

1: Let $a_n \in \mathbf{C}$ for $n \in \mathbf{Z}$ and let $s_\ell(x) = \sum_{n=-\ell}^{\ell} a_n e^{inx}$. Let $f \in L_1(T)$ and let $\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$.

(a) Show that if $f \in L_\infty(T)$ and $\lim_{\ell \rightarrow \infty} s_\ell = f$ in $L_\infty(T)$ then $a_n = \hat{f}(n)$ for all $n \in \mathbf{Z}$.

Solution: Suppose $f \in L_\infty(T)$ and $\lim_{\ell \rightarrow \infty} s_\ell = f$. Let $n \in \mathbf{Z}$. Let $\epsilon > 0$. Choose $\ell \geq |n| \in \mathbf{Z}^+$ so that $\|s_\ell - f\|_\infty \leq 2\pi\epsilon$. By Lemma 3.15 we know that $|s_\ell(t) - f(t)| \leq \|s_\ell - f\|_\infty$ a.e. in T and so

$$\begin{aligned} |a_n - \hat{f}(n)| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} s_\ell(t) e^{-int} dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt \right| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} (s_\ell - f) e^{-int} dt \right| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |s_\ell(t) - f(t)| dt \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \|s_\ell - f\|_\infty dt = \frac{1}{2\pi} \|s_\ell - f\|_\infty \leq \epsilon. \end{aligned}$$

(b) Show that if $f \in L_1(T)$ and $\lim_{\ell \rightarrow \infty} s_\ell = f$ in $L_1(T)$ then $a_n = \hat{f}(n)$ for all $n \in \mathbf{Z}$.

Solution: Suppose that $f \in L_1(T)$ and $\lim_{\ell \rightarrow \infty} s_\ell = f$ in $L_1(T)$. Let $n \in \mathbf{Z}$. Let $\epsilon > 0$. Choose $\ell \geq |n| \in \mathbf{Z}^+$ so that $\|s_\ell - f\|_1 \leq 2\pi\epsilon$. Then

$$\begin{aligned} |a_n - \hat{f}(n)| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} s_\ell(t) e^{-int} dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt \right| = \frac{1}{2\pi} \left| \int_{-\pi}^{\pi} (s_\ell - f) e^{-int} dt \right| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |s_\ell(t) - f(t)| dt = \frac{1}{2\pi} \|s_\ell - f\|_1 \leq \epsilon. \end{aligned}$$

(c) Let $1 < p < \infty$. Show that if $f \in L_p(T)$ and $\lim_{\ell \rightarrow \infty} s_\ell = f$ in $L_p(T)$ then $a_n = \hat{f}(n)$ for all $n \in \mathbf{Z}$.

Solution: Suppose that $f \in L_p(T)$ and $\lim_{\ell \rightarrow \infty} s_\ell = f$ in $L_p(T)$. Since $s_\ell - f \in L_p(T)$, by Theorem 3.23 we have $s_\ell - f \in L_1(T)$ with $\|s_\ell - f\|_1 \leq (2\pi)^{1-\frac{1}{p}} \|s_\ell - f\|_p$. Let $n \in \mathbf{Z}$. Let $\epsilon > 0$. Choose $\ell \geq |n| \in \mathbf{Z}^+$ so that $\|s_\ell - f\|_p \leq (2\pi)^{1/p} \epsilon$. Then $\|s_\ell - f\|_1 \leq (2\pi)^{1-\frac{1}{p}} \|s_\ell - f\|_p \leq 2\pi\epsilon$ and so, as in Part (b), we have $|a_n - \hat{f}(n)| \leq \epsilon$.

2: Let $f \in L_1(T)$.

(a) Use Integration by Parts to show that if $f \in \mathcal{C}^1$ then $|\hat{f}(n)| \leq \frac{M}{|n|}$ for all $n \in \mathbf{Z}$ where $M = \max_{-\pi \leq x \leq \pi} |f'(x)|$.

Solution: Suppose that $f \in \mathcal{C}^1$ and let $M = \max_{-\pi \leq t \leq \pi} |f'(t)|$. Integration by Parts gives

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt = \frac{1}{2\pi} \left(\left[\frac{i}{n} f(t) e^{-int} \right]_{-\pi}^{\pi} - \frac{i}{n} \int_{-\pi}^{\pi} f'(t) e^{-int} dt \right) = \frac{-i}{2\pi n} \int_{-\pi}^{\pi} f'(t) e^{-int} dt.$$

Thus we have $c_n(f) = \frac{-i}{2\pi n} c_n(f')$, and

$$|\hat{f}(n)| \leq \frac{1}{2\pi |n|} \int_{-\pi}^{\pi} |f'(t)| dt \leq \frac{1}{2\pi |n|} 2\pi M = \frac{M}{|n|}.$$

(b) Use induction to show that if $f \in \mathcal{C}^k$ then $|\hat{f}(n)| \leq \frac{M}{(2\pi)^{k-1} |n|^k}$ for all $n \in \mathbf{Z}$ where $M = \max_{-\pi \leq x \leq \pi} |f^{(k)}(x)|$.

Solution: Let $f \in \mathcal{C}^k$ and let $M = \max_{-\pi \leq t \leq \pi} |f^{(k)}(t)|$. In Part (a) we showed that $c_n(f) = \frac{-i}{2\pi n} c_n(f')$ and it follows, by induction, that $c_n(f) = \left(\frac{-i}{2\pi n} \right)^k c_n(f^{(k)})$, hence

$$|c_n(f)| = \left| \frac{1}{(2\pi)^k |n|^k} \int_{-\pi}^{\pi} f^{(k)}(t) e^{-int} dt \right| \leq \frac{1}{(2\pi)^k |n|^k} \int_{-\pi}^{\pi} |f^{(k)}(t)| dt \leq \frac{1}{(2\pi)^k |n|^k} 2\pi M = \frac{M}{(2\pi)^{k-1} |n|^k}.$$

(c) Show that if $f \in \mathcal{C}^2$ then $\lim_{\ell \rightarrow \infty} s_\ell = f$ in $L_\infty(T)$.

Solution: Let $f \in \mathcal{C}^2$ and let $M = \max_{-\pi \leq t \leq \pi} |f''(t)|$. By Part (b) we have $|c_n(f)| \leq \frac{M}{2\pi n^2}$ for all $n \in \mathbf{Z}$.

Since $s_\ell(f)(x) = \sum_{n=-\ell}^{\ell} c_n(f) e^{inx}$ and $|c_n(f) e^{inx}| = |c_n(f)| \leq \frac{M}{2\pi n^2}$, the Weierstrass M Test shows that the sequence $\{s_\ell(f)(x)\}$ converges uniformly in T (to some function $g(x)$). By Fejér's Theorem, we have $\lim_{\ell \rightarrow \infty} s_\ell(f)(x) = \lim_{m \rightarrow \infty} \sigma_m(f)(x) = f(x)$ for all $x \in T$.

3: Let $f : \mathbf{R} \rightarrow \mathbf{R}$ be the 2π -periodic function with $f(x) = x^3 - \pi^2 x$ for $-\pi \leq x \leq \pi$.

(a) Find the coefficients of the real Fourier series for f .

Solution: Since $f(x)$ is odd we have $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0$ and $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0$ and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\pi} (x^3 - \pi^2 x) \sin nx dx$. Integration by Parts gives

$$\int_0^{\pi} x \sin nx dx = \left[-\frac{1}{n} x \cos nx \right]_0^{\pi} + \int_0^{\pi} \frac{1}{n} \cos nx dx = -\frac{1}{n} \pi \cos n\pi = -\frac{(-1)^n \pi}{n}.$$

and

$$\begin{aligned} \int_0^{\pi} x^3 \sin nx dx &= \left[-\frac{1}{n} x^3 \cos nx \right]_0^{\pi} + \int_0^{\pi} \frac{3}{n} x^2 \cos nx dx \\ &= -\frac{(-1)^n \pi^3}{n} + \left[\frac{3}{n^2} x^2 \sin nx \right]_0^{\pi} - \int_0^{\pi} \frac{6}{n^2} x \sin nx dx \\ &= -\frac{(-1)^n \pi^3}{n} + 0 + \frac{6}{n^2} \frac{(-1)^n \pi}{n} = (-1)^n \left(\frac{6\pi}{n^3} - \frac{\pi^3}{n} \right) \end{aligned}$$

and so

$$b_n = \frac{2}{\pi} \int_0^{\pi} (x^3 - \pi^2 x) \sin nx dx = \frac{2}{\pi} \left((-1)^n \left(\frac{6\pi}{n^3} - \frac{\pi^3}{n} \right) + (-1)^n \frac{\pi^3}{n} \right) = \frac{(-1)^n 12}{n^3}.$$

(b) Show that $\lim_{\ell \rightarrow \infty} s_{\ell}(f) = f$ in $L_{\infty}(T)$.

Solution: Since $s_{\ell}(f)(x) = \sum_{n=1}^{\ell} \frac{(-1)^n 12}{n^3} \sin nx$ and $\left| \frac{(-1)^n 12}{n^3} \sin nx \right| \leq \frac{12}{n^3}$, it follows from the Weierstrass M Test that $\{s_{\ell}(f)(x)\}$ converges uniformly in T (to some function g), and by Fejér's Theorem we have $\lim_{\ell \rightarrow \infty} s_{\ell}(f)(x) = \lim_{m \rightarrow \infty} \sigma_m(f)(x) = f(x)$ for all $x \in T$.

(c) By evaluating at $x = \frac{\pi}{2}$, evaluate $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3}$.

Solution: Since $f(x) = x^3 - \pi^2 x$ for $-\pi \leq x \leq \pi$, we have $f\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^3 - \pi^2 \left(\frac{\pi}{2}\right) = -\frac{3\pi^3}{8}$. On the other hand, since $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 12}{n^3} \sin nx$, and since when $n = 2k$ we have $\sin \frac{n\pi}{2} = 0$ and when $n = 2k+1$ we have $\sin \frac{n\pi}{2} = (-1)^k$, we have $f\left(\frac{\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{(-1)^n 12}{n^3} \sin \frac{n\pi}{2} = \sum_{k=0}^{\infty} \frac{(-1)^{2k+1} 12}{(2k+1)^3} (-1)^k = -\sum_{k=0}^{\infty} \frac{(-1)^k 12}{(2k+1)^3}$. Thus

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3} = -\frac{1}{12} f\left(\frac{\pi}{2}\right) = \frac{1}{12} \cdot \frac{3\pi^3}{8} = \frac{\pi^3}{32}.$$

4: Let $f : \mathbf{R} \rightarrow \mathbf{R}$ be the 2π -periodic function with $f(x) = \begin{cases} 1 & \text{if } 0 < x < \pi, \\ -1 & \text{if } -\pi < x < 0, \\ 0 & \text{if } x = 0, \pm\pi. \end{cases}$

(a) Find the coefficients of the real Fourier series for f .

Solution: Since $f(x)$ is odd we have $a_0 = 0$ and $a_n = 0$ for all $n \in \mathbf{Z}^+$ and we have

$$b_n = \frac{2}{\pi} \int_0^\pi f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^\pi \sin nx \, dx = \frac{2}{\pi} \left[-\frac{1}{n} \cos nx \right]_0^\pi = -\frac{2}{\pi n}((-1)^n - 1) = \begin{cases} \frac{4}{n\pi} & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

(b) By recognizing $s_{2\ell}(f)(\frac{\pi}{2\ell})$ as a Riemann sum, show that $\lim_{\ell \rightarrow \infty} s_{2\ell}(f)(\frac{\pi}{2\ell}) = \frac{2}{\pi} \int_0^\pi \frac{\sin x}{x} \, dx$.

Solution: When we partition the interval $[0, \pi]$ into ℓ equal-sized subintervals, the endpoints of the subintervals are $x_k = \frac{\pi k}{\ell}$ and the midpoints of the subintervals are $m_k = \frac{x_k + x_{k-1}}{2} = \frac{(2k-1)\pi}{2\ell}$. The Riemann sum for $\int_0^\pi \frac{\sin x}{x} \, dx$ using the midpoints of this partition is

$$R_\ell = \sum_{k=1}^{\ell} \frac{\sin m_k}{m_k} (x_k - x_{k-1}) = \sum_{k=1}^{\ell} \frac{\sin \frac{(2k-1)\pi}{2\ell}}{\frac{(2k-1)\pi}{2\ell}} \cdot \frac{\pi}{\ell} = 2 \sum_{k=1}^{\ell} \frac{\sin \frac{(2k-1)\pi}{2\ell}}{(2k-1)}$$

By Part (a) we have

$$s_{2\ell}(f)(x) = s_{2\ell-1}(f)(x) = \sum_{\substack{n \text{ odd} \\ 1 \leq n \leq 2\ell}} \frac{4}{n\pi} \sin nx = \frac{4}{\pi} \sum_{k=1}^{\ell} \frac{\sin(2k-1)x}{2k-1}$$

so, in particular,

$$s_{2\ell}(f)(\frac{\pi}{2\ell}) = \frac{4}{\pi} \sum_{k=1}^{\ell} \frac{\sin \frac{(2k-1)\pi}{2\ell}}{(2k-1)} = \frac{2}{\pi} R_\ell$$

Thus

$$\lim_{\ell \rightarrow \infty} s_{2\ell}(f)(\frac{\pi}{2\ell}) = \frac{2}{\pi} \lim_{\ell \rightarrow \infty} R_\ell = \frac{2}{\pi} \int_0^\pi \frac{\sin x}{x} \, dx.$$

(c) Using a computer to approximate the value of $\frac{2}{\pi} \int_0^\pi \frac{\sin x}{x} \, dx$, show that $\liminf_{\ell \rightarrow \infty} \|s_\ell(f) - f\|_\infty > 0.17$.

Solution: Using uniform convergence of power series (allowing term-by-term integration) and the Alternating Series Test, and then using a calculator, we have

$$\begin{aligned} \frac{2}{\pi} \int_0^\pi \frac{\sin x}{x} \, dx &= \frac{2}{\pi} \int_0^\pi \left(1 - \frac{1}{3!}x^2 + \frac{1}{5!}x^4 - \frac{1}{7!}x^7 + \dots \right) dx = \frac{2}{\pi} \left[x - \frac{1}{3 \cdot 3!}x^3 + \frac{1}{5 \cdot 5!}x^5 - \frac{1}{7 \cdot 7!}x^7 \dots \right]_0^\pi \\ &= \left(2 - \frac{2\pi^3}{2 \cdot 3!} + \frac{2\pi^4}{5 \cdot 5!} - \frac{2\pi^6}{7 \cdot 7!} + \dots \right) > \left(2 - \frac{2\pi^2}{3 \cdot 3!} + \frac{2\pi^4}{5 \cdot 5!} - \frac{2\pi^6}{7 \cdot 7!} \right) > 1.1735737 \end{aligned}$$

Choose $m \in \mathbf{Z}^+$ so that for $\ell \geq m$ we have $s_{2\ell}(f)(\frac{\pi}{2\ell}) - f(\frac{\pi}{2\ell}) > (1.173 - 1) = 0.173$. Then for all $\ell \geq m$ we have $\|s_{2\ell-1}(f) - f\|_\infty = \|s_{2\ell}(f) - f\|_\infty \geq |s_{2\ell}(f)(\frac{\pi}{2\ell}) - f(\frac{\pi}{2\ell})| > 0.173$ and so $\liminf_{\ell \rightarrow \infty} \|s_\ell(f) - f\|_\infty \geq 0.173$.

(d) (Optional) Show that $\{s_\ell(f)(x)\}$ converges for all x .

Solution: When $x = k\pi$ with $k \in \mathbf{Z}$ we have $s_\ell(f)(x) = 0$ for all x . Suppose that $x \neq k\pi$ for $k \in \mathbf{Z}$. Then

$$\begin{aligned} \sum_{k=0}^n \sin(2k+1)x &= \operatorname{Im} \left(\sum_{k=0}^n e^{i(2k+1)x} \right) = \operatorname{Im} \left(\frac{e^{ix} (e^{i(n+1)2x} - 1)}{e^{i2x} - 1} \right) \\ &= \operatorname{Im} \left(\frac{e^{ix} \cdot 2i e^{i(n+1)x} \sin(n+1)x}{2i e^{ix} \sin x} \right) = \frac{\sin^2(n+1)x}{\sin x} \leq \frac{1}{\sin x}. \end{aligned}$$

Since the partial sums $\sum_{k=0}^n \sin(2k+1)x$ are bounded by $\frac{1}{\sin x}$ and the sequence $\{\frac{4}{\pi(2k+1)}\}$ is decreasing with

limit 0, it follows from Dirichlet's Test for Convergence that the series $\sum_{k=0}^\infty \frac{4}{\pi(2k+1)} \sin(2k+1)x$ converges.