
PMATH 450/650 Solutions to the Exercises for Chapter 4

1: (a) Let P2 denote the space of polynomials of degree at most 2 with coefficients in R using the inner product
given by 〈f, g〉 = f(0)g(0) + f(1)g(1) + f(2)g(2). Find the orthonormal basis for P2 which is obtained by
applying the Gram-Schmidt Procedure to the basis

{
1, x, x2

}
.

Solution: Write p0 = 1, p1 = x and p2 = x2. We take

q0 = p0 = 1

q1 = p1 −
〈p1, q0〉
|q0|2

q0 = x− 〈x, 1〉
|1|2

1 = x− 0 · 1 + 1 · 1 + 2 · 1
12 + 12 + 12

1 = x− 1

q2 = p2 −
〈p2, q0〉
|q0|2

q0 −
〈p2, q1〉
|q1|2

q1 = x2 − 〈x
2, 1〉
|1|2

1− 〈x
2, x− 1〉
|x− 1|2

(x− 1)

= x2 − 0 · 1 + 1 · 1 + 4 · 1
12 + 12 + 12

1− (0)(−1) + (1)(−0) + (4)(1)

(−1)2 + (0)2 + (1)2
(x− 1)

= x2 − 5
3 − 2(x− 1) = x2 − 2x+ 1

3 .

Note that |q0|2 = 12 + 12 + 12 = 3, |q1|2 = (−1)2 + (0)2 + (1)2 = 2 and |q2|2 =
(
1
3

)2
+
(
− 2

3

)2
+
(
1
3

)
= 6

9 = 2
3 ,

and so normalizing yields the orthonormal basis {r0, r1, r2} with

r0 =
q0
|q0|

= 1√
3
, r1 =

q1
|q1|

= 1√
2
(x− 1) , r2 =

q2
|q2|

=
√

3
2

(
x2 − 2x+ 1

3

)
.

(b) Let R∞ denote the space of sequences x = (x1, x2, x3, · · ·) with each xk ∈ R such that xk = 0 for all

but finitely many indices k, using the inner product given by 〈x, y〉 =
∞∑
k=1

xkyk. Let U be the subspace

U =
{
x ∈ R∞

∣∣ ∞∑
k=1

xk = 0
}

. Find the orthonormal basis for U which is obtained by applying the Gram-

Schmidt Procedure to the basis
{
u1, u2, u3, · · ·} where uk = ek − ek+1.

Solution: Let {v1, v2, v3, · · ·} be the orthogonal basis obtained by applying the Gram-Schmidt Procedure to
{u1, u2, u3, · · ·}, and let {w1, w2, w3 · · ·} be the orthonormal basis obtained by letting wn = vn

||vn|| . Let

sn =
n∑
k=1

ek = (1, 1, · · · , 1, 0, 0, · · ·).

We claim that
vn = 1

n sn − en+1 =
(
1
n ,

1
n , · · · ,

1
n ,−1, 0, 0, · · ·

)
for all n ≥ 1.

We have v1 = u1 = e1− e2 = s1− e2, so the claim holds when n = 1. Let n ≥ 2 and suppose the claim holds
for all ` < n. For ` < n we have

〈un, v`〉 =
〈
en − en+1 ,

1
`

∑̀
k=1

ek − e`+1

〉
= 〈en,−e`+1〉 =

{
−1 if ` = n− 1,

0 if ` < n− 1.

and we have |v`|2 = ` · 1
`2 + 1 = `+1

` so that in particular |vn−1|2 = n
n−1 . Thus

vn = un −
n−1∑̀
=1

〈un, v`〉
|v`|2

v` = un −
〈un, vn−1〉
|vn−1|2

vn−1 = un + n−1
n vn−1

= en − en+1 + n−1
n

(
1

n−1sn−1 − en
)

= en − en+1 + 1
nsn−1 −

n−1
n en

= 1
nsn−1 + 1

nen − en+1 = 1
nsn − en+1.

By Induction, vn = 1
nsn − en+1 and |vn|2 = n+1

n for all n ≥ 1. Normalizing gives

wn =
vn
|vn|

=
√

n
n+1

(
1
n sn − en+1

)
=
(√

1
n2+n , , · · · ,

√
1

n2+n ,−
√

n
n+1 , 0, 0, · · ·

)
.



2: Use the Cauchy-Schwarz Inequality to solve each of the following problems, involving real-valued functions.

(a) Let f ∈ L2[0,∞). Show that lim
n→∞

∫
[n,n+1]

f = 0.

Solution: Since f ∈ L2[0,∞), we have

∞∑
n=0

∫
[n,n+1)

|f |2 =

∫
[0,∞)

|f |2 <∞ hence lim
n→∞

∫
[n,n+1)

|f |2 = 0. Since

[0, 1]\ [0, 1) = {1} which has measure zero, we have

∫
[n,n+1]

|f |2 =

∫
[n,n+1)

|f |2, and so lim
n→∞

∫
[n,n+1]

|f |2 = 0.

By the Cauchy-Schwartz Inequality in L2[n, n+ 1], we have∫
[n,n+1]

f = 〈f, 1〉 ≤ ||f ||22 ||1||22 =

(∫
[n,n+1]

|f |2
)1/2(∫

[n,n+1]

12
)1/2

=

(∫
[n,n+1]

|f |2
)1/2

−→ 0 as n→∞.

(b) Let f ∈ L2[0, 1] be nonnegative with

∫
[0,1]

f2 =

∫
[0,1]

f3 =

∫
[0,1]

f4 < ∞. Show that there exists a

measurable set A ⊆ [0, 1] such that f = χ
A

a.e. in [0, 1].

Solution: In L2[0, 1] we have

〈f, f2〉 =

∫
[0,1]

f3 and

||f ||2||f2||2 =

(∫
[0,1]

f2
)1/2(∫

[0,1]

f4
)1/2

=

(∫
[0,1]

f3
)1/2(∫

[0,1]

f3
)1/2

=

∫
[0,1]

f3.

Since 〈f, f2〉 = ||f ||2||f2||2 it follows, from the Cauchy-Schwartz Inequality, that {f, f2} is linearly dependent
in L2[0, 1]. Thus either f = 0 (and f2 = 0) in L2[0, 1], or f 6= 0 and f2 = cf in L2[0, 1] for some 0 6= c ∈ R.
If f = 0 in L2[0, 1] then f = χ

∅ a.e. in [0, 1]. Suppose that f 6= 0 and f2 = cf in L2[0, 1] with 0 6= c ∈ R.

Since

∫
[0,1]

f2 =

∫
[0,1]

f3 =

∫
[0,1]

cf2 = c

∫
[0,1]

f2 and

∫
[0,1]

f2 = ||f ||22 6= 0, we must have c = 1. Thus we have

f2 = f in L2[0, 1], and so f(x)2 = f(x), hence f(x) ∈ {0, 1}, for a.e. x ∈ [0, 1]. If A =
{
x ∈ [0, 1]

∣∣f(x) = 1
}

and B =
{
x ∈ [0, 1]

∣∣f(x) = 0
}

and C = [0, 1]\ (A∪B) then λ(C) = 0 and f(x) = χ
A

(x) for all x ∈ [0, 1]\C.



3: Let 1 ≤ p ≤ ∞.

(a) Show that if p 6= 2 then there does not exist an inner product on `p such that ||x||2p = 〈x, x〉 for all x ∈ `p.
Solution: Suppose that there exists such an inner product. By the Parallelogram Law, for all x, y ∈ `p we
have ||x+y||2p+ ||x−y||2p = 2

(
||x||2p+ ||y||2p

)
. Note that p 6=∞ because ||e1 +e2||2∞ = ||e1−e2||2∞ = 1+1 = 2

while 2
(
||e1||2∞ + ||e2||2∞

)
= 2(1 + 1) = 4. When 1 ≤ p <∞,

||e1 + e2||2p + ||e1 − e2||2p = 2
(
||e1||2p + ||e2||2p

)
=⇒ 22/p + 22/p = 2(1 + 1) =⇒ 22/p = 21 =⇒ 2

p = 1 =⇒ p = 2.

(b) Let A ⊆ R be measurable with λ(A) > 0. Show that if p 6= 2 then there does not exist an inner product
on Lp(A) such that ||f ||2p = 〈f, f〉 for all f ∈ Lp(A).

Solution: Let An = A∩ [n− 1, n) for n ∈ Z. Since λ(A) > 0 we can choose n ∈ Z so that λ(An) > 0. By our
solution to Problem 2(b) on Assignment 1, we can choose a ∈ (n, n + 1) such that for B = An ∩ [n, a) and
C = An ∩ [a, n+ 1) we have λ(B) = λ(C) = 1

2λ(An). Let L = 1
2λ(An) = λ(B) = λ(C). Let f, g : A→ R be

given by f = χ
B

and g = χ
C

, and note that |f + g| = |f − g| = χ
B∪C . Suppose that there exists an inner

product on Lp(A) which induces the p-norm. Then the Parallelogram Law must hold. Note that p 6= ∞
because ||f + g||2∞ + ||f − g||2∞ = 1 + 1 = 2 while 2

(
||f ||2∞ + ||g||2∞

)
= 2(1 + 1) = 4. When 1 ≤ p < ∞ we

have
||f + g||2p+||f − g||2p = 2

(
||f ||2p + ||g||2p

)
=⇒ (2L)2/p + (2L)2/p = 2(L2/p + L2/p)

=⇒ (2L)2/p = 2L2/p =⇒ 22/p = 2 =⇒ p = 2.



4: (a) Let B =
{
x ∈ `2

∣∣ ||x||2 ≤ 1
}

. Show that B is not compact.

Solution: Let E = {e1, e2, e3, · · ·}, let U0 = `2 \ E, let Un = B(en, 1) =
{
x ∈ `2

∣∣||x− en||2 < 1
}

for n ∈ Z+.

and let U =
{
U0, U1, U2, · · ·}. Note that E is closed (because for all k 6= ` we have ||ek− e`||2 =

√
2, so every

Cauchy sequence in E is eventually constant) and so U0 is open, and so U is an open cover of B. But U has
no finite subcover, indeed U has no proper subcover, because the point 0 ∈ B only lies in the set U0 and for
each k ∈ Z+, the point ek ∈ B only lies in the set Uk (when n ∈ Z+ with n 6= k we have ||ek − en||2 =

√
2

so ek /∈ B(en, 1) = Un).

(b) Let rk ≥ 0 for all k ∈ Z+, and let S =
{
x ∈ `2

∣∣ |xk| ≤ rk for all k ∈ Z+
}

. Show that S is compact if

and only if
∞∑
k=1

|rk|2 converges in R.

Solution: If
∞∑
k=1

|rk|2 = ∞. then S is unbounded because sn =
n∑
k=1

rkek ∈ S and ||sn||2 =
n∑
k=1

|rk|2 −→ ∞

as n → ∞, and hence S is not compact. Suppose that
∞∑
k=1

|rk|2 < ∞. We claim that every sequence in S

has a convergent subsequence whose limit lies in S. Let {xn}n≥1 be a sequence in S, say xn =
∞∑
k=1

xn,kek

with |xn,k| ≤ rk for all n, k. Since xn,1 ∈ [−r1, r1] for all n, we can choose m1 < m2 < m3 < · · · so that
the sequence {xmn,1}n≥1 converges in R, say to c1 ∈ [−r1, r1]. Denote the subsequence {xmn}n≥1 of {xn}

in `2 by {x1n} so we have x1n =
∞∑
k=1

x1n,kek with x1n,k = xmn,k. Note that x1n,k ∈ [−rk, rk] for all n, k and

lim
n→∞

x1n,1 = c1 ∈ [−r1, r1]. Since x1n,2 ∈ [−r2, r2] for all n, we can re-choose m1 < m2 < m3 < · · · so that the

sequence {x1mn,2}n≥1 converges in R, say to c2 ∈ [−r2, r2]. Denote the subsequence {x1mn
}n≥1 of {x1n} in `2 by

{x2n} so we have x2n =
∞∑
k=1

x2n,kek with x2n,k = x1mn,k
. Note that x2n,k ∈ [−rk, rk] for all n, k and lim

n→∞
x2n,1 = c1

and lim
n→∞

x2n,2 = c2. Repeat this procedure to obtain successive subsequences {xmn }n≥1 in `2 for each m ∈ Z+

given by xmn =
∞∑
k=1

xmn,kek with |xmn,k| ≤ rk for all m,n, k such that lim
n→∞

xmn,k = ck ∈ [−rk, rk] in R for all

k ≤ m. Let {yn} be the diagonal sequence yn = xnn =
∞∑
k=1

xnn,kek, and note that {yn} is a subsequence of the

original sequence {xn}. We claim that y → c in `2 where c =
∞∑
k=1

ckek. Let ε > 0. Since
∞∑
k=1

|rk|2 < ∞, we

can choose m ∈ Z+ so that
∞∑

k=m+1

|rk|2 < ε2

8 . Since lim
n→∞

xmn,k = ck for all k ≤ m, we can choose N ∈ Z+

with N ≥ m so that for all n ≥ N we have
∣∣xmn,k − ck∣∣ < ε2

2m for all k ≤ m. Note that when m′ ≥ m, {xm′

n }
is a subsequence of {xmn } so for each n ∈ Z+ we have xm

′

n = xmn′ for some n′ ≥ n. In particular, when n ≥ N
we have yn = xnn = xmn′ for some n′ ≥ n, and so

||yn − c||22 =
∞∑
k=1

|yn,k − ck|2 =
m∑
k=1

|yn,k − ck|2 +
∞∑

k=m+1

|yn,k − ck|2

≤
m∑
k=1

|xmn′,k − ck|+
∞∑

k=m+1

(2rk)2 ≤ m · ε
2

2m + 4 · ε
2

8 = ε2

hence ||yn − c||2 < ε. Since every sequence in S has a subsequence which converges to an element in S, it
follows that S is compact (recall that, in a metric space, sequential compactness is equivalent to compactness).



5: Let H be a separable Hilbert space over C.

(a) Show that for every u ∈ H, the linear map L : H → C given by L(x) = 〈x, u〉 is continuous.

Solution: Let u ∈ H and let L(x) = 〈x, u〉. Given ε > 0 choose δ =
ε

||u||+ 1
. Then for x, y ∈ H with

||x− y|| < δ, the Cauchy-Schwarz Inequality gives∣∣L(x)− L(y)
∣∣ =

∣∣〈x, u〉 − 〈y, u〉∣∣ =
∣∣〈x− y, u〉∣∣ ≤ ||x− y|| ||u|| < ε ||u||

||u||+ 1
≤ ε.

Thus L(x) is continuous (and indeed uniformly continuous).

Remark: we used δ = ε
||u||+1 rather that δ = ε

||u|| in order to include the case in which ||u|| = 0.

(b) Show that for every continuous linear map L : H → C there exists a unique point u ∈ H such that
L(x) = 〈x, u〉 for all x ∈ H.

Solution: Let L : H → C be a continuous linear map. If L = 0 then we can take u = 0 to get L(x) = 〈x, u〉
for all x. Suppose that L 6= 0. Let U = ker(L) =

{
x ∈ H

∣∣L(x) = 0
}

. Since L is linear, U is a subspace
of H, and since L is continuous, U is closed, and it follows that H = U ⊕ U⊥. Since L 6= 0 it follows that
U 6= H and so U⊥ 6= {0}. Choose w ∈ H with L(w) 6= 0 and choose v ∈ U⊥ with ||v|| = 1. Let x ∈ H. For
y = L(x)v − L(v)x we have L(y) = L(x)L(v)− L(v)L(x) = 0 so that y ∈ U hence 〈y, v〉 = 0, and so

L(x) = L(x)||v||2 = L(x)〈v, v〉 =
〈
L(x)v, v

〉
=
〈
y + L(v)x , v

〉
= L(v)〈x, v〉 =

〈
x , L(v) v

〉
.

Thus L(x) = 〈x, u〉 where u = L(v) v.
To prove uniqueness, note that if L(x) = 〈x, u〉 = 〈x, u′〉 for all x ∈ H then

〈
x , u−u′

〉
= 0 for all x ∈ H

so. in particular, ||u− u′||2 =
〈
u− u′ , u− u′

〉
= 0 and hence u = u′.


