
Chapter 1. Lebesgue Measure

1.1 Definition: When I is equal to any one of the bounded intervals (a, b), [a, b), (a, b]
or [a, b], where a, b ∈ R with a ≤ b, we define the size of I to be |I| = b − a. When I
is equal to any of the unbounded intervals (−∞, a), (−∞, a], (a,∞), [a,∞) or (−∞,∞),
where a ∈ R, we define the size of I to be |I| =∞.

1.2 Definition: For a bounded set A ⊆ R, the Jordan outer content of A is

c∗(A) = inf
{ n∑
k=1

|Ik|
∣∣∣n ∈ Z+, each Ik is a bounded open interval and A ⊆

n⋃
k=1

Ik

}
.

1.3 Theorem: (Properties of Jordan Outer Content) Let A,B ⊆ R be bounded.

(1) If a ∈ R then c∗(a+A) = c∗(A).
(2) If r ∈ R then c∗(rA) = |r| c∗(A).
(3) If A ⊆ B then c∗(A) ≤ c∗(B).
(4) If A is a finite set then c∗(A) = 0.
(5) If A is a bounded interval then c∗(A) = |A|.
(6) We have c∗(A ) = c∗(A).
(7) (Finite Subadditivity) We have c∗(A ∪B) ≤ c∗(A) + c∗(B).

Proof: The proof is left as an exercise.

1.4 Exercise: Show that when A ⊆ R and I and J are bounded intervals with A ⊆ I ⊆ J
we have |I| − c∗(I \A) = |J | − c∗(J \A).

1.5 Definition: For a bounded set A ⊆ R, we say that A has (a well-defined) Jordan
content when

c∗(A) = |I| − c∗(I \A)

where I is any interval which contains A and, in this case, we define the Jordan content
of A to be c(A) = c∗(A).

1.6 Exercise: Show that Q ∩ [0, 1] does not have a well-defined Jordan content.

1.7 Theorem: (Properties of Content) Let A,B ⊆ R be bounded.
(1) If a ∈ R then a+A has Jordan content if and only if A does.
(2) If 0 6= r ∈ R then rA has Jordan content if and only if A does.
(3) If c∗(A) = 0 then A has Jordan content.
(4) Every bounded interval has Jordan content.
(5) The set A has Jordan content if and only if c∗(A \Ao) = 0.
(6) If A and B have Jordan content then so do A ∪B, A ∩B and A \B.
(7) If A and B have Jordan content and A ∩B = ∅ then c(A ∪B) = c(A) + c(B).

Proof: The proof is left as an exercise.
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1.8 Definition: For a set A ⊆ R, the (Lebesgue) outer measure of A is

λ∗(A) = inf
{ ∞∑
n=1
|In|

∣∣∣ each In is a bounded open interval and A ⊆
∞⋃
n=1

In

}
.

1.9 Theorem: (Properties of Outer Measure) Let A,B ⊆ R and let Ak ⊆ R for k ∈ Z+.

(1) (Translation) If a ∈ R then λ∗(a+A) = λ∗(A).
(2) (Scaling) If 0 6= r ∈ R then λ∗(rA) = |r|λ∗(A).
(3) (Inclusion) If A ⊆ B then λ∗(A) ≤ λ∗(B).
(4) If A is finite or countable then λ∗(A) = 0.
(5) If I is an interval then λ∗(I) = |I|.
(6) (Countable Subadditivity) We have λ∗

( ∞⋃
n=1

An

)
≤
∞∑
n=1

λ∗(An).

Proof: We leave the proofs of parts (1), (2) and (3) as an exercise. We prove Part (4)
in the case that A is countable. Let A = {a1, a2, a3, · · ·}. Let ε > 0. For each n ∈ Z+,

let In =
(
an − ε

2n , an + ε
2n

)
. Then A ⊆

∞⋃
n=1

In so we have λ∗(A) ≤
∞∑
n=1
|In| = 2ε. Since

0 ≤ λ∗(A) < 2ε for every ε > 0, it follows that λ∗(A) = 0.
Let us prove Part (5). When I is a degenerate interval (so I is empty or has only

one point) we know, from Part (4), that λ∗(I) = 0. Suppose that I is a nondegenerate
bounded interval, say I is equal to one of the intervals (a, b), [a, b), (a, b] or [a, b] where

a < b. Let ε > 0, let I1 = (a−ε, b+ε) and let In = ∅ for n ≥ 2. Then I ⊆
∞⋃
n=1

In so we have

λ∗(I) ≤
∞∑
n=1
|In| = b − a + 2ε. Since ε > 0 was arbitrary, it follows that λ∗(I) ≤ b − a. It

remains to show that λ∗(I) ≥ b− a. Let I1, I2, I3, · · · be any bounded open intervals such

that I ⊆
∞⋃
n=1

In. Let 0 < ε < b−a
2 and consider the compact interval K = [a+ ε, b− ε] ⊂ I.

Note that U = {I1, I2, I3, · · ·} is an open cover of K. Choose a finite subset V ⊆ U so that
K ⊆

⋃
J∈V

J . Choose J1 = (a1, b1) ∈ V so that a1 < a − ε < b1. If b1 ≤ b − ε then choose

J2 = (a2, b2) ∈ V so that a2 < b1 < b2. If b2 ≤ b − ε then choose J3 = (a3, b3) ∈ V so
that a3 < b2 < b3. Continue this procedure until we have chosen J` = (a`, b`) ∈ V with
b` > b− ε, and note that K ⊆ J1 ∪ J2 ∪ · · · ∪ J` and {J1, J2, · · · , J`} ⊆ V ⊆ U . We have

∞∑
n=1
|In| ≥

∑̀
n=1
|Jn| = (b1 − a1) + (b2 − a2) + · · ·+ (b` − a`)

>
(
a2 − (a+ ε)

)
+ (a3 − a2) + (a4 − a3) + · · ·+ (a` − a`−1) +

(
(b− ε)− a`

)
= b− a− 2ε.

Since ε was arbitrarily small it follows that
∞∑
n=1
|In| ≥ b−a. Since this is true for all bounded

open intervals I1, I2, I3, · · · which cover I, it follows that λ∗(I) ≥ b− a, as required.
When I is an unbounded interval, we must have λ∗(I) =∞ because for every R > 0

we can choose a bounded interval J ⊆ I with |J | > R and then we have λ∗(I) ≥ λ∗(J) > R.
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To prove Part (6), let A1, A2, A3, · · · ⊆ R. If λ∗(A`) = ∞ for some `, then we have
∞∑
k=1

λ∗(Ak) = ∞ and hence λ∗
( ∞⋃
k=1

Ak
)
≤
∞∑
k=1

λ∗(Ak). Suppose λ∗(Ak) < ∞ for all k.

Let ε > 0. For each n ∈ Z+, choose open bounded intervals In,1, In,2, In,3, · · · so that

An ⊆
∞⋃
k=1

In,k and
∞∑
k=1

|In.k| ≤ λ∗(An) + ε
2n . Then we have

∞⋃
n=1

An ⊆
∞⋃

n,k=1

In,k so that

λ∗
( ∞⋃
n=1

An

)
≤

∞∑
n,k=1

|In,k| ≤
∞∑
n=1

(
λ∗(An) + ε

2n

)
=
∞∑
n=1

λ∗(An) + ε.

Since ε > 0 was arbitrary, we have λ∗
( ∞⋃
n=1

Ak

)
≤
∞∑
n=1

λ∗(An), as required.

1.10 Definition: For A ⊆ R, we say that A is (Lebesgue) measurable when for every
set X ⊆ R we have

λ∗(X) = λ∗(X ∩A) + λ∗(X \A).

When A is measurable, we define the (Lebesgue) measure of A to be λ(A) = λ∗(A). We
let M denote the set of all measurable subsets of R.

1.11 Note: For any sets A,X ⊆ R, we haveX = (X∩A)∪(X\A) and so (by subadditivity)
λ∗(X) ≤ λ∗(X ∩A) + λ∗(X \A). Thus a set A ⊆ R is measurable if and only if for every
set X ⊆ R we have

λ∗(X) ≥ λ∗(X ∩A) + λ∗(X \A).

1.12 Theorem: (Properties of Measure) Let A,B,Ak ⊆ R for k ∈ Z+.

(1) If a ∈ R then A is measurable if and only if a+A is measurable.
(2) If 0 6= r ∈ R then A is measurable if and only if rA is measurable.
(3) ∅ and R are measurable.
(4) If λ∗(A) = 0 then A is measurable.
(5) If A is measurable then so is Ac = R \A.
(6) If A and B are measurable then so are A ∪B , A ∩B and A \B.
(7) Every interval is measurable.

(8) If the sets Ak are measurable then so are
∞⋃
k=1

Ak and
∞⋂
k=1

Ak.

(9) If the sets Ak are measurable and disjoint then λ
( ∞⋃
k=1

Ak

)
=
∞∑
k=1

λ(Ak).

(10) Let Ak be measurable for k≥1. If Ak⊆Ak+1 for all k, then λ
( ∞⋃
n=1

An

)
= lim
n→∞

λ(An).

If Ak ⊇ Ak+1 for all k, and λ(Am) is finite for some m ∈ Z+, then λ
( ∞⋂
n=1

An

)
= lim
n→∞

λ(An).

Proof: We leave the proofs of Parts (1) and (2) as an exercise. To prove Part (3), note
that ∅ and R are measurable because for every set X ⊆ R we have

λ∗(X ∩ ∅) + λ∗(X \ ∅) = λ∗(∅) + λ∗(X) = λ∗(X), and

λ∗(X ∩ R) + λ∗(X \ R) = λ∗(X) + λ∗(∅) = λ∗(X).

To prove Part (4), let A ⊆ R and suppose that λ∗(A) = 0. Let X ⊆ R. Since
X ∩A ⊆ A and X \A ⊆ X we have

λ∗(X ∩A) + λ∗(X \A) ≤ λ∗(A) + λ∗(X) = λ∗(X).
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Part (5) holds because if A ⊆ R is measurable and X ⊆ R then, since X ∩Ac = X \A
and X \Ac = X ∩A, we have

λ∗(X ∩Ac) + λ∗(X \Ac) = λ∗(X \A) + λ∗(X ∩A) = λ∗(X).

To prove Part (6), suppose that A and B are measurable and let X ⊆ R. Then

λ∗(X) = λ∗(X ∩A) + λ∗(X \A) , since A is measurable

= λ∗(X ∩A) + λ∗
(
(X \A) ∩B

)
+ λ∗

(
(X \A) \B

)
, since B is measurable

= λ∗(X ∩A) + λ∗
(
(X \A) ∩B

)
+ λ∗

(
X \ (A ∪B)

)
≥ λ∗

(
X ∩ (A ∪B)

)
+ λ∗

(
X \ (A ∪B)

)
, by subadditivity

since (X ∩A)∪
(
(X \A)∩B

)
= X ∩ (A∪B). This shows that A∪B is measurable. Using

Part (5), it follows that A ∩B is measurable because A ∩B = (Ac ∪Bc)c and hence that
A \B is measurable because A \B = A ∩Bc.

Let us prove Part (7) in the case of a nonempty bounded open interval. Let I = (a, b)
where a < b. Let X ⊆ R. Verify that when λ∗(X) =∞ then we also have λ∗(X\A) =∞ so
that, in this case, λ∗(X) =∞ = λ∗(X∩A)+λ∗(X\A). Suppose λ∗(X) <∞, and let ε > 0.

Choose open bounded intervals I1, I2, I3, · · · so that X ⊆
∞⋃
n=1

In and
∞∑
n=1
|In| < λ∗(X) + ε.

For n ∈ Z∗, let Jn = In ∩ (a, b), Kn = In ∩ (−∞, a) and Ln = In ∩ (b,∞). Then X ∩ I ⊆
∞⋃
n=1

Jn so that λ∗(X∩I) ≤
∞∑
n=1
|Jn| and X \I ⊆ (a−ε, a+ε)∪(b−ε, b+ε)∪

∞⋃
n=1

Kn∪
∞⋃
n=1

Ln

so that λ∗(X \ I) ≤ 4ε+
∞∑
n=1
|Kn|+

∞∑
n=1
|Ln| and so we have

λ∗(X ∩ I) + λ∗(X \ I) ≤ 4ε+
∞∑
n=1

(
|In|+ |Jn|+ |Kn|

)
= 4ε+

∞∑
n=1
|In| < λ∗(X) + 5ε.

Since ε > 0 was arbitrary, we have λ∗(X ∩ I) + λ∗(X \ I) ≤ λ∗(X), Since X ⊆ R was
arbitrary, we see that I is measurable.

Before proving Parts (8) and (9) we remark that for A,B ⊆ R, if A is measurable and
A ∩B = ∅ then for all X ⊆ R we have

λ∗
(
X ∩ (A ∪B)

)
= λ∗

(
(X ∩ (A ∪B)) ∩A

)
+ λ∗

(
(X ∩ (A ∪B)) \A

)
= λ∗(X ∩A) + λ∗(X ∩B)

It follows, inductively, that if A1, A2, · · · , An ⊆ R are measurable and disjoint then for all
X ⊆ R we have

λ∗
(
X ∩

n⋃
k=1

Ak
)

=
n∑
k=1

λ∗(X ∩Ak).

Now let A1, A2, A3, · · · ⊆ R be measurable and disjoint and let X ⊆ R. For all n ∈ Z+

we have
n∑
k=1

λ∗(X ∩Ak) = λ∗
(
X ∩

n⋃
k=1

Ak
)

, by the above remark,

≤ λ∗
(
X ∩

∞⋃
k=1

Ak
)

, since X ∩
n⋃
k=1

Ak ⊆ X ∩
∞⋃
k=1

Ak,

= λ∗
( ∞⋃
k=1

(X ∩Ak)
)

, since X ∩
∞⋃
k=1

Ak =
∞⋃
k=1

(X ∩Ak),

≤
∞∑
k=1

λ∗(X ∩Ak) , by subadditivity.
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Taking the limit as n tends to infinity gives

λ∗
(
X ∩

∞⋃
k=1

Ak
)

=
∞∑
k=1

λ∗(X ∩Ak).

The special case X = R gives the formula λ∗
( ∞⋃
k=1

Ak
)

=
∞∑
k=1

λ∗(Ak) for Part (9). For all

n ∈ Z+ we have

λ∗(X) = λ∗
(
X ∩

n⋃
k=1

Ak
)

+ λ∗
(
X \

n⋃
k=1

Ak
)

=
n∑
k=1

λ∗(X ∩Ak) + λ∗
(
X \

n⋃
k=1

Ak
)

≥
n∑
k=1

λ∗(X ∩Ak) + λ∗
(
X \

∞⋃
k=1

Ak
)

Taking the limit as n tends to infinity gives

λ∗(X) ≥
∞∑
k=1

λ∗(X ∩Ak) + λ∗
(
X \

∞⋃
k=1

Ak
)

= λ∗
(
X ∩

∞⋃
k=1

Ak
)

+ λ∗
(
X \

∞⋃
k=1

Ak
)

so that
∞⋃
k=1

Ak is measurable, proving Part (8) in the case that the sets Ak are disjoint.

To complete the proof of Part (8) in the case that A1, A2, A3, · · · ⊆ R are measurable (but
not necessarily disjoint) simply note that

∞⋃
k=1

Ak = A1 ∪ (A2 \A1) ∪ (A3 \ (A1 ∪A2)) ∪ (A4 \ (A1 ∪A2 ∪A3)) ∪ · · ·

which is a countable union of disjoint measurable sets.

At this stage, we recall that we only proved Part (7) in the case of a bounded open
interval. We note that every interval can be obtained from bounded open intervals by
performing complements and countable unions or intersections, and so every interval is
measurable.

To prove the first statement of Part (10), suppose that A1 ⊆ A2 ⊆ A3 ⊆ · · ·. Let
B1 = A1 and Bk = Ak \ Ak−1 for k ≥ 2, Then the sets Bk are measurable and disjoint

and we have An =
n⋃
k=1

Bk for all n ∈ Z+ and also
∞⋃
n=1

An =
∞⋃
n=1

Bn. Thus

λ
( ∞⋃
n=1

An
)

= λ
( ∞⋃
n=1

Bn
)

=
∞∑
n=1

λ(Bn) = lim
n→∞

n∑
k=1

λ(Bk) = lim
n→∞

λ
( n⋃
k=1

Bk
)

= lim
n→∞

λ(An).

Finally, note that the second statement of Part 10 follows from the first, by taking
complements in Am.
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1.13 Theorem: All open and closed sets in R are measurable.

Proof: Recall that every set in Rn (or any metric or topological space) is equal to the
disjoint union of its connected components, and recall that the connected components of
an open set are all open. Note that the set of connected components of an open set in
Rn is at most countable because we can choose an element of Qn inside each of the open
connected components. Also recall that the connected sets in R are the intervals in R. It
follows that every nonempty open set in R is equal to the finite or countable disjoint union of
its connected components, each of which is a nonempty open interval. Thus every open set
in R is measurable. We also remark that when the connected components of the nonempty
open set U ⊆ R are the disjoint open intervals I1, I2, I3, · · · we have λ(U) =

∑
k≥1
|Ik|. Closed

sets are also measurable because every closed set is the complement of an open set.

1.14 Corollary: For A ⊆ R we have

λ∗(A) = inf
{
λ(U)

∣∣U ⊆ R is open with A ⊆ U
}
.

1.15 Example: The (standard) Cantor set is the set C ⊆ [0, 1] constructed as follows.
Let C0 = [0, 1]. Let I1 be the open middle third of C0, that is let I1 =

(
1
3 ,

2
3

)
, and let

C1 = A0\U1 =
[
0, 13
]
∪
[
2
3 , 1
]
. Let I2 and I3 be the open middle thirds of the two component

intervals of C1, that is let I2 =
(
1
9 ,

2
9

)
and I3 =

(
7
9 ,

8
9

)
, and let C2 = C1 \ (I2 ∪ I3). Having

constructed the set Ck, which is the disjoint union of 2k closed intervals each of length 1
3k

,

let I2k , I2k+1, · · · , I2k+1−1 be the open middle thirds of these 2k component intervals and
let Ck+1 = Ck \ (I2k , I2k+1, · · · , I2k+1−1). Finally, we let

C =
∞⋂
k=1

Ck.

Since C0 ⊇ C1 ⊇ C2 ⊇ · · ·, and since each Ck is the disjoint union of 2k closed intervals

each of size 1
3k

so that λ(Ck) =
(
2
3

)k
, we have

λ(C) = lim
k→∞

λ(Ck) = 0.

Note that Ck is the set of all numbers x ∈ [0, 1] which can be written in base 3 such that
the the first k digits of x are not equal to 1, and so C is the set of all numbers x ∈ [0, 1]
which can be written in base 3 with none of the digits of x equal to 1, and it follows that
the cardinality of C is |C| = 2ℵ0 .

1.16 Example: We can construct a (generalized) Cantor set C ⊆ [0, 1], having any
desired value for the measure λ(C) < 1 as follows. Let 0 ≤ m < 1. Choose a sequence

of positive real numbers a1, a2, · · · with
∞∑
k=1

ak = 1 − m. Let C0 = [0, 1] and note that

λ(C0) = 1. Choose an open interval I1 ⊆ C0 with λ(I1) = a1 such that C0\I1 is the disjoint
union of two nondegenerate closed intervals each of measure less than 1

2 . Let C1 = C0 \ I1
and note that λ(C1) = 1 − a1. Having constructed the set Ck, which is the disjoint
union of 2k nondegenerate closed intervals each of measure less than 1

2k
and having total

measure λ(Ck) = 1−(a1+a2+ · · ·+ak), we choose 2k open intervals I2k , I2k+1, · · · , I2k+1−1
which are contained in each of the 2k component intervals of Ck so that the set Ck+1 =
Ck \(I2k∪· · ·∪I2k+1−1) is the disjoint union of 2k+1 non-degenerate closed intervals each of
measure less than 1

2k+1 and having total measure λ(Ck+1) = 1− (a1 + · · ·+ak+1). Finally,

we let C =
∞⋂
k=1

Ck and note that λ(C) = lim
k→∞

λ(Ck) = 1−
∞∑
k=1

ak = m.
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1.17 Theorem: Let M be the set of all measurable subsets of R. Then |M| = 22
ℵ0

.

Proof: Let C be the standard Cantor set. Because λ(C) = 0 it follows that every subset
of C is measurable. Because |C| = 2ℵ0 we have

22
ℵ0

=
∣∣{A|A ⊆ R}

∣∣ ≥ |M| ≥ ∣∣{A|A ⊆ C}∣∣ = 22
ℵ0
.

1.18 Theorem: There exists a nonmeasurable set in R.

Proof: Define an equivalence relation on the set [0, 1] by defining x ∼ y when y − x ∈ Q.
Let C denote the set of equivalence classes. For each c ∈ C, choose an element xc ∈ c
and let A = {xc|c ∈ C} ⊆ [0, 1]. We shall prove that the set A is not measurable. Let
Q∩ [0, 2] = {a1, a2, a3, · · ·}, with the ak distinct. For each k ∈ Z+, let Ak = ak+A ⊆ [0, 3].
We claim that the sets Ak are disjoint. Let k, ` ∈ Z+ and suppose that Ak ∩ A` 6= ∅.
Choose y ∈ Ak∩A`, say y = ak+xc = a`+xd where c, d ∈ C. Since xc−xd = a`−ak ∈ Q
we have xc ∼ xd and hence c = d (since we only chose one element from each class). Since
c = d we have xc = xd, hence ak = a`, and hence k = `. Thus the sets Ak are disjoint, as

claimed. Next, we claim that [1, 2] ⊆
∞⋃
k=1

Ak. Let y ∈ [1, 2]. Since y − 1 ∈ [0, 1] we have

y − 1 ∈ c for some c ∈ C. Since y − 1 ∈ c we have y − 1− xc ∈ Q hence also y − xc ∈ Q.
Since y ∈ [1, 2] and xc ∈ [0, 1] we have y − xc ∈ [0, 2]. Since y − xc ∈ Q ∩ [0, 2] we have

y − xc = ak for some k ∈ Z+ so that y ∈ Ak. This proves that [1, 2] ⊆
∞⋃
k=1

Ak.

Suppose, for a contradiction, that the set A is measurable. By translation, each of
the sets Ak = ak +A is measurable with λ(Ak) = λ(A). Since the sets Ak are disjoint and
measurable, additivity gives

λ
( ∞⋃
k=1

Ak
)

=
∞∑
k=1

λ(Ak) =
∞∑
k=1

λ(A) =

{
0 , if λ(A) = 0,

∞ , if λ(A) > 0.

But since [0, 1] ⊆
∞⋃
k=1

Ak ⊆ [0, 3] we also have 1 ≤ λ
( ∞⋃
k=1

Ak
)
≤ 3, giving the desired

contradiction.

1.19 Notation: Let X be a set. For any set C of subsets of X we write

Cσ =
{ ∞⋃
k=1

Ak

∣∣∣ each Ak ∈ C
}

and Cδ =
{ ∞⋂
k=1

Ak

∣∣∣ each Ak ∈ C
}
.

Note that Cσσ = Cσ and Cδδ = Cδ.

1.20 Definition: Let X be a set. A σ-algebra in X is a set C of subsets of X such that

(1) ∅ ∈ C,
(2) if A ∈ C then Ac = X \A ∈ C, and

(3) if A1, A2, A3, · · · ∈ C then
∞⋃
k=1

Ak ∈ C.

Note that when C is a σ-algebra in X we have Cσ = C and Cδ = C.

1.21 Notation: In a metric space (or topological space) X, we let G = G(X) denote the
set of all open sets in X and we let F = F(X) denote the set of all closed subsets of X.
Note that Gσ = G and Fδ = F .
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1.22 Example: For any set X, the set
{
∅, X

}
and the set P(X) of all subsets of X are

σ-algebras in X, The set M =M(R) of all measurable sets in R is a σ-algebra in R.

1.23 Note: Note that given any set C of subsets of a set X there exists a unique smallest
σ-algebra in X which contains C, namely the intersection of all σ-algebras in X which
contain C.

1.24 Definition: For a metric space (or topological space) X, the Borel σ-algebra of
subsets of X, denoted by B = B(X), is the smallest σ-algebra in X which contains G
(hence also F). The elements of B are called Borel sets. Note that B contains all of the
sets G,Gδ,Gδσ,Gσδσ, · · · and all of the sets F ,Fσ,Fσδ,Fσδσ, · · ·.

1.25 Exercise: Show that, in R, we have F ⊆ Gδ or, equivalently, that G ⊆ Fσ,

1.26 Theorem: All Borel sets in R are measurable.

Proof: The set M of all measurable subsets of R is a σ-algebra which contains G, and
the Borel σ-algebra B is the intersection of all σ-algebra in which contain G, so we have
B ⊆M.

1.27 Remark: It can be shown, using transfinite induction, that in R we have |B| = 2ℵ0 .
Since |B| < |M|, it follows that there exist measurable sets which are not Borel.

1.28 Theorem: For every set A ⊆ R there exists a set B ∈ Gδ with A ⊆ B such that
λ(B) = λ∗(A).

Proof: Let A ⊆ R. If λ∗(A) = ∞ then we can choose B = R. Suppose that λ∗(A) < ∞.

For each n ∈ Z+, choose bounded open intervals In,1, In,2, In,3, · · · such that A ⊆
∞⋃
k=1

In,k

and
∞∑
k=1

|In,k| ≤ λ∗(A)+ 1
n , then let Un =

∞⋃
k=1

In,k. Note that for each n ∈ Z+ the set Un is

open with A ⊆ Un, and we have λ(Un) ≤
∞∑
k=1

|In,k| ≤ λ∗(A) + 1
n . Let B =

∞⋂
n=1

Un and note

that B ∈ Gδ. Since A ⊆ Un for all n ∈ Z+, we have A ⊆
∞⋂
n=1

Un, that is A ⊆ B, and hence

λ∗(A) ≤ λ(B). For every n ∈ Z+ we have B ⊆ Un so that λ(B) ≤ λ(Un) ≤ λ∗(A) + 1
n ,

and it follows that λ(B) ≤ λ∗(A). Thus λ(B) = λ∗(A), as required.

1.29 Theorem: Let A ⊆ R. Then the following statements are equivalent.

(1) A is measurable.
(2) For every ε > 0 there exists an open set U with A ⊆ U ⊆ R such that λ∗(U \A) < ε.
(3) There exists a set B ∈ Gδ with A ⊆ B ⊆ R such that λ∗(B \A) = 0.
(4) For every ε > 0 there exists a closed set K ⊆ A such that λ∗(A \K) < ε.
(5) There exists a set C ∈ Fσ with C ⊆ A such that λ∗(A \ C) = 0.

Proof: We prove that (1) is equivalent to (3) and leave proofs of other equivalences as an
exercise. To show that (3) implies (1), suppose that there exists a set B ∈ Gδ with A ⊆ B
such that λ∗(B \ A) = 0. Since λ∗(B \ A) = 0 we know that B \ A is measurable, and
hence the set A = B \ (B \A) is also measurable.
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Suppose, conversely, that A is measurable. If λ(A) <∞ then, by Theorem 1.28, we can
choose B ∈ Gδ with A ⊆ B such that λ(B) = λ(A), and then λ(B \A) = λ(B)−λ(A) = 0,
as required. Suppose that λ(A) = ∞. Let A0 = A ∩ Z and let B0 = A0. Note that B0 is
closed, hence B0 ∈ Gδ. Enumerate the intervals (m,m + 1) by letting I2k−1 = (k − 1, k)
and I2k = (−k,−k + 1) for k ≥ 1. For n ≥ 1, let An = A ∩ In. Using Theorem 1.28, we
can choose En ∈ Gδ with An ⊆ En and λ(An) = λ(En). Let Bn = En∩ In so that Bn ∈ Gδ
with An ⊆ Bn ⊆ In and λ(An) = λ(Bn). Note that λ(Bn \An) = λ(Bn)−λ(An) = 0. Let
B =

⋃∞
n=0Bn. Then we have λ(B \A) = λ

(⋃∞
n=0(Bn \An)

)
=
∑∞
n=0 λ(Bn \An) = 0.

It remains to show that B ∈ Gδ. For each n ≥ 1, since Bn ∈ Gδ we can write
Bn =

⋂∞
k=1 Vn,k where each Vn,k is open. Since Bn ⊆ In we also have Bn =

⋂∞
k=1 Un,k

where Un,k = Vn,k ∩ In. Since Un,k ⊆ In and the sets In are disjoint, it follows (as you can
verify) that

⋃∞
n=1

⋂∞
k=1 Un,k =

⋂∞
k=1

⋃∞
n=1 Un,k and hence

⋃∞
n=1Bn ∈ Gδ. Since B0 ∈ Gδ

and
⋃∞
n=1Bn ∈ Gδ, we also have B = B0 ∪

⋃∞
n=1Bn ∈ Gδ, as required.

1.30 Theorem: Let A,B ⊆ R. Suppose that A ⊆ B and B is measurable with λ(B) <∞.
Then A is measurable if and only if λ(B) = λ∗(A) + λ∗(B \A).

Proof: If A is measurable then for all X ⊆ R we have λ∗(X) = λ∗(X ∩A) + λ∗(X \A) so
that in particular (taking X = B) we have λ∗(B) = λ∗(A) + λ∗(B \A).

Suppose that λ(B) = λ∗(A) + λ∗(B \ A), and let X ⊆ R. By Theorem 1.28, we can
choose E ∈ Gδ with X ∩ B ⊆ E such that λ(E) = λ∗(X ∩ B). Let C = E ∩ B and note
that C is measurable with X ∩B ⊆ C ⊆ B. Since X ∩B ⊆ C we have λ∗(X ∩B) ≤ λ(C)
and since C ⊆ E we have λ(C) ≤ λ(E) = λ∗(X ∩B), and so λ(C) = λ∗(X ∩B).

We claim that λ(C) = λ∗(C ∩A) + λ∗(C \A). Note that

λ(B) = λ∗(A) + λ∗(B\A) , as assumed in the statement of the theorem

= λ∗(A ∩ C) + λ∗(A\C) + λ∗((B\A) ∩ C) + λ∗((B\A)\C) , since C is measurable

= λ∗(A ∩ C) + λ∗(A\C) + λ∗(C\A) + λ∗((B\A)\C) , since (B\A) ∩ C = C\A
= λ∗(C ∩A) + λ∗(C\A) + λ∗(A\C) + λ∗((B\A)\C) , by reordering terms

≥ λ∗(C ∩A) + λ∗(C\A) + λ(B\C) , since (A\C) ∪ ((B\A)\C) = B\C
≥ λ(C) + λ(B\C) , since (C ∩A) ∪ (C\A) = C

= λ(B) , since B is the disjoint union B = C ∪ (B\C).

Since the first and last terms above are equal, it follows that all terms must be equal, so
in particular we have λ∗(C ∩ A) + λ∗(C \ A) + λ(B \ C) = λ∗(C) + λ(B \ C) and hence
(since λ(B \ C) ≤ λ(B) <∞) we have λ∗(C ∩A) + λ∗(C \A) = λ∗(C), as claimed.

Finally, note that

λ∗(X) = λ∗(X ∩B) + λ∗(X \B) , since B is measurable

= λ∗(C) + λ∗(X \B) , since λ∗(X ∩B) = λ∗(C)

= λ∗(C ∩A) + λ∗(C \A) + λ∗(X \B) , by the above claim

≥ λ∗((X ∩B) ∩A) + λ∗((X ∩B) \A) + λ∗(X \B) , since X ∩B ⊆ C,
= λ∗(X ∩A) + λ∗((X ∩B) \A) + λ∗(X \B) , since (X ∩B) ∩A = X ∩A
≥ λ∗(X ∩A) + λ∗(X \A) , since ((X ∩B) \A) ∪ (X \B) = X \A

so that A is measurable, as required.
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1.31 Definition: Let X be a metric space and let A ⊆ X. We say A is dense (in X)
when for every nonempty open ball B ⊆ X we have B ∩ A 6= ∅, or equivalently when
A = X. We say A is nowhere dense (in X) when for every nonempty open ball B ⊆ R
there exists a nonempty open ball C ⊆ B with C ∩A = ∅, or equivalently when A

o
= ∅.

1.32 Example: The generalized Cantor sets are nowhere dense in R.

1.33 Note: When A ⊆ B ⊆ X, note that if A is dense in X then so is B and, on the
other hand, if B is nowhere dense in X then so is A.

1.34 Note: When A,B ⊆ X with B = Ac = X \ A, note that A is nowhere dense ⇐⇒
A
o

= ∅ ⇐⇒ Bo = X ⇐⇒ the interior of B is dense.

1.35 Definition: Let A ⊆ X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when Ac is first category.

1.36 Example: Every countable set in R is first category since if A = {a1, a2, a3, · · ·}
then we have A =

∞⋃
k=1

{ak}. In particular Q is first category and Qc = R \Q is residual.

1.37 Note: If A ⊆ X is first category then so is every subset of A.

1.38 Note: If A1, A2, A3, · · · ⊆ X are are all first category then so is
∞⋃
k=1

Ak.

1.39 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.
(2) Every residual set in X is dense.
(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

LetA ⊆ X be first category, sayA =
∞⋃
n=1

Cn where each Cn is nowhere dense. Suppose,

for a contradiction, that A has nonempty interior, and choose an open ball B0 = B(a0, r0)
with 0 < r0 < 1 such that B0 ⊆ A . Since each Cn is nowhere dense, we can chose a
nested sequence of open balls Bn = B(an, rn) with 0 < rn <

1
2n such that Bn ⊆ Bn−1 and

Bn ∩ Cn = ∅. Because rn → 0, it folows that the sequence {an} is Cauchy. Because X
is complete, it follows that {an} converges in X, say a = lim

n→∞
an. Note that a ∈ Bn for

all n since ak ∈ Bn for all k ≥ n. Since a ∈ B0 and B0 ⊆ A we have a ∈ A. But since

a ∈ Bnfor al n ≥ 1, and Bn ∩Cn = ∅, we have a /∈ Cn for all n ≥ 1 hence a /∈
∞⋃
n=1

Cn, that

is a /∈ A.

1.40 Example: Recall that Q is first category and Qc is residual. The Baire Category
Theorem shows that Qc cannot be first category because if Q and Qc were both first
category then R = Q ∪ Qc would also be first category, but this is not possible since R
does not have empty interior.

1.41 Exercise: For each n ∈ Z+, let fn : R → R be continuous. Suppose that for all
x ∈ R there exists n ∈ Z+ such that fn(x) ∈ Q. Prove that there exists n ∈ Z+ such that
fn is constant in some nondegenerate interval.
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1.42 Exercise: Show that in R we have Fσ 6= Gδ and we have Gδ 6= Gδσ.

1.43 Remark: Note that each of the following sets C of subsets of R

C =
{
A ⊆ R

∣∣A is finite or countable
}

C =
{
A ⊆ R

∣∣λ(A) = 0
}

C =
{
A ⊆ R

∣∣A is first category
}

has the following properties:

(1) if A ⊆ B and B ∈ C then A ∈ C,
(2) if A1, A2, A3, · · · ∈ C then

∞⋃
k=1

Ak ∈ C, and

(3) if A ∈ C then Ao = ∅.
Because of this, it seems reasonable to consider the sets in C to be, in some sense, “small”.
The following theorem, then, states that every set in R is the union of two small sets.

1.44 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1, a2, a3, · · ·}. For k, ` ∈ Z+, let Ik,` =
(
a` − 1

2k+` , a` + 1
2k+`

)
and for

k ∈ Z+, let Uk =
∞⋃
`=1

Ik,`. Note that U1 ⊇ U2 ⊇ U3 ⊇ · · · and for each k ∈ Z+ we have

Q ⊆ Uk and λ(Uk) ≤
∞∑̀
=1

|Ik,`| = 1
2k−1 . Let B =

∞⋂
k=1

Uk. Note that B is residual (it is

a countable intersection of dense open sets) and we have λ(B) = lim
k→∞

λ(Uk) = 0 since

λ(Uk) ≤ 1
2k

for all k ∈ Z+. Finally note that any set A is equal to the disjoint union
A = (A ∩B) ∪ (A ∩Bc), and we have λ(A ∩B) = 0 and the set A ∩Bc is first category.
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