
PMATH 450/650 Solutions to the Exercises for Chapter 5

1: Let an ∈ C for n ∈ Z and let s`(x) =
∑̀
n=−`

ane
inx. Let f ∈ L1(T ) and let f̂(n) =

1

2π

∫ π

−π
f(x)e−inx dx.

(a) Show that if f ∈ L∞(T ) and lim
`→∞

s` = f in L∞(T ) then an = f̂(n) for all n ∈ Z.

Solution: Suppose f ∈ L∞(T ) and lim
`→∞

.s` = f . Let n ∈ Z. Let ε > 0. Choose ` ≥ |n| ∈ Z+ so that

||s` − f ||∞ ≤ 2πε. By Lemma 3.15 we know that |s`(t)− f(t)| ≤ ||s` − f ||∞ a.e. in T and so

|an − f̂(n)| =
∣∣∣∣ 1

2π

∫ π

−π
s`(t)e

−int dt− 1

2π

∫ π

−π
f(t)e−int dt

∣∣∣∣ =
1

2π

∣∣∣∣ ∫ π

−π
(s` − f)e−int dt

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣s`(t)− f(t)
∣∣ dt ≤ 1

2π

∫ π

−π
||s` − f ||∞dt = 1

2π ||s` − f ||∞ ≤ ε.

(b) Show that if f ∈ L1(T ) and lim
`→∞

s` = f in L1(T ) then an = f̂(n) for all n ∈ Z.

Solution: Suppose that f ∈ L1(T ) and lim
`→∞

s` = f in L1(T ). Let n ∈ Z. Let ε > 0. Choose ` ≥ |n| ∈ Z+ so

that ||s` − f ||1 ≤ 2πε. Then

|an − f̂(n)| =
∣∣∣∣ 1

2π

∫ π

−π
s`(t)e

−int dt− 1

2π

∫ π

−π
f(t)e−int dt

∣∣∣∣ =
1

2π

∣∣∣∣ ∫ π

−π
(s` − f)e−int dt

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣s`(t)− f(t)
∣∣ dt = 1

2π ||s` − f ||1 ≤ ε.

(c) Let 1 < p <∞. Show that if f ∈ Lp(T ) and lim
`→∞

s` = f in Lp(T ) then an = f̂(n) for all n ∈ Z.

Solution: Suppose that f ∈ Lp(T ) and lim
`→∞

s` = f in Lp(T ). Since s` − f ∈ Lp(T ), by Theorem 3.23 we

have s` − f ∈ L1(T ) with ||s` − f ||1 ≤ (2π)1−
1
p ||s` − f ||p. Let n ∈ Z. Let ε > 0. Choose ` ≥ |n| ∈ Z+

so that ||s` − f ||p ≤ (2π)1/p ε. Then ||s` − p||1 ≤ (2π)1−
1
p ||s` − f ||p ≤ 2πε and so, as in Part (b), we have

|an − f̂(n)| ≤ ε.



2: Let f ∈ L1(T ).

(a) Use Integration by Parts to show that if f ∈ C1 then
∣∣f̂(n)

∣∣ ≤ M
|n| for all n ∈ Z where M = max

−π≤x≤π

∣∣f ′(x)
∣∣.

Solution: Suppose that f ∈ C1 and let M = max
−π≤t≤π

∣∣f ′(t)∣∣. Integration by Parts gives

f̂(n) =
1

2π

∫ π

−π
f(t)e−int dt =

1

2π

([ i
n
f(t)e−int

]π
−π
− i

n

∫ π

−π
f ′(t)e−intdt

)
=
−i

2πn

∫ π

−π
f ′(t)e−intdt.

Thus we have cn(f) = −i
2πncn(f ′), and∣∣f̂(n)

∣∣ ≤ 1

2π|n|

∫ π

−π

∣∣f ′(t)∣∣ dt ≤ 1

2π|n|
2πM =

M

|n|
.

(b) Use induction to show that if f ∈ Ck then
∣∣f̂(n)

∣∣ ≤ M
(2π)k−1|n|k for all n ∈ Z where M = max

−π≤x≤π

∣∣f (k)(x)
∣∣.

Solution: Let f ∈ Ck and let M = max
−π≤t≤π

∣∣f (k)(t)∣∣. In Part (a) we showed that cn(f) = −i
2πn cn(f ′) and it

follows, by induction, that cn(f) =
(
−i
2πn

)k
cn
(
f (k)

)
, hence

∣∣cn(f)
∣∣ =

∣∣∣∣ 1

(2π)k|n|k

∫ π

−π
f (k)(t)e−int dt

∣∣∣∣ ≤ 1

(2π)k|n|k

∫ π

−π

∣∣f (k)(t)∣∣ dt ≤ 1

(2π)k|n|k
2πM =

M

(2π)k−1|n|k
.

(c) Show that if f ∈ C2 then lim
`→∞

s` = f in L∞(T ).

Solution: Let f ∈ C2 and let M = max
−π≤t≤π

∣∣f ′′(t)∣∣. By Part (b) we have |cn(f)| ≤ M
2πn2 for all n ∈ Z.

Since s`(f)(x) =
∑̀
n=−`

cn(f)einx and
∣∣cn(f)einx

∣∣ =
∣∣cn(f)

∣∣ ≤ M
2πn2 , the Weierstrass M Test shows that

the sequence
{
s`(f)(x)

}
converges uniformly in T

(
to some function g(x)

)
. By Fejér’s Theorem, we have

lim
`→∞

s`(f)(x) = lim
m→∞

σm(f)(x) = f(x) for all x ∈ T .



3: Let f : R→ R be the 2π-periodic function with f(x) = x3 − π2x for −π ≤ x ≤ π.

(a) Find the coefficients of the real Fourier series for f .

Solution: Since f(x) is odd we have a0 =
1

2π

∫ π

−π
f(x) dx = 0 and an =

1

π

∫ π

−π
f(x) cosnx dx = 0 and

bn =
1

π

∫ π

−π
f(x) sinnx dx =

2

π

∫ π

0

(x3 − π2x) sinnx dx. Integration by Parts gives∫ π

0

x sinnx dx =

[
− 1

n x cosnx

]π
0

+

∫ π

0

1
n cosnx dx = − 1

n π cosnπ = − (−1)nπ
n .

and ∫ π

0

x3 sinnx dx =

[
− 1

nx
3 cosnx

]π
0

+

∫ π

0

3
nx

2 cosnx dx

= − (−1)nπ3

n +

[
3
n2x

2 sinnx

]π
0

−
∫ π

0

6
n2x sinnx dx

= − (−1)nπ3

n + 0 + 6
n2

(−1)nπ
n = (−1)n

(
6π
n3 − π3

n

)
and so

bn =
2

π

∫ π

0

(
x3 − π2x) sinnx dx = 2

π

(
(−1)n

(
6π
n3 − π3

n

)
+ (−1)n π

3

n

)
= (−1)n12

n3 .

(b) Show that lim
`→∞

s`(f) = f in L∞(T ).

Solution: Since s`(f)(x) =
∑̀
n=1

(−1)n12
n3 sinnx and

∣∣ (−1)n12
n3 sinnx

∣∣ ≤ 12
n3 , it follows from the Weierstrass

M Test that
{
s`(f)(x)

}
converges uniformly in T (to some function g), and by Fejér’s Theorem we have

lim
`→∞

s`(f)(x) = lim
m→∞

σm(f)(x) = f(x) for all x ∈ T .

(c) By evaluating at x = π
2 , evaluate

∞∑
k=0

(−1)k
(2k+1)3 .

Solution: Since f(x) = x3 − π2x for −π ≤ x ≤ π, we have f
(
π
2

)
=
(
π
2

)3 − π2
(
π
2

)
= − 3π3

8 . On the other

hand, since f(x) =
∞∑
n=1

(−1)n12
n3 sinnx, and since when n = 2k we have sin nπ

2 = 0 and when n = 2k + 1 we

have sin nπ
2 = (−1)k, we have f

(
π
2

)
=
∞∑
n=1

(−1)n12
n3 sin nπ

2 =
∞∑
k=0

(−1)2k+112
(2k+1)3 (−1)k = −

∞∑
k=0

(−1)k12
(2k+1)3 . Thus

∞∑
k=0

(−1)k
(2k+1)3 = − 1

12 f
(
π
2

)
= 1

12 ·
3π3

8 = π3

32 .



4: Let f : R→ R be the 2π-periodic function with f(x) =


1 if 0 < x < π,

−1 if − π < x < 0,

0 if x = 0,±π.

(a) Find the coefficients of the real Fourier series for f .

Solution: Since f(x) is odd we have a0 = 0 and an = 0 for all n ∈ Z+ and we have

bn = 2
π

∫ π

0

f(x) sinnx dx = 2
π

∫ π

0

sinnx dx = 2
π

[
− 1

n cosnx
]π
0

= − 2
πn

(
(−1)n − 1

)
=

{
4
nπ if n is odd.

0 if n is even.

(b) By recognizing s2`(f)
(
π
2`

)
as a Riemann sum, show that lim

`→∞
s2`(f)

(
π
2`

)
=

2

π

∫ π

0

sinx

x
dx.

Solution: When we partition the interval [0, π] into ` equal-sized subintervals, the endpoints of the subinter-

vals are xk = πk
` and the midpoints of the subintervals are mk = xk+xk−1

2 = (2k−1)π
2` . The Riemann sum for∫ π

0

sinx

x
dx using the midpoints of this partition is

R` =
∑̀
k=1

sinmk

mk
(xk − xk−1) =

∑̀
k=1

sin (2k−1)π
2`

(2k−1)π
2`

· π` = 2
∑̀
k=1

sin (2k−1)π
2`

(2k − 1)

By Part (a) we have

s2`(f)(x) = s2`−1(f)(x) =
∑
n odd

1≤n≤2`

4
nπ sinnx = 4

π

∑̀
k=1

sin(2k − 1)x

2k − 1

so, in particular,

s2`(f)
(
π
2`

)
= 4

π

∑̀
k=1

sin (2k−1)π
2`

(2k − 1)
= 2

π R`

Thus

lim
`→∞

s2`(f)
(
π
2`

)
=

2

π
lim
`→∞

R` =
2

π

∫ π

0

sinx

x
dx.

(c) Using a computer to approximate the value of
2

π

∫ π

0

sinx

x
dx, show that lim inf

`→∞
||s`(f)− f ||∞ > 0.17.

Solution: Using uniform convergence of power series (allowing term-by-term integration) and the Alternating
Series Test, and then using a calculator, we have

2

π

∫ π

0

sinx

x
dx = 2

π

∫ π

0

(
1− 1

3!x
2 + 1

5!x
4 − 1

7!x
7 + · · ·

)
dx = 2

π

[
x− 1

3·3!x
3 + 1

5·5!x
5 − 1

7·7!x
7 · · ·

]π
0

=
(

2− 2π3

2·3! + 2π4

5·5! −
2π6

7·7! + · · ·
)
>
(

2− 2π2

3·3! + 2π4

5·5! −
2π6

7·7!

)
> 1.1735737

Choose m ∈ Z+ so that for ` ≥ m we have s2`(f)
(
π
2`

)
− f
(
π
2`

)
> (1.173− 1) = 0.173. Then for all ` ≥ m we

have ||s2`−1(f)− f ||∞ = ||s2`(f)− f ||∞ ≥
∣∣s2`(f)

(
π
2`

)
− f
(
π
2`

)∣∣ > 0.173 and so lim inf
`→∞

||s`(f)− f ||∞ ≥ 0.173.

(d) (Optional) Show that
{
s`(f)(x)

}
converges for all x.

Solution: When x = kπ with k ∈ Z we have s`(f)(x) = 0 for all x. Suppose that x 6= kπ for k ∈ Z. Then

n∑
k=0

sin(2k + 1)x = Im
( n∑
k=0

ei(2k+1)x
)

= Im

(
eix
(
ei(n+1)2x−1

)
ei 2x−1

)
= Im

(
eix · 2i ei(n+1)x sin(n+ 1)x

2i eix sinx

)
=

sin2(n+ 1)x

sinx
≤ 1

sinx
.

Since the partial sums
n∑
k=0

sin(2k + 1)x are bounded by 1
sin x and the sequence

{
4

π(2k+1)

}
is decreasing with

limit 0, it follows from Dirichlet’s Test for Convergence that the series
∞∑
k=0

4
π(2k+1) sin(2k + 1)x converges.


