PMATH 450/650 Solutions to the Exercises for Chapter 5

e .
: Let a, € Cforn € Z and let sp(z) = . ane™®. Let f € L1(T) and let f / f(z)e ™ dg.

n=—~
(a) Show that if f € Loo(T') and Zlim s¢ = f in Loo(T) then a, = f(n) for all n € Z.
—00

Solution: Suppose f € Loo(T) and Elim ¢ = f. Let n € Z. Let € > 0. Choose ¢ > |n| € ZT so that
— 00
[|s¢ = flloo < 2me. By Lemma 3.15 we know that |sg(t) — f(¢)] < ||s¢ — f]leo a-e. in T and so
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(b) Show that if f € Li(T") and Elim s¢ = f in Ly(T) then a, = f(n) for all n € Z.
—00

Solution: Suppose that f € L1(T) and Klim s¢=f1in Ly(T). Let n € Z. Let € > 0. Choose £ > |n| € Z" so
—00
that |[s, — f|[1 < 2me. Then

|an — f(n)| ‘ Sz(t) —int gy 5 [ f(t)efmt dt‘ _ 2177‘ [ (Sé _ f)efint dt

< f/ lse(t) — F()] dt = & |]se — f1]s < e.

(c) Let 1 < p < oo. Show that if f € L,(T) and élim sg = fin Ly(T) then a,, = f(n) for all n € Z.
— o0
Solution: Suppose that f € L,(T) and L}lim sg = fin L,(T). Since s; — f € L,(T), by Theorem 3.23 we
—00

have s, — f € Li(T) with ||s; — f]]1 < (27’()1_%”8[ — fllp- Let n € Z. Let € > 0. Choose ¢ > |n| € Z*
so that |[sp — f||, < (2m)'/Pe. Then |[s, — p||; < (QW)l_%Hsz — fllp < 2me and so, as in Part (b), we have
|an = f(n)] < e



2: Let f € Ly(T).

a) Use Integration by Parts to show that if f € C! then f n)| < & for all n € Z where M = max | f'(x)].
[n]

—m<lz<lm

Solution: Suppose that f € C! and let M = max | f()|- Integration by Parts gives

f(n) = %/_W Ft)e it dt = ;ﬁ([; f(t)e*imr _ 3 f’(t)emtdt) _
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Thus we have ¢, (f) = s==c,(f'), and
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A~ 1 ™ , 1 _M
|f(n)\<2m|/ﬂ|f(t)|dt<2m|2wM|n|.

(b) Use induction to show that if f € C* then | f(n)| < W forall n € Z where M = _max |F®) ()]

Solution: Let f € C* and let M = max ‘f(k)(tﬂ. In Part (a) we showed that c,(f) = 57= c,(f’) and it
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N
follows, by induction, that ¢, (f) = ( — ) Cn (f(k)), hence
len(f)] = #/ﬂ FE (et gt| < L/ﬂ PO dt <~ opM =
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(c) Show that if f € C? then plim se=fin Loo(T).
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Solution: Let f € C? and let M = max |f”(t)|. By Part (b) we have |c,(f)| < 5245 for all n € Z.

—n<t<nm — 2mn?2

4 ) .
Since s¢(f)(x) = > ca(f)e™ and |cn(f)e™| = |ea(f)| < 2L the Weierstrass M Test shows that
n=—~4
the sequence {s¢(f)(z)} converges uniformly in T (to some function g(z)). By Fejér’s Theorem, we have

Jim so(f)(x) = lm_om(f)(x) = [(z) for all 2 € T.



3: Let f : R — R be the 27-periodic function with f(x) = 23 — 7%z for —7 < < 7.

(a) Find the coefficients of the real Fourier series for f.

1 s 1 ™
Solution: Since f(z) is odd we have ag = 2—/ f@)de = 0 and a,, = — f(x)cosnz de = 0 and
™ J_x L
1 (7 2 [T
by, = f/ f(x)sinnz dx = f/ (23 — 722) sinnax dz. Integration by Parts gives
T ) . T Jo
/ x sinnx dr = {— % x cosn:z:] +/ }Lcosnx de = —%w cosnm = —%.
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and . . i
/ 23 sinnx de = {— Ly3 cosm:] +/ 322 cosnx dx
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(b) Show that elim se(f) = fin Loo(T).

12 2

sin nx’ < 13, it follows from the Weierstrass

SNENET
Solution: Since s¢(f)(z) = > = n) sinnz and }

n=1
M Test that {s¢(f)(z)} converges uniformly in T (to some function g), and by Fejér’s Theorem we have

Jim s(f)(x) = lim_o(F)(2) = f(x) for all 2 € T.

m (=D~

(c) By evaluating at x = 7, evaluate kz R
Solution: Since f(z) = #* — n%z for —m < x < 7, we have f(3) = (g)g - 7r2(g) = —%. On the other
hand, since f(z) = > (71)1712 sin nz, and since when n = 2k we have sin 2 = 0 and when n = 2k + 1 we
n=1
M nm s = - " 3 nm —1)2k+1 9 =
have sin * = (—1)*, we have f(%) = ) ( 133 12 sin F = kX_:O ((;LT;Q(—l)k =— kz_: E%ﬁ Thus
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lif0<z<m,
4: Let f: R — R be the 27-periodic function with f(z) =<¢ —1if —7 <z <0,
0if x =0, £m.

(a) Find the coefficients of the real Fourier series for f.

Solution: Since f(z) is odd we have ag = 0 and a,, = 0 for all n € ZT and we have

' ’ " - if n is odd.
:%/ f(x)sinnxdx:%/ sinnxdx:%{,%cosnx] 77271((1)”1){”6’1 n is o
0 o 0

if n is even.

.. - . . . 2 [Tsinx
(b) By recognizing sa,(f)(2;) as a Riemann sum, show that elggo soe(f) (%) = ;/ - dz.

Solution: When we partition the interval [0, 7] into £ equal-sized subintervals, the endpoints of the subinter-

vals are xp = ”7’“ and the midpoints of the subintervals are m; = r”—; ko1 — (%2}1)”. The Riemann sum for

sin x . . . . e
/ dx using the midpoints of this partition is
O l’

! sin - ¢ gin (2 Z1)7r ¢ gin (2k—ll)7r
— - 2 mo_ 2
Ry = Z e (T) — Tp—1) = Z (2k—D)m ¢ =2 Z (2k — 1)
k=1 k=1 20 k=1
By Part (a) we have
‘ sin(2k — 1)z
su(H@) =sua(Hle)= D shsinnw =23 ——
n odd k=1
1<n<2¢
so, in particular,
\  gin (2k;€1)w ,
)=z ==<R
SQZ(f)(QZ) ﬂ'; (2]{371) U
Thus 9 .
sin
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o s20(f)(3) T e B T /0 x
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(c) Using a computer to approximate the value of — /
T

dzx, show that liminf|[s¢(f) — f]|cc > 0.17.
0 x {—00

Solution: Using uniform convergence of power series (allowing term-by-term integration) and the Alternating
Series Test, and then using a calculator, we have

2 [Tsinz ™
—/ dx:%/ (1—fx + gzt — Ix7+~--)dx:fr[x—33,x + 5o’ — 7%7!:57-~-]0
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Choose m € ZT so that for £ > m we have so¢(f)(
have ||s2r—1(f) = flloo = lIs2¢(f) = flloo > [520(f) (3

I

2
3
7-) > (1.173 — 1) = 0.173. Then for all £ > m we
1 (52)

| >0.173 and so lim inf [|s¢(f) = f[[oc > 0.173.
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(d) (Optional) Show that {s.(f)(x)} converges for all z.

Solution: When a = kr with k € Z we have sy(f)(z) = 0 for all . Suppose that « # kr for k € Z. Then
n no e ((gi(n+1)2a _
> osin(2k + 1)z = Im( > 61(2’“"'1)””) = Im((emll))

k=0 k=0
_ Im<e” - 24 ! gin (n + 1)1‘) _ sin®(n + 1)z < 1!

27 e'® sin ¢

sin x ~ sinz’

Since the partial sums Z sin(2k + 1)z are bounded by
k=0

and the sequence { is decreasing with

7r(2;f1,+1) }
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limit 0, it follows from Dirichlet’s Test for Convergence that the series sin(2k + 1)z converges.
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