Chapter 1. Lebesgue Measure

1.1 Definition: When [ is equal to any one of the bounded intervals (a,b), [a,b), (a,b]
or [a,b], where a,b € R with a < b, we define the size of I to be |I| = b —a. When [
is equal to any of the unbounded intervals (—oo,a), (—o0, al, (a,o0), [a,o0) or (—oc0, ),
where a € R, we define the size of I to be |I| = co.

1.2 Definition: For a bounded set A C R, the Jordan outer content of A is

c*(A) = inf { k;21 | 1| ‘n € Z*, each I is a bounded open interval and A C kL—J1 Ik}.

1.3 Theorem: (Properties of Jordan Outer Content) Let A, B C R be bounded.
(1) If a € R then ¢*(a + A) = c*(A).

(2) If r € R then c*(rA) = |r| c*(A).

(3) If A C B then c*(A) < c¢*(B).

(4) If A is a finite set then ¢*(A) = 0.

(5) If A is a bounded interval then c¢*(A) = |A|.

(6) We have c*(A) = c¢*(A).

(7) (Finite Subadditivity) We have ¢*(AU B) < ¢*(A) + ¢*(B).

Proof: The proof is left as an exercise.

1.4 Exercise: Show that when A C R and I and J are bounded intervals with A C I C J
we have [I| —c*(I\ A) = |J| —c*(J\ A).

1.5 Definition: For a bounded set A C R, we say that A has (a well-defined) Jordan
content when

c"(A) = [I[ =" (I\ 4)

where [ is any interval which contains A and, in this case, we define the Jordan content
of A to be c(A) = c*(A).

1.6 Exercise: Show that QN [0, 1] does not have a well-defined Jordan content.

1.7 Theorem: (Properties of Content) Let A, B C R be bounded.

(1) If a € R then a + A has Jordan content if and only if A does.

(2) If 0 # r € R then rA has Jordan content if and only if A does.

(3) If ¢*(A) = 0 then A has Jordan content.

(4) Every bounded interval has Jordan content.

(5) The set A has Jordan content if and only if ¢*(A\ A°) = 0.

(6) If A and B have Jordan content then so do AU B, AN B and A\ B.

(7) If A and B have Jordan content and AN B = () then ¢(AU B) = ¢(A) + ¢(B).

Proof: The proof is left as an exercise.



1.8 Definition: For a set A C R, the (Lebesgue) outer measure of A is

A*(A) = inf{ each I,, is a bounded open interval and A C |J In}.
n=1

n=1

1.9 Theorem: (Properties of Outer Measure) Let A, B C R and let A, CR for k € Z*.

(1) (Translation) If a € R then A\*(a + A) = \*(A).
(2) (Scaling) If 0 # r € R then \*(rA) = |r|A\*(A).
(3) (Inclusion) If A C B then \*(A) < A*(B).

(4) If A is finite or countable then \*(A) = 0.

(5) If I is an interval then \*(I) = |I|.

(6) (Countable Subadditivity) We have )\*( U An> < 3 A (Ay).
n=1 n=1

Proof: We leave the proofs of parts (1), (2) and (3) as an exercise. We prove Part (4)
in the case that A is countable. Let A = {al,ag,ag, -}. Let € > 0. For each n € ZT,

let I,, = (an — 5=,an + 5=). Then A C U I,, so we have A\*(A4) < > |I,| = 2¢. Since
n=1

0 < A*(A) < 2¢ for every € > 0, it follows that A*(A) =0.

Let us prove Part (5). When [ is a degenerate interval (so I is empty or has only
one point) we know, from Part (4), that A*(I) = 0. Suppose that I is a nondegenerate
bounded interval, say I is equal to one of the intervals (a,b), [a,b), (a,b] or [a,b] where
a<b. Lete>0,let I; = (a—e,b+e)and let I,, = () for n > 2. Then I C |J I, so we have

n=1
A(I) < > |I,| =b—a+ 2. Since € > 0 was arbitrary, it follows that \*(I) < b —a. It
n=1
remains to show that A\*(I) > b — a. Let I, I, Is,- - - be any bounded open intervals such

that 7 C (J I,. Let 0 < € < 252 and consider the compact interval K = [a+¢,b—¢] C I.

n=1
Note that U = {11, I, I3,---} is an open cover of K. Choose a finite subset ¥V C U so that

K C |J J. Choose J; = (a1,b1) € V so that a; < a —e < by. If by < b — € then choose
Jevy

Jo = (az,b2) € V so that as < by < bg. If by < b — € then choose J3 = (a3, b3) € V so

that as < by < bs. Continue this procedure until we have chosen J; = (ag,by) € V with

by > b — €, and note that K C JyUJoU---UJp and {J1,J2, -+, Ji} TV CU. We have

5100l 2 32 Ll = (b —a) + (b2 = az) -+ (b — )
(ag— (a+€)+ (as —az) + (as —az) + -+ (ag — ar—1) + ((b—€) — ar)
=b—a—2e

Since € was arbitrarily small it follows that > |I,,| > b—a. Since this is true for all bounded
n=1
open intervals Iy, I, I5, - - - which cover I, it follows that A*(I) > b — a, as required.
When [ is an unbounded interval, we must have A\*(I) = oo because for every R > 0

we can choose a bounded interval J C I with |J| > R and then we have A*(I) > A\*(J) > R.



To prove Part (6), let Ay, Az, Ag,--- C R. If A*(Ay) = oo for some ¢, then we have

> A*(Ag) = oo and hence A*( |J Ax) < 3 A*(Ak). Suppose A\*(4;) < oo for all k.
k=1 k=1 k=1

Let € > 0. For each n € Z™, choose open bounded intervals I, 1, I, 2, [, 3, -+ so that
oo o0 oo oo

A, € U Ing and Y |1y x| < X (Ap) + 5. Then we have |J A, C I, so that
k=1 k=1 n=1 n,k=1

(U A) € 3 sl €3 (VA +57) = 3 A (A) +e,
n=1 k= n=1 n=1

n 1

Since € > 0 was arbitrary, we have )\*( U Ak> < > A*(A,), as required.
n=1 n=1

1.10 Definition: For A C R, we say that A is (Lebesgue) measurable when for every
set X C R we have

A(X)=A(XNA)+X(X\A).
When A is measurable, we define the (Lebesgue) measure of A to be A(A) = A*(A4). We
let M denote the set of all measurable subsets of R.

1.11 Note: For any sets A, X C R, we have X = (XNA)U(X\A) and so (by subadditivity)
A(X) < A(XNA)+ A (X \ A). Thus a set A C R is measurable if and only if for every
set X C R we have
AM(X) > A(XNA) + A (X )\ A).
1.12 Theorem: (Properties of Measure) Let A, B, A, CR for k € Z*.
(1) If a € R then A is measurable if and only if a + A is measurable.
(2) If 0 # r € R then A is measurable if and only if r A is measurable.
(3) 0 and R are measurable.
(4) If \*(A) = 0 then A is measurable.
(5) If A is measurable then so is A° =R\ A.
(6) If A and B are measurable then so are AUB , AN B and A\ B.
(7) Every interval is measurable.

(8) If the sets Ay are measurable then so are |J Ay and () Ag.
k=1 k=1

(9) If the sets Ay are measurable and disjoint then >\< U Ak) = > AAp).
k=1 k=1

(10) Let Ay be measurable for k>1. If Ay, C A4 for all k, then )\( U An) = lim A(A,).
n=1

n—oo

If Ay D Apps for all k, and M(A,,) is finite for some m € Z*, then A( N An> — lim A(A,).
n=1

n—oo

Proof: We leave the proofs of Parts (1) and (2) as an exercise. To prove Part (3), note
that ) and R are measurable because for every set X C R we have

(X N0)+ X (X\0) = A*(0) + A (X) = A*(X), and
A (X NR) + A (X \R) = A*(X) + A*(0) = A*(X).

To prove Part (4), let A C R and suppose that \*(A) = 0. Let X C R. Since
XNACAand X\ AC X we have

(X N A) 4+ A (X A) <A (A) + N (X) = A (X).



Part (5) holds because if A C R is measurable and X C R then, since X N A° = X\ A
and X \ A°= X N A, we have

A(XNA)+A(X\A) =X\ A)+ N (XNA) =N(X).
To prove Part (6), suppose that A and B are measurable and let X C R. Then
A(X) =N (XNA) + (X \A), since A is measurable
=AN(XNA)+N((X\A)NB)+A((X\A4)\B), since B is measurable
=N (X NA)+XN(X\A)NB)+ A (X\(AUB))
> A (X N(AUB)) 4+ X (X \ (AU B)) , by subadditivity
since (X NA)U ((X\ A)NB) = XN (AUB). This shows that AU B is measurable. Using
Part (5), it follows that A N B is measurable because AN B = (AU B°)¢ and hence that
A\ B is measurable because A\ B = AN BC.
Let us prove Part (7) in the case of a nonempty bounded open interval. Let I = (a,b)

where a < b. Let X C R. Verify that when A*(X) = oo then we also have A* (X' \ A) = oo so
that, in this case, A*(X) = co = A*(XNA)+A*(X\A). Suppose A*(X) < 00, and let € > 0.

Choose open bounded intervals Iy, I, I3, - - - so that X C U I, and Z 1] < A" (X) +e.
n=1 n=1

For n € Z*, let J, = I, N (a,b), K,, = I,, N (—o0,a) and L,, = I,, N (b, 00). Then XﬂIC
U Jnsothat A*(XNI) < > |J,|and X\I C (a—e€,a+e)U(b—¢,b+e)U U K, U U L,
n=1 n=1

n=1

so that \*(X \ I) <4e+ > |K,|+ > |L,| and so we have
n=1 n=1

NN +X(XN\T) <de+ Y (L] + [Jn] +|Kpn]) =46+ X L] < A (X) + be.
n=1 n=1

Since € > 0 was arbitrary, we have X*(X N I) + A\*(X \ I) < A*(X), Since X C R was
arbitrary, we see that I is measurable.

Before proving Parts (8) and (9) we remark that for A, B C R, if A is measurable and
AN B = () then for all X C R we have

M(XNAUB) =X ((XN(AUB)NA)+ X (X N(AUB))\ 4)
=A(XNA) + X (XNB)
It follows, inductively, that if A, As,---, A, C R are measurable and disjoint then for all
X C R we have

)\*(Xﬂ U Ak) = > A(X NAg).
k=1 k=1
Now let A, Ay, Az, --- C R be measurable and disjoint and let X C R. For alln € ZT
we have

SA(XNA) =X(XNn U Ag) by the above remark,

k=1 k=1
<A(XN U Ar) ,since XN U A CXn U A,
k=1 k=1 k=1

=N( U (XNA)),since XN U A= U (X N A,
=1 k=1 k=1

< S A(X N Ag) |, by subadditivity.
k=1



Taking the limit as n tends to infinity gives

k=1

The special case X = R gives the formula A*( |J Ag) = 3 A*(A) for Part (9). For all
k= k=1

n € Z1 we have
n

M) = A (X0 U A A (X U Ap)
k=1 k=1

A*(X N A) + A (X kgl Ap)

|
M=

el
Il
—

N(X A AR) + M (X kf_'jl Ar)

vV
NgE

>
I
—

Taking the limit as n tends to infinity gives
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AU Ar) + A (XN U A
k=1

k=1

so that |J Ay is measurable, proving Part (8) in the case that the sets Ay are disjoint.
k=1
To complete the proof of Part (8) in the case that A, A, As, -+ C R are measurable (but

not necessarily disjoint) simply note that

U Ag = Ay U (As\ Ay U (As\ (A1 U A)) U (A \ (A1 U Ay U Ag)) U

k=1

which is a countable union of disjoint measurable sets.

At this stage, we recall that we only proved Part (7) in the case of a bounded open
interval. We note that every interval can be obtained from bounded open intervals by
performing complements and countable unions or intersections, and so every interval is
measurable.

To prove the first statement of Part (10), suppose that A; C Ay C A3 C ---. Let
= A; and B, = Ak \ Ax_q for k > 2, Then the sets By are measurable and disjoint

and we have A, U By, for all n € ZT and also U A, U B,,. Thus

k=1 n=1 n=1

A(B,) = lim 3 A(By) = lim A( U Bi) = lim A(Ay).

18

MU 4) =r(U B.) =

n

Finally, note that the second statement of Part 10 follows from the first, by taking
complements in A,



1.13 Theorem: All open and closed sets in R are measurable.

Proof: Recall that every set in R™ (or any metric or topological space) is equal to the
disjoint union of its connected components, and recall that the connected components of
an open set are all open. Note that the set of connected components of an open set in
R"™ is at most countable because we can choose an element of Q™ inside each of the open
connected components. Also recall that the connected sets in R are the intervals in R. It
follows that every nonempty open set in R is equal to the finite or countable disjoint union of
its connected components, each of which is a nonempty open interval. Thus every open set
in R is measurable. We also remark that when the connected components of the nonempty

open set U C R are the disjoint open intervals Iy, Io, I3, - - - we have A(U) = ) |Ii|. Closed
k>1

sets are also measurable because every closed set is the complement of an open set.
1.14 Corollary: For A C R we have

A*(A) = inf {\U) |U C R is open with AC U}.
1.15 Example: The (standard) Cantor set is the set C' C [0, 1] constructed as follows.
Let Cy = [0,1]. Let I; be the open middle third of Cy, that is let I; = (%, %)7 and let
Cy = Ap\Uy = [O, %] U [%, 1} . Let I and I3 be the open middle thirds of the two component
intervals of C', that is let Iy = (%, %) and I3 = (%, %), and let Cy = C1 \ (I2 U I3). Having
constructed the set C},, which is the disjoint union of 2* closed intervals each of length SL’“’
let Iok, ok, , Ior+1_q be the open middle thirds of these 2* component intervals and
let Ck+1 = Ck \ (]Qk,12k+1, cet ,12k+1_1). Finally, we let

C=( Ch

k=1
Since Cyp O C; D Cy D ---, and since each C}, is the disjoint union of 2* closed intervals
each of size 5r so that A(Cy) = (%)k, we have

A(C) = lim A(Cr) =0.

Note that Cj, is the set of all numbers = € [0, 1] which can be written in base 3 such that
the the first k& digits of = are not equal to 1, and so C is the set of all numbers = € [0, 1]
which can be written in base 3 with none of the digits of x equal to 1, and it follows that
the cardinality of C' is |C| = 2.

1.16 Example: We can construct a (generalized) Cantor set C' C [0,1], having any
desired value for the measure A\(C) < 1 as follows. Let 0 < m < 1. Choose a sequence

o]
of positive real numbers aj,as,--- with > ar = 1 —m. Let Cy = [0,1] and note that
k=1
A(Cp) = 1. Choose an open interval I; C Cy with A(I1) = a; such that Cy\ I7 is the disjoint
union of two nondegenerate closed intervals each of measure less than % Let Cy = Co\ I
and note that A\(Cy;) = 1 — a;. Having constructed the set Cj, which is the disjoint
union of 2* nondegenerate closed intervals each of measure less than 2% and having total
measure A(Cy) = 1—(a;+ag+---+ay), we choose 2¥ open intervals Iox, Iok 1, -+, Ioet1_q
which are contained in each of the 2¥ component intervals of C} so that the set Cry1 =
Ci \ (I U- - -Ulyk41_1) is the disjoint union of 281 non-degenerate closed intervals each of
measure less than 5z and having total measure A(Cj41) = 1— (a3 + -+ + ap41). Finally,

we let C'= () Cf and note that A(C') = lim AC) =1— > ar = m.
k=1 k—oco k=1

6



1.17 Theorem: Let M be the set of all measurable subsets of R. Then |M| = 22"°

Proof: Let C be the standard Cantor set. Because A(C) = 0 it follows that every subset
of C is measurable. Because |C| = 2% we have

22 = [{AJACR}| > |M| > [{A]A C C}| = 2™

1.18 Theorem: There exists a nonmeasurable set in R.

Proof: Define an equivalence relation on the set [0, 1] by defining z ~ y when y — z € Q.
Let C' denote the set of equivalence classes. For each ¢ € C, choose an element x. € ¢
and let A = {z.|]c € C} C [0,1]. We shall prove that the set A is not measurable. Let
QnNJ0,2] = {a1,as,as,- -}, with the ay, distinct. For each k € Z*, let Ay, = ar+A C [0, 3].
We claim that the sets Aj are disjoint. Let k,¢ € Z™ and suppose that A, N A, # 0.
Choose y € ArNAy, say y = ar +x. = ag+ x4 where ¢,d € C. Since x.—xqg =ar—ar € Q
we have x. ~ x4 and hence ¢ = d (since we only chose one element from each class). Since
¢ = d we have x. = x4, hence ar = ay, and hence k = £. Thus the sets A, are disjoint, as
oo
claimed. Next, we claim that [1,2] C |J Ak. Let y € [1,2]. Since y — 1 € [0, 1] we have

k=1
y— 1€ c for some ¢ € C. Since y — 1 € ¢ we have y — 1 — x. € Q hence also y — x. € Q.

Since y € [1,2] and z. € [0,1] we have y — z. € [0,2]. Since y —z. € QN [0,2] we have
y — . = ay for some k € Z* so that y € Ag. This proves that [1,2] C |J Ax.

k=1
Suppose, for a contradiction, that the set A is measurable. By translation, each of

the sets Ay = ap + A is measurable with A(Ax) = A(A). Since the sets Ay are disjoint and
measurable, additivity gives

00 0,
A
<kU 0.

=1 ) = k§1 M) = kil ANA) = { 0, if A(4)

oo , if A(4) >

But since [0,1] € |J Ax C [0,3] we also have 1 < A( |J Ax) < 3, giving the desired
k=1 k=1
contradiction.

1.19 Notation: Let X be a set. For any set C of subsets of X we write
C, = { U Ak‘ each Ay, ec} and Cs = { N Ak‘ cach Ay, ec}.
k=1 k=1

Note that C,, = C, and Css = Cs.

1.20 Definition: Let X be a set. A g-algebra in X is a set C of subsets of X such that

(1) 0 ec,
(2)if A €C then A°= X\ A€, and
(3) if Al,AQ,Ag,"' € C then U Ak eC.
k=1
Note that when C is a o-algebra in X we have C, = C and Cs = C.

1.21 Notation: In a metric space (or topological space) X, we let G = G(X) denote the
set of all open sets in X and we let F = F(X) denote the set of all closed subsets of X.
Note that G, = G and Fs = F.



1.22 Example: For any set X, the set {f), X} and the set P(X) of all subsets of X are
o-algebras in X, The set M = M(R) of all measurable sets in R is a o-algebra in R.

1.23 Note: Note that given any set C of subsets of a set X there exists a unique smallest
o-algebra in X which contains C, namely the intersection of all o-algebras in X which
contain C.

1.24 Definition: For a metric space (or topological space) X, the Borel o-algebra of
subsets of X, denoted by B = B(X), is the smallest o-algebra in X which contains G
(hence also F). The elements of B are called Borel sets. Note that B contains all of the
sets G,Gs,Gs0,Gos0, - - - and all of the sets F, F,, Fos, Fosos -

1.25 Exercise: Show that, in R, we have F C G5 or, equivalently, that G C F,,
1.26 Theorem: All Borel sets in R are measurable.

Proof: The set M of all measurable subsets of R is a o-algebra which contains G, and
the Borel o-algebra B is the intersection of all o-algebra in which contain G, so we have

B C M.

1.27 Remark: It can be shown, using transfinite induction, that in R we have |B| = 2Xo.
Since |B| < |M], it follows that there exist measurable sets which are not Borel.

1.28 Theorem: For every set A C R there exists a set B € G5 with A C B such that
A(B) = A*(A4).

Proof: Let A C R. If \*(A) = oo then we can choose B = R. Suppose that \*(A) < oo.

(@)
For each n € Z™, choose bounded open intervals Ini,In2,Ins, - such that A C {J I
k=1

and Y |1 k] < A*(A)+ 2L, thenlet U, = |J I, Note that for each n € Z the set U, is
k=1 k=1

open with A C U,,, and we have A(U,,) < 3 |[I, x| < M (A)+ L. Let B= () U, and note
k=1

n
n=1

that B € Gs. Since A C U, for all n € Z*, we have A C (| U,, that is A C B, and hence
n=1

A*(A) < X(B). For every n € Z* we have B C U, so that A(B) < A(U,) < A*(A) + 2,

and it follows that A\(B) < A*(A). Thus A(B) = A*(A), as required.

1.29 Theorem: Let A C R. Then the following statements are equivalent.

(1) A is measurable.

(2) For every € > 0 there exists an open set U with A C U C R such that \*(U \ A) < e.
(3) There exists a set B € G5 with A C B C R such that \*(B \ A) = 0.

(4) For every € > 0 there exists a closed set K C A such that \*(A\ K) < e.

(5) There exists a set C € F, with C C A such that \*(A\ C) = 0.

Proof: We prove that (1) is equivalent to (3) and leave proofs of other equivalences as an
exercise. To show that (3) implies (1), suppose that there exists a set B € G5 with A C B
such that A*(B \ A) = 0. Since \*(B \ A) = 0 we know that B\ A is measurable, and
hence the set A = B\ (B \ A) is also measurable.



Suppose, conversely, that A is measurable. If A(A) < oo then, by Theorem 1.28, we can
choose B € Gs with A C B such that A(B) = A(A), and then A\(B\ A) = A\(B) —A(4) =0,
as required. Suppose that A(A) = oo. Let Ag = ANZ and let By = Ay. Note that By is
closed, hence By € Gs. Enumerate the intervals (m,m + 1) by letting Iox—1 = (k — 1, k)
and Iy, = (=k,—k+1) for k > 1. For n > 1, let A, = AN I,. Using Theorem 1.28, we
can choose F,, € Gs with A,, C E,, and A\(A,,) = A(E,). Let B, = E, N1, so that B,, € G5
with A,, C B, C I,, and A(4,,) = A(B,). Note that A\(B,, \ A,) = A(B,,) — A(A4,) = 0. Let
B =;" o Bn. Then we have A(B\ A) = MU, Zo(Bn \ An)) = > ne o AM(Bn \ 4,) = 0.

It remains to show that B € Gs. For each n > 1, since B, € Gs we can write
By, = p—y Va,x where each V,, j is open. Since B,, C In we also have B,, = (o Unk
where Uy, = V,, N I,,. Since Uy, C I,, and the sets I,, are disjoint, it follows (as you can
verify) that U,—; Niey Unk = Npey Upey Un i and hence | J7—, B,, € Gs. Since By € Gs
and (J,—, By, € G5, we also have B = ByUJ,—, By, € Gs, as required.

1.30 Theorem: Let A, B C R. Suppose that A C B and B is measurable with A\(B) < oo.
Then A is measurable if and only if A\(B) = A*(A) + A\*(B\ A).

Proof: If A is measurable then for all X C R we have A\*(X) = A* (X NA) + A (X \ A) so
that in particular (taking X = B) we have \*(B) = A\*(A) + A\*(B \ A).

Suppose that A(B) = \*(A) + A*(B\ A), and let X C R. By Theorem 1.28, we can
choose E € Gs with X N B C E such that A(F) = A*(X N B). Let C = EN B and note

that C' is measurable with X N B C C' C B. Since X N B C C we have \*(X N B) < A\(C)
and since C' C E we have A\(C) < A(F) = A*(X N B), and so A\(C) = \*(X N B).

We claim that A(C) = A*(C' N A) + X*(C'\ A). Note that

A(B) = A" (A) + A*(B\A) , as assumed in the statement of the theorem
=A(ANC)+ X (A\C)+ X" ((B\A) NC)+ A" ((B\A)\C), since C is measurable
=AN(ANC)+ X (A\C) + X" (C\A) + \*((B\A)\C) , since (B\A)NC =C\A
=N(CNA)+ X (C\A) + X (A\C) + \*((B\A)\C) , by reordering terms
> )\*(C NA)+ A (C\A) + A\(B\C) , since (A\C)U ((B\A)\C) = B\C
AMC) + A(B\C) , since (CNA)U(C\A) =
A(B) , since B is the disjoint union B = C' U (B\C).

Since the first and last terms above are equal, it follows that all terms must be equal, so
in particular we have \*(C' N A) + A*(C \ A) + A(B\ C) = X*(C) + A(B \ C) and hence
(since A(B\ C) < A(B) < o0) we have \*(CNA) + X (C'\ A) = X*(C), as claimed.

Finally, note that

A (X) =X (XNB)+ A\ (X \ B), since B is measurable
=\ (C)+ N (X \ B) , since \*(X N B) =\ (C)
=N (CNA)+ X (C\A)+ X (X \ B), by the above claim
>AN((XNB)NA)+ XN (XNB)\A)+ X (X \ B) , since XN B CC,
=NXNA)+N(XNB)\A)+ X (X \B),since ( XNB)NA=XnNA
>A(XNA)+ A (X\A),since ((XNB)\AUKX\B)=X\A4

so that A is measurable, as required.



1.31 Definition: Let X be a metric space and let A C X. We say A is dense (in X)
when for every nonempty open ball B C X we have BN A # (), or equivalently when
A= X. We say A is nowhere dense (in X) when for every nonempty open ball B C R
there exists a nonempty open ball C C B with C' N A = (), or equivalently when A°=9.

1.32 Example: The generalized Cantor sets are nowhere dense in R.

1.33 Note: When A C B C X, note that if A is dense in X then so is B and, on the
other hand, if B is nowhere dense in X then so is A.

1.34 Note: When 4, B C X with B = A° = X \ 4, note that A is nowhere dense <=
A°=() < B°=X <= the interior of B is dense.

1.35 Definition: Let A C X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when A€ is first category.

1.36 Example: Every countable set in R is first category since if A = {a1,a2,as, -}

then we have A = J {ar}. In particular Q is first category and Q¢ = R\ Q is residual.
k=1

1.37 Note: If A C X is first category then so is every subset of A.

oo
1.38 Note: If Ay, Ay, A3, -+ C X are are all first category then so is |J Ag.
k=1

1.39 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.

(2) Every residual set in X is dense.

(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.
oo
Let A C X be first category, say A = |J C,, where each C), is nowhere dense. Suppose,
n=1
for a contradiction, that A has nonempty interior, and choose an open ball By = B(ag,m0)
with 0 < rg < 1 such that By € A . Since each C,, is nowhere dense, ‘we can chose a
nested sequence of open balls B,, = B(ay,,r,) with 0 < r, < 2% such that B,, C B,,_1 and
B, NC, = 0. Because 1, — 0, it folows that the sequence {a,} is Cauchy. Because X

is complete, it follows that {a,} converges in X, say a = lim a,. Note that a € B, for
n— o0

all n since a; € B, for all k > n. Since a € By and By C A we have a € A. But since
a € Byforaln >1,and B, NC, =0, we have a ¢ C,, for allm > 1 hence a ¢ |J C,, that

n=1
isa ¢ A.

1.40 Example: Recall that Q is first category and Q¢ is residual. The Baire Category
Theorem shows that Q¢ cannot be first category because if Q and Q¢ were both first
category then R = Q U Q° would also be first category, but this is not possible since R
does not have empty interior.

1.41 Exercise: For each n € Z™, let f, : R — R be continuous. Suppose that for all
x € R there exists n € Z* such that f,(z) € Q. Prove that there exists n € Z* such that
fn is constant in some nondegenerate interval.
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1.42 Exercise: Show that in R we have F, # G5 and we have G5 # Gs,.
1.43 Remark: Note that each of the following sets C of subsets of R

C= {A C R‘ A is finite or countable}
C={ACR|AA) =0}
C= {A C ]R‘ A is first category}

has the following properties:
(1)if AC B and B € C then A € C,

(2) if Al,AQ,Ag, -+« € C then U A, €C, and
k=1
(3) if A € C then A° = ().

Because of this, it seems reasonable to consider the sets in C to be, in some sense, “small”.
The following theorem, then, states that every set in R is the union of two small sets.

1.44 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1,a2,a3,---}. For k, 0 € ZF, let I = (ag — 2,6%, ay + 2,9%) and for

ke Z", let U, = | Ixe. Note that Uy O Uy 2 Us D --- and for each k € Z1 we have

(=1
00

Q C Uy, and A(Uy) < 3 Il = 57==. Let B = () Us. Note that B is residual (it is

=1 k=1
a countable intersection of dense open sets) and we have A\(B) = klim AMUk) = 0 since
— 00

AUg) < 2% for all £ € Z*. Finally note that any set A is equal to the disjoint union
A= (ANB)U (AN B°), and we have A\(AN B) = 0 and the set A N B¢ is first category.
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