

1: (a) Let P_2 denote the space of polynomials of degree at most 2 with coefficients in \mathbf{R} using the inner product given by $\langle f, g \rangle = f(0)g(0) + f(1)g(1) + f(2)g(2)$. Find the orthonormal basis for P_2 which is obtained by applying the Gram-Schmidt Procedure to the basis $\{1, x, x^2\}$.

Solution: Write $p_0 = 1$, $p_1 = x$ and $p_2 = x^2$. We take

$$\begin{aligned} q_0 &= p_0 = 1 \\ q_1 &= p_1 - \frac{\langle p_1, q_0 \rangle}{|q_0|^2} q_0 = x - \frac{\langle x, 1 \rangle}{|1|^2} 1 = x - \frac{0 \cdot 1 + 1 \cdot 1 + 2 \cdot 1}{1^2 + 1^2 + 1^2} 1 = x - 1 \\ q_2 &= p_2 - \frac{\langle p_2, q_0 \rangle}{|q_0|^2} q_0 - \frac{\langle p_2, q_1 \rangle}{|q_1|^2} q_1 = x^2 - \frac{\langle x^2, 1 \rangle}{|1|^2} 1 - \frac{\langle x^2, x - 1 \rangle}{|x - 1|^2} (x - 1) \\ &= x^2 - \frac{0 \cdot 1 + 1 \cdot 1 + 4 \cdot 1}{1^2 + 1^2 + 1^2} 1 - \frac{(0)(-1) + (1)(-0) + (4)(1)}{(-1)^2 + (0)^2 + (1)^2} (x - 1) \\ &= x^2 - \frac{5}{3} - 2(x - 1) = x^2 - 2x + \frac{1}{3}. \end{aligned}$$

Note that $|q_0|^2 = 1^2 + 1^2 + 1^2 = 3$, $|q_1|^2 = (-1)^2 + (0)^2 + (1)^2 = 2$ and $|q_2|^2 = \left(\frac{1}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2 = \frac{6}{9} = \frac{2}{3}$, and so normalizing yields the orthonormal basis $\{r_0, r_1, r_2\}$ with

$$r_0 = \frac{q_0}{|q_0|} = \frac{1}{\sqrt{3}}, \quad r_1 = \frac{q_1}{|q_1|} = \frac{1}{\sqrt{2}}(x - 1), \quad r_2 = \frac{q_2}{|q_2|} = \sqrt{\frac{3}{2}}(x^2 - 2x + \frac{1}{3}).$$

(b) Let \mathbf{R}^∞ denote the space of sequences $x = (x_1, x_2, x_3, \dots)$ with each $x_k \in \mathbf{R}$ such that $x_k = 0$ for all but finitely many indices k , using the inner product given by $\langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k$. Let U be the subspace $U = \{x \in \mathbf{R}^\infty \mid \sum_{k=1}^{\infty} x_k = 0\}$. Find the orthonormal basis for U which is obtained by applying the Gram-Schmidt Procedure to the basis $\{u_1, u_2, u_3, \dots\}$ where $u_k = e_k - e_{k+1}$.

Solution: Let $\{v_1, v_2, v_3, \dots\}$ be the orthogonal basis obtained by applying the Gram-Schmidt Procedure to $\{u_1, u_2, u_3, \dots\}$, and let $\{w_1, w_2, w_3, \dots\}$ be the orthonormal basis obtained by letting $w_n = \frac{v_n}{\|v_n\|}$. Let

$$s_n = \sum_{k=1}^n e_k = (1, 1, \dots, 1, 0, 0, \dots).$$

We claim that

$$v_n = \frac{1}{n} s_n - e_{n+1} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, -1, 0, 0, \dots\right) \text{ for all } n \geq 1.$$

We have $v_1 = u_1 = e_1 - e_2 = s_1 - e_2$, so the claim holds when $n = 1$. Let $n \geq 2$ and suppose the claim holds for all $\ell < n$. For $\ell < n$ we have

$$\langle u_n, v_\ell \rangle = \langle e_n - e_{n+1}, \frac{1}{\ell} \sum_{k=1}^{\ell} e_k - e_{\ell+1} \rangle = \langle e_n, -e_{\ell+1} \rangle = \begin{cases} -1 & \text{if } \ell = n-1, \\ 0 & \text{if } \ell < n-1. \end{cases}$$

and we have $|v_\ell|^2 = \ell \cdot \frac{1}{\ell^2} + 1 = \frac{\ell+1}{\ell}$ so that in particular $|v_{n-1}|^2 = \frac{n}{n-1}$. Thus

$$\begin{aligned} v_n &= u_n - \sum_{\ell=1}^{n-1} \frac{\langle u_n, v_\ell \rangle}{|v_\ell|^2} v_\ell = u_n - \frac{\langle u_n, v_{n-1} \rangle}{|v_{n-1}|^2} v_{n-1} = u_n + \frac{n-1}{n} v_{n-1} \\ &= e_n - e_{n+1} + \frac{n-1}{n} \left(\frac{1}{n-1} s_{n-1} - e_n \right) = e_n - e_{n+1} + \frac{1}{n} s_{n-1} - \frac{n-1}{n} e_n \\ &= \frac{1}{n} s_{n-1} + \frac{1}{n} e_n - e_{n+1} = \frac{1}{n} s_n - e_{n+1}. \end{aligned}$$

By Induction, $v_n = \frac{1}{n} s_n - e_{n+1}$ and $|v_n|^2 = \frac{n+1}{n}$ for all $n \geq 1$. Normalizing gives

$$w_n = \frac{v_n}{\|v_n\|} = \sqrt{\frac{1}{n+1}} \left(\frac{1}{n} s_n - e_{n+1} \right) = \left(\sqrt{\frac{1}{n^2+n}}, \dots, \sqrt{\frac{1}{n^2+n}}, -\sqrt{\frac{n}{n+1}}, 0, 0, \dots \right).$$

2: Use the Cauchy-Schwarz Inequality to solve each of the following problems, involving real-valued functions.

(a) Let $f \in L_2[0, \infty)$. Show that $\lim_{n \rightarrow \infty} \int_{[n, n+1]} f = 0$.

Solution: Since $f \in L_2[0, \infty)$, we have $\sum_{n=0}^{\infty} \int_{[n, n+1]} |f|^2 = \int_{[0, \infty)} |f|^2 < \infty$ hence $\lim_{n \rightarrow \infty} \int_{[n, n+1]} |f|^2 = 0$. Since $[0, 1] \setminus [0, 1] = \{1\}$ which has measure zero, we have $\int_{[n, n+1]} |f|^2 = \int_{[n, n+1]} |f|^2$, and so $\lim_{n \rightarrow \infty} \int_{[n, n+1]} |f|^2 = 0$. By the Cauchy-Schwartz Inequality in $L_2[n, n+1]$, we have

$$\int_{[n, n+1]} f = \langle f, 1 \rangle \leq \|f\|_2^2 \|1\|_2^2 = \left(\int_{[n, n+1]} |f|^2 \right)^{1/2} \left(\int_{[n, n+1]} 1^2 \right)^{1/2} = \left(\int_{[n, n+1]} |f|^2 \right)^{1/2} \rightarrow 0 \text{ as } n \rightarrow \infty.$$

(b) Let $f \in L_2[0, 1]$ be nonnegative with $\int_{[0, 1]} f^2 = \int_{[0, 1]} f^3 = \int_{[0, 1]} f^4 < \infty$. Show that there exists a measurable set $A \subseteq [0, 1]$ such that $f = \chi_A$ a.e. in $[0, 1]$.

Solution: In $L_2[0, 1]$ we have

$$\begin{aligned} \langle f, f^2 \rangle &= \int_{[0, 1]} f^3 \text{ and} \\ \|f\|_2 \|f^2\|_2 &= \left(\int_{[0, 1]} f^2 \right)^{1/2} \left(\int_{[0, 1]} f^4 \right)^{1/2} = \left(\int_{[0, 1]} f^3 \right)^{1/2} \left(\int_{[0, 1]} f^3 \right)^{1/2} = \int_{[0, 1]} f^3. \end{aligned}$$

Since $\langle f, f^2 \rangle = \|f\|_2 \|f^2\|_2$ it follows, from the Cauchy-Schwartz Inequality, that $\{f, f^2\}$ is linearly dependent in $L_2[0, 1]$. Thus either $f = 0$ (and $f^2 = 0$) in $L_2[0, 1]$, or $f \neq 0$ and $f^2 = cf$ in $L_2[0, 1]$ for some $0 \neq c \in \mathbf{R}$. If $f = 0$ in $L_2[0, 1]$ then $f = \chi_{\emptyset}$ a.e. in $[0, 1]$. Suppose that $f \neq 0$ and $f^2 = cf$ in $L_2[0, 1]$ with $0 \neq c \in \mathbf{R}$. Since $\int_{[0, 1]} f^2 = \int_{[0, 1]} f^3 = \int_{[0, 1]} cf^2 = c \int_{[0, 1]} f^2$ and $\int_{[0, 1]} f^2 = \|f\|_2^2 \neq 0$, we must have $c = 1$. Thus we have $f^2 = f$ in $L_2[0, 1]$, and so $f(x)^2 = f(x)$, hence $f(x) \in \{0, 1\}$, for a.e. $x \in [0, 1]$. If $A = \{x \in [0, 1] \mid f(x) = 1\}$ and $B = \{x \in [0, 1] \mid f(x) = 0\}$ and $C = [0, 1] \setminus (A \cup B)$ then $\lambda(C) = 0$ and $f(x) = \chi_A(x)$ for all $x \in [0, 1] \setminus C$.

3: Let $1 \leq p \leq \infty$.

(a) Show that if $p \neq 2$ then there does not exist an inner product on ℓ_p such that $\|x\|_p^2 = \langle x, x \rangle$ for all $x \in \ell_p$.

Solution: Suppose that there exists such an inner product. By the Parallelogram Law, for all $x, y \in \ell_p$ we have $\|x+y\|_p^2 + \|x-y\|_p^2 = 2(\|x\|_p^2 + \|y\|_p^2)$. Note that $p \neq \infty$ because $\|e_1 + e_2\|_\infty^2 = \|e_1 - e_2\|_\infty^2 = 1+1 = 2$ while $2(\|e_1\|_\infty^2 + \|e_2\|_\infty^2) = 2(1+1) = 4$. When $1 \leq p < \infty$,

$$\|e_1 + e_2\|_p^2 + \|e_1 - e_2\|_p^2 = 2(\|e_1\|_p^2 + \|e_2\|_p^2) \implies 2^{2/p} + 2^{2/p} = 2(1+1) \implies 2^{2/p} = 2^1 \implies \frac{2}{p} = 1 \implies p = 2.$$

(b) Let $A \subseteq \mathbf{R}$ be measurable with $\lambda(A) > 0$. Show that if $p \neq 2$ then there does not exist an inner product on $L_p(A)$ such that $\|f\|_p^2 = \langle f, f \rangle$ for all $f \in L_p(A)$.

Solution: Let $A_n = A \cap [n-1, n]$ for $n \in \mathbf{Z}$. Since $\lambda(A) > 0$ we can choose $n \in \mathbf{Z}$ so that $\lambda(A_n) > 0$. By our solution to Problem 2(b) on Assignment 1, we can choose $a \in (n, n+1)$ such that for $B = A_n \cap [n, a)$ and $C = A_n \cap [a, n+1)$ we have $\lambda(B) = \lambda(C) = \frac{1}{2}\lambda(A_n)$. Let $L = \frac{1}{2}\lambda(A_n) = \lambda(B) = \lambda(C)$. Let $f, g : A \rightarrow \mathbf{R}$ be given by $f = \chi_B$ and $g = \chi_C$, and note that $|f+g| = |f-g| = \chi_{B \cup C}$. Suppose that there exists an inner product on $L_p(A)$ which induces the p -norm. Then the Parallelogram Law must hold. Note that $p \neq \infty$ because $\|f+g\|_\infty^2 + \|f-g\|_\infty^2 = 1+1=2$ while $2(\|f\|_\infty^2 + \|g\|_\infty^2) = 2(1+1) = 4$. When $1 \leq p < \infty$ we have

$$\begin{aligned} \|f+g\|_p^2 + \|f-g\|_p^2 &= 2(\|f\|_p^2 + \|g\|_p^2) \implies (2L)^{2/p} + (2L)^{2/p} = 2(L^{2/p} + L^{2/p}) \\ &\implies (2L)^{2/p} = 2L^{2/p} \implies 2^{2/p} = 2 \implies p = 2. \end{aligned}$$

4: (a) Let $B = \{x \in \ell_2 \mid \|x\|_2 \leq 1\}$. Show that B is not compact.

Solution: Let $E = \{e_1, e_2, e_3, \dots\}$, let $U_0 = \ell_2 \setminus E$, let $U_n = B(e_n, 1) = \{x \in \ell_2 \mid \|x - e_n\|_2 < 1\}$ for $n \in \mathbf{Z}^+$. and let $\mathcal{U} = \{U_0, U_1, U_2, \dots\}$. Note that E is closed (because for all $k \neq \ell$ we have $\|e_k - e_\ell\|_2 = \sqrt{2}$, so every Cauchy sequence in E is eventually constant) and so U_0 is open, and so \mathcal{U} is an open cover of B . But \mathcal{U} has no finite subcover, indeed \mathcal{U} has no proper subcover, because the point $0 \in B$ only lies in the set U_0 and for each $k \in \mathbf{Z}^+$, the point $e_k \in B$ only lies in the set U_k (when $n \in \mathbf{Z}^+$ with $n \neq k$ we have $\|e_k - e_n\|_2 = \sqrt{2}$ so $e_k \notin B(e_n, 1) = U_n$).

(b) Let $r_k \geq 0$ for all $k \in \mathbf{Z}^+$, and let $S = \{x \in \ell_2 \mid |x_k| \leq r_k \text{ for all } k \in \mathbf{Z}^+\}$. Show that S is compact if and only if $\sum_{k=1}^{\infty} |r_k|^2$ converges in \mathbf{R} .

Solution: If $\sum_{k=1}^{\infty} |r_k|^2 = \infty$. then S is unbounded because $s_n = \sum_{k=1}^n r_k e_k \in S$ and $\|s_n\|_2 = \sum_{k=1}^n |r_k|^2 \rightarrow \infty$ as $n \rightarrow \infty$, and hence S is not compact. Suppose that $\sum_{k=1}^{\infty} |r_k|^2 < \infty$. We claim that every sequence in S

has a convergent subsequence whose limit lies in S . Let $\{x_n\}_{n \geq 1}$ be a sequence in S , say $x_n = \sum_{k=1}^{\infty} x_{n,k} e_k$ with $|x_{n,k}| \leq r_k$ for all n, k . Since $x_{n,1} \in [-r_1, r_1]$ for all n , we can choose $m_1 < m_2 < m_3 < \dots$ so that the sequence $\{x_{m_n,1}\}_{n \geq 1}$ converges in \mathbf{R} , say to $c_1 \in [-r_1, r_1]$. Denote the subsequence $\{x_{m_n}\}_{n \geq 1}$ of $\{x_n\}$ in ℓ_2 by $\{x_n^1\}$ so we have $x_n^1 = \sum_{k=1}^{\infty} x_{n,k}^1 e_k$ with $x_{n,k}^1 = x_{m_n,k}$. Note that $x_{n,k}^1 \in [-r_k, r_k]$ for all n, k and $\lim_{n \rightarrow \infty} x_{n,1}^1 = c_1 \in [-r_1, r_1]$. Since $x_{n,2}^1 \in [-r_2, r_2]$ for all n , we can re-choose $m_1 < m_2 < m_3 < \dots$ so that the sequence $\{x_{m_n,2}\}_{n \geq 1}$ converges in \mathbf{R} , say to $c_2 \in [-r_2, r_2]$. Denote the subsequence $\{x_{m_n}^1\}_{n \geq 1}$ of $\{x_n^1\}$ in ℓ_2 by $\{x_n^2\}$ so we have $x_n^2 = \sum_{k=1}^{\infty} x_{n,k}^2 e_k$ with $x_{n,k}^2 = x_{m_n,k}^1$. Note that $x_{n,k}^2 \in [-r_k, r_k]$ for all n, k and $\lim_{n \rightarrow \infty} x_{n,1}^2 = c_1$ and $\lim_{n \rightarrow \infty} x_{n,2}^2 = c_2$. Repeat this procedure to obtain successive subsequences $\{x_n^m\}_{n \geq 1}$ in ℓ_2 for each $m \in \mathbf{Z}^+$ given by $x_n^m = \sum_{k=1}^{\infty} x_{n,k}^m e_k$ with $|x_{n,k}^m| \leq r_k$ for all m, n, k such that $\lim_{n \rightarrow \infty} x_{n,k}^m = c_k \in [-r_k, r_k]$ in \mathbf{R} for all $k \leq m$.

Let $\{y_n\}$ be the diagonal sequence $y_n = x_n^n = \sum_{k=1}^{\infty} x_{n,k}^n e_k$, and note that $\{y_n\}$ is a subsequence of the original sequence $\{x_n\}$. We claim that $y \rightarrow c$ in ℓ_2 where $c = \sum_{k=1}^{\infty} c_k e_k$. Let $\epsilon > 0$. Since $\sum_{k=1}^{\infty} |r_k|^2 < \infty$, we can choose $m \in \mathbf{Z}^+$ so that $\sum_{k=m+1}^{\infty} |r_k|^2 < \frac{\epsilon^2}{8}$. Since $\lim_{n \rightarrow \infty} x_{n,k}^m = c_k$ for all $k \leq m$, we can choose $N \in \mathbf{Z}^+$ with $N \geq m$ so that for all $n \geq N$ we have $|x_{n,k}^m - c_k| < \frac{\epsilon^2}{2m}$ for all $k \leq m$. Note that when $m' \geq m$, $\{x_n^{m'}\}$ is a subsequence of $\{x_n^m\}$ so for each $n \in \mathbf{Z}^+$ we have $x_n^{m'} = x_{n'}^m$ for some $n' \geq n$. In particular, when $n \geq N$ we have $y_n = x_n^n = x_{n'}^m$ for some $n' \geq n$, and so

$$\begin{aligned} \|y_n - c\|_2^2 &= \sum_{k=1}^{\infty} |y_{n,k} - c_k|^2 = \sum_{k=1}^m |y_{n,k} - c_k|^2 + \sum_{k=m+1}^{\infty} |y_{n,k} - c_k|^2 \\ &\leq \sum_{k=1}^m |x_{n',k}^m - c_k|^2 + \sum_{k=m+1}^{\infty} (2r_k)^2 \leq m \cdot \frac{\epsilon^2}{2m} + 4 \cdot \frac{\epsilon^2}{8} = \epsilon^2 \end{aligned}$$

hence $\|y_n - c\|_2 < \epsilon$. Since every sequence in S has a subsequence which converges to an element in S , it follows that S is compact (recall that, in a metric space, sequential compactness is equivalent to compactness).

5: Let H be a separable Hilbert space over \mathbf{C} .

(a) Show that for every $u \in H$, the linear map $L : H \rightarrow \mathbf{C}$ given by $L(x) = \langle x, u \rangle$ is continuous.

Solution: Let $u \in H$ and let $L(x) = \langle x, u \rangle$. Given $\epsilon > 0$ choose $\delta = \frac{\epsilon}{\|u\| + 1}$. Then for $x, y \in H$ with $\|x - y\| < \delta$, the Cauchy-Schwarz Inequality gives

$$|L(x) - L(y)| = |\langle x, u \rangle - \langle y, u \rangle| = |\langle x - y, u \rangle| \leq \|x - y\| \|u\| < \frac{\epsilon \|u\|}{\|u\| + 1} \leq \epsilon.$$

Thus $L(x)$ is continuous (and indeed uniformly continuous).

Remark: we used $\delta = \frac{\epsilon}{\|u\| + 1}$ rather than $\delta = \frac{\epsilon}{\|u\|}$ in order to include the case in which $\|u\| = 0$.

(b) Show that for every continuous linear map $L : H \rightarrow \mathbf{C}$ there exists a unique point $u \in H$ such that $L(x) = \langle x, u \rangle$ for all $x \in H$.

Solution: Let $L : H \rightarrow \mathbf{C}$ be a continuous linear map. If $L = 0$ then we can take $u = 0$ to get $L(x) = \langle x, u \rangle$ for all x . Suppose that $L \neq 0$. Let $U = \ker(L) = \{x \in H \mid L(x) = 0\}$. Since L is linear, U is a subspace of H , and since L is continuous, U is closed, and it follows that $H = U \oplus U^\perp$. Since $L \neq 0$ it follows that $U \neq H$ and so $U^\perp \neq \{0\}$. Choose $w \in H$ with $L(w) \neq 0$ and choose $v \in U^\perp$ with $\|v\| = 1$. Let $x \in H$. For $y = L(x)v - L(v)x$ we have $L(y) = L(x)L(v) - L(v)L(x) = 0$ so that $y \in U$ hence $\langle y, v \rangle = 0$, and so

$$L(x) = L(x)\|v\|^2 = L(x)\langle v, v \rangle = \langle L(x)v, v \rangle = \langle y + L(v)x, v \rangle = L(v)\langle x, v \rangle = \langle x, \overline{L(v)}v \rangle.$$

Thus $L(x) = \langle x, u \rangle$ where $u = \overline{L(v)}v$.

To prove uniqueness, note that if $L(x) = \langle x, u \rangle = \langle x, u' \rangle$ for all $x \in H$ then $\langle x, u - u' \rangle = 0$ for all $x \in H$ so. in particular, $\|u - u'\|^2 = \langle u - u', u - u' \rangle = 0$ and hence $u = u'$.