
PMATH 450/650 Solutions to the Exercises for Chapter 3

1: (a) Let f : [a, b]→ R be continuous. Show that ||f ||∞ = max
a≤x≤b

|f(x)|.

Solution: Let m = max
a≤x≤b

|f(x)|. Then |f |−1(m,∞] = ∅ so λ
(
|f |−1(m,∞]

)
= 0 and hence ||f ||∞ ≤ m. Since

|f | is continuous in [a, b] we can choose c ∈ [a, b] such that |f(c)| = m. Let y < m. Since |f | is continuous
at c with |f(c)| = m we can choose δ with 0 < δ < b − a so that, for all x ∈ [a, b], if |x − c| < δ then∣∣|f(x)| −m

∣∣ < (m − y). For x ∈ [a, b] with |x − c| < δ we have −m + y < |f(x)| −m and so |f(x)| > y. It

follows that
(
c− δ , c+ δ

)
⊆ |f |−1(y,∞] and hence λ

(
|f |−1(y,∞]

)
≥ λ

((
c− δ , c+ δ

)
∩ [a, b]

)
≥ δ > 0. Since

λ
(
|f |−1(y,∞]

)
> 0 for all y < m it follows, from the definition of ||f ||∞, that ||f ||∞ ≥ m.

(b) Let A ⊆ R be measurable. Suppose that fn → f in L∞(A). Show that there exists B ⊆ A with λ(B) = 0
such that fn → f uniformly in A \B.

Solution: For n ∈ Z+, let Bn =
{
x ∈ A

∣∣ ∣∣fn(x) − f(x)
∣∣ > ||fn − f ||∞}. From Assignment 2 we know that

λ(Bn) = 0 for all n ∈ Z+. Let B =
∞⋃
n=1

Bn. Then λ(B) ≤
∞∑
n=1

λ(Bn) = 0. Since fn → f in L∞(A) we

have ||fn − f ||∞ → 0 as n → ∞, so given ε > 0 we can choose m ∈ Z+ such that for all n ≥ m we have
||fn − f ||∞ < ε. Then for all n ≥ m and for all x ∈ A \ B we have

∣∣fn(x) − f(x)
∣∣ ≤ ||fn − f ||∞ < ε. Thus

fn → f uniformly in A \B.

2: (a) Show that if 1 ≤ p < q ≤ ∞ then `p ⊂6= `q.

Solution: Let 1 ≤ p < q ≤ ∞. Let x ∈ `p. Since
∞∑
n=1
|xn|p < ∞ it follows that |xn|p → 0 as n → ∞ and

hence |xn| → 0 as n→∞. Since |xn| → 0 as n→∞, we can choose m ∈ Z+ so that for all n ≥ m we have
|xn| ≤ 1. Since |xn| ≤ 1 for all n ≥ m it follows that the sequence

{
|xn|

}
is bounded so we have ||x||∞ <∞

and hence x ∈ `∞. This shows that `p ⊆ `q in the case that q =∞. Now suppose that q <∞. For all n ≥ m,
since |xn| ≤ 1 and p < q we have |xn|q ≤ |xn|p. Since |xn|q ≤ |xn|p for all n ≥ m and

∑
|xn|p converges, it

follows that
∑
|xn|q converges (by the Comparison Test). Thus x ∈ `q and so `p ⊆ `q, as required.

Note that `p 6= `∞ because, for example, for the constant sequence x, given by xn = 1 for all n ∈ Z+,
we have x ∈ `∞ but x /∈ `p. Also note that when p < q < ∞ we have `p 6= `q because, for example, for the
sequence x given by xn = 1

n1/p we have x ∈ `q but x /∈ `p.

(b) Show that `p is separable for 1 ≤ p <∞ but that `∞ is not.

Solution: Suppose that 1 ≤ p < ∞. We claim that `p is separable, indeed we claim that Q∞ is dense
in `p where Q∞ denotes the set of sequences of rational numbers whose terms are eventually zero. Let

x = (x1, x2, · · ·) ∈ `p. Let ε > 0. Since
∞∑
k=1

|xk|p <∞ we can choose m ∈ Z+ so that
∞∑

k=m+1

|xk|p < εp

2 . For

each index k with 1 ≤ k ≤ m, choose rk ∈ Q such that |rk − xk|p < εp

2m and let rk = 0 for k > m. Then we

have ||x − r||pp =
∞∑
k=1

|xk − rk|p =
m∑
k=1

|xk − rk|p +
∞∑

k=m+1

|xk|p < m εp

2m + εp

2 = εp and so ||x − r||p < ε. This

shows that Q∞ is dense in `p, as claimed. Finally, note that Q∞ is countable because Q∞ =
∞⋃
n=1

Qn.

We claim that `∞ is not separable. Let S ⊆ `∞ be any dense subset. Let 2ω denote the set of binary
sequences. Note that 2ω ⊆ `∞. For each α ∈ 2ω, choose sα ∈ S with ||sα − α||∞ < 1

2 . By the Triangle
Inequality, when α 6= β we have 1 = ||α− β||∞ ≤ ||α− sα||∞ + ||sα − sβ ||∞ + ||sβ − β||∞ < ||sα − sβ ||∞ + 1
so that ||sα − sβ ||∞ > 0 and hence sα 6= sβ . It follows that S is uncountable, indeed the map F : 2ω → S
given by F (α) = sα is injective, so we have |S| ≥

∣∣2ω∣∣ = 2ℵ0 .



3: (a) Show that L∞(0, 1) 6=
⋂

1<p<∞
Lp(0, 1) and that L1(0, 1) 6=

⋃
1<p<∞

Lp(0, 1).

Solution: By Theorem 3.23, we know that L∞(0, 1) ⊆ Lp(0, 1) for all 1 < p <∞ so L∞(0, 1) ⊆
⋂

1<p<∞
Lp(0, 1).

To see that L∞(0, 1) 6=
⋂

1<p<∞
Lp(0, 1) consider the map f : (0, 1) → R given by f(x) = lnx. Note that

f /∈ L∞(0, 1) because for a > 0 we have λ
(
|f |−1(a,∞]

)
=λ(0, e−a)=e−a>0. We claim that f ∈

⋂
1<p<∞

Lp(0, 1).

We have

∫ 1

0

| lnx| dx =

∫ 1

0

− lnx dx =
[
x− x lnx

]1
0

= 1, and for n ∈ Z+, integration by Parts gives∫ 1

0

| lnx|n+1dx =

∫ 1

0

(−1)n+1(lnx)n+1dx =
[
(−1)n+1x lnx

]1
0
+

∫ 1

0

(−1)n(n+1)(lnx)ndx = (n+1)

∫ 1

0

| lnx|ndx

so, by induction, it follows that

∫ 1

0

| lnx| dx = n! for all n ∈ Z+ and hence f ∈ Ln(0, 1). Given 1 < p < ∞

we can choose n ∈ Z+ with p ≤ n and then f ∈ Ln(0, 1) ⊆ Lp(0, 1), hence f ∈
⋂

1<p<∞
Lp(0, 1), as claimed.

By Theorem 3.23 we know tthat Lp(0, 1) ⊆ L1(0, 1) for all 1 < p <∞, and so
⋃

1<p<∞
Lp(0, 1) ⊆ L1(0, 1).

To see that L1(0, 1) 6=
⋃

1<p<∞
Lp(0, 1), consider the map f : (0, 1)→ R given by f(x) = 1

x(ln x)2 for 0 < x < 1
e

and f(x) = 0 for 1
e ≤ x < 1. Note that f ∈ L1(0, 1) because letting u = lnx gives∫ 1

0

|f(x)| dx =

∫ 1/e

0

dx

x(lnx)2
dx =

∫ −1
u=−∞

du

u
=
[
− 1

u2

]−1
−∞

= 1.

We claim that f /∈
⋃

1<p<∞
Lp(0, 1). Let 1 < p < ∞. Since p − 1 > 0 we have lim

x→0+
xp−1(lnx)2p = 0 (if you

do not know this fact then you should prove it using l’Hôpital’s Rule) so we can choose δ > 0 with δ ≤ 1
e so

that xp−1(lnx)2p ≤ 1 for all x ∈ (0, δ). Then we have 1
xp(ln x)2p ≥

1
x for all x ∈ (0, δ) and so∫ 1

0

|f(x)|pdx =

∫ 1/e

0

dx

xp(lnx)2p
≥
∫ δ

0

dx

xp(lnx)2p
≥
∫ δ

0

dx

x
=∞.

This shows that f /∈ Lp(0, 1) for all 1 < p <∞ and so f /∈
⋃

1<p<∞
Lp(0, 1), as claimed.

(b) Let A ⊆ R be measurable with λ(A) <∞ and let f ∈ L∞(A). Show that lim
p→∞

||f ||p = ||f ||∞.

Solution: We know, from the proof of Theorem 3.23, that f ∈ Lp(A) with ||f ||p ≤ λ(A)1/p||f ||∞. It follows
that

lim sup
p→∞

||f ||p ≤ lim
p→∞

λ(A)1/p||f ||∞ = ||f ||∞.

Let ε > 0. Let B =
{
x ∈ A

∣∣ |f(x)| > ||f ||∞ − ε
}

. Note that λ(B) > 0 by the definition of ||f ||∞. We have

||f ||pp =

∫
A

|f |p ≥
∫
B

|f |p ≥
∫
B

(
||f ||∞ − ε

)p
=
(
||f ||∞ − ε

)p
λ(B)

and so ||f ||p ≥
(
||f ||∞ − ε

)
λ(B)1/p. Thus

lim inf
p→∞

||f ||p ≥ lim
p→∞

(
||f ||∞ − ε

)
λ(B)1/p = ||f ||∞ − ε.

Since ε > 0 was arbitrary, lim inf
p→∞

||f ||p ≥ ||f ||∞. Since lim sup
p→∞

||f ||p ≤ ||f ||∞ and lim inf
p→∞

||f ||p ≥ ||f ||∞, we

have lim
p→∞

||f ||p = ||f ||∞, as required.


