

PMATH 450/650 Solutions to the Exercises for Chapter 3

1: (a) Let $f : [a, b] \rightarrow \mathbf{R}$ be continuous. Show that $\|f\|_\infty = \max_{a \leq x \leq b} |f(x)|$.

Solution: Let $m = \max_{a \leq x \leq b} |f(x)|$. Then $|f|^{-1}(m, \infty] = \emptyset$ so $\lambda(|f|^{-1}(m, \infty]) = 0$ and hence $\|f\|_\infty \leq m$. Since $|f|$ is continuous in $[a, b]$ we can choose $c \in [a, b]$ such that $|f(c)| = m$. Let $y < m$. Since $|f|$ is continuous at c with $|f(c)| = m$ we can choose δ with $0 < \delta < b - a$ so that, for all $x \in [a, b]$, if $|x - c| < \delta$ then $|f(x)| - m| < (m - y)$. For $x \in [a, b]$ with $|x - c| < \delta$ we have $-m + y < |f(x)| - m$ and so $|f(x)| > y$. It follows that $(c - \delta, c + \delta) \subseteq |f|^{-1}(y, \infty]$ and hence $\lambda(|f|^{-1}(y, \infty]) \geq \lambda((c - \delta, c + \delta) \cap [a, b]) \geq \delta > 0$. Since $\lambda(|f|^{-1}(y, \infty]) > 0$ for all $y < m$ it follows, from the definition of $\|f\|_\infty$, that $\|f\|_\infty \geq m$.

(b) Let $A \subseteq \mathbf{R}$ be measurable. Suppose that $f_n \rightarrow f$ in $L_\infty(A)$. Show that there exists $B \subseteq A$ with $\lambda(B) = 0$ such that $f_n \rightarrow f$ uniformly in $A \setminus B$.

Solution: For $n \in \mathbf{Z}^+$, let $B_n = \{x \in A \mid |f_n(x) - f(x)| > \|f_n - f\|_\infty\}$. From Assignment 2 we know that $\lambda(B_n) = 0$ for all $n \in \mathbf{Z}^+$. Let $B = \bigcup_{n=1}^{\infty} B_n$. Then $\lambda(B) \leq \sum_{n=1}^{\infty} \lambda(B_n) = 0$. Since $f_n \rightarrow f$ in $L_\infty(A)$ we have $\|f_n - f\|_\infty \rightarrow 0$ as $n \rightarrow \infty$, so given $\epsilon > 0$ we can choose $m \in \mathbf{Z}^+$ such that for all $n \geq m$ we have $\|f_n - f\|_\infty < \epsilon$. Then for all $n \geq m$ and for all $x \in A \setminus B$ we have $|f_n(x) - f(x)| \leq \|f_n - f\|_\infty < \epsilon$. Thus $f_n \rightarrow f$ uniformly in $A \setminus B$.

2: (a) Show that if $1 \leq p < q \leq \infty$ then $\ell_p \not\subseteq \ell_q$.

Solution: Let $1 \leq p < q \leq \infty$. Let $x \in \ell_p$. Since $\sum_{n=1}^{\infty} |x_n|^p < \infty$ it follows that $|x_n|^p \rightarrow 0$ as $n \rightarrow \infty$ and hence $|x_n| \rightarrow 0$ as $n \rightarrow \infty$. Since $|x_n| \rightarrow 0$ as $n \rightarrow \infty$, we can choose $m \in \mathbf{Z}^+$ so that for all $n \geq m$ we have $|x_n| \leq 1$. Since $|x_n| \leq 1$ for all $n \geq m$ it follows that the sequence $\{|x_n|\}$ is bounded so we have $\|x\|_\infty < \infty$ and hence $x \in \ell_\infty$. This shows that $\ell_p \subseteq \ell_q$ in the case that $q = \infty$. Now suppose that $q < \infty$. For all $n \geq m$, since $|x_n| \leq 1$ and $p < q$ we have $|x_n|^q \leq |x_n|^p$. Since $|x_n|^q \leq |x_n|^p$ for all $n \geq m$ and $\sum |x_n|^p$ converges, it follows that $\sum |x_n|^q$ converges (by the Comparison Test). Thus $x \in \ell_q$ and so $\ell_p \subseteq \ell_q$, as required.

Note that $\ell_p \neq \ell_\infty$ because, for example, for the constant sequence x , given by $x_n = 1$ for all $n \in \mathbf{Z}^+$, we have $x \in \ell_\infty$ but $x \notin \ell_p$. Also note that when $p < q < \infty$ we have $\ell_p \neq \ell_q$ because, for example, for the sequence x given by $x_n = \frac{1}{n^{1/p}}$ we have $x \in \ell_q$ but $x \notin \ell_p$.

(b) Show that ℓ_p is separable for $1 \leq p < \infty$ but that ℓ_∞ is not.

Solution: Suppose that $1 \leq p < \infty$. We claim that ℓ_p is separable, indeed we claim that \mathbf{Q}^∞ is dense in ℓ_p where \mathbf{Q}^∞ denotes the set of sequences of rational numbers whose terms are eventually zero. Let $x = (x_1, x_2, \dots) \in \ell_p$. Let $\epsilon > 0$. Since $\sum_{k=1}^{\infty} |x_k|^p < \infty$ we can choose $m \in \mathbf{Z}^+$ so that $\sum_{k=m+1}^{\infty} |x_k|^p < \frac{\epsilon^p}{2}$. For each index k with $1 \leq k \leq m$, choose $r_k \in \mathbf{Q}$ such that $|r_k - x_k|^p < \frac{\epsilon^p}{2m}$ and let $r_k = 0$ for $k > m$. Then we have $\|x - r\|_p^p = \sum_{k=1}^{\infty} |x_k - r_k|^p = \sum_{k=1}^m |x_k - r_k|^p + \sum_{k=m+1}^{\infty} |x_k|^p < m \frac{\epsilon^p}{2m} + \frac{\epsilon^p}{2} = \epsilon^p$ and so $\|x - r\|_p < \epsilon$. This shows that \mathbf{Q}^∞ is dense in ℓ_p , as claimed. Finally, note that \mathbf{Q}^∞ is countable because $\mathbf{Q}^\infty = \bigcup_{n=1}^{\infty} \mathbf{Q}^n$.

We claim that ℓ_∞ is not separable. Let $S \subseteq \ell_\infty$ be any dense subset. Let 2^ω denote the set of binary sequences. Note that $2^\omega \subseteq \ell_\infty$. For each $\alpha \in 2^\omega$, choose $s_\alpha \in S$ with $\|s_\alpha - \alpha\|_\infty < \frac{1}{2}$. By the Triangle Inequality, when $\alpha \neq \beta$ we have $1 = \|\alpha - \beta\|_\infty \leq \|\alpha - s_\alpha\|_\infty + \|s_\alpha - s_\beta\|_\infty + \|s_\beta - \beta\|_\infty < \|s_\alpha - s_\beta\|_\infty + 1$ so that $\|s_\alpha - s_\beta\|_\infty > 0$ and hence $s_\alpha \neq s_\beta$. It follows that S is uncountable, indeed the map $F : 2^\omega \rightarrow S$ given by $F(\alpha) = s_\alpha$ is injective, so we have $|S| \geq |2^\omega| = 2^{\aleph_0}$.

3: (a) Show that $L_\infty(0, 1) \neq \bigcap_{1 < p < \infty} L_p(0, 1)$ and that $L_1(0, 1) \neq \bigcup_{1 < p < \infty} L_p(0, 1)$.

Solution: By Theorem 3.23, we know that $L_\infty(0, 1) \subseteq L_p(0, 1)$ for all $1 < p < \infty$ so $L_\infty(0, 1) \subseteq \bigcap_{1 < p < \infty} L_p(0, 1)$.

To see that $L_\infty(0, 1) \neq \bigcap_{1 < p < \infty} L_p(0, 1)$ consider the map $f : (0, 1) \rightarrow \mathbf{R}$ given by $f(x) = \ln x$. Note that $f \notin L_\infty(0, 1)$ because for $a > 0$ we have $\lambda(|f|^{-1}(a, \infty)) = \lambda(0, e^{-a}) = e^{-a} > 0$. We claim that $f \in \bigcap_{1 < p < \infty} L_p(0, 1)$.

We have $\int_0^1 |\ln x| dx = \int_0^1 -\ln x dx = \left[x - x \ln x \right]_0^1 = 1$, and for $n \in \mathbf{Z}^+$, integration by Parts gives

$$\int_0^1 |\ln x|^{n+1} dx = \int_0^1 (-1)^{n+1} (\ln x)^{n+1} dx = \left[(-1)^{n+1} x \ln x \right]_0^1 + \int_0^1 (-1)^n (n+1) (\ln x)^n dx = (n+1) \int_0^1 |\ln x|^n dx$$

so, by induction, it follows that $\int_0^1 |\ln x| dx = n!$ for all $n \in \mathbf{Z}^+$ and hence $f \in L_n(0, 1)$. Given $1 < p < \infty$ we can choose $n \in \mathbf{Z}^+$ with $p \leq n$ and then $f \in L_n(0, 1) \subseteq L_p(0, 1)$, hence $f \in \bigcap_{1 < p < \infty} L_p(0, 1)$, as claimed.

By Theorem 3.23 we know that $L_p(0, 1) \subseteq L_1(0, 1)$ for all $1 < p < \infty$, and so $\bigcup_{1 < p < \infty} L_p(0, 1) \subseteq L_1(0, 1)$.

To see that $L_1(0, 1) \neq \bigcup_{1 < p < \infty} L_p(0, 1)$, consider the map $f : (0, 1) \rightarrow \mathbf{R}$ given by $f(x) = \frac{1}{x(\ln x)^2}$ for $0 < x < \frac{1}{e}$ and $f(x) = 0$ for $\frac{1}{e} \leq x < 1$. Note that $f \in L_1(0, 1)$ because letting $u = \ln x$ gives

$$\int_0^1 |f(x)| dx = \int_0^{1/e} \frac{dx}{x(\ln x)^2} = \int_{u=-\infty}^{-1} \frac{du}{u} = \left[-\frac{1}{u^2} \right]_{-\infty}^{-1} = 1.$$

We claim that $f \notin \bigcup_{1 < p < \infty} L_p(0, 1)$. Let $1 < p < \infty$. Since $p - 1 > 0$ we have $\lim_{x \rightarrow 0^+} x^{p-1} (\ln x)^{2p} = 0$ (if you do not know this fact then you should prove it using l'Hôpital's Rule) so we can choose $\delta > 0$ with $\delta \leq \frac{1}{e}$ so that $x^{p-1} (\ln x)^{2p} \leq 1$ for all $x \in (0, \delta)$. Then we have $\frac{1}{x^p (\ln x)^{2p}} \geq \frac{1}{x}$ for all $x \in (0, \delta)$ and so

$$\int_0^1 |f(x)|^p dx = \int_0^{1/e} \frac{dx}{x^p (\ln x)^{2p}} \geq \int_0^\delta \frac{dx}{x^p (\ln x)^{2p}} \geq \int_0^\delta \frac{dx}{x} = \infty.$$

This shows that $f \notin L_p(0, 1)$ for all $1 < p < \infty$ and so $f \notin \bigcup_{1 < p < \infty} L_p(0, 1)$, as claimed.

(b) Let $A \subseteq \mathbf{R}$ be measurable with $\lambda(A) < \infty$ and let $f \in L_\infty(A)$. Show that $\lim_{p \rightarrow \infty} \|f\|_p = \|f\|_\infty$.

Solution: We know, from the proof of Theorem 3.23, that $f \in L_p(A)$ with $\|f\|_p \leq \lambda(A)^{1/p} \|f\|_\infty$. It follows that

$$\limsup_{p \rightarrow \infty} \|f\|_p \leq \lim_{p \rightarrow \infty} \lambda(A)^{1/p} \|f\|_\infty = \|f\|_\infty.$$

Let $\epsilon > 0$. Let $B = \{x \in A \mid |f(x)| > \|f\|_\infty - \epsilon\}$. Note that $\lambda(B) > 0$ by the definition of $\|f\|_\infty$. We have

$$\|f\|_p^p = \int_A |f|^p \geq \int_B |f|^p \geq \int_B (\|f\|_\infty - \epsilon)^p = (\|f\|_\infty - \epsilon)^p \lambda(B)$$

and so $\|f\|_p \geq (\|f\|_\infty - \epsilon) \lambda(B)^{1/p}$. Thus

$$\liminf_{p \rightarrow \infty} \|f\|_p \geq \lim_{p \rightarrow \infty} (\|f\|_\infty - \epsilon) \lambda(B)^{1/p} = \|f\|_\infty - \epsilon.$$

Since $\epsilon > 0$ was arbitrary, $\liminf_{p \rightarrow \infty} \|f\|_p \geq \|f\|_\infty$. Since $\limsup_{p \rightarrow \infty} \|f\|_p \leq \|f\|_\infty$ and $\liminf_{p \rightarrow \infty} \|f\|_p \geq \|f\|_\infty$, we have $\lim_{p \rightarrow \infty} \|f\|_p = \|f\|_\infty$, as required.