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Chapter 1. Cardinality

1.1 Definition: Let A and B be sets and let f : A → B. Recall that the domain of f
and the range (or image) of f are the sets

Domain(f) = A , Range(f) = f(A) =
{
f(x)

∣∣x ∈ A} .
For S ⊆ A, the image of S under f is the set

f(S) =
{
f(x)

∣∣x ∈ S}.
For T ⊆ B, the inverse image of T under f is the set

f−1(T ) =
{
x ∈ A

∣∣f(x) ∈ T
}
.

1.2 Definition: Let A, B and C be sets, let f : A → B and let g : B → C. We define
the composite function g ◦ f : A→ C by (g ◦ f)(x) = g

(
f(x)

)
for all x ∈ A.

1.3 Definition: Let A and B be sets and let f : A→ B. We say that f is injective (or
one-to-one, written as 1 : 1) when for every y ∈ B there exists at most one x ∈ A such
that f(x) = y. Equivalently, f is injective when for all x1, x2 ∈ A, if f(x1) = f(x2) then
x1 = x2. We say that f is surjective (or onto) when for every y ∈ B there exists at least
one x ∈ A such that f(x) = y. Equivalently, f is surjective when Range(f) = B. We say
that f is bijective (or invertible) when f is both injective and surjective, that is when
for every y ∈ B there exists exactly one x ∈ A such that f(x) = y. When f is bijective,
we define the inverse of f to be the function f−1 : B → A such that for all y ∈ B, f−1(y)
is equal to the unique element x ∈ A such that f(x) = y. Note that when f is bijective so
is f−1, and in this case we have (f−1)−1 = f .

1.4 Theorem: Let f : A→ B and let g : B → C. Then

(1) if f and g are both injective then so is g ◦ f ,

(2) if f and g are both surjective then so is g ◦ f , and

(3) if f and g are both invertible then so is g ◦ f , and in this case (g ◦ f)−1 = f−1 ◦ g−1.

Proof: To prove Part 1, suppose that f and g are both injective. Let x1, x2 ∈ A. If
g(f(x1)) = g(f(x2)) then since g is injective we have f(x1) = f(x2), and then since f is
injective we have x1 = x2. Thus g ◦ f is injective.

To prove Part 2, suppose that f and g are surjective. Given z ∈ C, since g is surjective
we can choose y ∈ B so that g(y) = z, then since f is surjective we can choose x ∈ A so
that f(x) = y, and then we have g(f(x)) = g(y) = z. Thus g ◦ f is surjective.

Finally, note that Part 3 follows from Parts 1 and 2.

1.5 Definition: For a set A, we define the identity function on A to be the function
IA : A→ A given by IA(x) = x for all x ∈ A. Note that for f : A→ B we have f ◦ IA = f
and IB ◦ f = f .

1.6 Definition: Let A and B be sets and let f : A→ B. A left inverse of f is a function
g : B → A such that g ◦ f = IA. Equivalently, a function g : B → A is a left inverse of f
when g

(
f(x)

)
= x for all x ∈ A. A right inverse of f is a function h : B → A such that

f ◦ h = IB . Equivalently, a function h : B → A is a right inverse of f when f
(
h(y)

)
= y

for all y ∈ B.
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1.7 Theorem: Let A and B be nonempty sets and let f : A→ B. Then

(1) f is injective if and only if f has a left inverse,
(2) f is surjective if and only if f has a right inverse, and
(3) f is bijective if and only if f has a left inverse g and a right inverse h, and in this case
we have g = h = f−1.

Proof: To prove Part 1, suppose first that f is injective. Since A 6= ∅ we can choose a ∈ A
and then define g : B → A as follows: if y ∈ Range(f) then (using the fact that f is 1:1)
we define g(y) to be the unique element xy ∈ A with f(xy) = y, and if y /∈ Range(f) then
we define g(y) = a. Then for every x ∈ A we have y = f(x) ∈ Range(f), so g(y) = xy = x,
that is g

(
f(x)

)
= x. Conversely, if f has a left inverse, say g, then f is 1:1 since for all

x1, x2 ∈ A, if f(x1) = f(x2) then x1 = g
(
f(x1)

)
= g
(
f(x2)

)
= x2.

To prove Part 2, suppose first that f is onto. For each y ∈ B, choose xy ∈ A with
f(xy) = y, then define g : B → A by g(y) = xy (we need the Axiom of Choice for
this). Then g is a right inverse of f since for every y ∈ B we have f

(
g(y)

)
= f(xy) = y.

Conversely, if f has a right inverse, say g, then f is onto since given any y ∈ B we can
choose x = g(y) and then we have f(x) = f

(
g(y)

)
= y.

To prove Part 3, suppose first that f is bijective. The inverse function f−1 : B → A
is a left inverse for f because given x ∈ A we can let y = f(x) and then f−1(y) = x so
that f−1

(
f(x)

)
= f−1(y) = x. Similarly, f−1 is a right inverse for f because given y ∈ B

we can let x be the unique element in A with y = f(x) and then we have x = f−1(y) so
that f

(
f−1(y)

)
= f(x) = y. Conversely, suppose that g is a left inverse for f and h is a

right inverse for f . Since f has a left inverse, it is injective by Part 1. Since f has a right
inverse, it is surjective by Part 2. Since f is injective and surjective, it is bijective. As
shown above, the inverse function f−1 is both a left inverse and a right inverse. Finally,
note that g = f−1 = h because for all y ∈ B we have

g(y) = g
(
f
(
f−1(y)

))
= f−1(y) = f−1

(
f
(
h(y)

))
= h(y) .

1.8 Corollary: Let A and B be nonempty sets. Then there exists an injective map
f : A→ B if and only if there exists a surjective map g : B → A.

Proof: Suppose f : A→ B is an injective map. Then f has a left inverse. Let g be a left
inverse of f . Since g ◦ f = IA, we see that f is a right inverse of g. Since g has a right
inverse, g is surjective. Thus there is a surjective map g : B → A. Similarly, if g : B → A
is surjective, then it has a right inverse f : A→ B which is injective.

1.9 Definition: Let A and B be sets. We say that A and B have the same cardinality,
and we write |A| = |B|, when there exists a bijective map f : A→ B (or equivalently when
there exists a bijective map g : B → A). We say that the cardinality of A is less than
or equal to the cardinality of B, and we write |A| ≤ |B|, when there exists an injective
map f : A → B (or equivalently when there exists a surjective map g : B → A). We say
that the cardinality of A is less than the cardinality of B, and we write |A| < |B|, when
|A| ≤ |B| and |A| 6= |B|, (that is when there exists an injective map f : A→ B but there
does not exist a bijective map g : A → B). We also write |A| ≥ |B| when |B| ≤ |A| and
|A| > |B| when |B| < |A|.
1.10 Example: Let N = {0, 1, 2, · · ·}, let Z+ = {1, 2, 3, · · ·}, and let 2N = {0, 2, 4, 6, · · ·}.
The map f : N→ Z+ given by f(k) = k+1 is bijective, so |Z+| = |N|. The map g : N→ 2N
given by g(k) = 2k is bijective, so |2N| = |N|. The map h : N→ Z given by h(2k) = k and
h(2k + 1) = −k − 1 for k ∈ N is bijective, so we have |Z| = |N|. The map p : N× N → N
given by p(k, l) = 2k(2l + 1)− 1 is bijective, so we have |N× N| = |N|.
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1.11 Theorem: For all sets A, B and C,

(1) |A| = |A|,
(2) if |A| = |B| then |B| = |A|,
(3) if |A| = |B| and |B| = |C| then |A| = |C|,
(4) |A| ≤ |B| if and only if (|A| = |B| or |A| < |B|), and
(5) if |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|.

Proof: Part 1 holds because the identity function IA : A → A is bijective. Part 2 holds
because if f : A→ B is bijective then so is f−1 : B → A. Part 3 holds because if f : A→ B
and g : B → C are bijective then so is the composite g ◦ f : A→ C. The rest of the proof
is left as an exercise.

1.12 Definition: Let A be a set. For each n ∈ N, let Sn = {0, 1, 2, · · · , n− 1}. For n ∈ N,
we say that the cardinality of A is equal to n, or that A has n elements, and we write
|A| = n, when |A| = |Sn|. We say that A is finite when |A| = n for some n ∈ N, we say
A is infinite when A is not finite, and we say A is countably infinite when |A| = |N|.

1.13 Note: When a set A is finite with |A| = n, and when f : A → Sn is a bijection, if
we let ak = f−1(k) for each k ∈ Sn then we have A = {a0, a1, · · · , ak−1} with the elements
ak distinct. Conversely, if A = {a0, a1, · · · , ak−1} with the elements ak all distinct, then
we define a bijection f : A→ Sn by f(ak) = k. Thus we see that A is finite with |A| = n
if and only if A is of the form A = {a0, a1, · · · , an−1} with the elements ak all distinct.
Similarly, a set A is countably infinite if and only if A is of the form A = {a0, a1, a2, · · ·}
with the elements ak all distinct.

1.14 Note: For n ∈ N, if A is a finite set with |A| = n+ 1 and a ∈ A then |A \ {a}| = n.
Indeed, if A = {a0, a1, · · · , an} with the elements ai distinct, and if a = ak so that we have
A \ {a} = {a0, a1, · · · , ak−1, ak+1, · · · , an}, then we can define a bijection f : Sn → A \ {a}
by f(i) = ai for 0 ≤ i < k and f(i) = ai+1 for k ≤ i < n.

1.15 Theorem: Let A be a set. Then the following are equivalent.

(1) A is infinite.
(2) A contains a countably infinite subset.
(3) |N| ≤ |A|
(4) There exists a map f : A→ A which is injective but not surjective.

Proof: To prove that (1) implies (2), suppose A is infinite. Since A 6= ∅ we can choose
a0 ∈ A. Since A 6= {a0} we can choose a1 ∈ A \ {a0}. Since A 6= {a0, a1} we can choose
a3 ∈ A \ {a0, a1}. We continue: having chosen distinct elements a0, a1, · · · , an−1 ∈ A, since
A 6= {a0, a1, · · · , an−1} we can choose an ∈ A \ {a0, a1, · · · , an−1}. In this way, we obtain
a countably infinite set {a0, a1, a2, · · ·} ⊆ A.

Next we show that (2) is equivalent to (3). Suppose that A contains a countably
infinite subset, say {a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Since the ai are
distinct, the map f : N → A given by f(k) = ak is injective, and so we have |N| ≤ |A|.
Conversely, suppose that |N| ≤ |A|, and chose an injective map f : N→ A. Considered as
a map from N to f(N), f is bijective, so we have |N| = |f(N)| hence f(N) is a countably
infinite subset of A.

Next, let us show that (2) implies (4). Suppose that A has a countably infinite subset,
say {a0, a1, a2, · · ·} ⊆ A with the element ai distinct. Define f : A → A by f(ak) = ak+1

for all k ∈ N and by f(b) = b for all b ∈ A \ {a0, a1, a2, · · ·}. Then f is injective but not
surjective (the element a0 is not in the range of f).
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Finally, to prove that (4) implies (1) we shall prove that if A is finite then every
injective map f : A→ A is surjective. We prove this by induction on the cardinality of A.
The only set A with |A| = 0 is the set A = ∅, and then the only function f : A→ A is the
empty function, which is surjective. Since that base case may appear too trivial, let us
consider the next case. Let n = 1 and let A be a set with |A| = 1, say A = {a}. The only
function f : A → A is the function given by f(a) = a, which is surjective. Let n ≥ 1 and
suppose, inductively, that for every set A with |A| = n, every injective map f : A → A is
surjective. Let B be a set with |B| = n+ 1 and let g : B → B be injective. Suppose, for a
contradiction, that g is not surjective. Choose an element b ∈ B which is not in the range
of g so that we have g : B → B \ {b}. Let A = B \ {b} and let f : A → A be given by
f(x) = g(x) for all x ∈ A. Since g : B → A is injective and f(x) = g(x) for all x ∈ A, f is
also injective. Again since g is injective, there is no element x ∈ B \ {b} with g(x) = g(b),
so there is no element x ∈ A with f(x) = g(b), and so f is not surjective. Since |A| = n
(by the above note), this contradicts the induction hypothesis. Thus g must be surjective.
By the Principle of Induction, for every n ∈ N and for every set A with |A| = n, every
injective function f : A→ A is surjective.

1.16 Corollary: Let A and B be sets.

(1) If A is countably infinite then A is infinite.
(2) When |A| ≤ |B|, if B is finite then so is A (equivalently if A is infinite then so is B).
(3) If |A| = n and |B| = m then |A| = |B| if and only if n = m.
(4) If |A| = n and |B| = m then |A| ≤ |B| if and only if n ≤ m.
(5) When one of the two sets A and B is finite, if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Proof: Part 1 is immediate: if A is countably infinite then A contains a countably infinite
subset (itself), so A is infinite, by Theorem 1.15.

To prove Part 2, suppose that |A| ≤ |B| and that |A| is infinite. Since A is infinite,
we have |N| ≤ |A| (by Theorem 1.15). Since |N| ≤ |A| and |A| ≤ |B| we have |N| ≤ |B|
(by Theorem 1.11). Since |N| ≤ |B|, B is infinite (by Theorem 1.15 again).

To Prove Part 3, suppose that |A| = n and |B| = m. If n = m then we have Sn = Sm
and so |A| = |Sn| = |Sm| = |B|. Conversely, suppose that |A| = |B|. Suppose, for a
contradiction, that n 6= m, say n > m, and note that Sm ⊂6= Sn. Since |A| = |B| we have

|Sn| = |A| = |B| = |Sm| so we can choose a bijection f : Sn → Sm. Since Sm ⊂6= Sn, we can

consider f as a function f : Sn → Sn which is injective but not surjective. This contradicts
Theorem 1.15, and so we must have n = m. This proves Part 3.

To prove Part 4, we again suppose that |A| = n and |B| = m. If n ≤ m then Sn ⊆ Sm
so the inclusion map I : Sn → Sm is injective and we have |A| = |Sn| ≤ |Sm| = |B|.
Conversely, suppose that |A| ≤ |B| and suppose, for a contradiction, that n > m. Since
|A| ≤ |B| we have |Sn| = |A| ≤ |B| = |Sm| so we can choose an injective map f : Sn → Sm.
Since n > m we have Sm ⊂6= Sn so we can consider f as a map f : Sn → Sn, and this map

is injective but not surjective. This contradicts Theorem 1.15, and so n ≤ m.
Finally, to prove Part 5 we suppose that one of the two sets A and B is finite, and

that |A| ≤ |B| and |B| ≤ |A|. If A is finite then, since |B| ≤ |A|, Part 2 implies that B is
finite. If B is finite then, since |A| ≤ |B|, Part 2 implies that A is finite. Thus, in either
case, we see that A and B are both finite. Since A and B are both finite with |A| ≤ |B|
and |B| ≤ |A|, we must have |A| = |B| by Parts 3 and 4.
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1.17 Theorem: Let A be a set. Then |A| ≤ |N| if and only if A is finite or countably
infinite.

Proof: First we claim that every subset of N is either finite or countably infinite. Let
A ⊆ N and suppose that A is not finite. Since A 6= ∅, we can set a0 = minA (using
the Well-Ordering Property of N). Note that {0, 1, · · · , a0} ∩ A = {a0}. Since A 6= {a0}
(so the set A \ {a0} is nonempty) we can set a1 = minA \ {a0}. Then we have a0 <
a1 and {0, 1, 2, · · · , a1} ∩ A = {a0, a1}. Since A 6= {a0, a1} we can set a2 = minA \
{a0, a1}. Then we have a0 < a1 < a2 and {0, 1, 2, · · · , a3} ∩A = {a0, a1, a2}. We continue
the procedure: having chosen a0, a1, · · · , an−1 ∈ A with a0 < a1 < · · · < an−1 such
that A ∩ {0, 1, · · · , an−1} = {a0, a1, · · · , an−1}, since A 6= {a0, a1, · · · , an−1} we can set
an = minA \ {a0, a1, · · · , an−1}, and then we have a0 < a1 < · · · < an−1 < an and
A{0, 1, 2, · · · , an} ∩ A = {a0, a1, · · · , an}. In this way, we obtain a countably infinite set
{a0, a1, a2, · · ·} ⊆ A with a0 < a1 < a2 < · · · with the property that for all m ∈ N,
{0, 1, 2, · · · , am} ∩ A = {a0, a1, · · · , am}. Since 0 ≤ a0 < a1 < a2 < · · ·, it follows (by
induction) that ak ≥ k for all k ∈ N. It follows in turn that A ⊆ {a0, a1, a2 · · ·} because
given m ∈ A, since m ≤ am we have

m ∈ {0, 1, 2, · · · ,m} ∩A ⊆ {0, 1, 2, · · · , am} ∩A = {a0, a1, · · · , am}.
Thus A = {a0, a1, a2, · · ·} and the elements ai are distinct, so A is countably infinite. This
proves our claim that every subset of N is either finite or countably infinite.

Now suppose that |A| ≤ |N | and choose an injective map f : A → N. Since f is
injective, when we consider it as a map f : A→ f(A), it is bijective, and so |A| = |f(A)|.
Since f(A) ⊆ N, the previous paragraph shows that f(A) is either finite or countably
infinite. If f(A) is finite with |f(A)| = n then |A| = |f(A)| = |Sn|, and if f(A) is
countably infinite then we have |A| = |f(A)| = |N|. Thus A is finite or countably infinite.

1.18 Theorem: Let A be a set. Then

(1) |A| < |N| if and only if A is finite,
(2) |N| < |A| if and only if A is neither finite nor countably infinite, and
(3) if |A| ≤ |N| and |N| ≤ |A| then |A| = |N|.

Proof: Part 1 follows from Theorem 1.15 because

|A| < |N| ⇐⇒ (|A| ≤ |N| and |A| 6= |N|)
⇐⇒ (A is finite or countably infinite and A is not countably infinite)

⇐⇒ A is finite

and Part 2 follows from Theorem 1.17 because

|N| < |A| ⇐⇒ (|N| ≤ |A| and |N| 6= |A|)
⇐⇒ (A is not finite and A is not countably infinite.)

To prove Part 3, suppose that |A| ≤ |N| and |N| ≤ |A|. Since |A| ≤ |N|, we know that
A is finite or countably infinite by Theorem 1.17. Since |N| ≤ |A|, we know that that A
is infinite by Theorem 1.15. Since A is finite or countably infinite and A is not finite, it
follows that A is countably infinite. Thus |A| = |N|.

1.19 Definition: Let A be a set. When A is countably infinite we write |A| = ℵ0. When
A is finite we write |A| < ℵ0. When A is infinite we write |A| ≥ ℵ0. When A is either
finite or countably infinite we write |A| ≤ ℵ0 and we say that A is at most countable.
when A is neither finite nor countably infinite we write |A| > ℵ0 and we say that A is
uncountable (or uncountably infinite).
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1.20 Theorem:

(1) If A and B are countably infinite sets, then so is A×B.
(2) If A and B are countably infinite sets, then so is A ∪B.
(3) If A0, A1, A2, · · · are countably infinite sets, then so is

⋃∞
k=0Ak.

(4) Q is countably infinite.

Proof: To prove both Parts 1 and 2, let A = {a0, a1, a2, · · ·} with the ai distinct and let
B = {b0, b1, b2, · · ·} with the bi distinct. Since every positive integer can be written uniquely
in the form 2k(2l+1) with k, l ∈ N, the map f : A×B → N given by f(ak, bl) = 2k(2l+1)−1
is bijective, and so |A×B| = |N|. This proves Part 1. Since the map g : N→ A∪B given
by g(k) = ak is injective, we have |N| ≤ |A ∪ B|. Since the map h : N → A ∪ B given by
h(2k) = ak and h(2k + 1) = bk is surjective, we have |A ∪ B| ≤ |N |. Since |N| ≤ |A ∪ B|
and |A ∪B| ≤ |N|, we have |A ∪B| = |N| by Part 3 of Theorem 1.18. This proves 2.

To prove Part 3, for each k ∈ N, let Ak = {ak0, ak1, ak2, · · ·} with the aki distinct.
Since the map f : N→

⋃∞
k=0Ak given by f(k) = a0,k is injective, |N| ≤

∣∣⋃∞
k=0Ak

∣∣. Since
N × N is countably infinite by Part (1), and since the map g : N × N →

⋃∞
k=0Ak given

by g(k, l) = ak,l is surjective, we have
∣∣⋃∞

k=0Ak
∣∣ ≤ |N× N| = |N|. By Part 3 of Theorem

1.18, we have
∣∣⋃∞

k=0Ak
∣∣ = |N|, as required.

Finally, we prove Part 4. Since the map f : N → Q given by f(k) = k is injective,
we have |N| ≤ |Q|. Since the map g : Q → Z × Z, given by g

(
a
b

)
= (a, b) for all a, b ∈ Z

with b > 0 and gcd(a, b) = 1, is injective, and since Z × Z is countably infinite, we have
|Q| ≤ |Z× Z| = |N|. Since |N| ≤ |Q| and |Q| ≤ |N|, we have |Q| = |N|, as required.

1.21 Definition: For a set A, let P(A) denote the power set of A, that is the set of all
subsets of A, and let 2A denote the set of all functions from A to S2 = {0, 1}.

1.22 Theorem:

(1) For every set A,
∣∣P(A)

∣∣ =
∣∣2A∣∣.

(2) For every set A, |A| <
∣∣P(A)

∣∣.
(3) R is uncountable.

Proof: Let A be any set. Define a map g : P(A) → 2A as follows. Given S ∈ P(A), that
is given S ⊆ A, we define g(S) ∈ 2A to be the map g(S) : A→ {0, 1} given by

g(S)(a) =

{
1 if a ∈ S,
0 if a /∈ S.

Define a map h : 2A → P(A) as follows. Given f ∈ 2A, that is given a map f : A→ {0, 1},
we define h(f) ∈ P(A) to be the subset

h(f) =
{
a ∈ A

∣∣f(a) = 1
}
⊆ A.

The maps g and h are the inverses of each other because for every S ⊆ A and every
f : A→ {0, 1} we have

f = g(S) ⇐⇒ ∀a ∈ A f(a) = g(S)(a) ⇐⇒ ∀a ∈ A f(a) =

{
1 if a ∈ S,

0 if a /∈ S,
⇐⇒ ∀a ∈ A

(
f(a) = 1 ⇐⇒ a ∈ S

)
⇐⇒

{
a ∈ A

∣∣f(a) = 1
}

= S ⇐⇒ h(f) = S.

This completes the proof of Part 1.
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Let us prove Part 2. Again we let A be any set. Since the the map f : A→ P(A) given
by f(a) = {a} is injective, we have |A| ≤

∣∣P(A)
∣∣. We need to show that |A| 6=

∣∣P(A)
∣∣.

Let g : A→ P(A) be any map. Let S =
{
a ∈ A

∣∣a /∈ g(a)
}

. Note that S cannot be in the
range of g because if we could choose a ∈ A so that g(a) = S then, by the definition of S,
we would have a ∈ S ⇐⇒ a /∈ g(a) ⇐⇒ a /∈ S which is not possible. Since S is not in
the range of g, the map g is not surjective. Since g was an arbitrary map from A to P(A),
it follows that there is no surjective map from A to P(A). Thus there is no bijective map
from A to P(A) and so we have |A| 6=

∣∣P(A)
∣∣, as desired.

Finally, we shall prove that R is uncountably infinite using the fact that every real
number has a unique decimal expansion which does not end with an infinite string of 9’s.
Define a map g : 2N → R as follows. Given f ∈ 2N, that is given a map f : N → {0, 1},
we define g(f) to be the real number g(f) ∈ [0, 1) with the decimal expansion g(f) =

0.f(0)f(1)f(2)f(3) · · ·, that is g(f) =
∞∑
k=0

f(k)10−k−1. By the uniqueness of decimal ex-

pansions, the map g is injective, so we have
∣∣2N∣∣ ≤ |R|. Thus |N| <

∣∣P(N)
∣∣ =

∣∣2N∣∣ ≤ |R|,
and so R is uncountably infinite, by Part 2 of Theorem 1.18.

1.23 Note: Part 2 of the above theorem shows that there is an infinite sequence of infinite
sets with strictly increasing cardinalities, namely

|N| <
∣∣2N∣∣ < ∣∣22N∣∣ < ∣∣∣222N∣∣∣ < · · ·

1.24 Theorem: (The Cantor-Schröder-Bernstein Theorem) Let A and B be sets. Suppose
that |A| ≤ |B| and |B| ≤ |A|. Then |A| = |B|

Proof: Since |A| ≤ |B| and |B| ≤ |A| we can choose injective functions f : A → B and
g : B → A. Since g : B → A is injective, the map g : B → g(B) is bijective so that
|B| = |g(B)|, and so it suffices to show that |A| = |g(B)|. Note that f(A) ⊆ B and
g(f(A)) ⊆ g(B) ⊆ A. Note that since f : A → B and g : B → A are injective, so
is the composite h = g ◦ f : A → A. Define sets An and Bn recursively by A0 = A,
B0 = g(B), An+1 = h(An) and Bn+1 = h(Bn). Since A ⊇ g(B) ⊇ g(f(A)) we have
A0 ⊇ B0 ⊇ A1, and if An ⊇ Bn ⊇ An+1 then we have h(An) ⊇ h(Bn) ⊇ h(An+1) so that
An+1 ⊇ Bn+1 ⊇ An+2. It follows, by induction, that

A0 ⊇ B0 ⊇ A1 ⊇ B1 ⊇ A2 ⊇ B2 ⊇ · · ·
Let U =

⋃∞
n=0(An \Bn) and V =

⋃∞
n=1(An \Bn) and W = A0 \U and note that A0 is the

disjoint union A0 = U ∪W and B0 is the disjoint union B0 = V ∪W . Since h is injective,
the maps h : An → h(An) = An+1 and h : Bn → h(Bn) = Bn+1 are bijective for each
n ∈ N, and so the maps h : (An \ Bn) → (An+1 \ Bn+1) are bijective for each n ∈ Z+,
and hence the map h : U → V is bijective, say k = h−1 : V → U . We have a bijection
F : A0 → B0 and its inverse G = F−1 : B0 → A0 given by

F (x) =

{
h(x) if x ∈ U
x if x ∈W

}
, G(y) =

{
k(y) if y ∈ V
y if y ∈W

}
and hence |A0| = |B0|, that is |A| = |g(B)|, as required.
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1.25 Exercise: Let A be a countably infinite set. Show that the set of finite sequences
with terms in A is countably infinite. Show that the set of all finite subsets of A is countably
infinite.

1.26 Example: Show that |R| =
∣∣2N∣∣.

Solution: g : 2N → R as follows: for f ∈ 2N we let g(f) be the real number g(f) ∈ [0, 1) with
decimal expansion g(f) = 0.f(0)f(1)f(2) · · · .. Then g is injective so

∣∣2N∣∣ ≤ |R|. Define
h : 2N → [0, 1) as follows: for f ∈ 2N let h(f) be the real number h(f) ∈ [0, 1] with binary
expansion h(f) = 0.f(0)f(1)f(2) · · ·. Then h is surjective so we have

∣∣[0, 1]
∣∣ ≤ ∣∣2N∣∣. The

map k : R→ [0, 1] given by k(x) = 1
2 + 1

π tan−1 x is injective so we have |R| ≤
∣∣[0, 1]

∣∣. Since

|R| ≤
∣∣[0, 1]

∣∣ ≤ ∣∣2N∣∣ and
∣∣2N∣∣ ≤ |R|, we have |R| =

∣∣2N∣∣ by the Cantor-Schroeder-Bernstein
Theorem.

1.27 Notation: For sets A and B, we write AB to denote the set of functions f : B → A.

1.28 Theorem: Let A, B, C and D be sets with |A| = |C| and |B| = |D|. Then

(1) if A ∩B = ∅ and C ∩D = ∅ then
∣∣A ∪B∣∣ =

∣∣C ∪D∣∣,
(2)

∣∣A×B∣∣ =
∣∣C ×D∣∣, and

(3)
∣∣AB∣∣ =

∣∣CD∣∣.
Proof: We prove Part 3 and leave the proofs of Parts 1 and 2 as an exercise. Since |A| = |C|
and |B| = |D| we can choose bijections f : A → C and g : B → D. Define F : AB → CD

by F (k) = f ◦ k ◦ g−1, where k ∈ AB , that is k : B → A. Define G : CD → AB

by G(`) = f−1 ◦ ` ◦ g, where ` ∈ CD, that is ` : D → C. Then for all ` ∈ AB we
have F (G(`)) = F (f−1 ◦ ` ◦ g) = f ◦ f−1 ◦ ` ◦ g ◦ g−1 = ` and for all k ∈ AB we have
G(F (k)) = G(f ◦ k ◦ g−1) = f−1 ◦ f ◦ k ◦ g−1 ◦ g = k. Thus F and G are inverses of one
another.

1.29 Definition: Note that, although we have defined what it means for two sets to have
the same cardinality, and what it means for one set to have a smaller cardinality than
another, we have not actually defined what the cardinality of a set is (we have defined the
meaning of the expressions |A| = |B|, |A| ≤ |B| and |A| < |B|, but we have not defined
the meaning of the term |A|). It is possible (but we shall not do it in this course) to define
certain specific sets called cardinals such that for every set A there exists a unique cardinal
κ with |A| = |κ|. We can then define the cardinality of a set A to be equal to the unique
cardinal κ such that |A| = |κ| and, in this case, we define the cardinality of the set A to be
|A| = κ. In foundational set theory, the natural numbers are defined, formally, to be equal
to the sets 0 = ∅, 1 = {0} = {∅}, 2 = {0, 1} =

{
∅, {∅}

}
and, in general, n + 1 = n ∪ {n}

so that the natural number n is equal to the set that we previously denoted by Sn, that
is n = Sn = {0, 1, · · · , n − 1

}
. The finite cardinals are equal to the natural numbers and

the countably infinite cardinal ℵ0 is equal to the set of natural numbers. The previous
theorem allows us to define arithmetic operations on cardinals which extend the usual
arithmetic operations on the natural numbers. Given cardinals κ and λ we define κ + λ,
κ · λ and κλ to be the cardinals such that

κ+ λ =
∣∣(κ× {0}) ∪ (λ× {1})

∣∣,
κ · λ =

∣∣κ× λ∣∣,
κλ =

∣∣κλ∣∣.
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1.30 Theorem: (Rules of Cardinal Arithmetic) Let κ, λ and µ be cardinals. Then

(1) κ+ λ = λ+ κ,
(2) (κ+ λ) + µ = κ+ (λ+ µ),
(3) κ+ 0 = κ,
(4) λ ≤ µ =⇒ κ+ λ ≤ κ+ µ,
(5) κ · λ = λ · κ,
(6) (κ · λ) · µ = κ · (λ · µ),
(7) κ · 1 = κ,
(8) κ · (λ+ µ) = (κ · λ) + (κ · µ),
(9) λ ≤ µ =⇒ κ · λ ≤ κ · µ,
(10) κλ+µ = κλ · κµ,
(11) (κλ)µ = κλ·µ,
(12) (κ · λ)µ = κµ · λµ,
(13) λ ≤ µ =⇒ κλ ≤ κµ, and
(14) κ ≤ λ =⇒ κµ ≤ λµ.

Proof: We sketch a proof for Parts 9 and 11 and leave the rest as an exercise. To prove
Part 9, let A, B and C be sets with |A| = κ, |B| = λ and |C| = µ and suppose that
|B| ≤ |C|. We need to show that |A×B| ≤ |A× C|. Let f : B → C be an injective map.
Define F : A×B → A× C by F (a, b) =

(
a, f(b)

)
then verify that F is injective.

To prove Part 11, let A, B and C be sets with |A| = κ, |B| = λ and |C| = µ. We need
to show that

∣∣(AB)C
∣∣ =

∣∣AB×C∣∣. Define F : (AB)C → AB×C by F (f)(b, c) = f(c)(b).
Verify that F is bijective with inverse G : AB×C → (AB)C given by G(g)(c)(b) = g(b, c).

1.31 Example: Let Rω be the set of all sequences a = (ak)k≥1 = (a1, a2, a3, · · ·) of real
numbers and let R∞ be the set of eventually zero sequences in Rω, that is the sequences
(ak)k≥1 for which there exists n ∈ Z+ such that ak = 0 for all k ≥ n. Show that for all
n ∈ Z+ we have

|R| = |Rn| = |R∞| = |Rω| = 2ℵ0 .

Solution: It is clear that 2ℵ0 = |R| ≤ |Rn| ≤ |R∞| ≤ |Rω| so it suffices (by the Cantor-
Schröder-Bernstein Theorem) to show that |Rω| ≤ 2ℵ0 . By Part 1 of Theorem 1.20, we
have |N× N| = |N| so that ℵ0 · ℵ0 = ℵ0, and so

|Rω| = |RN| = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 .

1.32 Example: Find
∣∣RR

∣∣.
Solution: First, let us explain the meaning of the question. As mentioned in Note 1.23, we
have an infinite sequence of infinite cardinals

ℵ0 < 2ℵ0 < 22
ℵ0
< 22

2ℵ0
< · · · .

It has been shown that it is not possible to prove (using the ZFC axioms of set theory)
that there exist any cardinals which lie strictly between any two consecutive cardinals on
this list. For this reason, if you are asked to find the cardinality of an infinite set A, then
you are really being asked to determine which of the cardinals in the above list is equal to
the cardinality of the set A. Now let us answer the question.

Since 2 ≤ 2ℵ0 and ℵ0 ≤ 2ℵ0 and ℵ0 + ℵ0 = ℵ0 (by Part 2 of Theorem 1.20), we have

22
ℵ0 ≤ (2ℵ0)2

ℵ0
= 2ℵ0·2

ℵ0 ≤ 22
ℵ0 ·2ℵ0 = 22

ℵ0+ℵ0
= 22

ℵ0
,

and so |RR| = (2ℵ0)2
ℵ0

= 22
ℵ0

by the Cantor-Schröder-Bernstein Theorem.
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Chapter 2. Metric Spaces

Inner Product Spaces

2.1 Definition: Let F = R or C. Let U be a vector space over F. An inner product on
U (over F) is a function 〈 , 〉 : U × U → F (meaning that if u, v ∈ U then 〈u, v〉 ∈ F) such
that for all u, v, w ∈ U and all t ∈ F we have

(1) (Sesquilinearity) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 , 〈tu, v〉 = t 〈u, v〉,
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 , 〈u, tv〉 = t 〈u, v〉,

(2) (Conjugate Symmetry) 〈u, v〉 = 〈v, u〉, and
(3) (Positive Definiteness) 〈u, u〉 ∈ R with 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇐⇒ u = 0.

For u, v ∈ U , 〈u, v〉 is called the inner product of u with v. We say that u and v are
orthogonal when 〈u, v〉 = 0. An inner product space (over F) is a vector space over
F equipped with an inner product. Given two inner product spaces U and V over F, a
linear map L : U → V is called a homomorphism of inner product spaces (or we say
that L preserves inner product) when

〈
L(x), L(y)

〉
= 〈x, y〉 for all x, y ∈ U . A bijective

homomorphism is called an isomorphism.

2.2 Example: The standard inner product on Fn is given by

〈u, v〉 = v∗u =
n∑
k=1

ukvk.

2.3 Example: We write Fω to denote the space of sequences in F, and we write F∞
to denote the space of eventually zero sequences in F, that is

Fω =
{
u = (u1, u2, u3, · · ·)

∣∣ each uk ∈ F
}

F∞ =
{
u ∈ Fω | ∃n∈Z+ ∀k≥n uk = 0

}
.

Recall that F∞ is a countable-dimensional vector space with standard basis {e1, e2, e3, · · ·}
where e1 = (1, 0, 0, · · ·), e2 = (0, 1, 0, · · ·) and so on. Note that {e1, e2, e3, · · ·} spans F∞
(and not all of Fω) because linear combinations are given by finite sums (not by infinite
series). The standard inner product on F∞ is given by

〈u, v〉 = v∗u =
∞∑
k=1

ukvk .

Note that the sum here does make sense because only finitely many of the terms are
nonzero (but we cannot use the same formula to give an inner product on Fω).

2.4 Example: For a, b ∈ R with a ≤ b, we write

B[a, b] = B
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣ f is bounded
}

C[a, b] = C
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣f is continuous
}
.

The standard inner product on C[a, b] is given by

〈f, g〉 =

∫ b

a

f g =

∫ b

a

f(x) g(x) dx.

Note that this is positive definite because 〈f, f〉 =
∫ b
a

∣∣f(x)
∣∣2dx ≥ 0 and if

∫ b
a

∣∣f(x)
∣∣2dx = 0

then we must have f(x) = 0 for all x ∈ [a, b], using the fact that if g is non-negative and

continuous on [a, b] with
∫ b
a
g(x) dx = 0, then we must have g(x) = 0 for all x ∈ [a, b].
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2.5 Theorem: Let U be an inner product space and let u, v ∈ U . If 〈u, x〉 = 〈v, x〉 for all
x ∈ U , or if 〈x, u〉 = 〈x, v〉 for all x ∈ U , then u = v.

Proof: Suppose that 〈u, x〉 = 〈v, x〉 for all x ∈ U . Then 〈u− v, x〉 = 〈u, x〉 − 〈v, x〉 = 0 for
all x ∈ U . In particular, taking x = u − v we have 〈u − v, u − v〉 = 0 so that u = v, by
positive definiteness. Similarly, if 〈x, u〉 = 〈x, v〉 for all x ∈ U then u = v.

2.6 Definition: Let U be an inner product space. For u ∈ U , we define the norm (or
length) of u to be

‖u‖ =
√
〈u, u〉.

2.7 Theorem: (Basic Properties of Inner Product and Norm) Let U be an inner product
space. For u, v ∈ U and t ∈ R we have

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with ‖u‖ = 0 ⇐⇒ u = 0,
(3) ‖u± v‖2 = ‖u‖2 ± 2 Re 〈u, v〉+ ‖v‖2,
(4) (Pythagoras’ Theorem) If F = R then 〈u, v〉 = 0 ⇐⇒ ‖u+ v‖2 = ‖u‖2 + ‖v‖2,
(5) (Parallelogram Law) ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2,
(6) (Polarization Identity) If F = R then 〈u, v〉 = 1

4

(
‖u+ v‖2 − ‖u− v‖2

)
and

if F = C then 〈u, v〉 = 1
4

(
‖u+ v‖2 + i‖u+ iv‖2 − ‖u− v‖2 − i‖u− iv‖2

)
,

(7) (The Cauchy-Schwarz Inequality)
∣∣〈u, v〉∣∣ ≤ ‖u‖ ‖v‖ with |〈u, v〉| = ‖u‖ ‖v‖ if and only

if {u, v} is linearly dependent, and
(8) (The Triangle Inequality)

∣∣‖u‖ − ‖v‖∣∣ ≤ ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof: You will have already seen a proof in a linear algebra course, but let us remind you
of some of the proofs. The first 6 parts are all easy to prove. To prove Part 7, suppose first
that {u, v} is linearly dependent. Then one of u and v is a multiple of the other, say v = tu
with t ∈ F. Then we have |〈u, v〉| = |〈u, tu〉| =

∣∣ t 〈u, u〉∣∣ = |t| ‖u‖2 = ‖u‖ ‖tu‖ = ‖u‖ ‖v‖.
Next suppose that {u, v} is linearly independent. Then 1 · v + t · u 6= 0 for all t ∈ F, so in

particular v − 〈v,u〉‖u‖2 u 6= 0. Thus we have

0 <
∣∣∣∣v − 〈v,u〉‖u‖2 u

∣∣∣∣2 = ‖v‖2 − 2 Re
〈
v, 〈v,u〉‖u‖2 u

〉
+
∥∥ 〈v,u〉
‖u‖2 u

∥∥2
= ‖v‖2 − 2 Re 〈v,u〉〈v,u〉‖u‖2 + |〈v,u〉|2

‖u‖2 = ‖v‖2 − |〈v,u〉|
2

‖u‖2

so that |〈u,v〉|
2

|u|2 = |〈v,u〉|2
‖u‖2 < ‖v‖2, and hence |〈u, v〉| ≤ ‖u‖ ‖v‖. This proves Part 7.

Using Parts 3 and 7, and the inequality |Re (z)‖ ≤ ‖z‖ for z ∈ C (which follows from
Pythagoras’ Theorem in R2), we have

‖u+ v‖2 = ‖u‖2 + 2 Re 〈u, v〉+ ‖v‖2 ≤ ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

≤ ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 =
(
‖u‖+ ‖v‖

)2
.

Taking the square root on both sides gives ‖u + v‖ ≤ ‖u‖ + ‖v‖. Finally note that
‖u‖ = ‖(u+v)−v‖ ≤ ‖u+v‖+‖−v‖ = ‖u+v‖+‖v‖ so that we have ‖u‖−‖v‖ ≤ ‖u+v‖,
and similarly ‖v‖ − ‖u‖ ≤ ‖u+ v‖, hence

∣∣‖u‖ − ‖v‖∣∣ ≤ ‖u+ v‖. This proves Part 8.
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Normed Linear Spaces

2.8 Definition: Let F = R or C. Let U be a vector space over F. A norm on U is a
function ‖ ‖ : U → R (meaning that if u ∈ U then ‖u‖ ∈ R) such that for all u, v ∈ U and
all t ∈ R we have

(1) (Scaling) ‖tu‖ = |t| ‖u‖,
(2) (Positive Definiteness) ‖u‖ ≥ 0 with ‖u‖ = 0 ⇐⇒ u = 0, and
(3) (Triangle Inequality) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
For u ∈ U , the real number ‖u‖ is called the norm (or length) of u, and we say that u is a
unit vector when ‖u‖ = 1. A normed linear space (over R) is a vector space equipped
with a norm. Given two normed linear spaces U and V over R, a linear map L : U → V
is called a homomorphism of normed linear spaces (or we say that L preserves norm)
when

∣∣∣∣L(x)
∣∣∣∣ = ‖x‖ for all x ∈ U . A bijective homomorphism is called an isomorphism.

2.9 Example: The standard inner product on Fn induces the standard norm on Fn,
which is also called the 2-norm on Fn, given by

‖u‖2 = ‖u‖ =
√
〈u, u〉 =

( n∑
k=1

|uk|2
)1/2

.

We also define the 1-norm and the supremum norm (also called the infinity norm)
on Fn by

‖u‖1 =
n∑
k=1

|uk| ,

‖u‖∞ = max
{
|u1|, |u2|, · · · , |un|

}
.

2.10 Example: The standard inner product on F∞ induces the standard norm, also
called the 2-norm, on F∞ given by

‖u‖2 = ‖u‖ =
√
〈u, u〉 =

( ∞∑
k=1

|uk|2
)1/2

.

We also define the 1-norm and the supremum norm (also called the infinity norm)
on F∞ by

‖u‖1 =
∞∑
k=1

|uk| ,

‖u‖∞ = sup
{
|uk|

∣∣ k∈Z+} = max
{
|uk|

∣∣ k∈Z+}.

2.11 Definition: For u ∈ Fw, we define the 1-norm of u, the 2-norm of u, and the
supremum norm (or infinity norm) of u to be the extended real numbers

‖u‖1 =
∞∑
k=1

|uk| , ‖u‖2 =
( ∞∑
k=1

|uk|2
)1/2

and ‖u‖∞ = sup
{
|uk|

∣∣ k∈Z+
}

Note that these can be infinite (so they are not actually norms according to Definition 2.8),
with ‖u‖∞ =∞ in the case that

{
|uk|

∣∣ k∈Z+
}

is not bounded above (by a real number).
Define

`1 = `1(F) =
{
u ∈ Fω

∣∣ ‖u‖1 <∞},
`2 = `2(F) =

{
u ∈ Fω

∣∣ ‖u‖2 <∞},
`∞ = `∞(F) =

{
u ∈ Fω

∣∣ ‖u‖∞ <∞
}
.

For p = 1, 2,∞, we shall show (in Theorem 2.14 below) that the p-norm is a (well-defined,
finite-valued) norm on `p.
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2.12 Example: For the sequence (uk)k≥1 in R given by uk = 1
2k

, we have

‖u‖1 =
∞∑
k=1

1
2k

= 1 , ‖u‖2 =
( ∞∑
k=1

1
4k

)1/2
= 1√

3
, and ‖u‖∞ = |u1| = 1

2 .

For the sequence (vk)k≥1 given by vk = 1
k , we have

‖v‖1 =
∞∑
k=1

1
k =∞ , ‖v‖2 =

( ∞∑
k=1

1
k2

)1/2
<∞ , and ‖v‖∞ = |v1| = 1(

in fact ‖v‖2 = π√
6

)
. For the sequence (wk)k≥1 given by wk = 1√

k
we have

‖w‖1 =
∞∑
k=1

1√
k

=∞ , ‖w‖2 =
( ∞∑
k=1

1
k

)1/2
=∞ , and ‖w‖∞ = |w1| = 1.

2.13 Theorem: We have F∞ ⊆ `1 ⊆ `2 ⊆ `∞ ⊆ Fω.

Proof: If u ∈ F∞ then ‖u‖1 =
∞∑
k=1

|uk| < ∞ (because only finitely many of the terms are

nonzero) and so u ∈ `1. Thus we have F∞ ⊆ `1.

Suppose that u ∈ `1. Since ‖u‖1 =
∑
|uk| < ∞, we know that |uk| → 0 (by the

Divergence Test from calculus) so we can choose m ∈ Z+ such that when k ≥ m we have
|ak| ≤ 1. Then for k ≥ m we have |ak|2 ≤ |ak|. Since

∑
|ak| converges and |ak|2 ≤ |ak| for

k ≥ m, it follows that
∑
|ak|2 converges by the Comparison Test (from calculus). Thus

‖u‖2 =
( ∞∑
k=1

|ak|2
)1/2

<∞ and so u ∈ `2. Thus we have `1 ⊆ `2.

Suppose u ∈ `2. Since ‖u‖22 =
∞∑
k=1

|ak|2 < ∞ we have |ak|2 → 0 (by the Divergence

Test) hence also |ak| → 0. Choose m ∈ Z+ such that when k ≥ m we have |ak| ≤ 1. Then
the set

{
|ak|

∣∣ k ∈ Z+
}

is bounded above by M = max
{
|a1|, |a2|, · · · , |am−1|, 1

}
, and so we

have ‖u‖∞ ≤M , and hence u ∈ `∞. Thus we have `2 ⊆ `∞.

Finally note that `∞ ⊆ Fω, by definition.

2.14 Theorem:

(1) The space `2 is an inner product space with inner product defined by

〈u, v〉 =
∞∑
k=1

ukvk.

(2) For p = 1, 2,∞, the space `p is a normed linear space with norm given by ‖u‖p.

Proof: To prove Part 1, we must verify that if u, v ∈ `2 then the sum
∞∑
k=1

ukvk converges

so that the inner product is well-defined. Let u, v ∈ `2. We claim that
∑
ukvk converges

absolutely, that is
∑
|ukvk| converges. For n ∈ Z+, let x = (|u1|, |u2|, · · · , |un|) ∈ Rn and

y = (|v1|, |v2|, · · · , |vn|) ∈ Rn, and note that ‖x‖2 =
( n∑
k=1

|uk|2
)1/2
≤
( ∞∑
k=1

|uk|2
)1/2

= ‖u‖2
and similarly ‖y‖2 ≤ ‖v‖2. By applying the Cauchy-Schwarz Inequality in Rn we have
n∑
k=1

|ukvk| =
∣∣〈x, y〉∣∣ ≤ ‖x‖2 ‖y‖2 ≤ ‖u‖2‖v‖2. By the Monotone Convergence Theorem,

since
n∑
k=1

|ukvk| ≤ ‖u‖2‖v‖2 for every n ∈ Z+, it follows that
∑
|ukvk| converges with

∞∑
k=1

|ukvk| ≤ ‖u‖2‖v‖2. Thus
∑
ukvk converges absolutely, as claimed.
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All students will have seen that absolute convergence implies convergence for sequences
in R, that is if for a sequence (xk) in R, if

∑
|xk| converges then so does

∑
xk. Let us

show that the same is true for a sequence (zk) in C. Suppose that
∑
|zk| converges, where

zk = xk + iyk with xk, yk ∈ R. Since |xk| ≤ |zk| and |yk| ≤ |zk| for all k, it follows that∑
|xk| and

∑
|yk| both converge (by the Comparison Test) and hence

∑
xk and

∑
yk both

converge (since absolute convergence implies convergence for sequences in R). Since
∑
xk

and
∑
yk converge, it follows that

∑
zk converges in C

(
indeed if un → u in R and vn → v

in R, then un + ivn → u+ iv in C because
∣∣(un + ivn)− (u+ iv)

∣∣ ≤ |un − u|+ |vn − v|).
Thus, whether F = R or C, since

∑
ukvk converges absolutely, it follows that

∑
ukvk

converges so that 〈u, v〉 =
∞∑
k=1

ukvk ∈ F (so the inner product is well-defined).

We leave it as an exercise to verify that the 3 properties which define an inner product
(in Definition 2.1) are all satisfied.

Because 〈u, v〉 =
∞∑
k=1

ukvk gives a (well-defined, finite-valued) inner product on `2, it

follows (from Theorem 2.7) that this inner product induces a (well-defined, finite-valued)

norm given by ‖u‖ =
√
〈u, u〉 =

( ∞∑
k=1

|uk|2
)1/2

. This is the formula we used to define the

2-norm, so the 2-norm is a norm on `2. To complete the proof of Part 2 of the theorem,
it remains to show that ‖u‖1 and ‖u‖∞ are norms on `1 and `∞. We leave this as an
exercise

(
but we remark that that unlike the situation for the inner product 〈u, v〉, we do

not need to verify that ‖u‖1 and ‖u‖∞ are finite-valued because this is immediate from
the definition of `1 and `∞

)
.

2.15 Example: For a, b ∈ R with a ≤ b, recall that

B[a, b] = B
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣ f is bounded
}
,

C[a, b] = C
(
[a, b],F

)
=
{
f : [a, b]→ F

∣∣f is continuous
}
.

For f ∈ C[a, b], we define the 1-norm and the 2-norm of f to be

‖f‖1 =

∫ b

a

|f | ,

‖f‖2 =

(∫ b

a

|f |2
)1/2

.

and for f ∈ B[a, b], we define the supremum norm (also called the infinity norm) of f
to be

‖f‖∞ = sup
{∣∣f(x)

∣∣ ∣∣∣ a ≤ x ≤ b} .
We leave it as an exercise to show that these are indeed norms (in particular, show that
the 1-norm is positive-definite). The 2-norm on C[a, b] is induced by the inner product on
C[a, b] given by

〈f, g〉 =

∫ b

a

f g =

∫ b

a

f(x) g(x) dx .
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Metric Spaces

2.16 Definition: Let F = R or C. Let U be a normed linear space. For u, v ∈ U , we
define the distance between u and v to be

d(u, v) = ‖v − u‖ ∈ R.

2.17 Theorem: Let U be as normed linear space. For all u, v, w ∈ U ,

(1) (Symmetry) d(u, v) = d(v, u),
(2) (Positive Definiteness) d(u, v) ≥ 0 with d(u, v) = 0 ⇐⇒ u = v, and
(3) (Triangle Inequality) d(u,w) ≤ d(u, v) + d(v, w).

Proof: The proof is left as an easy exercise.

2.18 Definition: Let X be a set. A metric on X is a map d : X ×X → R such that for
all a, b, c ∈ X we have

(1) (Symmetry) d(a, b) = d(b, a),
(2) (Positive Definiteness) d(a, b) ≥ 0 with d(a, b) = 0 ⇐⇒ a = b, and
(3) (Triangle Inequality) d(a, c) ≤ d(a, b) + d(b, c).

For a, b ∈ X, d(a, b) is called the distance between a and b. A metric space is a set
X which is equipped with a metric d, and we sometimes denote the metric space by X
and sometimes by the pair (X, d). Given two metric spaces (X, dX) and (Y, dY ), a map
f : X → Y is called a homomorphism of metric spaces (or we say that f is distance
preserving) when dY

(
f(a), f(b)

)
= dX(a, b) for all a, b ∈ X. A bijective homomorphism

is called an isomorphism or an isometry.

2.19 Note: Every inner product space is also a normed linear space, using the induced
norm given by ‖u‖ =

√
〈u, u〉. Every normed linear space is also a metric space, using

the induced metric given by d(u, v) = ‖v − u‖. If U is an inner product space then every
subspace of U is also an inner product space using (the restriction of) the same inner
product used in U . If U is a normed linear space then every subspace of U is also a
normed linear space using the same norm. If X is a metric space then so is every subset
of X using the same metric.

2.20 Example: In Fn (or in any subset X ⊆ Fn), the standard metric (also called the
2-metric) is given by

d(a, b) = d2(a, b) = ‖a− b‖2 =
( n∑
k=1

|ak − bk|2
)1/2

.

We also have the 1-metric and the supremum metric (or the infinity metric) given
by

d1(a, b) = ‖a− b‖1 =
∞∑
k=1

|ak − bk| and

d∞(a, b) = ‖a− b‖∞ = max
{
|ak − bk|

∣∣ 1≤ k≤ n}.
2.21 Exercise: In R3, let u = (1, 2, 5) and v = (3, 5,−1). Find d1(u, v), d2(u, v) and
d∞(u, v).
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2.22 Example: In `1
(
or in any subset X ⊆ `1

)
, we have the 1-metric given by

d1(a, b) = ‖a− b‖1 =
∞∑
k=1

|ak − bk| .

In `2
(
or in any nonempty subset X ⊆ `2

)
we have the 2-metric given by

d2(a, b) = ‖a− b‖2 =
( ∞∑
k=1

|ak − bk|2
)1/2

.

In `∞
(
or in any nonempty subset X ⊆ `∞

)
we have the supremum metric (or the

infinity metric) given by

d∞(a, b) = ‖a− b‖∞ = sup
{
|ak − bk|

∣∣ k ∈ Z+
}
.

Since R∞ ⊆ `1 ⊆ `2 ⊆ `∞, we could (if we wanted) use any of the metrics dp in the space
R∞ (just as we can use any of the metrics dp in Rn). We could also use any of the metrics
dp in the space `1, and we could use either of the metrics d2 or d∞ in the space `2.

2.23 Exercise: Let (uk)k≥1 and (vk)k≥1 be the sequences in `1 given by uk = 1
2k

and

vk = 1
3k

. Find d1(u, v), d2(u, v) and d∞(u, v).

2.24 Example: Let a, b ∈ R with a ≤ b. In C[a, b]
(
or in any subset X ⊆ C[a, b]

)
, we have

the 1-metric and the 2-metric, given by

d1(f, g) = ‖f − g‖1 =

∫ b

a

|f − g| =
∫ b

a

∣∣f(x)− g(x)
∣∣ dx ,

d2(f, g) = ‖f − g‖2 =

(∫ b

a

|f − g|2
)1/2

=

(∫ b

a

∣∣f(x)− g(x)
∣∣2dx)1/2

,

and in B[a, b]
(
or in any subset X ⊆ B[a, b]

)
we have the supremum metric (also called the

infinity metric) given by

d∞(f, g) = ‖f − g‖∞ = sup
{∣∣f(x)− g(x)

∣∣ ∣∣∣ a ≤ x ≤ b}.
2.25 Exercise: Define f, g : [0, 1]→ R be f(x) = x and g(x) = x2. Find d1(f, g), d2(f, g)
and d∞(f, g).

2.26 Example: For any nonempty set X 6= ∅, the discrete metric on X is given by
d(x, y) = 1 for all x, y ∈ X with x 6= y and d(x, x) = 0 for all x ∈ X.

2.27 Remark: There are, in fact, a ridiculously vast number of metrics that one could
define on R. For example, if we let f : R → R be any bijective map then we can define
a metric on R by d(x, y) = |f(x) − f(y)|. But in this course, we shall usually concern
ourselves with the metrics described in the above examples.
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Open and Closed Sets in Metric Spaces

2.28 Definition: Let X be a metric space. For a ∈ X and 0 < r ∈ R, the open ball, the
closed ball, and the (open) punctured ball in X centred at a of radius r are defined to
be the sets

B(a, r) = BX(a, r) =
{
x ∈ X

∣∣ d(x, a) < r
}
,

B(a, r) = BX(a, r) =
{
x ∈ X

∣∣ d(x, a) ≤ r
}
,

B∗(a, r) = B∗X(a, r) =
{
x ∈ X

∣∣ 0 < d(x, a) < r
}
.

When the metric on X is denoted by dp with 1 ≤ p ≤ ∞, we often write B(a, r), B(a, r)
and B∗(a, r) as Bp(a, r), Bp(a, r) and B∗p(a, r). For A ⊆ X, we say that A is bounded
when A ⊆ B(a, r) for some a ∈ X and some 0 < r ∈ R.

2.29 Exercise: Draw a picture of the open balls B1(0, 1), B2(0, 1) and B∞(0, 1) in R2

(using the metrics d1, d2 and d∞).

2.30 Definition: Let X be a metric space. For A ⊆ X, we say that A is open (in X)
when for every a ∈ A there exists r > 0 such that B(a, r) ⊆ A, and we say that A is
closed (in X) when its complement Ac = X \A is open in X.

2.31 Example: Let X be a metric space and let a ∈ X. Show that {a} is closed in X.

Solution: To show that {a} is closed, we shall show that {a}c = X \ {a} is open. Let
b ∈ X \ {a}. Let r = d(a, b) and note that since b 6= a we have r > 0. Let x ∈ B(b, r).
Then d(x, b) < r = d(a, b). Since d(x, b) 6= d(a, b) we have x 6= a so that x ∈ X \{a}. Thus
B(b, r) ⊆ X \ {a}. This proves that X \ {a} is open, and so {a} is closed.

2.32 Example: Let X be a metric space. Show that for a ∈ X and 0 < r ∈ R, the set
B(a, r) is open and the set B(a, r) is closed.

Solution: Let a ∈ X and let r > 0. We claim that B(a, r) is open. We need to show that
for all b ∈ B(a, r) there exists s > 0 such that B(b, s) ⊆ B(a, r). Let b ∈ B(a, r) and note
that d(a, b) < r. Let s = r − d(a, b) and note that s > 0. Let x ∈ B(b, s), so we have
d(x, b) < s. Then, by the Triangle Inequality, we have

d(x, a) ≤ d(x, b) + d(b, a) < s+ d(a, b) = r

and so x ∈ B(a, r). This shows that B(b, s) ⊆ B(a, r) and hence B(a, r) is open.
Next we claim that B(a, r) is closed, that is B(a, r)c is open. Let b ∈ B(a, r)c, that is

let b ∈ X with b /∈ B(a, r). Since b /∈ B(a, r) we have d(a, b) > r. Let s = d(a, b)− r > 0.
Let x ∈ B(b, s) and note that d(x, b) < s. Then, by the Triangle Inequality, we have

d(a, b) ≤ d(a, x) + d(x, b) < d(x, a) + s

and so d(x, a) > d(a, b)− s = r. Since d(x, a) > r we have x /∈ B(a, r) and so x ∈ B(a, r)c.
This shows that B(b, s) ⊆ B(a, r)c and it follows that B(a, r)c is open and hence that
B(a, r) is closed.

2.33 Example: In R (using its standard metric), an open ball is the same thing as a
bounded non-degenerate open interval, and a closed ball is the same thing as a bounded
non-degenerate closed interval. The unbounded open intervals (a,∞), (−∞, b) are open,
and the unbounded closed intervals [a,∞) and (−∞, b] are closed. The degenerate closed
intervals [a, a] = {a} are closed. The degenerate interval (a, a) = ∅ and the interval
(−∞,∞) = R are both open and closed (see Theorem 2.35 below). The bounded non-
degenerate half-open intervals [a, b) and (a, b] are neither open nor closed.
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2.34 Remark: It is often fairly difficult to determine whether a given set is open or closed
(or neither or both) directly from the definition of open and closed sets. We will be able
to do this more easily after we have discussed limits of sequences and continuous functions
in the next chapter.

2.35 Theorem: (Basic Properties of Open Sets) Let X be a metric space.

(1) The sets ∅ and X are open in X.
(2) If S is a set of open sets in X then the union

⋃
S =

⋃
U∈S

U is open in X.

(3) If S is a finite set of open sets in X then the intersection
⋂
S =

⋂
U∈S

U is open in X.

Proof: The empty set is open because any statement of the form “for all x∈∅ F” (where
F is any statement) is considered to be true (by convention). The set X is open because
given a ∈ X we can choose any value of r > 0 and then we have B(a, r) ⊆ X by the
definition of B(a, r). This proves Part 1.

To prove Part 2, let S be any set of open sets in X. Let a ∈
⋃
S =

⋃
U∈S U . Choose

an open set U ∈ S such that a ∈ U . Since U is open we can choose r > 0 such that
B(a, r) ⊆ U . Since U ∈ S we have U ⊆

⋃
S. Since B(a, r) ⊆ U and U ⊆

⋃
S we have

B(a, r) ⊆
⋃
S. Thus

⋃
S is open, as required.

To prove Part 3, let S be a finite set of open sets in X. If S = ∅ then we use the
convention that

⋂
S = X, which is open. Suppose that S 6= ∅, say S = {U1, U2, · · · , Um}

where each Uk is an open set. Let a ∈
⋂
S =

⋂m
k=1 Uk. For each index k, since a ∈ Uk

we can choose rk > 0 so that B(a, rk) ⊆ Uk. Let r = min{r1, r2, · · · , rm}. Then for each
index k we have B(a, r) ⊆ B(a, rk) ⊆ Uk. Since B(a, r) ⊆ Uk for every index k, it follows
that B(a, r) ⊆

⋂m
k=1 Uk =

⋂
S. Thus

⋂
S is open, as required.

2.36 Theorem: (Basic Properties of Closed Sets) Let X be a metric space.

(1) The sets ∅ and X are closed in X.
(2) If S is a set of closed sets in X then the intersection

⋂
S =

⋂
K∈S

K is closed in X.

(3) If S is a finite set of closed sets in X then the union
⋃
S =

⋃
K∈S

K is closed in X.

Proof: This follows from Theorem 2.35, by taking complements using the fact that for a
set S of subsets of X we have

( ⋃
A∈S

A
)c

=
⋂
A∈S

Ac and
( ⋂
A∈S

A
)c

=
⋃
A∈S

Ac (these rules are

called DeMorgan’s Laws, and you should convince yourself that they are true if you have
not seen them).

2.37 Example: When X is a metric space, a ∈ X and r > 0, the punctured ball B∗(a, r)
is open (by Part 3 of Theorem 2.35) because B∗(a, r) = B(a, r)∩{a}c, and the sets B(a, r)
and {a}c are both open.

2.38 Example: In R, note that
∞⋂
n=1

(
− 1

n , 1 + 1
n

)
= [0, 1], which is closed and not open,

so the intersection of an infinite set of open sets is not always open. Similarly, note that
∞⋃
n=1

[
1
n , 1 −

1
n

]
= (0, 1), which is open and not closed, so the union of an infinite set of

closed sets is not always closed.,
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Topological Spaces

2.39 Definition: A topology on a set X is a set T of subsets of X such that

(1) ∅ ∈ T and X ∈ T ,
(2) for every set S ⊆ T we have

⋃
S ∈ T , and

(3) for every finite subset S ⊆ T we have
⋂
S ∈ T .

A topological space is a set X with a topology T . When X is a metric space, the set of
all open sets in X is a topology on X, which we call the metric topology (or the topology
induced by the metric). When X is any topological space, the sets in the topology T are
called the open sets in X and their complements are called the closed sets in X. When
S and T are both topologies on a set X with S ⊆ T , we say that the topology T is finer
than the topology S, and that the topology S is coarser than the topology T . When
S ⊂6= T we say that T is strictly finer than S and that S is strictly coarser than T .

2.40 Example: Show that on Fn, the metrics d1, d2 and d∞ all induce the same topology.

Solution: For a, x ∈ Fn we have

max
1≤k≤n

|xk − ak| ≤
( n∑
k=1

|xk − ak|2
)1/2 ≤ n∑

k=1

|xk − ak| ≤ n max
1≤k≤n

|xk − ak|

and so
d∞(a, x) ≤ d2(a, x) ≤ d1(a, x) ≤ nd∞(a, x).

It follows that for all a ∈ Fn and r > 0 we have

B∞(a, r) ⊇ B2(a, r) ⊇ B1(a, r) ⊇ B∞
(
a, rn

)
.

Thus for U ⊆ Fn, if U is open in Fn using d∞ then it is open using d2, and if U is open
using d2 then it is open using d1, and if U is open using d1 then it is open using d∞.

2.41 Example: Show that on the space C[a, b], the topology induced by the metric d∞ is
strictly finer than the topology induced by the metric d1.

Solution: For f, g ∈ C[a, b] we have

d1(f, g) =

∫ b

a

|f − g| ≤
∫ b

a

max
a≤x≤b

∣∣f(x)− g(x)
∣∣ = (b− a) d∞(f, g).

It follows that for f ∈ C[a, b] and r > 0 we have

B∞(f, r) ⊆ B1

(
f, (b− a)r

)
.

Thus for U ⊆ C[a, b], if U is open using d1 then U is also open using d∞, and so the
topology induced by the metric d∞ is finer (or equal to) the topology induced by d1.

On the other hand, we claim that for f ∈ C[a, b] and r > 0, the set B∞(f, r) is not
open in the topology induced by d1. Fix g ∈ B∞(f, r) and let s > 0. Choose a bump

function h ∈ C
(
[a, b],R

)
with h ≥ 0,

∫ b
a
h < s and maxa≤x≤b h(x) > 2r

(
for example,

choose c ∈ (a, b) with c − a < s
2r and then define h by h(x) = 3r

(
1 − x−a

c−a
)

for a ≤ x ≤ c

and h(x) = 0 for c ≤ x ≤ b
)
. Then we have g + h ∈ B1(g, s) but g + h /∈ B∞(f, r). It

follows that B∞(f, r) is not open in the topology induced by d1, as claimed.

2.42 Example: For any set X, the trivial topology on X is the the topology in which
the only open sets in X are the sets ∅ and X, and the discrete topology on X is the
topology in which every subset of X is open. Note that the discrete metric on a nonempty
set X induces the discrete topology on X.
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Interior and Closure

2.43 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. The
interior and the closure of A (in X) are the sets

Ao =
⋃{

U ⊆ X
∣∣U is open, and U ⊆ A

}
,

A =
⋂{

K ⊆ X
∣∣K is closed and A ⊆ K

}
.

2.44 Example: Show that Q = R where Q is the closure of Q in R.

Solution: Let S =
{
K ⊆ R

∣∣K is closed in R and Q ⊆ K
}

so that Q =
⋂
S =

⋂
K∈S

K. It

is immediate that Q ⊆ R (since every K ∈ S is a subset of R), so we need to show that
R ⊆ Q. Let a ∈ R. To show that a ∈ Q we need to show that a ∈ K for every K ∈ S.
Let K ∈ S, that is let K be a closed set in R with Q ⊆ K. Suppose, for a contradiction,
that a /∈ K. Then a ∈ Kc = R \K, which is open. Choose r > 0 so that B(a, r) ⊆ Kc,
that is B(a, r) ∩ K = ∅, that is (a − r, a + r) ∩ K = ∅. Since Q ⊆ K, we also have
(a−r, a+r)∩Q = ∅. This contradicts the fact that for all u, v ∈ R with u < v, there exists
x ∈ Q with u < x < v.

2.45 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. We
say that A is dense in X when A = X.

2.46 Theorem: Let X be a metric space (or a topological space) and let A ⊆ X.

(1) The interior of A is the largest open set which is contained in A. In other words,
Ao ⊆ A and Ao is open, and for every open set U with U ⊆ A we have U ⊆ Ao.
(2) The closure of A is the smallest closed set which contains A. In other words, A ⊆ A
and A is closed, and for every closed set K with A ⊆ K we have A ⊆ K.

Proof: Let S =
{
U ⊆ X

∣∣U is open, and U ⊆ A
}

. Note that Ao is open (by Part 2 of
Theorem 2.35 or by Part 2 of Definition 2.39) because Ao is equal to the union of S, which
is a set of open sets. Also note that Ao ⊆ A because Ao is equal to the union of S, which
is a set of subsets of A. Finally note that for any open set U with U ⊆ A we have U ∈ S
so that U ⊆

⋃
S = Ao. This completes the proof of Part 1, and the proof of Part 2 is

similar.

2.47 Corollary: Let X be a metric space (or a topological space) and let A ⊆ X.

(1) (Ao)o = Ao and A = A.
(2) A is open if and only if A = Ao

(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.
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Interior Points, Limit Points and Boundary Points

2.48 Definition: Let X be a metric space and let A ⊆ X. An interior point of A is a
point a ∈ A such that for some r > 0 we have B(a, r) ⊆ A. A limit point of A is a point
a ∈ X such that for every r > 0 we have B∗(a, r) ∩ A 6= ∅. An isolated point of A is a
point a ∈ A which is not a limit point of A. A boundary point of A is a point a ∈ X
such that for every r > 0 we have B(a, r) ∩ A 6= ∅ and B(a, r) ∩ Ac 6= ∅. The set of all
limit points of A is denoted by A′. The boundary of A, denoted by ∂A, is the set of all
boundary points of A.

2.49 Theorem: (Properties of Interior, Limit and Boundary Points) Let X be a metric
space and let A ⊆ X.
(1) Ao is equal to the set of all interior points of A.
(2) A is closed if and only if A′ ⊆ A.
(3) A = A ∪A′.
(4) ∂A = A \Ao.

Proof: We leave the proofs of Parts 1 and 4 as exercises. To prove Part 2, note that when
a /∈ A we have B(a, r) ∩A = B∗(a, r) ∩A and so

A is closed ⇐⇒ Ac is open

⇐⇒ ∀a∈Ac ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈X
(
a /∈A =⇒ ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈X
(
a /∈A =⇒ ∃r>0 B(a, r) ∩A = ∅

)
⇐⇒ ∀a∈X

(
a /∈A =⇒ ∃r>0 B∗(a, r) ∩A = ∅

)
⇐⇒ ∀a∈X

(
∀r>0 B∗(a, r) ∩A 6= ∅ =⇒ a∈A

)
⇐⇒ ∀a∈X

(
a ∈ A′ =⇒ a ∈ A

)
⇐⇒ A′ ⊆ A.

To prove Part 3 we shall prove that A ∪ A′ is the smallest closed set which contains A.
It is clear that A ∪ A′ contains A. We claim that A ∪ A′ is closed, that is (A ∪ A′)c is
open. Let a ∈ (A ∪ A′)c, that is let a ∈ X with a /∈ A and a /∈ A′. Since a /∈ A′ we
can choose r > 0 so that B(a, r) ∩ A = ∅. We claim that because B(a, r) ∩ A = ∅ it
follows that B(a, r) ∩A′ = ∅. Suppose, for a contradiction, that B(a, r) ∩A′ 6= ∅. Choose
b ∈ B(a, r) ∩ A′. Since b ∈ B(a, r) and B(a, r) is open, we can choose s > 0 so that
B(b, s) ⊆ B(a, r). Since b ∈ A′ it follows that B(b, s) ∩ A 6= ∅. Choose x ∈ B(b, s) ∩ A.
Then we have x ∈ B(b, s) ⊆ B(a, r) and x ∈ A and so x ∈ B(a, r) ∩ A, which contradicts
the fact that B(a, r) ∩ A = ∅. Thus B(a, r) ∩ A′ = ∅, as claimed. Since B(a, r) ∩ A = ∅
and B(a, r)∩A′ = ∅ it follows that B(a, r)∩ (A∪A′) = ∅ hence B(a, r) ⊆ (A∪A′)c. Thus
proves that (A ∪A′)c is open, and hence A ∪A′ is closed.

It remains to show that for every closed set K in X with A ⊆ K we have A∪A′ ⊆ K.
Let K be a closed set in X with A ⊆ K. Note that since A ⊆ K it follows that A′ ⊆ K ′

because if a ∈ A′ then for all r > 0 we have B(a, r) ∩ A 6= ∅ hence B(a, r) ∩K 6= ∅ and
so a ∈ K ′. Since K is closed we have K ′ ⊆ K by Part 2. Since A′ ⊆ K ′ and K ′ ⊆ K we
have A′ ⊆ K. Since A ⊆ K and A′ ⊆ K we have A∪A′ ⊆ K, as required. This completes
the proof of Part 3.
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Open and Closed Sets in Subspaces

2.50 Note: Let X be a metric space and let P ⊆ X. Note that P is also a metric space
using (the restriction of) the metric used in X. For a ∈ P and 0 < r ∈ R, note that the
open and closed balls in P , centred at a and of radius r, are related to the open and closed
balls in X by

BP (a, r) =
{
x ∈ P

∣∣ d(x, a) < r
}

= BX(a, r) ∩ P,
BP (a, r) =

{
x ∈ P

∣∣ d(x, a) ≤ r
}

= BX(a, r) ∩ P.

2.51 Theorem: Let X be a metric space and let A ⊆ P ⊆ X.

(1) A is open in P if and only if there exists an open set U in X such that A = U ∩ P .
(2) A is closed in P if and only if there exists a closed set K in X such that A = K ∩ P .

Proof: To prove Part 1, suppose first that A is open in P . For each a ∈ A, choose
ra > 0 so that BP (a, ra) ⊆ A, that is BX(a, ra) ∩ P ⊆ A, and let U =

⋃
a∈ABX(a, ra).

Since U is equal to the union of a set of open sets in X, it follows that U is open in
X. Note that A ⊆ U ∩ P and, since BX(a, ra) ∩ P ⊆ A for every a ∈ A, we also have

U ∩ P =
(⋃

a∈U BX(a, ra)
)
∩ P =

⋃
a∈A

(
BX(a, ra) ∩ P

)
⊆ A. Thus A = U ∩ P , as

required.
Suppose, conversely, that A = U ∩ P with U open in X. Let a ∈ A. Since we

have a ∈ A = U ∩ P , we also have a ∈ U . Since a ∈ U and U is open in X we can
choose r > 0 so that BX(a, r) ⊆ U . Since BX(a, r) ⊆ U and U ∩ P = A we have
BP (a, r) = BX(a, r) ∩ P ⊆ U ∩ P = A. Thus A is open, as required.

To prove Part 2, suppose first that A is closed in P . Let B be the complement of A
in P , that is B = P \ A. Then B is open in P . Choose an open set U in X such that
B = U ∩ P . Let K be the complement of U in X, that is K = X \ U . Then A = K ∩ P
since for x ∈ X we have x ∈ A ⇐⇒

(
x ∈ P and x /∈ B

)
⇐⇒

(
x ∈ P and x /∈ U ∩ P

)
⇐⇒

(
x ∈ P and x /∈ U

)
⇐⇒

(
x ∈ P and x ∈ K

)
⇐⇒ x ∈ K ∩ P .

Suppose, conversely, that K is a closed set in X with A = K ∩ P . Let B be the
complement of A in P , that is B = P \ A, and let U be the complement of K in X,
that is U = X \ K, and note that U is open in X. Then we have B = U ∩ P since
for x ∈ P we have x ∈ B ⇐⇒

(
x ∈ P and x /∈ A

)
⇐⇒

(
x ∈ P and x /∈ K ∩ P

)
⇐⇒

(
x ∈ P and x /∈ K

)
⇐⇒

(
x ∈ P and x ∈ U

)
⇐⇒ x ∈ U ∩ P . Since U is open in

X and B = U ∩ P we know that B is open in P . Since B is open in P , its complement
A = P \B is closed in P .

2.52 Definition: Let X be a topological space and let P ⊆ X. Verify, as an exercise, that
we can use the topology on X to define a topology on P as follows. Given a set A ⊆ P ,
we define A to be open in P when A = U ∩ P for some open set U in X. The resulting
topology on P is called the subspace topology. The above theorem asserts that when
X is a metric space and P ⊆ X, the metric topology on P (obtained by restricting the
metric on X to P ) is the same as the subspace topology on P .
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Appendix: The p-Norms

2.53 Definition: Let F = R or C. For p ∈ (1,∞) and for x = (xn)n≥1 ∈ Fω, define ‖x‖p
to be the extended real number

‖x‖p =
( ∞∑
n=1
|xn|p

)1/p
∈ [0,∞].

For p ∈ (1,∞), let
`p = `p(F) =

{
x∈Fω

∣∣ ‖x‖p<∞}.
Also, for x, y ∈ Fω let xy = (x1y1, x2y2, · · ·).
2.54 Theorem: (The p-Norms) Let F = R or C and let p, q ∈ (1,∞) with 1

p + 1
q = 1.

(1) For all 0 ≤ a, b ∈ R, we have ab ≤ ap

p + bq

q .

(2) (Hölder’s Inequality) For all x, y ∈ Fω we have ‖xy‖1 ≤ ‖x‖p‖y‖q.
(3) (Minkowski’s Inequality) For all x, y ∈ Fω we have ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
Proof: To prove Part 1, let a, b ≥ 0. Note that for p, q ∈ (1,∞) we have

1
p + 1

q = 1 ⇐⇒ 1
q = 1− 1

p = p−1
p ⇐⇒ q(p− 1) = p ⇐⇒ p(q − 1) = q.

For x, y ≥ 0 we have

y = xp−1 ⇐⇒ yq = xq(p−1) ⇐⇒ yq = xp ⇐⇒ yp(q−1) = xp ⇐⇒ yq−1 = x

so the functions f(x) = xp−1 and g(y) = yq−1 are inverses of each other. By considering
the area under y = f(x) with 0 ≤ x ≤ a and the area to the left of y = f(x) with 0 ≤ y ≤ b
(the union of these two regions is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b) we see that

ab ≤
∫ a

x=0

xp−1 dx+

∫ b

y=0

yq−1 dy =
[
1
p x

p
]a
x=0

+
[
1
q y

q
]b
y=0

= ap

p + bq

q .

To prove Part 2, let x, y ∈ Fω. If x = 0 or y = 0 then we have ‖xy‖1 = 0 = ‖x‖p‖y‖q,
so suppose x 6= 0 and y 6= 0 (hence ‖x‖p 6= 0 and ‖y‖q 6= 0). If ‖x‖p = ∞ or ‖y‖q = ∞
then ‖xy‖1 ≤ ∞ = ‖x‖p‖y‖q, so suppose that 0 6= ‖x‖p <∞ and 0 6= ‖y‖q <∞. For each

index k, apply Part 1 using a = |xk|
‖x‖p and b = |yk|

‖y‖q to get

|xkyk|
‖x‖p‖y‖q

≤ |xk|
p

p‖x‖pp
+
|yk|q

q‖y‖qq
.

Sum over k to get
‖xy‖1
‖x‖p‖y‖q

≤
‖x‖pp
p‖x‖pp

+
‖y‖qq
q‖y‖qq

= 1
p + 1

q = 1 .

To prove Part 3, let x, y ∈ Fω. If ‖x‖p = ∞ or ‖y‖p = ∞ then ‖x + y‖p ≤ ∞ =
‖x‖p + ‖y‖q. Suppose that ‖x‖p < ∞ and ‖y‖p < ∞. Since the function f(x) = xp is
concave for p > 1, we have

(
a+b
2

)p ≤ ap+bp

2 for all a, b ≥ 0, so for all k ∈ Z+ we have∣∣xk+yk
2

∣∣p ≤ ( |xk|+|yk|
2

)p ≤ |xk|p+|yk|p
2 , hence |xk + yk|p ≤ 2p−1

(
|xk|p + |yk|p

)
. Sum over k

to get

‖x+ y‖pp =
∞∑
k=1

|xk + yk|p ≤
∞∑
k=1

2p−1
(
|xk|p + |yk|p

)
= 2p−1

(
‖x‖pp + ‖y‖pp

)
<∞.

Choose q ∈ (1,∞) so that 1
p + 1

q = 1 hence 1
q = 1− 1

p = p−1
p . For each index k we have

|xk + yk|p = |xk + yk| |xk + yk|p−1 ≤
(
|xk|+ |yk|

)
|xk + yk|p−1

= |xk| |xk + yk|p−1 + |yk| |xk + yk|p−1.
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Sum over k then apply Hölder’s Inequality, writing |x| for the sequence |x| =
(
|x1|, |x2|, · · ·

)
and similarly |y| =

(
|y1|, |y2|, · · ·

)
and |x+ y|p−1 =

(
|x1 + y1|p−1, |x2 + y2|p−1, · · ·

)
, to get

‖x+ y‖pp ≤
∥∥∥|x| |x+ y|p−1

∥∥∥
1
+
∥∥∥|y| |x+ y|p−1

∥∥∥
1
≤ ‖x‖p

∥∥∥|x+ y|p−1
∥∥∥
q
+ ‖y‖p

∥∥∥|x+ y|p−1
∥∥∥
q

=
(
‖x‖p + ‖y‖p

)∥∥∥|x+ y|p−1
∥∥∥
q

=
(
‖x‖p + ‖y‖p

)( ∞∑
k=1

|x+ y|q(p−1)
)1/q

=
(
‖x‖p + ‖y‖p

)( ∞∑
k=1

|x+ y|p
)(p−1)/p

=
(
‖x‖p + ‖y‖p

)
‖x+ y‖p−1p .

If ‖x+y‖p 6= 0 then we can divide both sides by ‖x+y‖p−1p to get ‖x+y‖p ≤ ‖x‖p+‖y‖p,
and if ‖x+ y‖p = 0 then of course ‖x+ y‖p ≤ ‖x‖p + ‖y‖q.

2.55 Definition: Minkowski’s Theorem shows that ‖ ‖p satisfies the Triangle Inequality
on `p. It is easy to verify that it satisfies the other two properties which define a norm,
and so ‖ ‖p is a norm on `p, which we call the p-norm.
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Chapter 3. Limits and Continuity

Limits of Sequences

3.1 Definition: Let r ∈ Z and let (xn)n≥r be a sequence in a metric space X. We say
that the sequence (xn)n≥r is bounded when the set {xn}n≥r is bounded, that is when
there exists a ∈ X and R > 0 such that xn ∈ B(a,R) for all indices n ≥ r.

For a ∈ X, we say that the sequence (xn)n≥r converges to a (or that the limit of
xn is equal to a) and we write lim

n→∞
xn = a (or we write xn → a) when

∀ε>0 ∃m∈Z≥r ∀n∈Z≥r
(
n ≥ m =⇒ d(xn, a) < ε

)
.

We say that the sequence (xn)n≥r converges (in X) when it converges to some point
a ∈ X, and otherwise we say that (xn)n≥r diverges (in X).

3.2 Theorem: (Basic Properties of Limits of Sequences) Let (xn)n≥r be a sequence in a
metric space X, and let a ∈ X.

(1) If (xn)n≥r converges then its limit is unique.
(2) If s ≥ r and yn = xn for all n ≥ s, then (xn)n≥r converges if and only if (yn)n≥s
converges and, in this case, lim

n→∞
yn = lim

n→∞
xn.

(3) If (xnk
)k≥s is a subsequence of (xn)n≥r, and lim

n→∞
xn = a, then lim

k→∞
xnk

= a.

(4) If (xn)n≥r converges then it is bounded.
(5) We have lim

n→∞
xn = a in X if and only if lim

n→∞
d(xn, a) = 0 in R.

Proof: We prove Parts 1, 4 and 5 and leave the proofs of the other parts as an exercise.
To prove Part 1, suppose that xn → a in X and xn → b in X. We need to show that
a = b. Suppose, for a contradiction, that a 6= b, and note that d(a, b) > 0. Since xn → a

and xn → b, we can choose m ∈ Z≥r such that when n ≥ m we have d(xn, a) < d(a,b)
2 , and

d(xn, b) <
d(a,b)

2 . Then we have d(a, b) ≤ d(a, xm) + d(xm, b) <
d(a,b)

2 + d(a,b)
2 = d(a, b),

giving the desired contradiction.
To prove Part 4, suppose that (xn)n≥r converges, say xn → a in X. Choose m ∈ Z≥r

such that when n ≥ m we have d(xn, a) < 1. Then for all n ∈ Z≥r we have d(xn, a) ≤ R
where R = max

{
d(xr, a), d(xr+1, a), · · · , d(xm−1, a), 1

}
so that xn ∈ B(a,R+1).

To prove Part 5, note that since d(xn, a) ≥ 0 we have d(xn, a) =
∣∣d(xn, a)− 0

∣∣ and so

lim
n→∞

xn = a in X ⇐⇒ ∀ε>0 ∃m∈Z≥r ∀n∈Z≥r d(xn, a) < ε

⇐⇒ ∀ε>0 ∃m∈Z≥r ∀n∈Z≥r
∣∣d(xn, a)− 0

∣∣ < ε

⇐⇒ lim
n→∞

d(xn, a) = 0 in R.

3.3 Note: Because of Part 2 of the above theorem, the initial index r of a sequence
(xn)n≥r does not effect whether or not the sequence converges and it does not effect the
limit. For this reason, we often omit the initial index r from our notation and write (xn)
for the sequence (xn)n≥r. Also, we often choose a specific value of r, usually r = 1, in the
statements or the proofs of various theorems with the understanding that any other initial
value would work just as well.
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3.4 Theorem: (Components of Sequences in Fm) Let F = R or C. Let (xn)n≥1 be a
sequence in Fm, say xn =

(
xn,1, xn,2, · · · , xn,m

)
∈ Fm, and let a = (a1, a2, · · · , am) ∈ Fm.

Then using any of the metrics d1, d2 or d∞ in Fm, we have lim
n→∞

xn = a in Fm if and only

if lim
n→∞

xn,k = ak in F for all indices k with 1 ≤ k ≤ m.

Proof: Let p = 1, 2 or ∞. Suppose lim
n→∞

xn = a in (Fm, dp). Let 1 ≤ k ≤ m and let ε > 0.

Choose ` ∈ Z+ such that when n ≥ ` we have dp(xn, a) < ε, that is ‖xn − a‖p < ε. Then
when n ≥ ` we have

|xn,k − ak| =
(
|xn,k − ak|p

)1/p ≤ ( m∑
j=1

|xn,j − aj |p
)1/p

= ‖xn − a‖p < ε ,

and so xn,k → ak in F, as required.

Suppose, conversely, that for all k with 1 ≤ k ≤ m we have lim
n→∞

xn,k = ak in F. Let

ε > 0. Choose ` ∈ Z+ such that for all n ≥ ` we have |xn,k − ak| < ε
m for 1 ≤ k ≤ m.

Then, letting ek denote the kth standard basis vector in Fm, when n ≥ ` we have

‖xn − a‖p =
∥∥∥ m∑
k=1

(xn,k − ak) ek

∥∥∥
p
≤

m∑
k=1

∥∥(xn,k − ak)ek
∥∥
p

=
m∑
k=1

∣∣xn,k − ak∣∣ ‖ek‖p =
m∑
k=1

∣∣xn,k − ak∣∣ < m∑
k=1

ε
m = ε

so that xn → a in Fm, as required.

3.5 Note: When (xn)n≥1 is a sequence in F∞, `1, `2 or `∞, each term xn is itself a
sequence (so that (xn) is a sequence of sequences) and we can write xn = (xn,k)k≥1. We
have sequences x1 = (x1,1, x1,2, · · ·), x2 = (x2,1, x2,2, x2,3, · · ·), and x3 = (x3,1, x3,2, · · ·)
and so on. This is not the same thing as a subsequence of a sequence (xn) in F, which is
a single sequence (xnk

)k≥1 = (xn1
, xn2

, xn3
, · · ·).

3.6 Theorem:
(
Components of Sequences in `p

)
. Let F = R or C and let p = 1, 2 or ∞.

Let (xn)n≥1 be a sequence in `p, say xn = (xn,k)k≥1 ∈ `p, and let a = (ak)k≥1 ∈ `p. If
lim
n→∞

xn = a in (`p, dp) then lim
n→∞

xn,k = ak in F for all k ∈ Z+.

Proof: The proof is the same as the first half of the proof of Theorem 3.4. Suppose that
lim
n→∞

xn = a in (`p, dp). Let k ∈ Z+ and let ε > 0. Choose m ∈ Z+ such that when n ≥ m
we have ‖xn − a‖p < ε. Then when n ≥ m we have

|xn,k − ak| =
(
|xn,k − ak|p

)1/p ≤ ( ∞∑
j=1

|xn,j − aj |p
)1/p

= ‖xn − a‖p < ε

and so xn,k → ak in F, as required.

3.7 Note: Unlike the case in Fm, in the infinite-dimensional spaces `p, when xn,k → ak
in F for all indices k, it does not necessarily follow that xn → a in (`p, dp). For example,
you can verify, as an exercise, that when xn = en (the nth standard basis vector in F∞),
we have lim

n→∞
xn,k = 0 in F for all k ∈ Z+, but lim

n→∞
xn 6= 0 in (`p, dp) for p = 1, 2, 3.

3.8 Exercise: For each n ∈ Z+, let xn ∈ R∞ be the sequence given by xn = 1
n

n∑
k=1

ek,

that is by xn = (xn,k)k≥1 =
(
1
n ,

1
n , · · · ,

1
n , 0, 0, 0, · · ·

)
with n non-zero terms. Show that

(xn) converges in (R∞, d2) but diverges in (R∞, d1).
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3.9 Definition: Let A be a set, let X be a metric space, and let fn, g : A→ X. We say
that the sequence (fn) converges pointwise to g on A, and we write fn → g pointwise
on A, when

∀x∈A ∀ε>0 ∃m∈Z+ ∀n∈Z+
(
n≥m =⇒ d(fn(x), g(x)) < ε

)
.

We say that the sequence (fn) converges uniformly to g on A, and we write fn → g
uniformly on A, when

∀ε>0 ∃m∈Z+ ∀n∈Z+ ∀x∈A
(
n ≥ m =⇒ d(fn(x), g(x)) < ε

)
.

3.10 Remark: In the definition of the limit of a sequence in a metric space X (Definition
3.1), we can replace the strict inequality d(xn, a) < ε by the inequality d(xn, a) ≤ ε without
changing the meaning. In other words, for a sequence (xn)n≥p in X and an element a ∈ X
we have

lim
n→∞

xn = a in X ⇐⇒ ∀ε>0 ∃m∈Z≥p∀n∈Z≥p
(
n ≥ m =⇒ d(xn, a) ≤ ε

)
.

The same holds for various other definitions, such as the defiinition of uniform convergence.

3.11 Remark: Note that for h ∈ B[a, b] and r > 0, we have

‖h‖∞ ≤ r ⇐⇒ sup
{
|h(x)|

∣∣ a≤x≤b} ≤ r ⇐⇒ |h(x)| ≤ r for all x ∈ [a, b].

We also remark that we would not have equivalence if we replaced ≤ r by < r, as we only
have a one way implication: if |h(x)| < r for all x ∈ [a, b] then sup

{
|h(x)|

∣∣ a≤x≤b} ≤ r.
3.12 Theorem: (Limits in B[a, b] and Uniform Convergence) Let (fn)n≥1 be a sequence
in B[a, b], and let g ∈ B[a, b]. Then fn → g in

(
B[a, b], d∞

)
if and only if fn → g uniformly

on [a, b].

Proof: This follows immediately from the definition of uniform convergence and from the
two preceding remarks. Indeed we have

fn → g in B[a, b] ⇐⇒ ∀ε>0 ∃m∈Z+ ∀n∈Z+
(
n ≥ m =⇒ ‖fn − g‖∞ ≤ ε

)
⇐⇒ ∀ε>0 ∃m∈Z+ ∀n∈Z+

(
n ≥ m =⇒

∣∣fn(x)− g(x)
∣∣ ≤ ε for all x ∈ [a, b]

)
⇐⇒ fn → g uniformly on [a, b].

3.13 Remark: For a metric space X whose elements are functions, such as B[a, b] or
C[a, b], a sequence in X is a sequence of functions, so we can consider several different no-
tions of convergence for sequences of functions, including pointwise convergence, uniform
convergence, and convergence in the metric space. The above theorem shows that conver-
gence in the metric space B[a, b]

(
hence also in C[a, b]

)
using the supremum metric d∞,

is the same thing as uniform convergence. One might ask whether convergence in C[a, b]
using the metrics d1 or d2 implies, or is implied by, pointwise convergence. The answer is
negative, as the following exercises illustrate.

3.14 Exercise: Define fn : [0, 1]→ R by fn(x) = 1− nx for 0 ≤ x ≤ 1
n and fn(x) = 0 for

1
n ≤ x ≤ 1. Show that fn → 0 in C[0, 1] using either of the metrics d1 or d2, but fn 6→ 0
pointwise on [0, 1].

3.15 Exercise: Define fn : [0, 1]→ R by fn(x) = n2x−n3x2 for 0 ≤ x ≤ 1
n and fn(x) = 0

for 1
n ≤ x ≤ 1. Show that fn → 0 pointwise on [0, 1] but fn 6→ 0 in C[0, 1] using either of

the metrics d1 or d2.

3.16 Exercise: Define fn : [0, 1]→ R by fn(x) =
√
nxn. Show that (fn)n≥1 converges in(

C[0, 1], d1
)

but diverges in
(
C[0, 1], d2

)
.
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Limits and Closed Sets

3.17 Theorem: (The Sequential Characterization of Limit Points and Closed Sets) Let
X be a metric space, let a ∈ X, and let A ⊆ X.

(1) a ∈ A′ if and only if there exists a sequence (xn) in A \ {a} with lim
n→∞

xn = a in X.

(2) a ∈ A if and only if there exists a sequence (xn) in A with lim
n→∞

xn = a in X.

(3) A is closed in X if and only if for every sequence (xn) in A which converges in X, we
have lim

n→∞
xn ∈ A.

Proof: We prove Parts 1 and 3 and leave the proof of Part 2 as an exercise. Suppose that
a ∈ A′ (which means that for every r > 0 we have B∗(a, r) ∩ A 6= ∅). For each n ∈ Z+,
choose xn ∈ B∗

(
a, 1

n

)
∩ A, that is choose xn ∈ A \ {a} with d(xn, a) < 1

n . Then (xn)n≥1
is a sequence in A \ {a} with lim

n→∞
xn = a.

Suppose, conversely, that (xn)n≥1 is a sequence in A \ {a} with lim
n→∞

xn = a. Let

r > 0. Choose m ∈ Z+ such that d(xn, a) < r for all n ≥ m. Since xm ∈ A \ {a} with
d(xm, a) < r, we have xm ∈ B∗(a, r) ∩A and so B∗(a, r) ∩A 6= ∅. This proves Part 1.

To prove Part 3, suppose that A is closed in X. Let (xn)n≥1 be a sequence in A which
converges in X, and let a = lim

n→∞
xn ∈ X. Suppose, for a contradiction, that a /∈ A. Since

a /∈ A we have A = A\{a} so in fact (xn) is a sequence in A\{a}. Since (xn) is a sequence
in A \ {a} with lim

n→∞
xn = a, it follows from Part 1 that a ∈ A′. Since A is closed we have

A′ ⊆ A and so a ∈ A giving the desired contradiction.
Suppose, conversely, that for every sequence in A which converges in X, the limit of

the sequence lies in A. Let a ∈ A′. By Part 1, we can choose a sequence (xn) in A \ {a}
with lim

n→∞
xn = a. Then (xn) is a sequence in A which converges in X, so its limit lies in

A, that is a ∈ A. Since a ∈ A′ was arbitrary, this shows that A′ ⊆ A, and so A is closed.
This proves Part 3.

3.18 Example: Let U be a normed linear space, let a ∈ U and let r > 0. Show that
B(a, r) = B(a, r) (so the closed ball is equal to the closure of the open ball).

Solution: We saw, in Example 2.32, that B(a, r) is closed. Since B(a, r) is closed and
B(a, r) ⊆ B(a, r), it follows that B(a, r) ⊆ B(a, r). Let b ∈ B(a, r), that is let b ∈ U with
‖b− a‖ ≤ r. If ‖b− a‖ < r then we have b ∈ B(a, r) ⊆ B(a, r). Suppose that ‖b− a‖ = r.
For n ∈ Z+, let xn = a+

(
1− 1

n

)
(b− a) ∈ U . Note that

‖xn − a‖ =
∥∥(1− 1

n

)
(b− a)

∥∥ =
(
1− 1

n

)
‖b− a‖ =

(
1− 1

n

)
r < r

so that xn ∈ B(a, r). Note that

‖xn − b‖ =
∥∥ 1
n (a− b)

∥∥ = 1
n‖a− b‖ = r

n → 0 in R

so that we have xn → b in U (by Part 6 of Theorem 3.2). Since (xn) is a sequence in
B(a, r) with xn → b in U , it follows that b ∈ B(a, r) by Part 2 of the above theorem.

3.19 Example: In the previous example, it might have seemed intuitively obvious that
B(a, r) = B(a, r), but in fact this is not true in all metric spaces. For example in Z
(using the same standard metric used in R) we have B(0, 1) = {0} and B(0, 1) = {0}, but
B(0, 1) = {−1, 0, 1}.
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3.20 Exercise: Let F = R or C. Recall that F∞ ⊆ `1 ⊆ `2 ⊆ `∞. Determine whether
F∞ is closed in (`1, d1). Determine which of the spaces F∞ and `1 is closed in (`2, d2).
Determine which of the spaces F∞, `1 and `2 is closed in (`∞, d∞)

3.21 Exercise: Let F = R and let

R[a, b] =
{
f ∈ B[a, b]

∣∣ f is Riemann integrable
}
,

P[a, b] =
{
f ∈ B[a, b]

∣∣ f is a polynomial
}
,

C1[a, b] =
{
f ∈ B[a, b]

∣∣ f is continuously differentiable
}
.

Note that
P[a, b] ⊆ C1[a, b] ⊆ C[a, b] ⊆ R[a, b] ⊆ B[a, b].

Determine which of the above spaces are closed in the metric space B[a, b], using the
supremum metric d∞ (we deal with the space C[a, b] in the following example).

3.22 Example: Let F = R. Show that C[a, b] is closed in the metric space
(
B[a, b], d∞

)
.

Solution: Let (fn) be a sequence in C[a, b] which converges in the metric space
(
B[a, b], d∞

)
.

Let g = lim
n→∞

fn in
(
B[a, b], d∞

)
. By Theorem 3.12, we know that fn → g uniformly on

[a, b]. Since each function fn is continuous on [a, b], and fn → g uniformly on [a, b], it follows
that g is continuous on [a, b], that is g ∈ C[a, b]. By the Sequential Characterization of
Closed Sets (Part 3 of Theorem 3.17), it follows that C[a, b] is closed in B[a, b].
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Limits and Continuity of Functions

3.23 Definition: Let (X, dX) and (Y, dY ) be metric spaces. Let A ⊆ X, let f : A → Y ,
let a ∈ A′, and let b ∈ Y . We say that the limit of f(x) as x tends to a is equal to b, and
we write lim

x→a
f(x) = b, when

∀ε>0 ∃δ>0 ∀x∈A
(
0 < dX(x, a) < δ =⇒ dY

(
f(x), b

)
< ε
)
.

3.24 Theorem: (The Sequential Characterization of Limits) Let X and Y be metric
spaces, let A ⊆ X, let f : A → Y , let a ∈ A′ ⊆ X, and let b ∈ Y . Then lim

x→a
f(x) = b if

and only if for every sequence (xn) in A \ {a} with xn → a we have lim
n→∞

f(xn) = b.

Proof: Suppose that lim
x→A

f(x) = b. Let (xn) be a sequence in A \ {a} with xn → a. Let

ε > 0. Since lim
x→a

f(x) = b we can choose δ > 0 such that 0 < d(x, a) < δ =⇒ d
(
f(x), b

)
< ε.

Since xn → a we can choose m ∈ Z+ such that n ≥ m =⇒ d(xn, a) < δ. For n ≥ m we
have d(xn, a) < δ and we have xn 6= a

(
since (xn) is a sequence in A \ {a}

)
, so that

0 < d(xn, a) < δ, and hence d
(
f(xn), b

)
< ε. Thus lim

n→∞
f(xn) = b, as required.

Suppose, conversely, that lim
x→a

f(x) 6= b. Choose ε > 0 such that for every δ > 0 there

exists x ∈ A such that 0 < d(x, a) < δ and d
(
f(x), b

)
≥ ε. For each n ∈ Z+, choose xn ∈ A

such that 0 < d(xn, a) < 1
n and d

(
f(xn), b

)
≥ ε. For each n, since 0 < d(xn, a) we have

xn 6= a so the sequence (xn) lies in A \ {a}. Since d(xn, a) < 1
n for all n ∈ Z+, it follows

that xn → a. Since d
(
f(xn), b

)
≥ ε for all n ∈ Z+, it follows that lim

n→∞
f(x) 6= b. Thus we

have found a sequence (xn) in A \ {a} with xn → a such that lim
n→∞

f(xn) 6= b.

3.25 Definition: Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y . For
a ∈ X, we say that f is continuous at a when for every ε > 0 there exists δ > 0 such that
for all x ∈ X, if dX(x, a) < δ then dY

(
f(x), f(a)

)
< ε. We say that f is continuous (on

X) when f is continuous at every point a ∈ X. We say that f is uniformly continuous
(on X) when for every ε > 0 there exists δ > 0 such that for all x, y ∈ X, if dX(x, y) < δ
then dY

(
f(x), f(y)

)
< ε. We say that f is Lipschitz continuous (on X) when there is

a constant ` ≥ 0, called a Lipschitz constant for f , such that for all x, y ∈ X we. have
d
(
f(x), f(y)

)
≤ ` · d(x, y). Note that if f is Lipschitz continuous then f is also uniformly

continuous (indeed we can take δ = ε
` in the definition of uniform continuity). A bijective

map f : X → Y such that both f and f−1 are continuous is called a homeomorphism.

3.26 Note: Let X and Y be metric spaces and let a ∈ X. If a is a limit point of X then
f is continuous at a if and only if lim

x→a
f(x) = f(a). If a is an isolated point of X then f

is necessarily continuous at a, vacuously.

3.27 Theorem: (The Sequential Characterization of Continuity) Let X and Y be metric
spaces using metrics dX and dY , let f : X → Y , and let a ∈ X. Then f is continuous at a
if and only if for every sequence (xn) in X with xn → a we have lim

n→∞
f(xn) = f(a).

Proof: The proof is left as an exercise.

3.28 Exercise: Let X, Y and Z be metric spaces, let f : X → Y , let g : Y → Z. Show
that if f is continuous at the point a ∈ X and g is continuous at the point f(a) ∈ Y then
the composite function g ◦ f is continuous at a.
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3.29 Theorem: (The Topological Characterization of Continuity) Let X and Y be metric
spaces and let f : X → Y . Then

(1) f is continuous (on X) if and only if f−1(V ) is open in X for every open set V in Y ,
(2) f is continuous (on X) if and only if f−1(C) is closed in X for every closed set C in Y .

Proof: To prove Part 1, suppose f is continuous in X. Let V be open in Y . Let a ∈ f−1(V )
and let f(a) ∈ V . Since V is open, we can choose ε > 0 such that B

(
f(a), ε

)
⊆ V . Since

f is continuous at a we can choose δ > 0 such that for all x ∈ X with d(x, a) < δ we have
d
(
f(x), f(a)

)
< ε. Then we have f

(
B(a, δ)

)
⊆ B

(
f(a), ε

)
⊆ V and so B(a, δ) ⊆ f−1(V ).

Thus f−1(V ) is open in X, as required.
Suppose, conversely, that f−1(V ) is open in X for every open set V in Y . Let a ∈ X

and let ε > 0. Taking V = B
(
f(a), ε

)
, which is open in Y , we see that f−1

(
B
(
f(a), ε

))
is open in X. Since a ∈ f−1

(
B(f(a), ε

)
and f−1

(
B
(
f(a), ε

))
is open in X, we can choose

δ > 0 such that B(a, δ) ⊆ f−1
(
B
(
f(a), ε

))
. Then we have f

(
B(a, δ)

)
⊆ B

(
f(a), ε

)
or, in

other words, for all x ∈ X, if d(x, a) < δ then d
(
f(x), f(a)

)
< ε. Thus f is continuous at

a hence, since a was arbitrary, f is continuous on X.
This completes the proof of Part 1, and Part 2 follows by taking complements since

for every set B ⊆ Y we have
(
f−1(B)

)c
= f−1(Bc). Indeed for all x ∈ A we have

x ∈
(
f−1(B)

)c ⇐⇒ x /∈ f−1(B) ⇐⇒ f(x) /∈ B ⇐⇒ f(x) ∈ Bc ⇐⇒ x ∈ f−1(Bc).

3.30 Definition: Let X and Y be topological spaces and let f : X → Y . We say that f
is continuous (on X) when f−1(V ) is open in X for every open set V in Y . A bijective
map f : X → Y such that both f and f−1 are continuous is called a homeomorphism.

3.31 Theorem: (Composition of Continuous Functions) Let X, Y and Z be metric spaces
(or topological spaces), let f : X → Y , and let g : Y → Z. If f and g are continuous then
the composite function g ◦ f : X → Z is continuous.

Proof: Let h = g ◦ f : X → Z. If W ⊆ Z is open in Z, then g−1(W ) is open in Y (since g
is continuous), hence h−1(W ) = f−1

(
g−1(W )

)
is open in X (since f is continuous). Thus

h is continuous, by Theorem 3.29 (or by Definition 3.30)

3.32 Example: Let A =
{

(x, y) ∈ R2
∣∣ y < x2

}
. Show that A is open in R2.

Solution: We remark that it is surprisingly difficult to show that A is open directly from
the definition of an open set (as mentioned in Remark 2.34). But we can make use of
the Topological Characterization of Continuity to give a quick proof. Define f : R2 → R
by f(x, y) = y − x2. Note that f is continuous (polynomial functions, and indeed all
elementary functions, are continuous) and we have A =

{
(x, y)

∣∣ f(x, y) < 0
}

= f−1(B)
where B is the open interval (−∞, 0). Since B is open in R and f is continuous, it follows
that A = f−1(B) is open in R2.

3.33 Example: Recall from Example 2.41 that every set U ⊆ C[a, b] which is open using
the metric d1 is also open using the metric d∞, but not vice versa. It follows (from Theorem
3.29) that the identity map I : C → C[a, b] given by I(f) = f is continuous as a map from
the metric space

(
C[a, b], d∞

)
to the metric space

(
C[a, b], d1

)
, but not vice versa.
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Continuity of Linear Maps

3.34 Note: If U and V are inner product spaces over F = R or C, and L : U → V is an
inner product space isomorphism, then L and its inverse preserve distance so they are both
continuous (we can take δ = ε in the definition of continuity), hence L is a homeomorphism.

If U and V are finite-dimensional inner product spaces with say dimU = n and
dimV = m, and if φ : Fn → U and ψ : Fm → V are inner product space isomorphisms
(obtained by choosing orthonormal bases for U and V ) then a map F : U → V is continuous
if and only if the composite map ψ−1Fφ : Fn → Fm is continuous. In particular, if F is
linear then F is continuous (since ψ−1Fφ : Fn → Fm is linear, hence continuous).

We shall see below (in Corollary 3.39) that the same is true for finite dimensional
normed linear spaces: every linear map between finite dimensional normed linear spaces is
continuous. But this is not always true (see Example 3.33) for infinite dimensional spaces.

3.35 Theorem: Let U and V be normed linear spaces over F = R or C and let F : U → V
be a linear map. Then the following are equivalent:

(1) F is Lipschitz continuous on U ,

(2) F is continuous at some point a ∈ U ,

(3) F is continuous at 0, and

(4) F
(
B(0, 1)

)
is bounded.

In this case, if m ≥ 0 with F
(
B(0, 1)

)
⊆ B(0,m) then m is a Lipschitz constant for F .

Proof: It is clear that if F is Lipschitz continuous on U then F is continuous at some point
a ∈ U (indeed F is continuous at every point a ∈ U). Let us show that if F is continuous
at some point a ∈ U then F is continuous at 0. Suppose that F is continuous at a ∈ U .
Let ε > 0. Since F is continuous at a ∈ U , we can choose δ1 > 0 such that for all u ∈ U we
have ‖u− a‖ ≤ δ1 =⇒

∣∣∣∣F (u)− F (a)
∣∣∣∣ ≤ 1. Choose δ = δ1ε. Let x ∈ U with ‖x− 0‖ < δ.

If x = 0 then
∣∣∣∣F (x) − F (0)

∣∣∣∣ = ‖0‖ = 0. Suppose that x 6= 0. Then for u = a + δ1x
‖x‖ we

have ‖u−a‖ =
∣∣∣∣ δ1x
‖x‖
∣∣∣∣ = δ1 and so

∣∣∣∣F (u−a)
∣∣∣∣ =

∣∣∣∣F (u)−F (a)
∣∣∣∣ ≤ 1, that is

∣∣∣∣F ( δ1x‖x‖)∣∣∣∣ ≤ 1

hence, by the linearity of F and the scaling property of the norm, we have∣∣∣∣F (x)− F (0)
∣∣∣∣ =

∣∣∣∣F (x)
∣∣∣∣ = ‖x‖

δ1

∣∣∣∣F ( δ1x‖x‖)∣∣∣∣ ≤ ‖x‖δ1 < δ1ε
δ1

= ε.

Thus F is continuous at 0, as required

Next we show that if F is continuous at 0 then F
(
B(0, 1)

)
is bounded. Suppose that

F is continuous at 0. Choose δ > 0 so that for all u ∈ U we have ‖u‖ ≤ δ =⇒ ‖F (u)‖ ≤ 1.
Let m = 1

δ . For x ∈ U , when x = 0 we have ‖F (x)‖ = 0 ≤ m and when 0 < ‖x‖ ≤ 1 we
have

‖F (x)‖ =
∣∣∣∣∣∣‖x‖δ F

(
δx
‖x‖
)∣∣∣∣∣∣ = ‖x‖

δ

∣∣∣∣∣∣F ( δx‖x‖)∣∣∣∣∣∣ ≤ ‖x‖δ = m‖x‖ ≤ m.

Thus F
(
B(0, 1)

)
is bounded, as required.

Finally we show that if F
(
B(0, 1)

)
is bounded then F is Lipschitz continuous. Suppose

that F
(
B(0, 1)

)
is bounded. Choose m > 0 so that ‖F (u)‖ ≤ m for all u ∈ U with ‖u‖ ≤ 1.

Let x, y ∈ U . If x = y then
∣∣∣∣F (x) − F (y)

∣∣∣∣ = 0. Suppose that x 6= y. Then we have∣∣∣∣ x−y
‖x−y‖

∣∣∣∣ = 1 so that
∣∣∣∣F ( x−y

‖x−y‖
)∣∣∣∣ ≤ m and so∣∣∣∣F (x)− F (y)

∣∣∣∣ =
∣∣∣∣F (x− y)

∣∣∣∣ = ‖x− y‖
∣∣∣∣F ( x−y

‖x−y‖
)∣∣∣∣ ≤ m‖x− y‖.

Thus F is Lipschitz continuous with Lipschitz constant m, as required.
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3.36 Example: Let F = R so C[a, b] =
(
C[a, b],R

)
. Define L :

(
C[a, b], d∞

)
→
(
C[a, b], d∞

)
by L(f)(x) =

∫ x

a

f(t) dt. Show that L is Lipschitz continuous.

Solution: Let f ∈ C[a, b] with ‖f‖∞ ≤ 1, that is with max
a≤x≤b

|f(x)| ≤ 1. Then

∣∣∣∣F (f)
∣∣∣∣
∞ = max

a≤x≤b

∣∣∣∣ ∫ x

a

f(t) dt

∣∣∣∣ ≤ max
a≤x≤b

∫ x

a

1 dt = max
a≤x≤b

|x− a| = |b− a|.

Thus F
(
B(0, 1)

)
is bounded and so F is uniformly continuous.

3.37 Example: Let F = R. Let C1[0, 1] be the set of continuously differentiable maps
f : [0, 1]→ R. Define D :

(
C1[0, 1], d∞

)
→
(
C[0, 1], d∞

)
by D(f) = f ′. Show that D is not

continuous.

Solution: For n ∈ Z+, define fn : [0, 1] → R by fn(x) = xn. Then fn ∈ C1[a, b], and
‖fn‖∞ = max

0≤x≤1
|xn| = 1 so that fn ∈ B(0, 1), and

∣∣∣∣D(fn)
∣∣∣∣
∞ = max

0≤x≤1

∣∣nxn−1∣∣ = n. Thus

D
(
B(0, 1)

)
is not bounded, so D is not continuous

(
at any point g ∈ C[0, 1]

)
.

3.38 Theorem: Let U be an n-dimensional normed linear space over F = R or C.
Let {u1, · · · , un} be any basis for U and let φ : Fn → U be the associated vector space

isomorphism given by φ(t) =
n∑
k=1

tkuk. Then both φ and φ−1 are Lipschitz continuous.

Proof: Let M =
( n∑
k=1

‖uk‖2
)1/2

. For t ∈ Fn we have

∣∣∣∣φ(t)
∣∣∣∣ =

∣∣∣∣∣∣ n∑
k=1

tkuk

∣∣∣∣∣∣ ≤ n∑
k=1

|tk| ‖uk‖ , by the Triangle Inequality,

≤
( n∑
k=1

|tk|2
)1/2( n∑

k=1

‖uk‖2
)1/2

, by the Cauchy-Schwarz Inequality,

= M‖t‖.

For all s, t ∈ Fn,
∣∣∣∣φ(s)− φ(t)

∣∣∣∣ =
∣∣∣∣φ(s− t)

∣∣∣∣ ≤M ‖s− t‖, so φ is Lipschitz continuous.

Note that the map N : U → R given by N(x) = ‖x‖ is (uniformly) continuous, indeed
we can take δ = ε in the definition of continuity. Since φ and N are both continuous, so is
the composite G = N ◦ φ : Fn → R, which given by G(t) =

∣∣∣∣φ(t)
∣∣∣∣. By the Extreme Value

Theorem, the map G attains its minimum value on the unit sphere
{
t ∈ Fn

∣∣‖t‖ = 1
}

,

which is compact. Let m = min
‖t‖=1

G(t) = min
‖t‖=1

∣∣∣∣φ(t)
∣∣∣∣. Note that m > 0 because when

t 6= 0 we have φ(t) 6= 0 (since φ is a bijective linear map) and hence ‖φ(t)‖ 6= 0. For t ∈ Fn,
if ‖t‖ > 1 then we have

∣∣∣∣ t
‖t‖
∣∣∣∣ = 1 so, by the choice of m,∣∣∣∣φ(t)
∣∣∣∣ = ‖t‖

∣∣∣∣∣∣φ( t
‖t‖
)∣∣∣∣∣∣ ≥ ‖t‖ ·m > m.

It follows that for all t ∈ Fn, if
∣∣∣∣φ(t)

∣∣∣∣ ≤ m then ‖t‖ ≤ 1. Since φ is bijective, it follows

that for x ∈ U , if ‖x‖ ≤ m then
∣∣∣∣φ−1(x)

∣∣∣∣ ≤ 1. Thus for all x ∈ U , if x = 0 then

‖φ−1(x)‖ = 0 = ‖x‖
m and if x 6= 0 then since

∣∣∣∣mx
‖x‖
∣∣∣∣ = m we have∣∣∣∣φ−1(x)

∣∣∣∣ = ‖x‖
m

∣∣∣∣φ−1(mx‖x‖)∣∣∣∣ ≤ ‖x‖m .

For all x, y ∈ U , we have
∣∣∣∣φ−1(x) − φ−1(y)

∣∣∣∣ =
∣∣∣∣φ−1(x − y)

∣∣∣∣ ≤ 1
m ‖x − y‖, so φ−1 is

Lipschitz continuous.
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3.39 Corollary: When U and V are finite-dimensional normed linear spaces, every linear
map F : U → V is Lipschitz continuous.

Proof: Let U and V be finite-dimensional vector spaces over F = R or C and let F : U → V
be linear. Let {u1, · · · , un} and {v1, · · · , vm} be bases for U and V , and let φ : Fn → U

and ψ : Fm → V be the isomorphisms given by φ(t) =
n∑
k=1

tkuk and ψ(s) =
m∑
k=1

skvk.

Since ψ−1 and φ are both linear, the composite G = ψ−1Fφ : Fn → Fm is linear, hence
continuous (linear maps from Fn to Fm, using the standard metric, are continuous). By
the above theorem, we know that ψ and φ−1 are continuous, and so the composite map
F = ψGφ−1 is continuous, hence also Lipschitz continuous, by Theorem 3.35.

3.40 Corollary: Any two norms on a finite-dimensional vector space U induce the same
topology on U .

Proof: Let U have two norms ‖ ‖1 and ‖ ‖2, inducing two metrics d1 and d2, determining
two topologies on U . Let I : (U, d1) → (U, d2) be the identity map (given by I(x) = x),
and let J = I−1 : (U, d2)→ (U, d1) (so J is also the identity map). By the above corollary,
I and J are continuous. Let A ⊆ U . If A is open in (U, d1) then, since J is continuous,
J−1(A) is open in (U, d2), but J−1(A) = I(A) = A and so A is open in (U, d2). Similarly,
if A is open in (U, d2) then A = J(A) = I−1(A) is open in (U, d1).

3.41 Corollary: Let U be a finite-dimensional vector space. Let ‖ ‖1 and ‖ ‖2 be two
norms on U inducing the two metric d1 and d2 on U . Let (xn)n≥1 be a sequence in U , and
let a ∈ U . Then xn → a in (U, d1) if and only if xn → a in (U, d2).

Proof: Let I : (U, d1)→ (U, d2) be the identity map (given by I(x) = x). By Corollary 3.38,
I is Lipschitz continuous. Let ` ≥ 0 be a Lipschitz constant for I. Suppose that xn → a in
(U, d1). Let ε > 0. Choose m ∈ Z+ such that when n ≥ m we have d1(xn, a) < ε

`+1 . Then

when n ≥ m we have d2(xn, a) = d2
(
I(xn), I(a)

)
≤ ` ·d1(xn, a) < ` · ε

`+1 < ε. Thus xn → a
in (U, d2). Similarly, since the identity map J : (U, d2) → (U, d1) is Lipschitz continuous,
it follows that if xn → a in (U, d2) then xn → a in (U, d1). We remark that I and J might
have different Lipschitz constants (even though I and J are both the identity map from U
to itself).
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Chapter 4. Separability and Completeness

Separability

4.1 Note: Let X be a metric space. Recall that for A ⊆ X we say that A is dense in X
when A = X. Also recall that A = A ∪A′ where A′ is the set of limit points of A and so,
by the definition of limit points, it follows that A is dense in X if and only if every open
ball in X contains a point in A. By the sequential characterization of the closure, we can
say that A is dense in X if and only if for every a ∈ X there exists a sequence (xn) in A
with xn → a in X.

4.2 Definition: Let X be a metric space (or a topological space). We say that X is
separable when it has a finite or countable dense subset.

4.3 Definition: Let X be a topological space. A basis (or a base) for the topology on
X is a set S of open sets in X with the property that for every subset U ⊆ X, U is open
if and only if for every point a ∈ U there exists a basic set B ∈ S with a ∈ B ⊆ U .

4.4 Example: In a metric space X, the set of open balls S =
{
B(a, r)

∣∣a ∈ X, 0 < r ∈ R
}

is a basis for the metric topology on X.

4.5 Theorem: Let X be a metric space.

(1) If X is separable then there is a finite or countable basis for the metric topology on X.
(2) If every infinite subset of X has a limit point then X is separable.
(3) If X is separable then every subspace of X is separable.

Proof: We prove Parts 1 and 3 and leave the proof of Part 2 as an exercise. To prove Part 1,
let X be separable and choose a finite or countable dense subset P = {p1, p2, p3, · · ·} ⊆ X.
Let S =

{
B
(
pk,

1
`

) ∣∣ k, ` ∈ Z+
}

. Note that S is finite or countable because the map

F : Z+ ×Z+ → S given by F (k, `) = B
(
pk,

1
`

)
is surjective (F might not be injective even

if the elements pk are distinct). We claim that S is a basis for the topology on X.
Let U ⊆ X. Suppose first that that U is open in X. Let a ∈ U . Since U is open

in X we can choose r > 0 such that B(a, 2r) ⊆ U . Choose ` ∈ Z+ so that 1
` < r. Since

P = {p1, p2, · · ·} is dense in X we can choose an index k ∈ Z+ so that pk ∈ B
(
a, 1`

)
.

Since d(pk, a) < 1
` , we have a ∈ B

(
pk,

1
`

)
. Also note that for all x ∈ B

(
pk,

1
`

)
, we have

d(x, a) ≤ d(x, pk) + d(pk, a) < 1
` + 1

` < 2r so that a ∈ B
(
pk,

1
`

)
⊆ B(a, 2r) ⊆ U .

Now suppose that U has the property that for every a ∈ U there exists B ∈ S such
that a ∈ B ⊆ U . For each a ∈ U choose Ba ∈ S such that a ∈ Ba ⊆ U . Then U =

⋃
a∈U

Ba,

which is open (it a union of open sets). Thus S is a basis for the topology on X.

To prove Part 3, let X be separable and let ∅ 6= Y ⊆ X. Since X is separable we
can choose a finite or countable dense subset P ⊆ X, say P = {p1, p2, p3, · · ·}. Recall
from Part 1 that the set S =

{
B
(
pk,

1
`

) ∣∣ k, ` ∈ Z+
}

is a finite or countable basis for the

topology on X. Fix an element b ∈ Y . For each k, ` ∈ Z+, if B
(
pk,

1
`

)
∩ Y 6= ∅ then then

choose an element qk,` ∈ B
(
pk,

1
`

)
∩ Y and if B

(
pk,

1
`

)
∩ Y = ∅ then choose qk,` = b. Let

Q =
{
qk,`
∣∣k, ` ∈ Z+

}
. Note that Q is a finite or countable subset of Y . We claim that

Q is dense in Y . Let y ∈ Y and let ε > 0. Since S is a basis for the topology on X we
can choose k, ` ∈ Z+ such that y ∈ B

(
pk,

1
`

)
⊆ B(y, ε). Since y ∈ B

(
pk,

1
`

)
∩ Y so that

B
(
pk,

1
`

)
∩ Y 6= ∅, we have qk,` ∈ B

(
pk,

1
`

)
∩ Y . Since qk,` ∈ B

(
pk,

1
`

)
⊆ B(y, ε), we have

d(qk,`, y) < ε. Thus the set Q is dense in Y , as claimed.
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4.6 Example: Euclidean space
(
Rn, d2

)
is separable with Qn as a countable dense subset.

Similarly, the complex space (Cn, d2) is separable with Q[i]n as a countable dense subset,
where Q[i] =

{
x+iy

∣∣x, y ∈ Q
}

.

4.7 Theorem: The spaces (`1, d1) and (`2, d2) are separable, and (`∞, d∞) is not.

Proof: We give the proof that (`1(R), d1) is separable, and that (`∞, d∞) is not. We leave
the cases (`1(C), d1) and (`2, d2) as an exercise. First we claim that (`1, d1) is separable
when F = R. For each n ∈ Z+, let

An =
{
a = (ak)k≥1 ∈ R∞

∣∣∣ak ∈ Q for k ≤ n and ak = 0 for k > n
}

and let Q∞ =
∞⋃
n=1

An. Note that for each n there is a natural bijection F : Qn → An given

by F (a1, a2, · · · , an) = (a1, a2, · · · , an, 0, 0, · · ·), so each An is countable, and hence Q∞ is
countable (by Theorem 1.20). We claim that Q∞ is dense in

(
`1, d1

)
. Let b = (bk)k≥1 ∈ `1.

Let ε > 0. Choose n ∈ Z+ so that
∞∑

k=n+1

|bk| < ε
2 . For each k ≤ n choose ak ∈ Q so that

|ak − bk| < ε
2n , and for each k > n let ak = 0. Then a = (ak) ∈ An ⊆ Q∞ and we have

‖a− b‖1 =
∞∑
k=1

|ak − bk| =
n∑
k=1

|ak − bk|+
∞∑

k=n+1

|bk| < n · ε2n + ε
2 = ε .

Thus Q∞ is a countable dense subset of (`1, d1), so (`1, d1) is separable.

Next we claim that (`∞, d∞) is not separable (when F = R or C). For each A ⊆ Z+,
let e

A
= (e

A,k
)k≥1 where

eA,k =

{
1 , if k ∈ A
0 , if k /∈ A .

Note that for A 6= B ⊆ Z+ we have
∥∥eA − eB∥∥∞ = 1, so the balls B∞

(
eA,

1
2

)
are disjoint.

Let P ⊆ `∞ be any dense subset. For each A ⊆ Z+, choose pA ∈ P ∩B∞(eA,
1
2 ). Since the

balls are disjoint, the map F : P(Z+)→ P given by F (A) = pA is injective, so we have

2ℵ0 =
∣∣P(N)

∣∣ ≤ |P | .
Thus (`∞, d∞) is not separable.

4.8 Example: As an exercise, show that the space
(
B[a, b], d∞

)
of bounded functions on

the interval [a, b] is not separable
(
consider characteristic functions χA for appropriate sets

A ⊆ [a, b]
)
.

4.9 Remark: Later (in Chapter 6) we will show that the space
(
C[a, b], d∞

)
of continuous

real valued functions on the interval [a, b] is separable. Once we have proven this, it will
follow that every subspace of C[a, b] is separable, using the supremum metric.
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Completeness

4.10 Definition: A sequence (xn)n≥1 in a metric space X is called a Cauchy sequence
when it has the property that for all ε > 0 there exists an index m ∈ Z+ such that for all
indices k, ` ≥ m we have d(xk, x`) < ε.

4.11 Theorem: Let X be a metric space.

(1) Every Cauchy sequence in X is bounded.
(2) Every convergent sequence in X is Cauchy.
(3) If some subsequence of a Cauchy sequence (xn) converges, then (xn) converges.

Proof: To prove Part 1, let (xn)n≥1 be a Cauchy sequence in X. Choose m ∈ Z+ such
that k, ` ≥ m =⇒ d(xk, x`) ≤ 1 and note that, in particular, we have d(xk, xm) ≤ 1 for all
k ≥ m. Let a = xm and choose r > max

{
d(x1, a), d(x2, a), · · · , d(xm−1, a), 1

}
. Then for

all n ∈ Z+ we have d(xn, a) < r so the sequence (xn) is bounded, as required.

To prove Part 2, let (xn)n≥1 be a convergent sequence in X and let a = lim
n→∞

xn. Let

ε > 0. Choose m ∈ Z+ such that n ≥ m =⇒ d(xn, a) < ε
2 . Then for all k, ` ≥ m we have

d(xk, x`) ≤ d(xk, a) + d(a, x`) <
ε
2 + ε

2 = ε,

so the sequence (xn) is Cauchy, as required.

To prove Part 3, let (xn)n≥1 be a Cauchy sequence in X, let (xnk
)k≥1 be a subsequence

of (xn)n≥1, suppose that (xnk
)k≥1 converges, and let a = lim

k→∞
xnk

. Let ε > 0. Since (xn)

is Cauchy we can choose m ∈ Z+ so that k, ` ≥ m =⇒ d(xk, x`) <
ε
2 . Since lim

k→∞
nk =∞

and lim
k→∞

xnk
= a, we can choose an index ` such that n` ≥ m and d(xn`

, a) < ε
2 . Then

for all k ≥ m we have

d(xk, a) ≤ d(xk, xn`
) + d(xn`

, a) < ε
2 + ε

2 = ε.

4.12 Definition: A metric space X is called complete when every Cauchy sequence in
X converges in X. A complete inner product space is called a Hilbert space, and a
complete normed linear space is called a Banach space.

4.13 Theorem: Let X be a complete metric space and let A ⊆ X. Then A is complete
if and only if A is closed in X

Proof: Suppose that A is closed in X. Let (xn) be a Cauchy sequence in A. Since X is
complete, (xn) converges in X. Since A is closed in X and (xn) is a sequence in A which
converges in X, we have lim

n→∞
xn ∈ A by Theorem 3.17 (The Sequential Characterization

of Closed Sets). Thus every Cauchy sequence in A converges in A, so A is complete.
Suppose, conversely, that A is complete. Let a ∈ A′, that is let a ∈ X be a limit point

of A. Since a ∈ A′, by Theorem 3.5 (The Sequential Characterization of Limit Points)
we can choose a sequence (xn) in A (indeed in A \ {a}) with lim

n→∞
xn = a. Since (xn)

converges in X, it is Cauchy. Since (xn) is Cauchy and A is complete, (xn) converges in
A, that is a = lim

n→∞
xn ∈ A.

4.14 Example: Recall, from MATH 247 or PMATH 333, that
(
Rn, d2

)
is complete. Note

that (Cn, d2) is also complete because (Cn, d2) = (R2n, d2). It follows that every closed
subset A ⊆ Rn (or A ⊆ Cn) is complete (using the standard metric d2).

4.15 Example: Note that completeness is not invariant under homeomorphism. For
example, R is homeomorphic to (0, 1) ⊆ R, but R is complete while (0, 1) is not.
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4.16 Theorem: Every finite-dimensional normed linear space is complete.

Proof: Let U be an n-dimensional normed linear space over F = R or C. Let {u1, · · · , un}
be a basis for the vector space U and let F : Fn → U be the associated vector space

isomorphism given by F (t) =
n∑
k=1

tkuk. Recall, from Theorem 3.38, that both F and F−1

are Lipschitz continuous. Let L be a Lipshitz constant for F and let M be a Lipschitz
constant for F−1. Let (xn)n≥1 be a Cauchy sequence in U . For each n ∈ Z+, let tn =
F−1(xn) ∈ Fn. Note that (tn) is a Cauchy sequence in Fn because

‖tk − t`‖2 =
∥∥F−1(xk)− F−1(x`)

∥∥
2
≤M‖xk − x`‖.

Since (tn) is a Cauchy sequence in Fn and Fn is complete, (tn) converges in Fn. Let
s = lim

n→∞
tn ∈ Fn and let a = F (s) ∈ U . Then we have lim

n→∞
xn = a because

‖xn − a‖ =
∥∥F (tn)− F (s)

∥∥ ≤ L‖tn − s‖2.
4.17 Corollary: The metric spaces (Fn, d1), (Fn, d2) and (Fn, d∞) are all complete.

4.18 Theorem: The metric spaces (`1, d1), (`2, d2) and (`∞, d∞) are all complete.

Proof: We prove that (`1, d1) is complete and we leave the proof that (`2, d2) and (`∞, d∞)
are complete as an exercise. Let (an)n≥1 be a Cauchy sequence in `1. For each n ∈ Z+,

write an = (an,k)k≥1 = (an,1, an,2, an,3, · · ·). Since an ∈ `1 we have
∞∑
k=1

|an,k| < ∞. Since

(an)n≥1 is Cauchy, for every ε > 0 we can choose N ∈ Z+ such that for all n,m ≥ N we

have ‖an − am‖1 < ε, that is
∞∑
k=1

|an,k − am,k| < ε. For each fixed k ∈ Z+, note that for

n,m ≥ N we have |an,k − am,k| ≤
∞∑
j=1

|an,j − am,j | < ε, and so the sequence (an,k)n≥1 is

Cauchy in F, so it converges. For each k ∈ Z+, let bk = lim
n→∞

an,k ∈ F and let b = (bk)k≥1.

We claim that b ∈ `1. Since (an)n≥1 is Cauchy, for every ε > 0 we can choose

N ∈ Z+ such that for all n,m ≥ N we have ‖an − am‖1 < ε, that is
∞∑
k=1

|an,k − am,k| < ε.

By the Triangle Inequality, for n,m ≥ N we have
∣∣‖an‖1 − ‖am‖1∣∣ ≤ ‖an − am‖1 < ε.

It follows that the sequence
(
‖an‖

)
n≥1 is a Cauchy sequence in R, so it converges. Let

M = lim
n→∞

‖an‖1 ∈ R. For each fixed K ∈ Z+ we have

K∑
k=1

|bk| =
K∑
k=1

∣∣ lim
n→∞

an,k
∣∣ = lim

n→∞

K∑
k=1

|an,k| ≤ lim
n→∞

∞∑
k=1

|an,k| = lim
n→∞

‖an‖1 = M.

Since
K∑
k=1

|bk| ≤M for all K ∈ Z+ it follows that
∞∑
k=1

|bk| ≤M , so b ∈ `1, as claimed.

Finally, we claim that lim
n→∞

an = b in `1. Let ε > 0. Choose N ∈ Z+ such that for all

n,m ≥ N we have ‖an − am‖1 < ε. Then for n ≥ N and for each K ∈ Z+ we have
K∑
k=1

|an,k − bk| =
K∑
k=1

∣∣an,k − lim
m→∞

am,k
∣∣ = lim

m→∞

K∑
k=1

|an,k − am,k|

≤ lim
m→∞

∞∑
k=1

|an,k − am,k| = lim
m→∞

‖an − am‖1 ≤ ε

Since
K∑
k=1

|an,k − bk| ≤ ε for all K ∈ Z+ it follows that ‖an − b‖1 =
∞∑
k=1

|an,k − bk| ≤ ε.
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4.19 Exercise: Show that (`1, d∞) and (`2, d∞) are not closed in (`∞, d∞) and so they
are not complete.

4.20 Exercise: Show that the metric spaces
(
C[a, b], d1

)
and

(
C[a, b], d2

)
are not complete.

Hint: in the case [a, b] = [−1, 1], consider fn : [−1, 1] → R given by fn(x) = x1/2n−1 for
n ∈ Z+. Show that if (fn) did converge, either in

(
C[−1, 1], d1

)
or in

(
C[−1, 1], d2

)
, then it

would necessarily converge to a function g with g(x) = 1 when x > 0 and g(x) = −1 when
x < 0, but such a function g cannot be continuous.

4.21 Definition: Let F = R or C. For a metric space X, we define

F(X) = F(X,F) = FX =
{
f : X → F

}
B(X) = B(X,F) =

{
f : X → F

∣∣ f is bounded
}

C(X) = C(X,F) =
{
f : X → F

∣∣ f is continuous
}
,

Cb(X) = Cb(X,F) =
{
f : X → F

∣∣ f is bounded and continuous
}
.

Note that B(X,F) is a normed linear space using the supremum norm given by

‖f‖∞ = sup
x∈X

∣∣f(x)
∣∣

and a metric space using the supremum metric given by d∞(f, g) = sup
x∈X

∣∣f(x)− g(x)
∣∣.

These do not determine a well-defined norm and metric on C(X,F) since ‖f‖∞ = sup
x∈X
|f(x)|

might not be finite, but they do determine a well-defined norm and metric on Cb(X,F).

4.22 Definition: For a sequence (fn) in F(X) and for g ∈ F(X), we say that (fn)
converges uniformly to g on X, and write fn → g uniformly on X, when for every ε > 0
there exists m ∈ Z+ such that |fn(x)− g(x)| < ε for every n ≥ m and every x ∈ X.

4.23 Note: For a sequence (fn) ∈ B(X) and for g ∈ B(X), note that |fn(x) − g(x)| ≤ ε
for every x ∈ X if and only if ‖fn − g‖∞ ≤ ε. It follows that fn → g uniformly on X if
and only if fn → g in the metric space

(
B(X), d∞

)
.
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4.24 Theorem: Let X be a metric space. Then the metric spaces
(
B(X), d∞

)
and(

Cb(X), d∞
)

are complete.

Proof: Let (fn)n≥1 be a Cauchy sequence in
(
B(X), d∞

)
. Note that for each x ∈ X,

we have
∣∣fn(x) − fm(x)

∣∣ ≤ supy∈X
∣∣fn(y) − fm(y)

∣∣ = ‖fn − fm‖∞, and so the sequence(
fn(x)

)
n≥1 is a Cauchy sequence in F, so it converges. Thus we can define a function

g : X → F by g(x) = lim
n→∞

fn(x) and then we have fn → g pointwise in X.

We claim that g ∈ B(X), that is we claim that g is bounded. Since (fn) is a Cauchy
sequence in B(X), it is bounded (by Part 1 of Theorem 4.11) so we can choose M ≥ 0
such that ‖fn‖∞ ≤M for all indices n. Then for all x ∈ X we have |fn(x)| ≤ ‖fn‖∞ ≤M
and hence |g(x)| = lim

n→∞
|fn(x)| ≤M . Thus g is a bounded function, that is g ∈ B(X).

We know that fn → g pointwise on X. We must show that fn → g uniformly on X.
Let ε > 0. Since (fn) is Cauchy we can choose m ∈ Z+ such that ‖fk − f`‖∞ < ε for all
k, ` ≥ m. Then for all k ≥ m and for all x ∈ X we have∣∣fk(x)− g(x)

∣∣ = lim
`→∞

∣∣fk(x)− f`(x)
∣∣ ≤ ε.

It follows that fn → g uniformly on X, that is fn → g in the metric space
(
B(X), d∞

)
.

Thus
(
B(X), d∞

)
is complete.

To show that
(
Cb(X), d∞

)
is complete, it suffices (by Theorem 4.13) to show that

Cb(X) is closed in B(X). Let (fn) be a sequence in Cb(X) which converges in
(
B(X), d∞

)
.

Let g = lim
n→∞

fn ∈ B(X). We need to show that g is continuous. Let ε > 0 and let

a ∈ X. Since fn → g in
(
B(X), d∞

)
we know that fn → g uniformly on X, so we can

choose m ∈ Z+ such that
∣∣fm(x) − g(x)

∣∣ < ε
3 for all n ≥ m and all x ∈ X. Since fm is

continuous at a we can choose δ > 0 such that for all x ∈ X with d(x, a) < δ we have∣∣fm(x)− fm(a)
∣∣ < ε

3 . Then for all x ∈ X with d(x, a) < δ we have∣∣g(x)− g(a)
∣∣ ≤ ∣∣g(x)− fm(x)

∣∣+
∣∣fm(x)− fm(a)

∣∣+
∣∣fm(a)− g(a)

∣∣ < ε
3 + ε

3 + ε
3 = ε.

Thus g is continuous at a. Since a was arbitrary, g is continuous on X, hence g ∈ Cb(X).
By the Sequential Characterization of Closed Sets (Part 3 of Theorem 3.17) it follows that
Cb(X) is closed in B(X), as required.

4.25 Corollary: The metric space
(
C[a, b], d∞

)
is complete.

Proof: Since every continuous function f : [a, b]→ F is bounded, we have C[a, b] = Cb[a, b].

4.26 Example: For F = R, in the metric space
(
C[a, b], d∞

)
, the space R[a, b] of Rie-

mann integrable functions is closed, hence complete, and the spaces P[a, b] of polynomial
functions, and C1[a, b] of continuously differentiable functions, are not closed, and hence
not complete.
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The Completion of a Metric Space

4.27 Theorem: (Metric Completion) Every metric space X is isometric to a dense sub-
space of a complete metric space.

Proof: Let X be a metric space. Fix a ∈ X. For each x ∈ X, define fx : X → R
by fx(t) = d(t, x) − d(t, a). Note that fx is bounded since, by the Triangle Inequality,∣∣fx(t)

∣∣ =
∣∣d(x, t) − d(a, t)

∣∣ ≤ d(a, x). Note that fx is continuous (indeed fx Lipschitz
continuous) because for s, t ∈ X we have∣∣fx(s)− fx(t)

∣∣ =
∣∣d(s, x)− d(s, a)− d(t, x) + d(t, a)

∣∣
≤
∣∣d(s, x)− d(t, x)

∣∣+
∣∣d(s, a)− d(t, a)

∣∣
≤ d(s, t) + d(s, t) = 2 d(s, t).

Define F : X → Cb(X) by F (x) = fx. We claim that F preserves distance, using the d∞
metric on Cb(X). For all x, y, t ∈ X we have∣∣fx(t)− fy(t)

∣∣ =
∣∣d(x, t)− d(a, t)− d(y, t) + d(a, t)

∣∣ =
∣∣d(x, t)− d(y, t)

∣∣ ≤ d(x, y)

hence for all x, y ∈ X we have

‖fx − fy‖∞ = sup
t∈X

∣∣fx(t)− fy(y)
∣∣ ≤ d(x, y).

On the other hand, for all x, y ∈ X we also have

‖fx − fy‖∞ = sup
t∈X

∣∣fx(t)− fy(t)
∣∣ ≥ ∣∣fx(y)− fy(y)

∣∣ =
∣∣d(x, y)− d(y, y)

∣∣ = d(x, y),

and so F preserves distance, as claimed. Thus X is isometric to the image F (X) ⊆ Cb(X),
which is dense in its closure F (X), which is complete because it is a closed subspace of
the complete metric space Cb(X).

4.28 Remark: When X is a metric space and F : X → Cb(X) is the distance preserving
map in the proof of the above theorem, we often identify X with its isometric image F (X)
and think of X as a dense subspace of the complete metric space Y = F (X). Alternatively
we can do some cutting and pasting operations on sets to obtain a complete metric space
Y which actually contains X as a dense subspace. Here is an outline of one possible way
of constructing such a set Y . Choose a set Z which is disjoint from X and has the same
cardinality as Cb(X) (a bit of set theory is required to prove that such a set Z exists).
Choose a bijection G : Cb(X) → Z and give Z the metric which makes G an isometry.
Then Z is complete and the composite H = G ◦ F : X → Z is distance preserving so that
X is isometric to the image H(X), and H(X) is dense in the complete space H(X), and
H(X) is disjoint from X. Then let Y =

(
H(X) \H(X)

)
∪X so that we have X ⊆ Y . Let

K : Y → H(X) be the bijection given by K(x) = h(x) if x ∈ X and K(y) = y if h /∈ X,
and give Y the metric for which K is an isometry. Then Y is complete and X is dense in Y.

4.29 Definition: When X and Y are metric spaces with X ⊆ Y such that X is dense
in Y and Y is complete, we say that Y is the metric completion of X. The metric
completion of X is unique in the sense of the following theorem.
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4.30 Theorem: (Uniqueness of the Metric Completion) Let X, Y and Z be metric spaces
with Y and Z complete such that X ⊆ Y with X = Y and X ⊆ Z with X = Z. Then
there is a (unique) isometry F : Y → Z with F (x) = x for all x ∈ X.

Proof: Let a ∈ Y . Since X = Y we can choose a sequence (xn) in X with xn → a in Y .
Then (xn) is Cauchy in Y , hence also in X, hence also in Z. Since (xn) is Cauchy in Z,
it converges in Z, say xn → b in Z. In order for a map F : Y → Z to be continuous with
F (x) = x for every x ∈ X, we must have

F (a) = F
(

lim
n→∞

xn
)

= lim
n→∞

F (xn) = lim
n→∞

xn = b.

This shows that if such a map F exists, it is unique, and it must be given by the following
procedure: given a ∈ Y we choose a sequence (xn) in X with xn → a and then we define
F (a) = lim

n→∞
xn ∈ Z.

We claim that the above procedure does determine a well-defined map whose value
F (a) does not depend on the choice of the sequence (xn). Let a ∈ Y and let (xn) and
(yn) be two sequences in X with xn → a and yn → a in Y . Let b = lim

n→∞
xn in Z and let

c = lim
n→∞

in Z. We need to show that b = c. Let ε > 0. Choose m ∈ Z+ such that for all

indices n ≥ m we have dY (xn, a) < ε
4 , dY (yn, a) < ε

4 , dZ(xn, b) <
ε
4 . and dZ(yn, c) <

ε
4 .

Then since dZ(xn, yn) = dX(xn, yn) = dY (xn, yn) we have

dZ(b, c) ≤ dZ(b, xn) + dZ(xn, yn) + dZ(yn, c)

= dZ(b, xn) + dY (xn, yn) + dZ(yn, c)

≤ dZ(b, xn) + dY (xn, a) + dY (a, yn) + dZ(yn, c)

< ε
4 + ε

4 + ε
4 + ε

4 = ε.

Since dZ(b, c) < ε for every ε > 0 we must have dZ(b, c=0 hence b = c, as required.

Note that F is bijective with its inverse G given by the same construction: given c ∈ Z
we choose a sequence (xn) in X with xn → b in Z and define G(c) = b = lim

n→∞
xn in Y .

It remains to prove that F preserves distance. Let a, b ∈ Y . Chooose sequences (xn)
and (yn) in X with xn → a and yn → b in Y . Let c, d ∈ Z with xn → c and yn → d in Z.
We need to show that dY (a, b) = dZ(c, d). Since

dY (a, b) ≤ dY (a, xn) + dY (xn, yn) + dY (yn, b) , and

dY (xn, yn) ≤ dY (xn, a) + dY (a, b) + dY (b, yn)

it follows that ∣∣dY (a, b)− dY (xn, yn)
∣∣ ≤ dY (a, xn) + dY (yn, b).

Taking the limit as n→∞ gives
∣∣dY (a, b)− lim

n→∞
dY (xn, yn)

∣∣ = 0 so that

dY (a, b) = lim
n→∞

dY (xn, yn) = lim
n→∞

dX(xn, yn).

Similarly, we have dZ(c, d) = lim
n→∞

dX(xn, yn) and hence dY (a, b) = dZ(c, d), as required.
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Chapter 5. Connectedness and Compactness

Connectedness

5.1 Definition: Let X be a metric space and let A ⊆ X. For sets U, V ⊆ X, we say that
U and V separate A (in X) when

U ∩A 6= ∅ , V ∩A 6= ∅ , U ∩ V = ∅ and A ⊆ U ∪ V.
We say that A is connected (in X) when there do not exist open sets U and V in X
which separate A. We say that A is disconnected (in X) when it is not connected, that
is when there do exist open sets U and V in X which separate A.

5.2 Example: Show that the connected sets in R are the intervals.

Solution: Recall (or verify) that the intervals in R are the sets with the intermediate value
property: for all a, b,∈ A and all x ∈ R, if a < x < b then x ∈ A. Let A ⊆ R. Suppose
that A is not an interval. Then A does not have the intermediate value property so we can
choose a, b ∈ A and u ∈ R with a < u < b and u /∈ A. Then U = (−∞, u) and V = (u,∞)
separate A and so A is disconnected.

Suppose, conversely, A is disconnected. Choose open sets U and V which separate A.
Choose a ∈ U and b ∈ V . Note that a 6= b since U ∩ V = ∅. Suppose that a < b (the
case that b < a is similar). Let u = sup

(
U ∩ [a, b]

)
. Note that u 6= a since we can choose

δ > 0 such that [a, a+δ) ⊆ U ∩ [a, b] and then we have u = sup
(
U ∩ [a, b]

)
≥ a+ δ. Note

that u 6= b since we can choose δ > 0 such that (b−δ, b] ⊆ V ∩ [a, b] and then we have
u = sup

(
U ∩ [a, b]

)
≤ b − δ since U ∩ V = ∅. Thus we have a < u < b. Note that u /∈ U

since if we had u ∈ U we could choose δ > 0 such that (u−δ, u+δ) ⊆ U ∩ [a, b] which
contradicts the fact that u = sup

(
U ∩ [a, b]

)
. Note that u /∈ V since if we had u ∈ V then

we could choose δ > 0 such that (u−δ, u+δ) ⊆ V ∩ [a, b] which contradicts the fact that
u = sup

(
U ∩ [a, b]

)
because U ∩ V = ∅. Since u /∈ U and u /∈ V and A ⊆ U ∩ V we have

u /∈ A, so A does not have the intermediate value property, and so A is not an interval.

5.3 Example: Show that the non-empty connected sets in Q are the one-point sets.

Solution: Every one-point set (in any metric space) is clearly connected. Suppose that
A ⊆ Q contains at least two points, say a, b ∈ A with a < b. We choose an irrational
number r ∈ (a, b), and then the open sets U =

{
x∈Q

∣∣x<r} and
{
x∈Q

∣∣ x>r} separate
A in Q.

5.4 Theorem: Let X and Y be metric spaces, let f : X → Y , and let A ⊆ X. If f is
continuous and A is connected in X then f(A) is connected in Y .

Proof: Suppose that f is continuous and f(A) is disconnected. Choose open sets U and V in
Y which separate f(A) in Y , that is U∩f(A) 6=∅, V ∩f(A) 6=∅, U∩V =∅ and f(A) ⊆ U∪V .
Since f is continuous, the sets f−1(U) and f−1(V ) are open in X. Since U ∩ f(A) 6= ∅
and V ∩ f(A) 6= ∅, we have f−1(U) ∩ A 6= ∅ and f−1(V ) ∩ A 6= ∅. Since U ∩ V = ∅, we
have f−1(U) ∩ f−1(V ) = ∅. Since f(A) ⊆ U ∪ V , we have A ⊆ f−1(U) ∪ f−1(V ). Thus
the open sets f−1(U) and f−1(V ) separate A in X, so A is disconnected in X.
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5.5 Theorem: Let X be a metric space and let A ⊆ P ⊆ X. Then A is connected in P
if and only if A is connected in X.

Proof: Suppose that A is not connected in X. Choose open sets U and V in X which
separate A in X, that is U ∩A 6= ∅, V ∩A 6= ∅, U ∩V = ∅ and A ⊆ U ∪V . Let E = U ∩P
and F = V ∩ P . Note that E and F are open in P and E and F separate A in P .

Suppose, conversely, that there exist sets E,F ⊆ P which are open in P and which
separate A in P , that is A ∩ E 6= ∅, A ∩ F 6= ∅, E ∩ F = ∅ and A ⊆ E ∪ F . Choose
open sets U, V ⊆ X such that E = U ∩ P and F = V ∩ P . Note that it is possible that
U ∩V 6= ∅ and so U and V might not separate A in X. For this reason, we shall construct
open subsets U0 ⊆ U and V0 ⊆ V which do separate A in X. For each a ∈ E choose
ra > 0 such that B(a, 2ra) ⊆ U and then let U0 =

⋃
a∈E B(a, ra). Note that U0 is open

in X (since it is a union of open sets in X) and that we have E ⊆ U0 ⊆ U . Similarly, for
each b ∈ F choose sb > 0 so that B(b, 2sb) ⊆ V , and then let V0 =

⋃
b∈F B(b, sb). Note

that V0 is open in X and F ⊆ V0 ⊆ V . We claim that the open sets U0 and V0 separate A
in X. Since E ⊆ U0 and F ⊆ V0 we have ∅ 6= A ∩ E ⊆ A ∩ U0, ∅ 6= A ∩ F ⊆ A ∩ V0 and
A ⊆ E ∪ F ⊆ U0 ∪ V0. It remains to show that U0 ∩ V0 = ∅. Suppose, for a contradiction,
that U0 ∩V0 6= ∅. Choose x ∈ U0 ∩V0. Since x ∈ U0 =

⋃
a∈E B(a, ra) we can choose a ∈ E

such that x ∈ B(a, ra). Similarly, we can choose b ∈ F so that x ∈ B(b, sb). Suppose
that ra ≥ sb (the case that sb ≥ ra is similar). By the Triangle Inequality, it follows that
|b − a| ≤ |b − x| + |x − a| < sb + ra ≤ 2ra and so we have b ∈ B(a, 2ra) ⊆ U . Since
b ∈ F ⊆ P and b ∈ U we have b ∈ U ∩ P = E. Thus we have b ∈ E ∩ F which contradicts
the fact that E ∩ F = ∅, and so U0 ∩ V0 = ∅, as required.

5.6 Corollary: Let X be a metric space and let A ⊆ X. Then A is connected in X if
and only if A is connected in itself if and only if the only subsets of A which are both open
and closed in A are the sets ∅ and A.

Proof: By the above theorem, with P = A, we see that A is connected in X if and only
if A is connected in itself. If there is a set U in A, with ∅ ⊂6= U ⊂6= A, which is both open

and closed in A, then its complement V =U c =A \ U is also both open and closed in A,
and then U and V separate A so that A is disconnected (in itself). Conversely, if A is
disconnected (in itself) then we can choose open sets U and V in A which separate A (that
is U 6= ∅, V 6= ∅, U ∩ V = ∅ and U ∪ V = A) and then each of the sets U and V is both
open and closed, and neither is empty, and neither is equal to all of A.

5.7 Remark: Because of the above theorem and corollary, when A is a connected subset
of a metric space X, we do not normally say that A is connected in X; we simply say that
A is connected. Also, again because of the above corollary, we can extend our definition
of connectedness so that it applies to topological spaces:

5.8 Definition: For a topological space X, we say that X is disconnected when it is
the union of two disjoint nonempty open sets, otherwise, we say that X is connected.
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5.9 Theorem: Let X be a metric space. The union of any set of connected sets in X,
which share a common point, is connected.

Proof: Let a ∈ X and for each k ∈ K (where K is any set), let Ak ⊆ X be connected in
X with a ∈ Ak. Let B =

⋃
k∈K

Ak, and note that a ∈ B. Suppose, for a contradiction, that

B is not connected. Choose open sets U, V ⊆ X which separate B (so we have U ∩B 6= ∅,
V ∩B 6= ∅, U ∩ V = ∅ and B ⊆ U ∪ V ). Since B ⊆ U ∪ V and a ∈ B, we must have a ∈ U
or a ∈ V . Suppose that a ∈ U (the case that a ∈ V is similar). Let k ∈ K. Note that
Ak ∩U 6= ∅ (since a ∈ Ak ∩U) and U ∩V = ∅ and Ak ⊆ B ⊆ U ∪V . Since Ak is connected
we must have Ak ∩V = ∅ (otherwise U and V would separate Ak). Since Ak ⊆ U ∪V and
Ak ∩ V = ∅, we have A ⊆ U . Since k ∈ K was arbitrary, we have Ak ⊆ U for all k ∈ K,
and hence B =

⋃
k∈K

Ak ⊆ U . Since B ⊆ U and U ∩V = ∅, we have B ∩V = ∅, which gives

the desired contradiction.

5.10 Definition: Let X be a metric space. Define a relation ∼= on X by stipulating that
for a, b ∈ X we have a ∼= b if and only if there exists a connected set A ⊆ X such that
a, b ∈ A. Note that ∼= is an equivalence relation

(
which means that for all a, b, c ∈ X we

have a ∼= a, and a ∼= b =⇒ b ∼= a, and (a ∼= b and b ∼= c) =⇒ a ∼= c
)
. Recall the the

equivalence class of a ∈ X is the set

[a] =
{
x ∈ X

∣∣x ∼= a
}
.

Recall (or verify) that the equivalence classes are disjoint, with [a] = [b] ⇐⇒ a ∼= b, and
that X is equal to the disjoint union of the equivalence classes. The equivalence classes of
X, under this equivalence relation ∼=, are called the (connected) components of X.

5.11 Theorem: Let X be a metric space. The connected components of X are connected,
and every connected subset of X is contained in one of the connected components of X.

Proof: First let us show that every connected subset of X is contained in one of the
components. Let P ⊆ X be connected. If P is empty then of course it is contained in one
of the components of X. Suppose P 6= ∅ and let p ∈ P . Since the components cover X,
we can choose a ∈ X such that p ∈ [a]. We claim that P ⊆ [a]. Let x ∈ P . Since p ∈ P
and x ∈ P and P is connected, we have x ∼= p (by the definition of the relation ∼=). Since
p ∈ [a] we have p ∼= a hence [p] = [a]. Since x ∼= p we have x ∈ [p] = [a]. Since x ∈ P was
arbitrary, P ⊆ [a], as claimed.

Now let us show that the components of X are connected. Let a ∈ X. We claim that
[a] is connected. For each x ∈ [a], we have x ∼= a and so (by the definition of ∼=) we can
choose a connected set Ax ⊆ X with x, a ∈ Ax. As shown above, Ax is contained in one
of the components of X, and since a ∈ Ax ∩ [a], that component must be [a], so we have
Ax ⊆ [a]. Since Ax ⊆ [a] for every x ∈ [a], we see that [a] =

⋃
x∈[a]Ax. By the above

lemma (since the sets Ax are connected with a ∈ Ax for every x ∈ [a]) the set
⋃
x∈X Ax is

connected.
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Path Connectedness

5.12 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. For
a, b ∈ A, a (continuous) path from a to b in A is a continuous map α : [0, 1] → A with
α(0) = a and α(1) = b. When there exists a path from a to b in A, we write a ∼ b in A.
We say that A is path connected (in X) when it has the property that for all a, b ∈ A,
we have a ∼ b in A.

5.13 Remark: It is clear from the definition that A is path connected in X if and only if
A is path connected in itself (because the continuity of a map α : [0, 1]→ A is unchanged
if we regard α as a map α : [0, 1] → X). Because of this, we do not normally say that A
is path connected in X; we simply say that A is path connected.

5.14 Example: When X is a normed linear space (over F = R or C) and A ⊆ X, note that
if A is convex then A is path connected (because when A is convex, the map α : [0, 1]→ X
given by α(t) = a + t(b − a) is continuous and takes values in the set A). In particular,
note that the open and closed balls B(a, r) and B(a, r) are path-connected.

5.15 Theorem: Let X and Y be metric spaces (or topological spaces), let A ⊆ X, and
let f : A ⊆ X → Y . If f is continuous on A, and A is path connected, then f(A) is path
connected.

Proof: Suppose that f is continuous on A and A is path connected. Let c, d ∈ f(A). Choose
a, b ∈ A with f(a) = c and f(b) = d. Since A is path connected, we can choose a continuous
map α : [0, 1]→ A with α(0) = a and α(1) = b. Then the map β : [0, 1]→ f(A) given by
β(t) = f

(
α(t)

)
is continuous with β(0) = c and β(1) = d, and so f(A) is path-connected.

5.16 Theorem: Let X be a metric space (or a topological space). The relation ∼ on
X (given by stipulating that a ∼ b when there exists a path from a to b in X) is an
equivalence relation on X.

Proof: Let a, b, c ∈ X. We have a ∼ a because we can define α : [0, 1] → X by α(t) = a
for all t, and then α is continuous with α(0) = a and α(1) = a.

Suppose that a ∼ b. Let α be a path from a to b, so α : [0, 1]→ X is continuous with
α(0) = a and α(1) = b. Define β : [0, 1]→ X by β(t) = α(1− t). Note that β is continuous
since it is the composite of the continuous map α with the continuous map s : [0, 1]→ [0, 1]
given by s(t) = 1− t, and note that we have β(0) = α(1) = b and β(1) = α(0) = a. Thus
β is a path in X from b to a and so b ∼ a.

Finally, suppose that a ∼ b and b ∼ c. Let α be a path from a to b in X and let β be
a path from b to c in X. Define γ : [0, 1]→ X by

γ(t) =

{
α(2t) , for 0 ≤ t ≤ 1

2 ,

β(2t− 1) , for 1
2 ≤ t ≤ 1.

Note that γ(0) = α(0) = a, γ
(
1
2

)
= α(1) = β(0) = b, and γ(1) = β(1) = c. We claim

that γ is continuous. Note that the sets A =
[
0, 12
]

and B =
[
1
2 , 1
]

are closed in [0, 1] with
A∪B = [0, 1], and the restriction of γ to A is given by α(2t), which is continuous (being the
composite of two continuous functions), and the restriction of γ to B is given by β(2t−1),
which is also continuous. Let C ⊆ X. Since α is continuous, the set α−1(C) is closed in[
0, 12
]
, hence also in [0, 1], and since β is continuous, the set β−1(C) is closed in

[
1
2 , 1
]
,

hence also in [0, 1], and so the set γ−1(C) = α−1(C) ∪ β−1(C) is closed in [0, 1] (since it
is the union of two closed sets). Thus γ is continuous by Theorem 3.29 (the Topological
Characterization of Continuity).
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5.17 Definition: Let X be a metric space (or a topological space). The equivalence
classes [a] =

{
x ∈X

∣∣x ∼ a} are called the path components of X. Recall (or verify)
that since ∼ is an equivalence relation on X, the path components of X are disjoint with
[a] = [b] ⇐⇒ a ∼ b, and X is equal to the disjoint union of its path components.

5.18 Theorem: Let X be a metric space (or a topological space). The path components
of X are path connected, and every path connected subset of X is contained in one of the
path components of X.

Proof: The proof is left as an exercise.

5.19 Theorem: (Path Connectedness Implies Connectedness) Let X be a metric space
(or a topological space). If X is path connected then X is connected.

Proof: Suppose that X is path connected. Suppose, for a contradiction, that X is not
connected. Choose nonempty disjoint open sets U and V in X such that X = U ∪ V .
Choose a ∈ U and b ∈ V . Choose a path α : [0, 1] → X from a to b in X. Since α
is continuous, the sets α−1(U) and α−1(V ) are open in [0, 1]. Since α(0) = a ∈ U and
α(1) = b ∈ V we have 0 ∈ α−1(U) so that α−1(U) 6= ∅ and 1 ∈ α−1(V ) so that α−1(V ) 6= ∅.
Since X = U ∪V we have [0 1] = α−1(U)∪α−1(V ). Thus [0, 1] is the union of the disjoint
nonempty subsets f−1(U) and f−1(V ). This contradicts the fact that [0, 1] is connected.

5.20 Corollary: In a metric space X, every path component is contained in one of the
connected components, and every connected component is a disjoint union of the path
components which it contains.

5.21 Note: The converse of the above theorem does not always hold. For example, let
A = B∪C with B =

{
(x, y)∈R2

∣∣x>0, y = sin 1
x

}
and C =

{
(x, y)∈R2

∣∣x=0,−1≤y≤1
}

.
As an exercise, verify that A is connected and B and C are the path components of A.

5.22 Theorem: Let X be a normed linear space and let A ⊆ X. If A is open in X and
A is connected, then A is path connected.

Proof: Suppose that A is open in X and that A is connected. Let a ∈ A. Let

U =
{
b ∈ A

∣∣a ∼ b} .
We claim that U is open in A. Let b ∈ U . Since b ∈ A and A is open in X, we can
choose r > 0 so that B(b, r) ⊆ A. Let c ∈ B(b, r). Since b ∈ U we have a ∼ b. Since
c ∈ B(b, r) ⊆ A we have b ∼ c, indeed we can define α : [0, 1] → B(b, r) ⊆ A by
α(t) = b+ t(c− b) and then α is continuous with α(0) = b and α(1) = c, and α(t) ∈ B(b, r)
for all t ∈ [0, 1] because

∥∥α(t) − b
∥∥ =

∥∥t(c − b)∥∥ = |t|‖c − b‖ ≤ ‖c − b‖ < r. Since a ∼ b
and b ∼ c we have a ∼ c. Since a ∼ c we have c ∈ U , hence B(b, r) ⊆ U . This shows that
U is open.

We claim that U is also closed in A. Let b ∈ A \ U . Since b ∈ A and A is open in
X, we can choose r > 0 so that B(b, r) ⊆ A. Let c ∈ B(b, r). Since b /∈ U we have a 6∼ b.
Since c ∈ B(b, r) ⊆ A we have b ∼ c, as above. It follows that a 6∼ c since otherwise we
would have a ∼ c and c ∼ b and hence a ∼ b. Since c 6∼ a we have c ∈ A \ U . Thus
B(b, r) ⊆ A \ U . This shows that A \ U is open so that U is closed in A.

Since A is connected, the only subsets of A which are both open and closed are ∅ and
A. Since U is both open and closed we must have U = ∅ or U = A. Since a ∼ a we have
a ∈ U so U 6= ∅ and so U = A. Since A = U =

{
b ∈ A

∣∣a ∼ b
}

we have a ∼ b for every
b ∈ A. Thus A is path connected.
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Compactness

5.23 Definition: Let X be a metric space (or a topological space) and let A ⊆ X. An
open cover for A (in X) is a set S of open sets in X such that A ⊆

⋃
S =

⋃
U∈S U .

When S is an open cover for A in X, a subcover of S for A is a subset T ⊆ S such that
A ⊆

⋃
T =

⋃
U∈T U . We say that A is compact (in X) when every open cover for A has

a finite subcover.

5.24 Example: Recall that for A ⊆ Rn, the Heine-Borel Theorem states that A is
compact if and only if A is closed and bounded. Note that this also holds for A ⊆ Cn
because (Cn, d2) = (R2n, d2).

5.25 Example: When X is a metric space and A ⊆ X is closed and bounded, it is not
always the case that A is compact. For example, if X is any infinite set and d is the discrete
metric on X, then every infinite subset A ⊆ X is closed and bounded but not compact. In
particular, closed unit balls are not compact, indeed for all a ∈ X we have B(a, 1) = X.

5.26 Theorem: Let A ⊆ X ⊆ Y where Y is a metric space (or a topological space). Then
A is compact in X if and only if A is compact in Y .

Proof: Suppose that A is compact inX. Let T be an open cover for A in Y . For each V ∈ T ,
let UV = V ∩X. Note that each set UV is open in X by Theorem 2.51 (or by Definition
2.52). Since A ⊆ X and A ⊆

⋃
V ∈T V , we also have A ⊆

⋃
V ∈T (V ∩ X) =

⋃
V ∈T UV .

Thus the set S =
{
UV
∣∣V ∈ T

}
is an open cover for A in X. Since A is compact in

X we can choose a finite subcover, say
{
UV1

, · · ·UVn

}
of S, where each Vi ∈ T . Since

A ⊆
⋃n
i=1 UVi

=
⋃n
i=1(Vi ∩ X), we also have A ⊆

⋃n
i=1 Vi and so {V1, · · · , Vn} is a finite

subcover of T .
Suppose, conversely, that A is compact in Y . Let S be an open cover for A in X. For

each U ∈ S, by Theorem 2.51 (or by Definition 2.52) we can choose an open set VU in Y
such that U = VU ∩ X. Then T =

{
VU
∣∣U ∈ S} is an open cover of A in Y . Since A is

compact in Y we con choose a finite subcover, say
{
VU1

, · · · , VUn

}
of T , where each Ui ∈ S.

Then we have A ⊆
⋃n
i=1(VUi ∩X) =

⋃n
i=1 Ui and so {U1, · · · , Un} is a finite subcover of S.

5.27 Remark: Let A ⊆ X where X is a metric space (or a topological space). By the
above theorem, note that A is compact in X if and only if A is compact in itself. For this
reason, we do not usually say that A is compact in X, we simply say that A is compact.

5.28 Theorem: Let X be a metric space and let A ⊆ X. If A is compact then A is closed
and bounded.

Proof: Suppose that A is compact. We claim that A is closed. Let a ∈ Ac. For each
x ∈ A, let rx = d(a, x) > 0, let Ux = B

(
a,

rx
2

)
, and let Vx = B

(
x,

rx
2

)
so that Ux and

Vx are disjoint. Note that the set S =
{
Vx
∣∣x ∈ A

}
is an open cover for A. Since A

is compact we can choose a finite subcover, say {Vx1 , · · · , Vxn} where each xi ∈ A. Let
r = min{rx1

, · · · , rxn
} so that B

(
a, r2

)
⊆ Uxi

for all i, and hence B
(
a, r2

)
is disjoint from

each set Vxi
. Since B

(
a, r2

)
is disjoint from each set Vxi and the sets Vxi cover A, it follows

that B
(
a, r2

)
is disjoint from A, hence B

(
a, r2

)
⊆ Ac. Thus Ac is open, hence A is closed.

We claim that A is bounded. Let a ∈ A. For each n ∈ Z+, let Un = B(a, n). Then the
set S = {U1, U2, U3, · · ·} is an open cover for A. Since A is compact, we can choose a finite
subcover, say {Un1 , Un2 , · · · , Un,`} ⊆ S, with each ni ∈ Z+. Let m = max{n1, n2, · · · , n`}
so that Uni

⊆ Um for all indices i. Then we have A ⊆
⋃`
i=1 Uni

= Um = B(a,m) and so
A is bounded.
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5.29 Theorem: Let X be a metric space (or a topological space) and let A ⊆ X. If X is
compact and A is closed in X, then A is compact.

Proof: Suppose that X is compact and A is closed in X. Let S be an open cover for A.
Then S∪{Ac} is an open cover for X. Since X is compact, we can choose a finite subcover
T of S∪{Ac}. Note that T may or may not contain the set Ac but, in either case, T \{Ac}
is an open cover for A with T \ {Ac} ⊆ S, so that T \ {Ac} is a finite subcover of S.

5.30 Corollary: Let X be a metric space (or a topological space), let A ⊆ X be closed,
and let K ⊆ X be compact. Then A ∩K is compact.

5.31 Theorem: Let X and Y be metric spaces (or topological spaces) and let f : X → Y .
If X is compact and f is continuous then f(X) is compact.

Proof: Suppose that X is compact and f is continuous. Let T be an open cover for
f(X) in Y . Since f is continuous, so that f−1(V ) is open in X for each V ∈ T , the set
S =

{
f−1(V )

∣∣V ∈ T
}

is an open cover for X. Since X is compact, we can choose a

finite subcover, say {f−1(V1), f−1(V2), · · · , f−1(Vn)
}

of S, with each Vi ∈ T . Then the set
{V1, V2, · · · , Vn} is a finite subcover of T for f(X).

5.32 Example: Note that continuous maps do not necessarily send closed sets to closed
sets. For example, the map f : R→ R given by f(x) = 2

π tan−1(x) sends the closed set R
homeomorphically to the open interval (−1, 1).

5.33 Theorem: (The Extreme Value Theorem) Let X be a compact metric space (or
topological space) and let f : X → R be continuous. Then there exist a, b ∈ X such that
f(a) ≤ f(x) ≤ f(b) for all x ∈ X.

Proof: Since X is compact and f is continuous, it follows that f(X) is compact in R. Since
f(X) is compact, it is closed and bounded in R. Since f(X) is bounded in R, it follows
that m = inf f(X) and M = sup f(X) are both finite real numbers, and since f(X) is
closed in R it follows that m ∈ f(X) and M ∈ f(X) so that we can choose a, b ∈ X such
that f(a) = m = inf f(X) and f(b) = M = sup f(X).

5.34 Theorem: Let X and Y be metric spaces with X compact. Let f : X → Y be
continuous and bijective. Then f is a homeomorphism.

Proof: Let g = f−1 : Y → X. We need to prove that g is continuous. Let A ⊆ X be
closed in X. Since X is compact and A ⊆ X is closed, it follows (from Theorem 5.29) that
A is compact. Since the map f : A→ Y is continuous and A is compact, it follows (from
Theorem 5.31) that f(A) is compact. Since f(A) is compact it follows (from Theorem
5.28) that f(A) is closed. Since g = f−1 we have g−1(A) = f(A), which is closed. Since
g−1(A) is closed in Y for every closed set A in X, it follows that g is continuous, by the
Topological Characterization of Continuity (Theorem 3.29).

5.35 Example: In the above theorem, the requirement that X is compact is necessary.
For example, if X is the interval X = [0, 2π) and Y is the unit circle Y = {z ∈ C

∣∣‖z‖ = 1
}

,
then the map f : X → Y given by f(t) = ei t is continuous and bijective, but the inverse
map is not continuous at 1.
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5.36 Theorem: (The Lebesgue Number) Let X be a compact metric space and let S
be an open cover for X. Then there exists a number λ > 0, which is called a Lebesgue
number for the cover S, such that for all a ∈ X there exists U ∈ S such that B(a, λ) ⊆ U .

Proof: For each x ∈ X, since S is an open cover for X we can choose Ux ∈ S with x ∈ Ux
and then, since Ux is open we can choose rx > 0 so that B(a, 2rx) ⊆ Ux. Note that the
set T =

{
B(x, rx)

∣∣x ∈ X} is an open cover for X. Since X is compact, we can choose

a finite subcover, say
{
B(x1, rx1

), · · · , B(xn, rxn
)
}

of T for X, with each xi ∈ X. Let
λ = min{rx1 , · · · , rxn}. We claim that λ is a Lebesgue number for S. Let a ∈ X. Choose
an index i such that a ∈ B(xi, rxi), and let U = Uxi ∈ S. For all y ∈ B(a, λ) we have
d(y, xi) ≤ d(y, a) + d(a, xi) ≤ λ + rxi

≤ 2rxi
and hence y ∈ B(xi, 2rxi

) ⊆ Uxi
= U . This

shows that B(a, λ) ⊆ U , as required.

5.37 Theorem: Let X and Y be metric spaces with X compact and let f : X → Y be
continuous. Then f is uniformly continuous.

Proof: We leave the proof as an exercise.

5.38 Definition: Let X be a metric space. We say that X is totally bounded when for

every ε > 0 there exists a finite subset {a1, a2, · · · , an} ⊆ X such that X =
n⋃
i=1

B(ai, ε).

We say that X has the finite intersection property on closed sets when for every set
T of closed sets in X, if every finite subset of T has non-empty intersection, then T has
non-empty intersection.

5.39 Theorem: Let X be a metric space. Then the following are equivalent.

(1) X is compact.
(2) X has the finite intersection property on closed sets.
(3) Every sequence (xn) in X has a convergent subsequence.
(4) Every infinite subset A ⊆ X has a limit point.
(5) X is complete and totally bounded.

Proof: First we prove that (1) implies (2). Suppose that X is compact. Let T be a set
of closed sets in X. Suppose that T has empty intersection, that is suppose

⋂
A∈T A = ∅.

Then
⋃
A∈T A

c = X so the set S =
{
Ac
∣∣A ∈ T

}
is an open cover for X. Since X is

compact, we can choose a finite subcover, say
{
A1

c, · · · , Anc
}

of S for X. Then we have
A1 ∩A2 ∩ · · · ∩An = ∅, showing that some finite subset of T has empty intersection.

Next we prove that (2) implies (3). Suppose X has the finite intersection property on
closed sets. Let (xn)n≥1 be a sequence in X. For each m ∈ Z+, let Am = {xn|n > m} and
note that each Am is closed with A1 ⊇ A2 ⊇ A3 ⊇ · · ·. Let T = {Am|m ∈ Z+}. Note that
every finite subset of T has non-empty intersection because given Am1

, · · · , Am`
∈ T we

can let m = max{m1, · · · ,m`} and then we have
⋂`
i=1Ami = Am and we have xn ∈ Am.

Since X has the finite intersection property on closed sets, it follows that T has non-empty
intersection. Choose a point a ∈

⋂∞
m=1Am. We construct a subsequence (xnk

)k≥1 of

(xn)n≥1 with lim
k→∞

xnk
= a as follows. Since a ∈ A1 = {xn|n > 1} we can choose n1 > 1

such that d(xn1
, a) < 1. Since a ∈ An1

= {xn|n > n1} we can choose n2 > n1 such
that d(xn2

, a) < 1
2 . Since a ∈ An2

= {xn|n > n2} we can choose n3 > n2 such that
d(xn3

, a) < 1
3 . Repeating this procedure, we can choose 1 < n1 < n2 < n3 < · · · such that

d(xnk
, a) < 1

k for all indices k, and then we have constructed a subsequence (xnk
) such

that lim
k→∞

xnk
= a.
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Next we prove that (3) implies (4). Suppose that every sequence (xn) in X has a
convergent subsequence. Let A ⊆ X be an infinite subset. Choose a sequence (xn) in A
with the terms xn all distinct. Choose a convergent subsequence (xnk

) of (xn) and let
a = lim

k→∞
xnk

. Then a is a limit point of the set A.

Now let us prove that (4) implies (5). Suppose that every infinite subset A ⊆ X has a
limit point. We claim that X is complete. Let (xn) be a Cauchy sequence in X. We claim
that (xn) has a convergent subsequence. If the set {xn|n ∈ Z+} is finite, then some term in
the sequence occurs infinitely often, so we can choose indices n1 < n2 < n3 < · · · such that
x1 = x2 = x3 = · · ·, and so in this case (xn) has a constant subsequence. Suppose the set
{xn|n ∈ Z+} is infinite. Let a be a limit point of the infinite set A = {xn|n ∈ Z+}. Since a
is a limit point of the set {xn} we can choose indices nk with n1 < n2 < n3 < · · · such that
0 < d(xnk

, a) < 1
k for each index k. Then (xnk

) is a subsequence of (xn) with lim
k→∞

xnk
= a.

Since the sequence (xn) is Cauchy and has a convergent subsequence, it follows, from Part
3 of Theorem 4.11, that the sequence (xn) converges. Thus X is complete, as claimed.

Continuing our proof that (4) implies (5), suppose that X is not totally bounded.
Choose ε > 0 such that there do not exist finitely many points a1, · · · , an ∈ X for which
X =

⋃n
i=1B(ai, ε). Let a1 ∈ X. Since X 6= B(a1, ε) we can choose a2 ∈ X \ B(a1, ε).

Since X 6= B(a1, ε) ∪B(a2, ε) we can choose a3 ∈ X with a3 /∈ B(a1, ε) ∪B(a2, ε). Repeat
this procedure to choose points a1, a2, a3, · · · with an+1 /∈

⋃n
k=1B(ak, ε). Then the set

A = {an|n ∈ Z+} is an infinite subset of X which has no limit point.
Finally we prove that prove that (5) implies (1). Suppose that X is complete and

totally bounded. Suppose, for a contradiction, that X is not compact, and choose an open
cover S for X which has no finite subcover for X. Since X is totally bounded, we can
cover X by finitely many balls of radius 1. Choose one of the balls, say U1 = B(a1, 1)
such that there is no finite subcover of S for U1 (if there was a finite subcover for each
ball, then the union of all these subcovers would be a finite subcover for X). Since X
is totally bounded, we can cover X (hence also U1) by finitely many balls of radius 1

2 .
Choose one of these balls, say U2 = B(a2,

1
2

)
such that there is no finite subcover of S

for U1 ∩ U2. Repeat the procedure to obtain balls Un = B
(
an,

1
n

)
such that, for each n,

there is no finite subcover of S for
⋂n
k=1 Uk. In particular, each intersection

⋂n
k=1 Uk is

nonempty so we can choose an element xn ∈
⋂n
k=1 Uk. Since for all k, ` ≥ m we have

xk, x` ∈ Um = B
(
am,

1
m

)
it follows that (xn) is Cauchy. Since X is complete, it follows

that (xn) converges in X. Let a = lim
n→∞

xn. Since S covers X we can choose U ∈ S with

a ∈ U . Since U is open we can choose r > 0 such that B(a, r) ⊆ U . Since xn → a we
can choose m > 3

r such that d(xm, a) < r
3 . Then for all x ∈ Um = B

(
am,

1
m

)
we have

d(x, a) ≤ d(x, am) + d(am, xm) + d(xm, a) < 1
m + 1

m + r
3 < r, and so Um ⊆ B(a, r) ⊆ U .

But then S has a finite subcover for Um, namely the singleton {U}, which contradicts the
fact that S has no finite subcover for

⋂m
k=1 Uk.

5.40 Example: Let F = R. Show that in the metric space
(
C[0, 1], d∞

)
, the closed unit

ball B(0, 1) is not compact.

Solution: Let fn(x) = xn for n ∈ Z+. Note that ‖fn‖∞ = 1 so that each fn ∈ B(0, 1).
Note that the pointwise limit of the sequence (fn) is the function g : [0, 1] → R given by
g(x) = 0 when x < 1 and g(1) = 1, which is not continuous. If some subsequence (fnk

) of
(fn) were to converge in

(
C[0, 1], d∞

)
then it would need to converge uniformly on [0, 1] to

the function g. But this is not possible since the uniform limit of a sequence of continuous
functions is always continuous. Thus (fn) has no convergent subsequence and so B(0, 1)
is not compact.
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Chapter 6. Some Applications

Contraction Maps and Picard’s Theorem

6.1 Note: In this chapter, unless otherwise stated, we work in the field F = R.

6.2 Definition: Let X be a metric space. A map f : X → X is called a contraction
map on X when there exists a constant c ∈ [0, 1) such that for all x, y ∈ X we have

d
(
f(x), f(y)

)
≤ c d(x, y).

Such a constant c is called a contraction constant for f . Note that every contraction
map is uniformly continuous.

6.3 Definition: For a map f : X → X (where X is any set), a point a ∈ X such that
f(a) = a is called a fixed point of f .

6.4 Theorem: (The Banach Fixed-Point Theorem) Every contraction map on a complete
metric space has a unique fixed point.

Proof: Let X be a complete metric space and let f : X → X be a contraction map on
X with contraction constant c ∈ [0, 1). Let x0 ∈ X be any point. Let x1 = f(x0) and
x2 = f(x1) = f2(x0) and so on, so that for n ≥ 1 we have xn = f(xn−1) = fn(x0). Note
that the sequence (xn)n≥0 is Cauchy because for n < m we have

d(xn, xm) = d
(
fn(x0), fn(xm−n)

)
≤ cn d

(
x0, xm−n)

≤ cn
(
d(x0, x1) + d(x1, x2) + · · ·+ d(xm−n−1, xm−n)

)
≤ cnd(x0, x1)

(
1 + c+ c2 + · · ·+ cm−n−1

)
≤ cnd(x0, x1) 1

1−c −→ 0 as n→∞.

Since X is complete, the sequence (xn)n≥0 converges, so we can let a = lim
n→∞

xn. Note that

f(a) = a since f is continuous at a so f(a) = f
(

lim
n→∞

xn
)

= lim
n→∞

f(xn) = lim
n→∞

xn−1 = a.

Finally note that for a, b ∈ X, if f(a) = a and f(b) = b then since

d(a, b) = d
(
f(a), f(b)

)
≤ c d(a, b)

with 0 ≤ c < 1, it follows that d(a, b) = 0 so that a = b.

6.5 Example: Define f : [2,∞) → [2,∞) by f(x) = x+ 1
x . Note that f ′(x) = 1− 1

x2 so
that 3

4 ≤ f ′(x) < 1 for all x ∈ [2,∞). By the Mean Value Theorem, given x, y ∈ [2,∞)
we can choose c between x and y such that f(x)− f(y) = f ′(c)(x− y), and then we have∣∣f(x)−f(y)

∣∣ =
∣∣f ′(c)∣∣ |x−y| < |x−y|. Thus f has the property that

∣∣f(x)−f(y)
∣∣ < |x−y|

for all x, y ∈ [2,∞), but it is not a contraction map, and f has no fixed point because
f(x) = x+ 1

x > x for all x ∈ [2,∞).

6.6 Example: Define f :
[
0, π3

]
→
[
0, π3

]
by f(x) = cosx

(
note that cos(0) = 1 and

cos
(
π
3

)
= 1

2 and cosx is decreasing, so we have f
([

0, π3
))

=
[
1
2 , 1
]
⊆
[
0, π3

])
. Since∣∣f ′(x)

∣∣ = sinx which is increasing on
[
0, π3

]
, we have 0 ≤

∣∣f ′(x)
∣∣ ≤ √3

2 for all x ∈
[
0, π3

]
. By

the Mean Value Theorem (as above) we have
∣∣f(x)−f(y)

∣∣ ≤ √3
2 |x−y| for all x, y ∈

[
0, π3

]
so

that f is a contraction map with contraction constant c =
√
3
2 . By the Banach Fixed-Point

Theorem, f has a unique point, that is there is a unique a ∈
[
0, π3

]
such that cos a = a.

The proof of the theorem shows that we can find a as follows: choose any x0 ∈
[
0, π3

]
and

let xn = f(xn−1) = cos(xn−1) for n ≥ 1, and then xn → a.
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6.7 Definition: Let A ⊆ R2 and let f : A → R. We say that f satisfies a Lipschitz
condition on A when there exists a constant ` ≥ 0 such that for all x, y1, y2 ∈ R for which
(x, y1) ∈ A and (x, y2) ∈ A, we have∣∣f(x, y2)− f(x, y1)

∣∣ ≤ ` |y2 − y1|.
Such a constant ` is called a Lipschitz constant for f .

6.8 Theorem: (Picard) Let U be an open set in R2, let (a, b) ∈ U , and let F : U → R
satisfy a Lipschitz condition on U . Then there exists δ > 0 such that the differential
equation dy

dx = F (x, y) has a unique solution y = f(x) with f(a) = b, defined for all
x ∈ [a−δ, a+δ].

Proof: We sketch a proof. First note that y = f(x) is a solution to the differential equation
dy
dx = F (x, y) with f(a) = b if and only if f(x) satisfies the integral equation

f(x) = b+

∫ x

a

F
(
t, f(t)

)
dt

for all x ∈ [a−δ, a+δ]. Let ` be a Lipschitz constant for F . Choose r > 0 such that
B
(
(a, b), r

)
⊆ U and let k = max

(x,y)∈B((a,b),r)

∣∣F (x, y)
∣∣. Choose δ with 0 < δ < 1

` small

enough such that the rectangle R = [a−δ, a+δ]× [b−kδ, b+kδ] is contained in B
(
(a, b), r

)
.

Verify as an exercise (Using the Mean Value Theorem) that if f(x) is any solution to the
given differential equation with f(a) = b then the graph of f must be contained in the
rectangle R. Let

X =
{
f ∈ C[a−δ, a+δ]

∣∣Graph(f) ⊆ R
}
.

Verify that X is a closed subspace of the metric space C[a−δ, a+δ] (using the supremum
metric) and so X is complete. Define G : X → C[a−δ, a+δ] by

G(f)(x) = b+

∫ x

a

F
(
t, f(t)

)
dt.

Note that G(X) ⊆ X because for all f ∈ X and x ∈ [a−δ, a+δ] we have∣∣G(f)(x)− b
∣∣ =

∣∣∣∣ ∫ x

a

F (t, f(t)
)
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

k dt

∣∣∣∣ = k|x− a| ≤ kδ.

Note that G is a contraction map on X, with contraction constant c = `δ < 1 because, for
all f, g ∈ X and all x ∈ [a−δ, a+δ], we have∣∣G(f)(x)−G(g)(x)

∣∣ =

∣∣∣∣ ∫ x

a

(
F (t, f(t))− F (t, g(t))

)
dt

∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

∣∣F (t, f(t))− F (t, g(t))
∣∣dt∣∣∣∣

≤
∣∣∣∣ ∫ x

a

`
∣∣f(t)− g(t)

∣∣ dt∣∣∣∣ ≤ ∣∣∣∣ ∫ x

a

` ‖f − g‖∞ dt

∣∣∣∣
= `|x− a| ‖f − g‖∞ ≤ `δ ||f − g||∞.

By the Banach Fixed-Point Theorem, the map G has a unique fixed point f ∈ X, and this
function f ∈ X is the unique solution to the above integral equation, which is equivalent
to the given differential equation.
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The Arzela-Ascoli Theorem and Peano’s Theorem

6.9 Definition: Let X be a set and let S ⊆ F(X) = F(X,R). We say that S is pointwise
bounded when for every x ∈ X there exists m = m(x) > 0 such that |f(x)| ≤ m for every
function f ∈ S. We say that S is uniformly bounded when there exists m > 0 such that
|f(x)| ≤ m for every x ∈ X and every f ∈ S.

Let X be a metric space and let S ⊆ C(X) = C(X,R). We say that S is equicon-
tinuous when for every ε > 0 there exists δ > 0 such that for every f ∈ S and for all
x, y ∈ X, if d(x, y) < δ then d

(
f(x), f(y)

)
< ε

6.10 Note: When X is a compact metric space, by the Extreme Value Theorem, every
continuous function f : X → R is also bounded, so we have C(X) = Cb(X), which is a
complete metric space using the supremum norm. Unless otherwise stated, when we refer
to the metric space C(X) it is understood that we are using the supremum metric.

6.11 Note: When X is a compact metric space and S ⊆ C(X), note that S is uniformly
bounded if and only if S is bounded as a subspace of the metric space C(X).

6.12 Theorem: Let X be a compact metric space and let (fn) be a sequence in C(X). If
the sequence (fn) converges in the metric space C(X) (equivalently, if the sequence (fn)
converges uniformly on X) then the set {fn} is equicontinuous.

Proof: Suppose (fn) converges in C(X). Let ε > 0. Since (fn) converges in C(X) we
can choose ` ∈ Z+ such that for all n,m ≥ ` we have ‖fn − fm‖∞ < ε

3 . Since X is
compact, each of the functions fn is uniformly continuous on X. Choose δ > 0 such that
for all x, y ∈ X with d(x, y) < δ we have

∣∣fn(x) − fn(y)
∣∣ < ε for each n < ` and we have∣∣f`(x)− f`(y)

∣∣ < ε
3 . Then for all n ≥ ` and all x, y ∈ X with d(x, y) < δ we have∣∣fn(x)− fn(y)

∣∣ ≤ ∣∣fn(x)− f`(x)
∣∣+
∣∣f`(x)− f`(y)

∣∣+
∣∣f`(y)− fn(y)

∣∣ < ε.

6.13 Corollary: Let X be a compact metric space. Then every compact set S ⊆ C(X) is
equicontinuous.

Proof: Let S ⊆ C(X). Suppose that S is not equicontinuous. Choose ε > 0 such that
for all δ > 0 there exists f ∈ S and there exist x, y ∈ X with d(x, y) < δ such that∣∣f(x) − f(y)

∣∣ ≥ ε. For each n ∈ Z+, choose fn ∈ S such that there exist x, y ∈ X with

d(x, y) < 1
2n such that

∣∣fn(x) − fn(y)
∣∣ ≥ ε. Then no subsequence of (fn) can possibly

converge in S (using the supremum metric) and so S cannot be compact.

6.14 Theorem: Let X be a compact metric space and let (fn) be a sequence in C(X).
If the set {fn} is pointwise bounded and equicontinuous then the set {fn} is uniformly
bounded and the sequence (fn) has a convergent subsequence in C(X).

Proof: Suppose that the set {fn} is pointwise bounded and equicontinuous. We claim that
the set {fn} is uniformly bounded. Since {fn} is equicontinuous, we can choose δ > 0 such
that for all n ∈ Z+ and for all x, y ∈ X with d(x, y) < δ we have

∣∣fn(x)−fn(y)
∣∣ < 1. Since

X is compact, we can choose a1, a2, · · · , a` ∈ X such that X = B(a1, δ) ∪ · · · ∪ B(a`, δ).
Since {fn} is pointwise bounded, we can choose m > 0 such that for each index k with
1 ≤ k ≤ `, and for all n ∈ Z+, we have

∣∣fn(ak)
∣∣ ≤ m. Let n ∈ Z+ and x ∈ X.

Choose an index k with 1 ≤ k ≤ ` such that x ∈ B(ak, δ). Since d(x, ak) < δ we have∣∣fn(x)− fn(ak)
∣∣ < 1 and so

∣∣fn(x)
∣∣ ≤ ∣∣fn(x)− fn(ak)

∣∣+
∣∣fn(ak)

∣∣ < 1 +m. Since n ∈ Z+

and x ∈ X were arbitrary, the set {fn} is uniformly bounded, as claimed.
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It remains to show that the sequence (fn) has a convergent subsequence in C(X).
Since X is compact, and hence separable, we can choose a countable dense subset A ⊆ X,
say A = {a1, a2, a3, · · ·}. We claim that the sequence (fn)n≥1 has a subsequence (fnk

)k≥1
which converges pointwise on A. Since the real-valued sequence

(
fn(a1)

)
n≥1 is bounded,

we can choose a subsequence, which we shall write as
(
f1,k

)
k≥1 =

(
f1,1, f1,2, f1,3, · · ·

)
,

of the sequence of functions (fn)n≥1 such that the real-valued sequence
(
f1,k(a1)

)
k≥1

converges. Since the real-valued sequence
(
f1,k(a2)

)
k≥1 is bounded, we can choose a sub-

sequence
(
f2,k

)
of the sequence of functions

(
f1,k

)
such that the real-valued sequence(

f2,k(a2)
)

converges. Note that since
(
f2,k(a1)

)
is a subsequence of the convergent se-

quence
(
f1,k(a1)

)
, it also converges. By recursively repeating this procedure, we construct

sequences (fn,k)k≥1 for each n ≥ 1, such that
(
fn+1,k

)
k≥1 is a subsequence of

(
fn,k

)
k≥1 and

the real-valued sequences
(
fn,k(aj)

)
k≥1 converge for all j with 1 ≤ j ≤ n. Let

(
fnk

)
k≥1

denote the sequence
(
f1,1, f2,2,, f3,3,, · · ·

)
, note that this is a subsequence of the original

sequence (fn), and the real-valued sequences
(
fnk

(aj)
)
k≥1 converge for all indices j ∈ Z+,

so the subsequence (fnk
) converges pointwise on A, as required.

Finally, we claim that the above subsequence (fnk
) converges in C(X). Let ε > 0.

Since the set {fn} is equicontinuous we can choose δ > 0 such that for all n ∈ Z+ and all
x, y ∈ X with d(x, y) < δ we have

∣∣fn(x) − fn(y)
∣∣ < ε

3 . Since A is dense in X, the set

U =
{
B(an, δ)

∣∣n ∈]Z+
}

is an open cover of X. Since X is compact, we can choose a finite
subcover of U , so we can choose a1, a2, · · · , ap ∈ X such that X = B(a1, δ)∪ · · · ∪B(ap, δ).
Since the sequences

(
fnk

(aj)
)
k≥1 all converge, we can choose m ∈ Z+ such that for all

j ∈ Z+ with 1 ≤ j ≤ p and all k, ` ∈ Z+ with k, ` ≥ m we have
∣∣fnk

(aj) − fn`
(aj)

∣∣ < ε
3 .

Let x ∈ X and let k, ` ∈ Z+ with k, ` ≥ m. Choose an index j with 1 ≤ j ≤ p such that
x ∈ B(aj , δ). Then we have∣∣fnk

(x)− fn`
(x)
∣∣ ≤ ∣∣fnk

(x)− fnk
(aj)

∣∣+
∣∣fnk

(aj)− fn`
(aj)

∣∣+
∣∣fn`

(aj)− fn`
(x)
∣∣ < ε.

6.15 Theorem: (The Arzela-Ascoli Theorem) Let X be a compact metric space and let
S ⊆ C(X), using the supremum metric.

(1) S is compact if and only if S is closed, pointwise bounded, and equicontinuous.
(2) If S is pointwise bounded and equicontinuous, then S is compact.

Proof: To prove Part 1, suppose that S is compact. Then we know that S is closed and
bounded and we know (from Corollary 6.13) that S is equicontinuous. Since S is bounded,
using the supremum metric, it follows that S is uniformly bounded, hence also pointwise
bounded.

Suppose, conversely, that S is closed, pointwise bounded, and equicontinuous. Let
(fn) be a sequence in S. Since S is pointwise bounded and equicontinuous, the subset
{fn} is also pointwise bounded and equicontinuous. By the above theorem, the sequence
(fn) has a convergent subsequence (fnk

) in C(X). Since S is closed, the limit of this
subsequence lies in S. This proves that every sequence in S has a subsequence which
converges in S, and so S is compact.

This completes the proof of Part 1, and we leave the proof of Part 2 as an exercise.
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6.16 Theorem: (Peano) Let U ⊆ R2 be open, let (a, b) ∈ U , and let F : U → R be
continuous. Then there exists d > 0 such that the differential equation dy

dx = F (x, y) has a
solution y = f(x) with f(a) = b which is defined for all x ∈ [a−d, a+d].

Proof: Choose a closed rectangle Q with (a, b) ∈ Q ⊆ U . Since Q is compact,
∣∣F (x, y)

∣∣
attains its maximum value on Q, let M = max

{
|F (x, y)|

∣∣(x, y) ∈ Q
}

. Choose d > 0 so
that R = [a−d, a+d]× [b−Md, b+Md] ⊆ Q.

Fix n ∈ Z+. Since R is compact so that F is uniformly continuous on R, we can
choose δ > 0 so that for all (x1, y1), (x2, y2) ∈ R,∣∣(x1, y1)− (x2, y2)

∣∣ < δ =⇒
∣∣F (x1, y1)− F (x2, y2)

∣∣ ≤ 1
n .

Choose ` ∈ Z+ so d
` <

δ
M+1 and let ck = a+ kd

` for 0≤k<` so a = c0 < c1 < · · · < c` = a+d

with ck+1− ck = d
` <

δ
M+1 for all 0≤k <`. Let f = fn : [a, a+d]→ R be the continuous,

piecewise linear function with f(a) = b such that f ′(x) = F
(
ck, f(ck)

)
for all x ∈ (ck, ck+1)(

the function f = fn is constructed recursively by beginning with f(a) = b and then,

having defined f(x) for all x ∈ [a, ck], define f(x) = f(ck) + F
(
ck, f(ck)

)
(x − ck) for all

x ∈ [ck, ck+1]
)
.

Claim 1: we claim that for all x1, x2 ∈ [a, a+d] we have∣∣f(x1)− f(x2)
∣∣ ≤M |x1 − x2|.

Let x1, x2 ∈ [a, a+d] with x1 ≤ x2. For 0 ≤ k < p, let mk = F (ck, f(ck)) and note that
|mk| =

∣∣F (ck, f(ck)
)∣∣ ≤ M for all k. When x1, x2 ∈ [ck, ck+1] with x1 ≤ x2, we have

f(x2) = f(x1) +mk(x2 − ck) so that
∣∣f(x2)− f(x1)

∣∣ =
∣∣mk(x2 − ck)

∣∣ ≤M(x2 − x1), and
when x1 ∈ [cj , cj+1] and x2 ∈ [ck, ck+1] with j < k we have

f(x2) = f(x1) +mj(cj+1−x1) +mj+1(cj+2−cj+1) + · · ·+mk−1(ck−ck−1) +mk(x2−ck)

so
∣∣f(x2)− f(x1)

∣∣ ≤M(cj+1−x1) +M(cj+2−cj+1) + · · ·+M(ck−ck−1) +M(x2−ck), that

is
∣∣f(x2)− f(x1)

∣∣ ≤M(x2 − x1), as required.

Claim 2: we claim that when x ∈ [ck, ck+1] we have∫ x

ck

∣∣∣mk − F
(
t, f(t)

)∣∣∣ dt ≤ d
n .

Let x ∈ [ck, ck+1] and let t ∈ [ck, x]. Then |ck − t| ≤ ck+1 − ck = d
` <

δ
M+1 . By Claim 1,

we have
∣∣f(ck)− f(t)

∣∣ < Mδ
M+1 , so∣∣(ck, f(ck))− (t, f(t))

∣∣ ≤ |ck − t|+ ∣∣f(ck)− f(t)
∣∣ < δ

M+1 + Mδ
M+1 = δ.

By the choice of δ, we have
∣∣mk−F

(
t, f(t)

)∣∣ =
∣∣F (ck, f(ck)

)
−F

(
t, f(t)

)∣∣ ≤ 1
n . This holds

for all t ∈ [ck, x], so∫ x

ck

∣∣∣mk − F
(
t, f(t)

)∣∣∣ dt ≤ ∫ x

ck

1
n dt = 1

n (x− ck) ≤ d
n

as claimed.

Claim 3. we claim that for all x ∈ [a, a+d] we have∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣ ≤ d
n .

Let x ∈ [a, a+d]. Choose an index k so that x ∈ [ck, ck+1]. Then

f(x)− f(a) =
k−1∑
j=0

mj(cj+1 − cj) +mk(x− ck) =
k−1∑
j=0

∫ cj+1

cj

mj dt+

∫ x

ck

mk dt
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and so, ∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣
=

∣∣∣∣ k−1∑
j=0

∫ cj+1

cj

(
mj − F

(
t, f(t)

))
dt+

∫ x

ck

(
mk − F

(
t, f(t)

))
dt

∣∣∣∣
≤
k−1∑
j=0

∫ cj+1

cj

∣∣∣mj − F
(
t, f(t)

)∣∣∣ dt+

∫ x

ck

∣∣∣mk − F
(
F
(
t, f(t)

)∣∣∣ dt
≤
k−1∑
j=0

1
n (cj+1 − cj) + 1

n (x− ck) = 1
n (x− c0) = 1

n (x− a) ≤ d
n ,

(where we used Claim 2 on the final line above), as claimed.

We repeat the above construction for every n ∈ Z+ to obtain a sequence of functions
(fn)n≥1. Each function fn satisfies Claims 1, 2 and 3. Let S =

{
fn
∣∣n ∈ Z+

}
⊆ C[a, a+d].

Note that by Claim 1, the set S is equicontinuous
(
indeed given ε > 0, if |x1 − x2| < ε

M

then
∣∣fn(x1)− fn(x2)

∣∣ ≤M |x1 − x2| < ε
)

and the set S uniformly bounded
(
indeed since

fn(a) = b and
∣∣fn(x)−fn(a)

∣∣ ≤ M |x − a| ≤ Md we have b −Md ≤ fn(x) ≤ b + Md for

all x
)
. By the Arzela-Ascoli Theorem, the closure S of S in

(
C[a, a+d], d∞

)
is compact.

Thus we can choose a subsequence (fnk
)k≥1 of (fn)n≥1 which converges in S ⊆ C[a, a+d]

using the metric d∞, that is (fnk
)k≥1 converges uniformly on [a, a+d] to some continuous

function g : [a, a+d]→ R.

Claim 4: we claim that the above map g : [a, a+d] → R is a solution to the given
differential equation. First we note that when

∥∥f − g∥∥∞ < δ, for all t ∈ [a, a+d] we have∣∣(t, f(t)) − (t, g(t))
∣∣ =

∣∣f(t) − g(t)
∣∣ ≤ ‖f − g‖∞ < δ so that (by the choice of δ) we have∣∣F (t, f(t))− F (t, g(t))

∣∣ ≤ 1
n and hence∫ x

a

∣∣∣F (t, f(t)
)
− F

(
t, g(t)

)∣∣∣ dt ≤ ∫ x

a

1
n dt = 1

n (x− a) ≤ d
n .

Given ε > 0 we can choose k ∈ Z+ such that ‖fnk
− g‖∞ < δ and ‖fnk

− g‖∞ < ε
3 and

1
nk

< ε
3d . Write n = nk and f = fn = fnk

. Then for all x ∈ [a, a+d] we have∣∣∣∣(g(x)−g(a)
)
−
∫ x

a

F
(
t, g(t)

)
dt

∣∣∣∣ ≤ ∣∣∣∣(g(x)−g(a)
)
−
(
f(x)−f(a)

)∣∣∣∣
+

∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣+

∣∣∣∣ ∫ x

a

F
(
t, f(t)

)
dt−

∫ x

a

F
(
t, g(t)

)
dt

∣∣∣∣
≤
∣∣∣g(x)−f(x)

∣∣∣+

∣∣∣∣(f(x)−f(a)
)
−
∫ x

a

F
(
t, f(t)

)
dt

∣∣∣∣+

∫ x

a

∣∣∣F (t, f(t)
)
− F

(
t, g(t)

)∣∣∣ dt
≤ ‖f − g‖∞ + d

n + d
n <

ε
3 + ε

3 + ε
3 = ε.

Since ε > 0 was arbitrary, it follows that for all x ∈ [a, a+d]

g(x) = g(a) +

∫ x

a

F
(
t, g(t)

)
dt .

By the Fundamental Theorem of Calculus, g is differentiable wih g′(x) = F
(
x, g(x)

)
for

all x ∈ [a, a+d], and so g is a solution of the given differential equation, as claimed.

Finally, we repeat the above procedure to obtain a solution g : [a−d, a]→ R then join
the two solutions to obtain a solution g : [a−d, a+d]→ R.
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The Stone-Weierstrass Theorem and Polynomial Approximation

6.17 Definition: A (commutative) algebra over a field F is a vector space U with
a binary multiplication operation such that for all u, v, w ∈ U and all t ∈ F we have
uv = vu, u(v + w) = uv + uw, and (tu)v = t(uv). A subspace A ⊆ U is a subalgebra of
U when it is an algebra using (the restriction of) the same operations used in U . Verify
that a subset A ⊆ U is a subalgebra of U when 0 ∈ A and for all u, v ∈ A and all t ∈ F
we have tu ∈ A, u+ v ∈ A and uv ∈ A.

6.18 Example: When X is a metric space, the vector space F(X) = F(X,R) of all
functions f :X → R is an algebra over R, and B(X), C(X), and Cb(X) are all subalgebras.

6.19 Example: When a ≤ b, the space P[a, b] of polynomial maps f : [a, b]→ R and the
space C1[a, b] of continuously differentiable maps are subalgebras of the algebra C[a, b] of
continuous maps f : [a, b]→ R, and the space R[a, b] of Riemann integrable functions is a
subalgebra of the algebra B[a, b] of bounded functions f : [a, b]→ R.

6.20 Example: Show that f(x) = |x| lies in the closure of P[−1, 1] in
(
C[−1, 1], d∞

)
.

Solution: Let ε > 0 and let a = ε
2 . Let g(x) =

√
x+ a2 and let pn(x) be the nth Taylor

polynomial for g(x) centred at 1: to be explicit, for
∣∣ x−1
1+a2

∣∣ < 1 we have

g(x) =
(
(x−1) + (1+a2)

)1/2
=
√

1+a2
(

1 + x−1
1+a2

)1/2
=
√

1+a2
∞∑
k=1

(
1/2
k

)(
x−1
1+a2

)k
,

and we have

pn(x) =
√

1+a2
n∑
k=0

(
1/2
k

)(
x−1
1+a2

)k
.

Note that pn → g pointwise for
∣∣ x−1
1+a2

∣∣ < 1, that is for all x ∈ (−a2, 2+a2), and fn → g

uniformly on [0, 2] (hence also on [0, 1]). Choose n ∈ Z+ such that
∣∣pn(x)− g(x)

∣∣ < a = ε
2

for all x ∈ [0, 1]. Also note that for all x ∈ R we have∣∣∣|x| − g(x2)
∣∣∣ =

√
x2+a2 −

√
x2 =

a2
√
x2+a2 +

√
x2
≤ a = ε

2 ,

so for all x ∈ [−1, 1], we have x2 ∈ [0, 1], hence∣∣∣|x| − pn(x2)
∣∣∣ ≤ ∣∣∣|x| − g(x2)

∣∣∣+
∣∣∣g(x2)− pn(x2)

∣∣∣ < ε
2 + ε

2 = ε.

6.21 Definition: Let A ⊆ C(X). We say that A separates points when for all x, y ∈ X
with x 6= y there exist f ∈ A with f(x) 6= f(y). We say that A vanishes nowhere when
for all x ∈ X there exists f ∈ A such that f(x) 6= 0. Note that if 1 ∈ A (where 1 denotes
the constant function) the A vanishes nowhere.
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6.22 Theorem: (The Stone-Weierstrass Theorem for Real Valued Functions) Let X be a
compact metric space and let A ⊆ C(X) = C(X,R) be a subalgebra. If A separates points
and vanishes nowhere then A = C(X) (using the supremum metric d∞).

Proof: Note first that A is also a subalgebra of C(X). Indeed given f, g ∈ A and c ∈ R,
we can choose sequences (fn) and (gn) in A such that fn → f and gn → g in C(X) (that
is fn → f and gn → g uniformly on X), and then we have cfn → cf , fn + gn → f + g and
fngn → fg uniformly on X, and hence cf ∈ A, f + g ∈ A and fg ∈ A. Also note that A
separates points and vanishes nowhere, and so we may assume, without loss of generality,
that A is closed.

Next we claim that if f ∈ A then we also have |f | ∈ A. Let f ∈ A ⊆ C(X). Choose
m > 0 with m ≥ ‖f‖∞. Let g = 1

mf and note that g ∈ A with ‖g‖∞ ≤ 1, that is
g(x) ∈ [−1, 1] for all x ∈ X. Let ε > 0. By Example 6.20, we can choose a polynomial
p0(x) = a0 + a1x + · · · + anx

n such that
∣∣p0(u) − |u|

∣∣ ≤ ε
2 for all u ∈ [−1, 1]. Let

p(x) = p0(x) − a0 and note that
∣∣p(u) − |u|

∣∣ ≤ ε for all u ∈ [−1, 1]. For all x ∈ X, we

have g(x) ∈ [−1, 1] and so
∣∣p(g(x)

)
−|g(x)|

∣∣ < ε. Note that the function h(x) = p
(
g(x)

)
=

a1g(x) + a2g(x)2 + · · · ang(x)n lies in A (because g ∈ A and A is an algebra). This shows
that for every ε > 0 we can find h ∈ A with

∣∣h− |g|∣∣ < ε, and (since A is closed) it follows
that |g| ∈ A and hence |f | = m|g| ∈ A.

Next we note that if f, g ∈ A then we also have max{f, g} ∈ A and min{f, g} ∈ A
because

max{f, g} =
f + g

2
+
|f − g|

2
and min{f, g} =

f + g

2
− |f − g|

2
and it follows, inductively, that if f1, f2, · · · , fn ∈ A then we have max{f1, · · · , fn} ∈ A
and min{f1, · · · , fn} ∈ A.

We claim that for all r, s ∈ R and for all a, b ∈ X with a 6= b, there is a function g ∈ A
with g(a) = r and g(b) = s. Let r, s ∈ R and let a, b ∈ X with a 6= b. Since A separates
points, we can choose h ∈ A with h(a) 6= h(b). Since A vanishes nowhere, we can choose
k, ` ∈ A with k(a) 6= 0 and `(b) 6= 0. Define u, v ∈ A by

u(x) =
(
h(x)− h(b)

)
k(x) and v(x) =

(
h(a)− h(x)

)
`(x)

and note that u(a) 6= 0 and u(b) = 0 while v(a) = 0 and v(b) 6= 0. Then define g ∈ A by

g(x) = r
u(x)

u(a)
+ s

v(x)

v(b)

to obtain g(a) = r and g(b) = s, as required.

We claim that for every f ∈ C(X), for every a ∈ X and for every ε > 0, there is a
function h ∈ A such that h(a) = f(a) and h(x) < f(x) + ε for all x ∈ X. Let f ∈ C(X),
let a ∈ X and let ε > 0. For each b ∈ X, by the previous claim we can choose gb ∈ A such
that gb(a) = f(a) and gb(b) = f(b). For each b ∈ X, since f and gb are continuous at b,
we can choose rb > 0 such that for all x ∈ B(b, rb) we have∣∣f(x)− f(b)

∣∣ < ε
2 and

∣∣gb(x)− gb(b)
∣∣ < ε

2 , hence
∣∣gb(x)− f(x)

∣∣ < ε.

Since X is compact and the set
{
B(b, rb)

∣∣ b∈X} covers X, we can choose b1, b2, · · · , bn ∈ X

such that X =
n⋃
k=1

B(bk, rbk), and then we let

h = min
{
gb1 , gb2 , · · · , gbn

}
∈ A.

For all x ∈ X we can choose an index k such that x ∈ B(bk, rak) and then we have
h(x) ≤ gbk(x) < f(x) + ε, as required.
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Finally, we complete the proof by showing that for every f ∈ C[0, 1] and every ε > 0
there exists g ∈ A such that |g(x)− f(x)| < ε for all x ∈ X. Let f ∈ C(X) and let ε > 0.
For each a ∈ X, by the previous claim we can choose ha ∈ A such that ha(a) = f(a) and
ha(x) < f(x) + ε for all x ∈ X. For each a ∈ X, since f and ha are continuous at a, we
can choose sa > 0 such that for all x ∈ B(a, sa) we have∣∣f(x)− f(a)

∣∣ < ε
2 and

∣∣ha(x)− ha(a)
∣∣ < ε

2 hence
∣∣ha(x)− f(x)

∣∣ < ε.

Since X is compact and
{
B(ak, sk)

∣∣ a ∈ X} covers X, we can choose a1, a2, · · · , am ∈ X

such that X =
m⋃
k=1

B(ak, sak), and then we choose

g = max
{
ha1 , ha2 , · · · , ham

}
∈ A.

For all x ∈ X we can choose an index k such that x ∈ B(ak, sak) and we can choose an
index ` such that g(x) = ha`(x) and then we have

g(x) ≥ hak(x) > f(x)− ε and g(x) = ha`(x) < f(x) + ε.

6.23 Corollary: (The Weierstrass Approximation Theorem for Real Valued Functions)
Let X ⊆ Rn be compact and let f ∈ C(X) = C(X,R). Then for all ε > 0 there exists a
real polynomial p in n variables such that

∣∣p(x)− f(x)
∣∣ < ε for all x ∈ X.

Proof: Each polynomial p in n-variables determines a continuous function p : X → R.
The set P(X) of such polynomial functions is a subalgebra of C(X) which separates points
and vanishes nowhere, so P(X) is dense in C(X), using the metric d∞. This means that
given f ∈ C(X), for all ε > 0 we can choose p ∈ P(X) such that ‖p− f‖∞ < ε, and hence∣∣p(x)− f(x)

∣∣ < ε for all x ∈ X.

6.24 Corollary: The space
(
C([a, b],R), d∞

)
is separable, where a, b ∈ R with a < b.

Proof: Let P be the set of polynomials with coefficients in Q. Note that P is countable by
Theorem 1.20

(
indeed, Q is countable by Part 4 of Theorem 1.20, hence Q2,Q3, · · · ,Qn

are all countable by Part 1 of Theorem 1.20 and by induction, hence the space Pn of poly-
nomials over Q of degree at most n is countable since the map F : Qn+1 → Pn given by

F (a0, a1, · · · , an+1) =
n∑
k=0

akx
k is bijective, and hence P =

∞⋃
n=0

Pn is countable by Part 3

of Theorem 1.20
)
. We claim that P is dense in C[a, b]. Let f ∈ C[a, b] and let ε > 0. By

the Weierstrass Approximation Theorem we can choose a polynomial p with coefficients in

R such that ‖p− f‖∞ < ε
2 , say p(x) =

n∑
k=0

ckx
k with each ck ∈ R. Let m = max{|a|, |b|, 1},

for each index k, choose ak ∈ Q with |ak − ck| < ε
2(n+1)mn and let g(x) =

n∑
k=0

akx
k. Then

for all x ∈ [a, b] we have |x| ≤ m
(
since m ≥ max{|a|, |b|}

)
and hence for all 0 ≤ k ≤ n we

have |x|k ≤ mk ≤ mn (since m ≥ 1). Thus for all x ∈ [a, b] we have∣∣g(x)− p(x)
∣∣ =

∣∣∣ n∑
k=0

(ak − ck)xk
∣∣∣ ≤ n∑

k=0

|ak − ck| |x|k ≤
n∑
k=0

ε
2(n+1)mn m

n = ε
2 .

Thus ‖g − p‖∞ ≤
ε
2 and hence ‖g − f‖∞ ≤ ‖g − p‖∞ + ‖p− f‖∞ < ε

2 + ε
2 = ε.

6.25 Exercise: Let A =
{∑n

k=1 fk(x)gk(y)
∣∣n ∈ Z+, fk, gk ∈ C[0, 1]

}
. Show that A is

dense in C
(
[0, 1]×[0, 1]

)
, using the metric d∞.

6.26 Exercise: Let A =
{
b0 +

∑n
k=1(ak sin(kx) + bk cos(kx))

∣∣n ∈ Z+, ak, bk ∈ R
}

. Show
that for all r ∈ [0, 2π], A is dense in C[0, r] but A is not dense in C[0, 2π], using d∞.
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6.27 Theorem: (The Stone-Weierstrass Theorem for Complex Valued Functions) Let X
be a compact metric space and let A ⊆ C(X,C) be a complex subalgebra. If A separates
points, vanishes nowhere, and is closed under conjugation (which means that if p ∈ A then
p ∈ A), then A = C(X,C), using the supremum metric d∞.

Proof: Let A ⊆ C(X,C) be a complex subalgebra. Suppose that A separates points,
vanishes nowhere, and is closed under conjugation. Let B = A ∩ C(X,R). Note that B is
a real subalgebra of C(X,R). Note that given p ∈ A with p = u+ iv where u, v ∈ C(X,R),
since u = 1

2 (p+ p) and v = 1
2i (p− p), it follows that u, v ∈ B because A is an algebra and

A is closed under conjugation. We claim that B separates points and vanishes nowhere.
To show that B separates points, let x1, x2 ∈ X with x1 6= x2. Since A separates points,
we can choose p ∈ A such that p(x1) 6= p(x2). Write p = u + iv with u, v ∈ C(X,R). As
shown above, we have u, v ∈ B. Since u(x1) + iv(x1) = p(x1) 6= p(x2) = u(x2) + iv(x2), it
follows that either u(x1) 6= u(x2) or v(x1) 6= v(x2), and so B separates points, as claimed.
To show that B vanishes nowhere, let x ∈ X. Since A vanishes nowhere we can choose
p ∈ A such that p(x) 6= 0. Write p = u + iv with u, v ∈ C(X,R), and note that u, v ∈ B.
Since 0 6= p(x) = u(x) + iv(x), either we have u(x) 6= 0 or we have v(x) 6= 0, and so B
vanishes nowhere, as claimed. Since B is a real subalgebra of C(X,R) which separates
points and vanishes nowhere, the Stone-Weierstrass Theorem for Real Functions implies
that B is dense in

(
C(X,R), d∞

)
. It follows easily that A is dense in

(
C(X,C), d∞

)
: indeed

given h ∈ C(X,C), say h = f + ig with f, g ∈ C(X,R), and given ε > 0, we can choose
u, v ∈ B such that ‖u − f‖∞ < ε

2 and ‖v − g‖∞ < ε
2 , and then p = u + iv ∈ A with

‖p−h‖∞ =
∥∥(u− f) + i(v− g)

∥∥
∞ ≤ ‖u− f‖∞+ ‖i(v− g)‖∞ = ‖u− f‖∞+ ‖v− g‖∞ < ε.

6.28 Corollary: (Weierstrass Approximation Theorem for Complex Valued Functions)
Let X ⊆ Cn be compact and let f ∈ C(X,C). Then for all ε > 0 there exists a complex
polynomial p in the 2n variables z1, z1, · · · , zn, zn such that

∣∣p(x)−f(x)
∣∣ < ε for all x ∈ X.

Proof: The proof is left as an exercise.

6.29 Corollary: The space
(
C([a, b],C), d∞

)
is separable, where a, b ∈ R with a < b.

Proof: The proof is left as an exercise.
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Chapter 7. The Baire Category Theorem

7.1 Definition: When I is the bounded open interval I = (a, b), where a, b ∈ R with
a ≤ b, the diameter of I is d(I) = b − a. For a subset A ⊆ R, we define the Lebesgue
outer measure of A to be

λ(A) = inf
{ ∞∑
k=1

d(Ik)
∣∣∣ each Ik is a bounded open interval in R and A ⊆

∞⋃
k=1

Ik

}
with 0 ≤ λ(A) ≤ ∞. We say that A has (Lebesgue) measure zero when λ(A) = 0.

7.2 Note: Every finite or countable set A ⊆ R has measure zero. Indeed, if A is finite, say
A = {a1, a2, · · · , an}, then given ε > 0 then we can take Ik =

(
ak− ε

2n , ak+ ε
2n

)
for k ≤ n,

and we can take Ik = ∅ for k > n, to get A ⊆
∞⋃
k=1

Ik and
∞∑
k=1

d(Ik) =
n∑
k=1

ε
n = ε. And if A

is countably infinite, say A = {a1, a2, a3, · · ·}, then we can take Ik =
(
a− ε

2k+1 , ak+ ε
2k+1

)
for all k ≥ 1 to get A ⊆

∞⋃
k=1

Ik and
∞∑
k=1

d(Ik) =
∞∑
k=1

ε
2k

= ε. Perhaps surprisingly, it is not

the case that every set of measure zero is at most countable.

7.3 Example: The (standard) Cantor set is the set C ⊆ [0, 1] constructed as follows.
Let C0 = [0, 1]. Let I1 be the open middle third of C0, that is let I1 =

(
1
3 ,

2
3

)
, and let

C1 = A0\U1 =
[
0, 13
]
∪
[
2
3 , 1
]
. Let I2 and I3 be the open middle thirds of the two component

intervals of C1, that is let I2 =
(
1
9 ,

2
9

)
and I3 =

(
7
9 ,

8
9

)
, and let C2 = C1 \ (I2 ∪ I3). Having

constructed the set Cn, which is the disjoint union of 2n closed intervals each of length 1
3n ,

let I2n , I2n+1, · · · , I2n+1−1 be the open middle thirds of these 2n component intervals and
let Cn+1 = Cn \ (I2n , I2n+1, · · · , I2n+1−1). Note that Cn is the set of all numbers x ∈ [0, 1]
which can be written in base 3 such that the the first n digits of x are not equal to 1.

The Cantor set is the set

C =
∞⋂
n=0

Cn

or equivalently, C is the set of all numbers x ∈ [0, 1] which can be written in base 3 with
none of the digits of x equal to 1.

Since C =
∞⋂
n=0

Cn with C0 ⊇ C1 ⊇ C2 ⊇ · · ·, it follows that C ⊆ Cn for all n ∈ N.

Since Cn is the (disjoint) union of 2n closed intervals each of size 1
3n , it follows that we

can cover Cn (hence also C) by a union of 2n open intervals each of size 2
3n , and so we

have λ(C) ≤ 2n · 2
3n = 2n+1

3n . Since λ(C) ≤ 2n+1

3n for all n ∈ N and 2n+1

3n → 0 as n→∞, it
follows that λ(C) = 0.

On the other hand, since C is the set of all real numbers x ∈ [0, 1] which can be
written in base 3 using only the digits 0 and 2, it follows that |C| = 2ℵ0 .

7.4 Remark: Note that the set C of numbers x ∈ [0, 1] which can be written in base 3
without using the digit 1, is not equal to the complement of the set B of numbers x ∈ [0, 1]
which can be written in base 3 using the digit 1 (at least once). For example, the number
x = 1

3 can be written in base 3 as x = 0.1 so we have x ∈ B, but it can also be written in
base 3 as x = 0.0222 · · ·, so we also have x ∈ C.

7.5 Exercise: Show that the set of all real numbers x ∈ [0, 1], which can be written in
base 5 without using the digit 2, has measure zero.

62



7.6 Definition: Let X be a metric space and let A ⊆ X. Recall that A is dense (in X)
when for every nonempty open ball B ⊆ X we have B ∩A 6= ∅, equivalently when A = X.
We say A is nowhere dense (in X) when for every nonempty open ball B ⊆ X there
exists a nonempty open ball C ⊆ B with C ∩A = ∅, or equivalently when A

o
= ∅.

7.7 Exercise: Show that the Cantor set is nowhere dense in [0, 1] (or in R).

7.8 Note: When A ⊆ B ⊆ X, note that if A is dense in X then so is B and, on the other
hand, if B is nowhere dense in X then so is A.

7.9 Note: When A,B ⊆ X with B = Ac = X \ A, note that A is nowhere dense ⇐⇒
A

0
= ∅ ⇐⇒ B0 = X ⇐⇒ the interior of B is dense.

7.10 Definition: Let A ⊆ X. We say that A is first category (or that A is meagre)
when A is equal to a countable union of nowhere dense sets. We say that A is second
category when it is not first category. We say that A residual when Ac is first category.

7.11 Note: Every countable set in R is first category since if A = {a1, a2, a3, · · ·} then we

have A =
∞⋃
k=1

{ak}. In particular Q is first category and Qc = R \Q is residual.

7.12 Note: If A ⊆ X is first category then so is every subset of A.

7.13 Note: If A1, A2, A3, · · · ⊆ X are are all first category then so is
∞⋃
k=1

Ak.

7.14 Theorem: (The Baire Category Theorem) Let X be a complete metric space.

(1) Every first category set in X has an empty interior.
(2) Every residual set in X is dense.
(3) Every countable union of closed sets with empty interiors in X has an empty interior.
(4) Every countable intersection of dense open sets in X is dense.

Proof: Parts (1) and (2) are equivalent by taking complements, and Parts (3) and (4) are
special cases of Parts (1) and (2), so it suffices to prove Part (1). We sketch a proof.

LetA ⊆ X be first category, sayA =
∞⋃
n=1

Cn where each Cn is nowhere dense. Suppose,

for a contradiction, that A has nonempty interior, and choose an open ball B0 = B(a0, r0)
with 0 < r0 < 1 such that B0 ⊆ A . Since each Cn is nowhere dense, we can chose a
nested sequence of open balls Bn = B(an, rn) with 0 < rn <

1
2n such that Bn ⊆ Bn−1 and

Bn ∩ Cn = ∅. Because rn → 0, it folows that the sequence {an} is Cauchy. Because X
is complete, it follows that {an} converges in X, say a = lim

n→∞
an. Note that a ∈ Bn for

all n since ak ∈ Bn for all k ≥ n. Since a ∈ B0 and B0 ⊆ A we have a ∈ A. But since

a ∈ Bnfor al n ≥ 1, and Bn ∩Cn = ∅, we have a /∈ Cn for all n ≥ 1 hence a /∈
∞⋃
n=1

Cn, that

is a /∈ A.

7.15 Example: Recall that Q is first category and Qc is residual. The Baire Category
Theorem shows that Qc cannot be first category because if Q and Qc were both first
category then R = Q ∪ Qc would also be first category, but this is not possible since R
does not have empty interior.
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7.16 Exercise: Let f ∈ C∞(R) and suppose that for all x ∈ R there exists nx ∈ Z+ such
that f (nx)(x) = 0. Show that there exists a nonempty open interval (a, b) ⊆ R such that
the restriction of f to (a, b) is a polynomial.

7.17 Exercise: For each n ∈ Z+, let fn : R → R be continuous. Suppose that for all
x ∈ R there exists n ∈ Z+ such that fn(x) ∈ Q. Prove that there exists n ∈ Z+ such that
fn is constant in some nondegenerate interval.

7.18 Remark: Let C1 =
{
A ⊆ R

∣∣A is finite or countable
}

, C2
{
A ⊆ R

∣∣λ(A) = 0
}

and

C3 =
{
A ⊆ R

∣∣A is first category
}

. Note that if C = Ck for some k ∈ {1, 2, 3}, then C has
the following properties:

(1) if A ⊆ B and B ∈ C then A ∈ C,
(2) if A1, A2, A3, · · · ∈ C then

∞⋃
k=1

Ak ∈ C, and

(3) if A ∈ C then A0 = ∅.
Because of this, it seems reasonable to consider each set Ck to be, in some sense, “small”.
Perhaps surprisingly, the following theorem states that every set in R is the union of two
such small sets.

7.19 Theorem: Every subset of R is equal to the disjoint union of a set of measure zero
and a set of first category.

Proof: Let Q = {a1, a2, a3, · · ·}. For k, ` ∈ Z+, let Ik,` =
(
a` − 1

2k+` , a` + 1
2k+`

)
and

for k ∈ Z+, let Uk =
∞⋃
`=1

Ik,`. Note that each Uk is open with Q ⊆ Uk, so each Uk is

a dense open set. Also note that for each k ∈ Z+ we have λ(Uk) ≤
∞∑̀
=1

d(Ik,`) = 1
2k−1 .

Let B =
∞⋂
k=1

Uk and note that B is residual, since it is a countable intersection of dense

open sets. Since B =
∞⋂
k=1

Uk and U1 ⊇ U2 ⊇ U3 ⊇ · · ·, we have B ⊆ Uk for all k, hence

λ(B) ≤ λ(Uk) ≤ 1
2k−1 for all k ∈ Z+, and it follows that λ(B) = 0. Thus R is the disjoint

union of the set B, which has measure zero, and its complement Bc which is first category
(since B is residual). Finally note that any set A ⊆ R is equal to the disjoint union
A = (A ∩B) ∪ (A ∩Bc), and we have λ(A ∩B) = 0 and the set A ∩Bc is first category.

7.20 Remark: At first glance, it might appear that the set B constructed in the above
proof might simply be equal to Q. But in fact, B must be uncountable, because if B was
countable then B would be first category, but then B and Bc would both be first category,
and hence R = B ∪ Bc would also be first category. But R is not first category by the
Baire Category Theorem.
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7.21 Example: Most students will have seen that it is possible to construct a continuous
function f : [0, 1]→ R such that f is nowhere differentiable. Show that the set of nowhere
differentiable functions is residual (hence dense) in C[0, 1].

Solution: Let A be the complement of the set of nowhere differentiable functions in C[0, 1],
that is

A =
{
f ∈ C[0, 1]

∣∣∣ f is differentiable at some point a ∈ [0, 1]
}
.

For each k, ` ∈ Z+, let

Ak,` =
{
f ∈ C[0, 1]

∣∣∣ ∃a∈ [0, 1] ∀x∈ [0, 1] 0 < |x− a| < 1
k =⇒

∣∣ f(x)−f(a)
x−a

∣∣ ≤ `}.
We shall show that A =

⋃
k,`

Ak,`, and that each Ak,` is closed in C[0, 1] with an empty

interior and so A is first category. Thus the set of nowhere differentiable functions is
residual, and hence dense by the Baire Category Theorem.

We claim that A =
⋃
k,`

Ak,`. Let f ∈ A. Choose a ∈ [0, 1] such that f is differentiable

at a. Choose ` ∈ Z+ such that
∣∣f ′(a)

∣∣ ≤ `. Choose δ > 0 such that for all x ∈ [0, 1] we

have 0 < |x − a| < δ =⇒
∣∣ f(x)−f(a)

x−a − f ′(a)
∣∣ < ` − |f ′(a)|. Choose k ∈ Z+ with 1

k ≤ δ.

Then for all x ∈ [0, 1], if 0 < |x− a| < 1
k then we have

∣∣ f(x)−f(a)
x−a − f ′(a)

∣∣ < `− |f ′(a)| and
hence ∣∣ f(x)−f(a)

x−a
∣∣ ≤ ∣∣ f(x)−f(a)x−a − f ′(a)

∣∣+ |f ′(a)| ≤
(
`− |f ′(a)|

)
+ |f ′(a)| = `

so that f ∈ Ak,`. Thus A =
⋃
k,`

Ak,`, as claimed.

We claim that each set Ak,` is closed in C[0, 1]. Let (fn)n≥1 be a sequence in Ak,`
which converges in C[0, 1], and let g = lim

n→∞
fn in C[0, 1]. Then fn → g uniformly in [0, 1],

and we need to show that g ∈ Ak,`. For each n ∈ Z+, since fn ∈ Ak,` we can choose

an ∈ [0, 1] such that for all x ∈ [0, 1] we have 0 < |x − an| < 1
k =⇒

∣∣ fn(x)−f(an)
x−an

∣∣ ≤ `.
Since [0, 1] is compact, we can choose a convergent subsequence (ank

)k≥1 of the sequence
(an)n≥1 and let a = lim

k→∞
ank
∈ [0, 1]. Note that the corresponding subsequence (fnk

)k≥1

of (fn)n≥1 converges in C[0, 1] with the same limit g = lim
k→∞

fnk
in C[0, 1]. Note that when

0 < |x−a| < 1
k , since ank

→ a it follows that we also have 0 < |x−ank
| < 1

k for sufficiently
large k ∈ Z+. Since fnk

→ g uniformly on [0, 1] and ank
→ a in [0, 1], recall (or verify)

that lim
k→∞

fnk
(ank

) = g(a) and so, for all x ∈ [0, 1] with 0 < |x− a| < 1
k∣∣∣g(x)− g(a)

x− a

∣∣∣ = lim
k→∞

∣∣∣fnk
(x)− fnk

(ank
)

x− ank

∣∣∣ ≤ `.
This proves that g ∈ Ak,` and so Ak,` is closed in C[0, 1], as claimed.

We claim that each set Ak,` has empty interior in C[0, 1]. Let f ∈ Ak,`. We need to
show that for all r > 0 there there is a function g ∈ B(f, r) with g /∈ Ak,`. Our strategy
is to first find a piecewise linear function p with ‖p− f‖∞ < r

2 and then to add a rapidly
oscillating sine function to obtain a function g = p + r

2 sin(wx) with g /∈ Ak,` and with
‖g − f‖∞ < r. Let r > 0. Since f is uniformly continuous on [0, 1] we can choose δ > 0
such that |x− y| < δ =⇒

∣∣f(x)− f(y)
∣∣ < r

4 . we can choose n ∈ Z+ such that 1
n < δ. Let

xi = i
n for 0 ≤ i ≤ n and let p ∈ C[0, 1] be the piecewise linear function whose graph has
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vertices at
(
xi, f(xi)

)
for 0 ≤ i ≤ n. Then for all i and for all x ∈ [xi−1, xi], we have∣∣f(x)− p(x)

∣∣ ≤ ∣∣f(x)− f(xi)
∣∣+
∣∣f(xi)− p(x)

∣∣ =
∣∣f(x)− f(xi)

∣∣+
∣∣p(xi)− p(x)

∣∣
≤
∣∣f(x)− f(xi)

∣∣+
∣∣p(xi)− p(xi−1)

∣∣ < r
4 + r

4 = r
2

and hence ‖f − p‖∞ < r
2 . Let m = max

t 6=xi

∣∣p′(t)∣∣ = max
1≤i≤n

n
∣∣f(xi)− f(xi−1)

∣∣. Choose ω ∈ R

such that 2π
ω < 1

k and 2π
w < r

2(`+m) , and consider the function g = p+ r
2 sin(ωx). Note that

‖g − f‖∞ ≤ ‖g − p‖∞ + ‖p− f‖∞ < r
2 + r

2 = r, so it remains only to show that g /∈ Ak,`.
Let a ∈ [0, 1]. By our choice of ω we can choose x ∈ [0, 1] with 0 < |x− a| < 1

k such that
|x− a| < r

2(`+m) and such that sin(ωx) = ±1 with sin(ωx) = 1 ⇐⇒ sin(ωa) ≤ 0 so that∣∣ sin(ωx)− sin(ωa)
∣∣ ≥ 1. Then we have

r
2

∣∣ sin(ωx)− sin(ωa)
∣∣ =

∣∣(g(x)− g(a)
)
−
(
p(x)− p(a)

)∣∣ ≤ ∣∣g(x)− g(a)
∣∣+
∣∣p(x)− p(a)

∣∣∣∣g(x)− g(a)
∣∣ ≥ r

2

∣∣ sin(ωx)− sin(ωa)
∣∣− ∣∣p(x)− p(a)

∣∣ ≥ r
2 −

∣∣p(x)− p(a)
∣∣∣∣∣ g(x)−g(a)x−a

∣∣∣ ≥ r

2|x− a|
−
∣∣∣p(x)− p(a)

x− a

∣∣∣ ≥ r

2 · 2(`+m)
r

−m = `

so that g /∈ Ak,`, as required.

7.22 Notation: Let X be a set. For any set C of subsets of X we write

Cσ =
{ ∞⋃
k=1

Ak

∣∣∣ each Ak ∈ C
}

and Cδ =
{ ∞⋂
k=1

Ak

∣∣∣ each Ak ∈ C
}
.

Note that Cσσ = Cσ and Cδδ = Cδ.

7.23 Definition: Let X be a set. A σ-algebra in X is a set C of subsets of X such that

(1) ∅ ∈ C,
(2) if A ∈ C then Ac = X \A ∈ C, and

(3) if A1, A2, A3, · · · ∈ C then
∞⋃
k=1

Ak ∈ C.

Note that when C is a σ-algebra in X we have Cσ = C and Cδ = C.

7.24 Notation: In a metric space (or topological space) X, we let G denote the set of all
open sets in X and we let F denote the set of all closed subsets of X. Note that Gσ = G
and Fδ = F .

7.25 Example: For any set X, the set
{
∅, X

}
and the set P(X) of all subsets of X are

σ-algebras in X,

7.26 Note: Note that given any set C of subsets of a set X there exists a unique smallest
σ-algebra in X which contains C, namely the intersection of all σ-algebras in X which
contain C.

7.27 Definition: In a metric space (or topological space) X, the Borel σ-algebra B is
the smallest σ-algebra in X which contains G (hence also F). The elements of B are called
Borel sets. Note that B contains all of the sets G,Gδ,Gδσ,Gσδσ, · · · and all of the sets
F ,Fσ,Fσδ,Fσδσ, · · ·.

7.28 Exercise: Using the Baire Category Theorem, show that in R we have F ⊆ Gδ
(equivalently G ⊆ Fσ), Fσ 6= Gδ, and Gδ ∪ Fσ ⊂6= Gδσ ∩ Fσδ.
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