

PMATH 450/650 Exercises for Chapter 4

1: (a) Let P_2 denote the space of polynomials of degree at most 2 with coefficients in \mathbf{R} using the inner product given by $\langle f, g \rangle = f(0)g(0) + f(1)g(1) + f(2)g(2)$. Find the orthonormal basis for P_2 which is obtained by applying the Gram-Schmidt Procedure to the basis $\{1, x, x^2\}$.

(b) Let \mathbf{R}^∞ denote the space of sequences $x = (x_1, x_2, x_3, \dots)$ with each $x_k \in \mathbf{R}$ such that $x_k = 0$ for all but finitely many indices k , using the inner product given by $\langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k$. Let U be the subspace $U = \{x \in \mathbf{R}^\infty \mid \sum_{k=1}^{\infty} x_k = 0\}$. Find the orthonormal basis for U which is obtained by applying the Gram-Schmidt Procedure to the basis $\{u_1, u_2, u_3, \dots\}$ where $u_k = e_k - e_{k+1}$.

2: Use the Cauchy-Schwarz Inequality to solve each of the following problems, involving real-valued functions.

(a) Let $f \in L_2[0, \infty)$. Show that $\lim_{n \rightarrow \infty} \int_{[n, n+1]} f = 0$.

(b) Let $f \in L_2[0, 1]$ be nonnegative with $\int_{[0,1]} f^2 = \int_{[0,1]} f^3 = \int_{[0,1]} f^4 < \infty$. Show that there exists a measurable set $A \subseteq [0, 1]$ such that $f = \chi_A$ a.e. in $[0, 1]$.

3: Let $1 \leq p \leq \infty$.

(a) Show that if $p \neq 2$ then there does not exist an inner product on ℓ_p such that $\|x\|_p^2 = \langle x, x \rangle$ for all $x \in \ell_p$.

(b) Let $A \subseteq \mathbf{R}$ be measurable with $\lambda(A) > 0$. Show that if $p \neq 2$ then there does not exist an inner product on $L_p(A)$ such that $\|f\|_p^2 = \langle f, f \rangle$ for all $f \in L_p(A)$.

4: (a) Let $B = \{x \in \ell_2 \mid \|x\|_2 \leq 1\}$. Show that B is not compact.

(b) Let $r_k \geq 0$ for all $k \in \mathbf{Z}^+$, and let $S = \{x \in \ell_2 \mid |x_k| \leq r_k \text{ for all } k \in \mathbf{Z}^+\}$. Show that S is compact if and only if $\sum_{k=1}^{\infty} |r_k|^2$ converges in \mathbf{R} .

5: Let H be a separable Hilbert space over \mathbf{C} .

(a) Show that for every $u \in H$, the linear map $L : H \rightarrow \mathbf{C}$ given by $L(x) = \langle x, u \rangle$ is continuous.

(b) Show that for every continuous linear map $L : H \rightarrow \mathbf{C}$ there exists a unique point $u \in H$ such that $L(x) = \langle x, u \rangle$ for all $x \in H$.