

1: (a) Show that for all sets $A \subseteq \mathbf{R}$ we have $c^*(\bar{A}) = c^*(A)$.

Solution: Since $A \subseteq \bar{A}$ it is clear that $c^*(A) \leq c^*(\bar{A})$. Let $\epsilon > 0$. Choose bounded open intervals I_1, I_2, \dots, I_n so that $A \subseteq \bigcup_{k=1}^n I_k$ and $\sum_{k=1}^n |I_k| \leq c^*(A) + \epsilon$. For each index k , say $I_k = (a_k, b_k)$ and let $J_k = (a_k - \frac{\epsilon}{2n}, b_k + \frac{\epsilon}{2n})$ so that $\bar{I}_k \subseteq J_k$ and $|J_k| = |I_k| + \frac{\epsilon}{n}$. Then $\bar{A} \subseteq \bigcup_{k=1}^n J_k$ so we have

$$c^*(\bar{A}) \leq \sum_{k=1}^n |J_k| = \sum_{k=1}^n (|I_k| + \frac{\epsilon}{n}) = \sum_{k=1}^n |I_k| + \epsilon \leq c^*(A) + 2\epsilon.$$

Since ϵ was arbitrarily small, it follows that $c^*(\bar{A}) \leq c^*(A)$, as required.

(b) Show that for every compact set $A \subseteq \mathbf{R}$ we have $c^*(A) = \lambda^*(A)$.

Solution: Let $A \subseteq \mathbf{R}$ be bounded. Let $\epsilon > 0$. Choose bounded open intervals I_1, I_2, \dots, I_n so that $A \subseteq \bigcup_{k=1}^n I_k$ and $\sum_{k=1}^n |I_k| \leq c^*(A) + \epsilon$. Let $I_k = \emptyset$ for $k > n$. Then $A \subseteq \sum_{k=1}^{\infty} I_k$ so $\lambda^*(A) \leq \sum_{k=1}^{\infty} |I_k| = \sum_{k=1}^n |I_k| \leq c^*(A) + \epsilon$. Since $\epsilon > 0$ was arbitrary, it follows that $\lambda^*(A) \leq c^*(A)$.

Now let $A \subseteq \mathbf{R}$ be compact. Let $\epsilon > 0$. Choose bounded open intervals I_1, I_2, I_3, \dots so that $A \subseteq \bigcup_{k=1}^{\infty} I_k$ and $\lambda^*(A) \leq \sum_{k=1}^{\infty} |I_k| + \epsilon$. Since A is compact, we can choose finitely many indices $k_1 < k_2 < \dots < k_n$ such that $A \subseteq \bigcup_{i=1}^n I_{k_i}$. It follows that $c^*(A) \leq \sum_{i=1}^n |I_{k_i}| \leq \sum_{k=1}^{\infty} |I_k| \leq \lambda^*(A) + \epsilon$. Since $\epsilon > 0$ was arbitrary, it follows that $c^*(A) \leq \lambda^*(A)$.

2: (a) Let $A \subseteq \mathbf{R}$ with $\lambda^*(A) > 0$. Show that there is a bounded open interval I such that $\lambda^*(A \cap I) > \frac{1}{2}|I|$.

Solution: Suppose, for a contradiction, that for every bounded open interval I we have $\lambda^*(A \cap I) \leq \frac{1}{2}|I|$. Let $A_k = A \cap [k, k+1]$ for each $k \in \mathbf{Z}$. Note that $\lambda^*(A_k) > 0$ for some $k \in \mathbf{Z}$ because if we had $\lambda^*(A_k) = 0$ for all $k \in \mathbf{Z}$ then we would have $\lambda^*(A) = \lambda^*(\bigcup_{k \in \mathbf{Z}} A_k) \leq \sum_{k \in \mathbf{Z}} \lambda^*(A_k) = 0$. Choose $k \in \mathbf{Z}$ so that $\lambda^*(A_k) > 0$ and

let $B = A_k$. Choose bounded open intervals I_1, I_2, I_3, \dots so that $B \subseteq \bigcup_{k=1}^{\infty} I_k$ and $\sum_{k=1}^{\infty} |I_k| \leq \frac{3}{2}\lambda^*(B)$. Then

$$\lambda^*(B) = \lambda^*\left(\bigcup_{k=1}^{\infty} (B \cap I_k)\right) \leq \sum_{k=1}^{\infty} \lambda^*(B \cap I_k) \leq \sum_{k=1}^{\infty} \lambda^*(A \cap I_k) \leq \sum_{k=1}^{\infty} \frac{1}{2}|I_k| \leq \frac{1}{2} \cdot \frac{3}{2}\lambda^*(B) = \frac{3}{4}\lambda^*(B),$$

which gives the desired contradiction.

(b) Let $A \subseteq \mathbf{R}$ be bounded. Show that there is a set $B \subseteq A$ with $\lambda^*(B) = \frac{1}{2}\lambda^*(A)$.

Solution: Choose $a, b \in \mathbf{R}$ so that $A \subseteq [a, b]$. Define $f : [a, b] \rightarrow \mathbf{R}$ by $f(x) = \lambda^*(A \cap [a, x])$. Note that $f(a) = \lambda^*(A \cap \{a\}) \leq \lambda^*(\{a\}) = 0$ and $f(b) = \lambda^*(A \cap [a, b]) = \lambda^*(A)$. For $a \leq x \leq y \leq b$ we have $f(y) = \lambda^*(A \cap [a, y]) \leq \lambda^*(A \cap [a, x]) = f(x)$ and we have

$$\begin{aligned} f(y) &= \lambda^*(A \cap [a, y]) = \lambda^*\left((A \cap [a, x]) \cup (A \cap (x, y])\right) \leq \lambda^*(A \cap [a, x]) + \lambda^*(A \cap (x, y]) \\ &\leq \lambda^*(A \cap [a, x]) + \lambda^*((x, y]) = f(x) + (y - x). \end{aligned}$$

Thus $0 \leq f(y) - f(x) \leq y - x$ for all x, y with $a \leq x \leq y \leq b$, and so f is continuous on $[a, b]$. Since $f : [a, b] \rightarrow \mathbf{R}$ is continuous with $f(a) = 0$ and $f(b) = \lambda^*(A)$, we can choose $x \in (a, b)$ such that $f(x) = \frac{1}{2}\lambda^*(A)$. Thus we can take $B = A \cap [a, x]$ to get $\lambda^*(B) = \lambda^*(A \cap [a, x]) = f(x) = \frac{1}{2}\lambda^*(A)$.

3: (a) Let $A \subseteq \mathbf{R}$ be measurable with $\lambda(A) > 0$. Show that there exists a nonmeasurable set $B \subseteq A$.

Solution: As in Problem 2(a), choose $k \in \mathbf{Z}$ so that for $S = A \cap [k, k+1]$ we have $\lambda(S) > 0$. Define an equivalence relation on S by defining $x \sim y \iff y-x \in \mathbf{Q}$. Let C be the set of equivalence classes. For each class $c \in C$ choose an element $x_c \in c$. Note that $x_c \in c \subseteq S = A \cap [k, k+1]$. Let $B = \{x_c | c \in C\} \subseteq A \cap [k, k+1]$. We claim that B is not measurable.

Let $\mathbf{Q} \cap [-1, 1] = \{a_1, a_2, a_3, \dots\}$ with the elements a_k all distinct. For each $k \in \mathbf{Z}^+$, let $B_k = a_k + B$. Note that since $a_k \in [-1, 1]$ and $B \subseteq [k, k+1]$, we have $B_k = a_k + B \subseteq [k-1, k+2]$. We claim that the sets B_k are disjoint. Let $k, l \in \mathbf{Z}^+$ and suppose that $B_k \cap B_l \neq \emptyset$. Choose $y \in B_k \cap B_l$, say $y = a_k + x_c = a_l + x_d$ where $c, d \in C$. Then we have $x_c - x_d = a_l - a_k \in \mathbf{Q}$ hence $x_c \sim x_d$ hence $c = d$ hence $a_k = a_l$ and hence $k = l$. This proves that the sets B_k are disjoint, as claimed. We also claim that $S = A \cap [k, k+1] \subseteq \bigcup_{k=1}^{\infty} B_k \subseteq [k-1, k+2]$.

It is clear that $\bigcup_{k=1}^{\infty} B_k \subseteq [k-1, k+2]$ because $B_k \subseteq [k-1, k+2]$ for all $k \in \mathbf{Z}^+$. Let $y \in S = A \cap [k, k+1]$. Then $y \in c$ for some equivalence class c , and then we have $y \sim x_c$ hence $y - x_c \in \mathbf{Q}$. Since $y \in [k, k+1]$ and $x_c \in [k, k+1]$ we have $y - x_c \in [-1, 1]$. Since $y - x_c \in \mathbf{Q} \cap [-1, 1]$ we have $y - x_c = a_k$ for some $k \in \mathbf{Z}^+$ and then $y = a_k + x_c \in a_k + B = B_k \subseteq \bigcup_{k=1}^{\infty} B_k$. This proves that $S \subseteq \bigcup_{k=1}^{\infty} B_k$, as claimed.

Suppose, for a contradiction, that B is measurable. Then the translated sets $B_k = a_k + B$ are measurable with $\lambda(B_k) = \lambda(B)$ for all $k \in \mathbf{Z}$. Since the sets B_k are disjoint, it follows that

$$\lambda\left(\bigcup_{k=1}^{\infty} B_k\right) = \sum_{k=1}^{\infty} \lambda(B_k) = \sum_{k=1}^{\infty} \lambda(B) = \begin{cases} 0, & \text{if } \lambda(B) = 0, \\ \infty, & \text{if } \lambda(B) > 0 \end{cases}$$

But since $S \subseteq \bigcup_{k=1}^{\infty} B_k \subseteq [k-1, k+2]$ we have $0 < \lambda(S) \leq \lambda\left(\bigcup_{k=1}^{\infty} B_k\right) \leq 3$ giving the desired contradiction.

(b) Show that there exist disjoint sets $A, B \subseteq \mathbf{R}$ such that $\lambda^*(A \cup B) \neq \lambda^*(A) + \lambda^*(B)$.

Solution: Choose a nonmeasurable set $C \subseteq \mathbf{R}$. Choose a set $X \subseteq \mathbf{R}$ such that $\lambda^*(X) \neq \lambda^*(X \cap C) + \lambda^*(X \setminus C)$. Let $A = X \cap C$ and $B = X \setminus C$. Then A and B are disjoint with $A \cup B = X$ and so $\lambda^*(A \cup B) = \lambda^*(X) \neq \lambda^*(A) + \lambda^*(B)$.

4: (a) Show that $\mathcal{F} \subseteq \mathcal{G}_\delta$ (or, equivalently, that $\mathcal{G} \subseteq \mathcal{F}_\sigma$).

Solution: Let $\emptyset \neq A \in \mathcal{F}$. Since A is closed, for each $x \in \mathbf{R}$ the function $g_x : A \rightarrow [0, \infty)$ given by $g_x = |x - a|$ attains its minimum value. Define $f : \mathbf{R} \rightarrow [0, \infty)$ by $f(x) = \text{dist}(x, A) = \min \{|x - a| \mid a \in A\}$ and note that $f(x) = 0 \iff x \in A$. We claim that f is continuous. Choose $a \in A$ so that $|x - a| = \text{dist}(x, A) = f(x)$. Then

$$f(y) = \text{dist}(y, A) \leq |y - a| = |y - x + x - a| \leq |y - x| + |x - a| \leq |y - x| + f(x)$$

so we have $f(y) - f(x) \leq |y - x|$. By symmetry, we also have $f(x) - f(y) \leq |x - y|$ so that $|f(y) - f(x)| \leq |y - x|$. Since $|f(y) - f(x)| \leq |y - x|$ for all $x, y \in \mathbf{R}$, it follows that f is continuous, as claimed. Since f is continuous, the set $\{x \in \mathbf{R} \mid f(x) < \frac{1}{n}\} = f^{-1}(\frac{1}{n}, \infty)$ is open for each $n \in \mathbf{Z}^+$. and so

$$A = \{x \in \mathbf{R} \mid f(x) = 0\} = \bigcap_{n=1}^{\infty} \{x \in \mathbf{R} \mid f(x) < \frac{1}{n}\} \in \mathcal{G}_\delta.$$

(b) Show that $\mathcal{F}_\sigma \neq \mathcal{G}_\delta$.

Solution: Recall that $\mathbf{Q} \in \mathcal{F}_\sigma$ (indeed if $\mathbf{Q} = \{a_1, a_2, \dots\}$ then $\mathbf{Q} = \bigcup_{k=1}^{\infty} \{a_k\}$) and it follows (by taking the complement) that $\mathbf{Q}^c \in \mathcal{G}_\delta$. We claim that $\mathbf{Q}^c \notin \mathcal{F}_\sigma$ (and hence, by taking complements, $\mathbf{Q} \notin \mathcal{G}_\delta$). Suppose, for a contradiction, that $\mathbf{Q}^c \in \mathcal{F}_\sigma$. Let $\mathbf{Q} = \bigcup_{k=1}^{\infty} A_k$ where each A_k is a closed set (which is contained in \mathbf{Q})

and let $\mathbf{Q}^c = \bigcup_{k=1}^{\infty} B_k$ where each B_k is a closed set (which is contained in \mathbf{Q}^c). Then $\mathbf{R} = \mathbf{Q} \cup \mathbf{Q}^c = \bigcup_{n=1}^{\infty} C_n$ where $C_{2k} = A_k$ and $C_{2k-1} = B_k$. For each $n \in \mathbf{Z}^+$, when n is even C_n is contained in \mathbf{Q} and when n is odd C_n is contained in \mathbf{Q}^c and, in either case, it follows that C has an empty interior. Thus \mathbf{R} is a countable union of closed sets with empty interiors, and so \mathbf{R} is first category. We know this is impossible, by the Baire Category Theorem, and so we have obtained the desired contradiction.

(c) Show that $\mathcal{G}_\delta \neq \mathcal{G}_{\delta\sigma}$ (or, equivalently, that $\mathcal{F}_\sigma \neq \mathcal{F}_{\delta\sigma}$).

Solution: Since $\mathcal{F} \subseteq \mathcal{G}_\delta$, we have $\mathcal{F}_\sigma \subseteq \mathcal{G}_{\delta\sigma}$. Since $\mathbf{Q} \in \mathcal{F}_\sigma$ and $\mathcal{F}_\sigma \subseteq \mathcal{G}_{\delta\sigma}$, we have $\mathbf{Q} \in \mathcal{G}_{\delta\sigma}$. Since $\mathbf{Q}^c \notin \mathcal{F}_\sigma$ we have $\mathbf{Q} \notin \mathcal{G}_\delta$. Since $\mathbf{Q} \in \mathcal{G}_{\delta\sigma}$ but $\mathbf{Q} \notin \mathcal{G}_\delta$ it follows that $\mathcal{G}_\delta \neq \mathcal{G}_{\delta\sigma}$.