

## PMATH 450/650 Exercises for Chapter 2

**1:** Let  $f_n : A \subseteq \mathbf{R} \rightarrow [-\infty, \infty]$  be measurable functions for  $n \in \mathbf{Z}^+$ , and let  $a \in \mathbf{R}$ .

(a) Show that  $\left\{x \in A \mid \liminf_{n \rightarrow \infty} f_n(x) > a\right\} = \bigcup_{m=1}^{\infty} \bigcup_{\ell=1}^{\infty} \bigcap_{n=\ell}^{\infty} \{x \in A \mid f_n(x) \geq a + \frac{1}{m}\}$ .

(b) Show that the set  $\left\{x \in A \mid \{f_n\} \text{ converges}\right\}$  is measurable.

**2:** In this problem, you are asked to prove parts of several of the theorems from Chapter 2 in the Lecture Notes.

Your proofs should not make use of any theorems from Chapter 2 (you may use theorems from Chapter 1). Let  $A = B \cup C$  where  $B, C \subseteq \mathbf{R}$  are disjoint and measurable, let  $f : A \subseteq \mathbf{R} \rightarrow [-\infty, \infty]$  be a function, and let  $g$  and  $h$  be the restrictions of  $f$  to  $B$  and to  $C$  respectively.

(a) Show that  $f$  is measurable if and only if  $g$  and  $h$  are both measurable.

(b) Suppose that  $f$  is a nonnegative simple function. Show that  $\int_A f = \int_B g + \int_C h$ .

(c) Suppose that  $f$  is a nonnegative measurable function. Show that  $\int_A f = \int_B g + \int_C h$ .

(d) Suppose that  $f$  is an integrable function. Show that  $g$  and  $h$  are integrable and  $\int_A f = \int_B g + \int_C h$ .

**3:** Let  $f : A \subseteq \mathbf{R} \rightarrow [0, \infty]$  be a nonnegative measurable function.

(a) Show that if  $0 < a$  then

$$\lambda\left(f^{-1}((a, \infty])\right) \leq \frac{1}{a} \int_A f.$$

(b) Show that if  $\int_A f = 0$  then  $f = 0$  a.e. in  $A$ .

(c) Show that if  $0 < a < \lambda(A) < \infty$  and  $f(x) > 0$  for all  $x \in A$  then

$$\inf \left\{ \int_B f \mid B \subseteq A \text{ is measurable with } \lambda(B) \geq a \right\} > 0.$$

**4:** (a) Let  $f_n : A \subseteq \mathbf{R} \rightarrow [-\infty, \infty]$  be measurable and let  $g_n : A \subseteq \mathbf{R} \rightarrow [0, \infty]$  be nonnegative and measurable with  $|f_n| \leq g_n$  for all  $n \in \mathbf{Z}^+$ . Suppose that  $\lim_{n \rightarrow \infty} f_n$  exists,  $\lim_{n \rightarrow \infty} g_n$  exists, and  $\lim_{n \rightarrow \infty} \int_A g_n = \int_A \lim_{n \rightarrow \infty} g_n < \infty$ .

Show that  $\int_A \lim_{n \rightarrow \infty} f_n = \lim_{n \rightarrow \infty} \int_A f_n$ .

(b) Let  $f_n : A \subseteq \mathbf{R} \rightarrow [-\infty, \infty]$  be integrable, suppose  $\lim_{n \rightarrow \infty} f_n$  exists and is integrable, and let  $f = \lim_{n \rightarrow \infty} f_n$ .

Show that  $\lim_{n \rightarrow \infty} \int_A |f_n - f| = 0$  if and only if  $\lim_{n \rightarrow \infty} \int_A |f_n| = \int_A |f|$ .

**5:** Let  $A \subseteq \mathbf{R}$  be measurable with  $\lambda(A) < \infty$  and let  $f : A \rightarrow \mathbf{R}$  be bounded. Define the upper and lower Lebesgue integrals of  $f$  on  $A$  to be

$$U(f) = \inf \left\{ \int_A s \mid s \text{ is a simple function on } A \text{ with } s \geq f \right\} \text{ and}$$

$$L(f) = \sup \left\{ \int_A s \mid s \text{ is a simple function on } A \text{ with } s \leq f \right\}.$$

(a) Show that  $f$  is measurable if and only if  $U(f) = L(f)$  and, in this case,  $\int_A f = U(f) = L(f)$ .

(b) When  $A = [a, b]$ , show that if  $f$  is Riemann integrable then  $f$  is Lebesgue integrable and the two kinds of integral agree.