measurable.
(2) If f = g a.e. in A then f is measurable if and only if g is measurable.

Proof: The proof is left as an exercise.
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2.26 Definition: Let A ⊆ R. A simple function on A is a function s : A → R of the
form

s =
n∑
k=1

ckχAk

where n ∈ Z+, each ck ∈ R, and the sets Ak are disjoint measurable sets with
n⋃
k=1

Ak = A.

The numbers ck and sets Ak are uniquely determined from the function s if we require
that c1 < c2 < · · · < cn, and then we have Ak = s−1(ck).

2.27 Definition: For the nonnegative simple function s : A ⊆ R → [0,∞) given by

s =
n∑
k=1

ckχAk
, the (Lebesgue) integral of s on A is defined to be∫

A

s(x) dx =

∫
A

s =

∫
A

s dλ =
n∑
k=1

ckλ(Ak).

Note that the value of the integral does not depend on whether or not the numbers ck are
distinct because if ck = cl then ckλ(Ak) + clλ(Al) = ck

(
λ(Ak) + λ(Al)

)
= ckλ(Ak ∪Al).

2.28 Theorem: (Properties of Integration for Non-negative Simple Functions)
Let r, s : A ⊆ R→ [0,∞) be nonnegative simple functions, and let c ∈ R.

(1) If r ≤ s then

∫
A

r ≤
∫
A

s.

(2) We have

∫
A

(cs) = c

∫
A

s and

∫
A

(r + s) =

∫
A

r +

∫
A

s.

(3) If A = B ∪ C, where B and C are disjoint and measurable, then

∫
A

s =

∫
B

s+

∫
C

s.

(4) If B ⊆ A is measurable then

∫
B

s =

∫
A

s · χ
B

.

(5) If λ(A) = 0 then

∫
A

s = 0.

(6) If r = s a.e. in A then

∫
A

r =

∫
A

s, and if

∫
A

r = 0 then r = 0 a.e. in A.

Proof: We shall prove Parts (1) and (2) and leave the proofs of the remaining parts as

an exercise. Let r =
n∑
k=1

akχAk
and s =

m∑
l=1

blχBl
and let Ck,l = Ak ∩ Bl. Note that the

sets Ck,l are disjoint with
n⋃
k=1

Ck,l =
n⋃
k=1

(Ak ∩ Bl) =
( n⋃
k=1

Ak
)
∩ Bl = A ∩ Bl = Bl and it

follows that
n∑
k=1

χ
Ck,l

= χ
Bl

and that
n∑
k=1

λ(Ck,l) = λ(Bl). Similary, we have
m⋃
l=1

Ck,l = Ak,

n∑
l=1

χ
Ck,l

= χ
Ak

and
m∑
l=1

λ(Ck,l) = λ(Ak).

To prove Part (1), suppose that r ≤ s. For all pairs (k, l) with Ck,l 6= ∅, we can choose
x ∈ Ck,l and then we have ak = r(x) ≤ s(s) = bl. It follows that∫

A

r =
n∑
k=1

akλ(Ak) =
n∑
k=1

ak
m∑
l=1

λ(Ck,l) =
∑
k,l

akλ(Ck,l) =
∑

k,l3Ck,l 6=∅
akλ(Ck,l)

≤
∑

k,l3Ck,l 6=∅
blλ(Ck,l) =

∑
k,l

blλ(Ck,l) =
m∑
l=1

bl
n∑
k=1

λ(Ck,l) =
m∑
l=1

blλ(Bl) =

∫
A

s .
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The first formula in Part (2) is clear. Let us prove the second formula. We have

r + s =
n∑
k=1

akχAk
+

m∑
l=1

blχBl
=

n∑
k=1

ak
m∑
l=1

χ
Ck,l

+
m∑
l=1

bl
n∑
k=1

χ
Ck,l

=
∑
k,l

(ak + bl)χCk,l

and so ∫
A

(r + s) =
∑
k,l

(ak + bl)λ(Ck,l) =
∑
k,l

akλ(Ck,l) +
∑
k,l

blλ(Ck,l)

=
n∑
k=1

ak
m∑
l=1

λ(Ck,l) +
m∑
l=1

bl
n∑
k=1

λ(Ck,l)

=
n∑
k=1

akλ(Ak) +
m∑
l=1

blλ(Bl) =

∫
A

r +

∫
A

s .

2.29 Note: Given any nonnegative measurable function f : A ⊆ R → [0,∞], we can
construct an increasing sequence {sn} of nonnegative simple functions sn : A → [0,∞)
with sn → f pointwise in A as follows. For n ∈ Z+, we let

sn(x) =

{
k−1
2n , if k−1

2n ≤ f(x) < k
2n with k ∈ {1, 2, · · · , n2n},

n , if f(x) ≥ n,

that is sn =
n2n∑
k=1

k−1
2n
χ
Ak

where Ak = f−1
[
k−1
2n , k2n

)
for 1 ≤ k < n2n and An2n = f−1[n,∞].

We remark that if f is bounded then sn → f uniformly in A.

2.30 Definition: For a nonnegative measurable function f : A ⊆ R → [0,∞], we define
the (Lebesgue) integral of f on A to be∫
A

f(x) dx =

∫
A

f =

∫
A

f dλ = sup

{∫
A

s

∣∣∣∣ s is a simple function on A with 0 ≤ s ≤ f
}
.

We say that f : A→ [0,∞] is (Lebesgue) integrable (on A) when

∫
A

f <∞.

2.31 Theorem: (Properties of Integration for Non-negative Measurable Functions)
Let f, g : A ⊆ R→ [0,∞] be non-negative measurable functions and let c ∈ R. Then

(1) If f ≤ g on A then

∫
A

f ≤
∫
A

g.

(2) We have

∫
A

(cf) = c

∫
A

f and

∫
A

(f + g) =

∫
A

f +

∫
A

g.

(3) If A = B ∪ C, where B and C are disjoint and measurable, then

∫
A

f =

∫
B

f +

∫
C

f .

(4) If B ⊆ A is measurable then

∫
B

f =

∫
A

f · χ
B

.

(5) If λ(A) = 0 then

∫
A

f = 0.

(6) If f = g a.e. in A then

∫
A

f =

∫
A

g , and

∫
A

f = 0 then f = 0 a.e. in A.

Proof: All parts follow fairly easily from the analogous parts of Theorem 2.28 except for
the second formula in Part (2). We shall return to the proof of this formula later.
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2.32 Theorem: (Fatou’s Lemma) Let fn : A ⊆ R → [0,∞] be nonnegative measurable
functions for n ∈ Z+. Then ∫

A

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

fn .

Proof: By the definition of the integral on the left, it suffices to prove that for every

nonnegative simple function s on A with s ≤ lim inf
n→∞

fn we have

∫
A

s ≤ lim inf
n→∞

∫
A

fn. Let

s be any nonnegative simple function on A with s ≤ lim inf
n→∞

fn. Write s =
m∑
k=1

akχAk
. For

all x ∈ Ak we have ak = s(x) ≤ lim inf
n→∞

fn(x), and it follows that for all 0 ≤ r < 1 there

exists n ∈ Z+ such that for all l ≥ n we have fl(x) ≥ rak. Let 0 ≤ r < 1. For k, n ∈ Z+,
let

Bk,n =
{
x ∈ Ak

∣∣fl(x) ≥ rak for all l ≥ n
}

=
⋂
l≥n

fl
−1[rak,∞].

Note that each set Bk,n is measurable with Bk,1 ⊆ Bk,2 ⊆ Bk,3 ⊆ · · · and
∞⋃
n=1

Bk,n = Ak.

It follows that λ(Ak) = lim
n→∞

λ(Bk,n). For all x ∈ Bk,n we have fl(x) ≥ rak for all l ≥ n

so that, in particular, fn(x) ≥ rak. It follows that fn ≥
m∑
k=1

rakχBk,n
hence∫

A

fn ≥
m∑
k=1

rakλ(Bk,n).

Taking the lim inf on both sides gives

lim inf
n→∞

∫
A

fn ≥ lim
n→∞

m∑
k=1

rakλ(Bk,n) =
m∑
k=1

rakλ(Ak) = r

∫
A

s .

Since 0 ≤ r < 1 was arbitrary, it follows that lim inf
n→∞

∫
A

fn ≥
∫
A

s, as required.

2.33 Corollary: Let fn : A ⊆ R → [0,∞] be nonnegative measurable functions for
n ∈ Z+. Suppose that the pointwise limit lim

n→∞
fn(x) exists with fn(x) ≤ lim

n→∞
fn(x) for

all x ∈ A. Then ∫
A

lim
n→∞

fn = lim
n→∞

∫
A

fn .

Proof: For all n ∈ Z+, since fn ≤ lim
n→∞

fn we have

∫
A

fn ≤
∫
A

lim
n→∞

fn. Taking the lim sup

gives

lim sup
n→∞

∫
A

fn ≤
∫
A

lim
n→∞

fn .

By Fatou’s Lemma, we also have∫
A

lim
n→∞

fn =

∫
A

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

fn .

2.34 Corollary: (Lebesgue’s Monotone Convergence Theorem) Let fn : A ⊆ R→ [0,∞]
be nonnegative measurable functions such that {fn(x)} is increasing for every x ∈ A. Then∫

A

lim
n→∞

fn = lim
n→∞

∫
A

fn .

Proof: This is a special case of the previous corollary.
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2.35 Note: We now return to the proof of the second formula in Part (2) of Theorem
2.30. We suppose that f, g : A ⊆ R → [0,∞] are nonnegative measurable functions, and
we need to prove that ∫

A

(f + g) =

∫
A

f +

∫
A

g.

Proof: Using the construction described in Note 2.28, choose increasing sequences {rn} and
{sn} of nonnegative simple functions on A such that lim

n→∞
rn = f and lim

n→∞
sn = g. Then

the sequence {rn + sn} is also increasing with lim
n→∞

(rn + sn) = f + g. By the Monotone

Convergence Theorem, along with Part (2) of Theorem 2.27, we have∫
A

(f + g) =

∫
A

lim
n→∞

(rn + sn) = lim
n→∞

∫
A

(rn + sn) = lim
n→∞

(∫
A

rn +

∫
A

sn

)
= lim
n→∞

∫
A

rn + lim
n→∞

∫
A

sn =

∫
A

lim
n→∞

rn +

∫
A

lim
n→∞

sn =

∫
A

f +

∫
A

g .

2.36 Corollary: Let A ⊆ R be measurable and let {fn} be a sequence of nonnegative
measurable functions fn : A→ [0,∞]. Then∫

A

∞∑
n−1

fn =
∞∑
n=1

∫
A

fn .

Proof: This follows by applying Lebesgue’s Monotone Convergence Theorem to the se-

quence of partial sums Sn(x) =
n∑
k=1

fk(x).

2.37 Corollary: Let A =
∞⋃
k=1

Ak where the sets An are measurable and disjoint, and let

f : A→ [0,∞] be nonnegative and measurable. Then∫
A

f =
∞∑
n=1

∫
An

f .

Proof: This follows from the above corollary using fn = f · χ
An

.

2.38 Remark: For a σ-algebra C, a measure on C is a function µ : C → [0,∞] such that

(1) µ(∅) = 0, and

(2) if A1, A2, A3, · · · ∈ C are disjoint then µ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak).

When M is the σ-algebra of Lebesgue measurable sets in R, and f : R → [0,∞] is any
nonnegative measurable function on R, the above corollary shows that we can define a
measure µ on M by

µ(A) =

∫
A

f .
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2.39 Definition: For a measurable function f : A ⊆ R → [−∞,∞], we say that f is
(Lebesgue) integrable (on A) when the functions f+ and f− are both Lebesgue integrable
on A and, in this case, we define the (Lebesgue) integral of f on A to be∫

A

f(x) dx =

∫
A

f =

∫
A

f dλ =

∫
A

f+ −
∫
A

f−.

In the case that A = [a, b] we also write

∫
A

f(x) dx as

∫ b

a

f(x) dx.

2.40 Note: For f : A ⊆ R→ [−∞,∞], f is integrable if and only if |f | is integrable.

2.41 Theorem: (Integration) Let f, g : A ⊆ R→ [−∞,∞] be integrable and let c ∈ R.

(1) We have

∣∣∣∣ ∫
A

f

∣∣∣∣ ≤ ∫
A

|f | .

(2) If f ≤ g then

∫
A

f ≤
∫
A

g.

(3) We have

∫
A

(cf) = c

∫
A

f and

∫
A

(f + g) =

∫
A

f +

∫
A

g.

(4) If A = B ∪ C where B and C are disjoint and measurable then

∫
A

f =

∫
B

f +

∫
C

f .

(5) If B ⊆ A is measurable then

∫
B

f =

∫
A

f · χ
B

.

(6) If λ(A) = 0 then

∫
A

f = 0.

(7) If f = g a.e. on A then

∫
A

f =

∫
A

g , and if

∫
A

|f | = 0 then f = 0 a.e. in A.

Proof: The proof is left as an exercise.

2.42 Theorem: (Lebesgue’s Dominated Convergence Theorem) Let A ⊆ R be a mea-
surable set and let fn : A → [−∞,∞] be measurable functions for n ∈ Z+. Suppose the
pointwise limit lim

n→∞
fn(x) exists for all x ∈ A. Suppose there exists an integrable function

g : A→ [0,∞] such that |fn(x)| ≤ g(x) for all n ∈ Z+, x ∈ A. Then∫
A

lim
n→∞

fn = lim
n→∞

∫
A

fn .

Proof: Let f = lim
n→∞

fn. Note that since −g ≤ fn ≤ g for all n we gave −g ≤ f ≤ g so

that f is integrable. By Fatou’s Lemma, applied to the function g + fn, we have∫
A

g +

∫
A

lim
n→∞

fn =

∫
A

lim inf
n→∞

(g + fn) ≤ lim inf
n→∞

∫
A

(g + fn) =

∫
A

g + lim inf
n→∞

fn.

It follows, since
∫
A
g <∞, that

lim inf
n→∞

∫
A

fn ≥
∫
A

lim
n→∞

fn.

By Fatou’s Lemma, applied to the function g − fn, we have∫
A

g −
∫
A

lim
n→∞

fn =

∫
A

lim inf
n→∞

(g − fn) ≤ lim inf
n→∞

∫
A

(g − fn) =

∫
A

g − lim sup
n→∞

∫
A

fn.

It follows, since
∫
A
g <∞, that

lim sup
n→∞

∫
A

fn ≤
∫
A

lim
n→∞

fn.
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2.43 Theorem: Let f : [a, b] → R be bounded and Riemann integral. Then f is also
measurable and Lebesgue integrable, and the two kinds of integral are equal.

Proof: I may include a proof later.

2.44 Remark: I may include a discussion of complex-valued functions f : A ⊆ R → C
later.
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