
PMATH 450/650 Solutions to the Exercises for Chapter 1

1: (a) Show that for all sets A ⊆ R we have c∗
(
A
)

= c∗(A).

Solution: Since A ⊆ A it is clear that c∗(A) ≤ c∗(A). Let ε > 0. Choose bounded open intervals I1, I2, · · · , In
so that A ⊆

n⋃
k=1

Ik and
n∑
k=1

|Ik| ≤ c∗(A)+ε. For each index k, say Ik = (ak, bk) and let Jk =
(
ak− ε

2n , bk+ ε
2n

)
so that Ik ⊆ Jk and |Jk| = |Ik|+ ε

n . Then A ⊆
n⋃
k=1

Jk so we have

c∗
(
A
)
≤

n∑
k=1

|Jk| =
n∑
k=1

(
|Ik|+ ε

n

)
=

n∑
k=1

|Ik|+ ε ≤ c∗(A) + 2ε.

Since ε was arbitrarily small, it follows that c∗
(
A
)
≤ c∗(A), as required.

(b) Show that for every compact set A ⊆ R we have c∗(A) = λ∗(A).

Solution: Let A ⊆ R be bounded. Let ε > 0. Choose bounded open intervals I1, I2, · · · , In so that A ⊆
n⋃
k=1

Ak

and
n∑
k=1

|Ik| ≤ c∗(A) + ε. Let Ik = ∅ for k > n. Then A ⊆
∞∑
k=1

Ik so λ∗(A) ≤
∞∑
k=1

|Ik| =
n∑
k=1

|Ik| ≤ c∗(A) + ε.

Since ε > 0 was arbitrary, it follows that λ∗(A) ≤ c∗(A).

Now let A ⊆ R be compact. Let ε > 0. Choose bounded open intervals I1, I2, I3, · · · so that A ⊆
∞⋃
k=1

Ik

and λ∗(A) ≤
∞∑
k=1

|Ik|+ ε. Since A is compact, we can choose finitely many indices k1 < k2 < · · · < kn such

that A ⊆
n⋃
i=1

Iki . It follows that c∗(A) ≤
n∑
i=1

|Iki | ≤
∞∑
k=1

|Ik| ≤ λ∗(A) + ε. Since ε > 0 was arbitrary, it follows

that c∗(A) ≤ λ∗(A).

2: (a) Let A ⊆ R with λ∗(A) > 0. Show that there is a bounded open interval I such that λ∗(A ∩ I) > 1
2 |I|.

Solution: Suppose, for a contradiction, that for every bounded open interval I we have λ∗(A∩I) ≤ 1
2 |I|. Let

Ak = A ∩ [k, k + 1] for each k ∈ Z. Note that λ∗(Ak) > 0 for some k ∈ Z because if we had λ∗(Ak) = 0 for
all k ∈ Z then we would have λ∗(A) = λ∗

( ⋃
k∈Z

Ak
)
≤
∑
k∈Z

λ∗(Ak) = 0. Choose k ∈ Z so that λ∗(Ak) > 0 and

let B = Ak. Choose bounded open intervals I1, I2, I3, · · · so that B ⊆
∞⋃
k=1

Ik and
∞∑
k=1

|Ik| ≤ 3
2λ
∗(B). Then

λ∗(B) = λ∗
( ∞⋃
k=1

(B ∩ Ik)
)
≤
∞∑
k=1

λ∗(B ∩ Ik) ≤
∞∑
k=1

λ∗(A ∩ Ik) ≤
∞∑
k=1

1
2 |Ik| ≤

1
2 ·

3
2λ
∗(B) = 3

4λ
∗(B),

which gives the desired contradiction.

(b) Let A ⊆ R be bounded. Show that there is a set B ⊆ A with λ∗(B) = 1
2λ
∗(A).

Solution: Choose a, b ∈ R so that A ⊆ [a, b]. Define f : [a, b] → R by f(x) = λ∗
(
A ∩ [a, x]

)
. Note that

f(a) = λ∗
(
A ∩ {a}

)
≤ λ∗({a}) = 0 and f(b) = λ∗

(
A ∩ [a, b]

)
= λ∗(A). For a ≤ x ≤ y ≤ b we have

f(y) = λ∗
(
A ∩ [a, y]

)
≤ λ∗

(
A ∩ [a, x]

)
= f(x) and we have

f(y) = λ∗
(
A ∩ [a, y]

)
= λ∗

((
A ∩ [a, x]

)
∪
(
A ∩ (x, y]

))
≤ λ∗

(
A ∩ [a, x]

)
+ λ∗

(
A ∩ (x, y]

)
≤ λ∗

(
A ∩ [a, x]

)
+ λ∗

(
(x, y]

)
= f(x) + (y − x).

Thus 0 ≤ f(y) − f(x) ≤ y − x for all x, y with a ≤ x ≤ y ≤ b, and so f is continuous on [a, b]. Since f :
[a, b]→ R is continuous with f(a) = 0 and f(b) = λ∗(A), we can choose x ∈ (a, b) such that f(x) = 1

2λ
∗(A).

Thus we can take B = A ∩ [a, x] to get λ∗(B) = λ∗
(
A ∩ [a, x]

)
= f(x) = 1

2λ
∗(A).



3: (a) Let A ⊆ R be measurable with λ(A) > 0. Show that there exists a nonmeasurable set B ⊆ A.

Solution: As in Problem 2(a), choose k ∈ Z so that for S = A ∩ [k, k + 1] we have λ(S) > 0. Define an
equivalence relation on S by defining x ∼ y ⇐⇒ y−x ∈ Q. Let C be the set of equivalence classes. For each
class c ∈ C choose an element xc ∈ c. Note that xc ∈ c ⊆ S = A∩[k, k+1]. LetB = {xc|c ∈ C} ⊆ A∩[k, k+1].
We claim that B is not measurable.

Let Q ∩ [−1, 1] = {a1, a2, a3, · · ·} with the elements ak all distinct. For each k ∈ Z+, let Bk = ak + B.
Note that since ak ∈ [−1, 1] and B ⊆ [k, k+1], we have Bk = ak+B ⊆ [k−1, k+2]. We claim that the sets Bk
are disjoint. Let k, l ∈ Z+ and suppose that Bk∩Bl 6= ∅. Choose y ∈ Bk∩Bl, say y = ak+xc = al+xd where
c, d ∈ C. Then we have xc−xd = al−ak ∈ Q hence xc ∼ xd hence c = d hence ak = al and hence k = l. This

proves that the sets Bk are disjoint, as claimed. We also claim that S = A∩[k, k+1] ⊆
∞⋃
k=1

Bk ⊆ [k−1, k+2].

It is clear that
∞⋃
k=1

Bk ⊆ [k − 1, k + 2] because Bk ⊆ [k − 1, k + 2] for all k ∈ Z+. Let y ∈ S = A ∩ [k, k + 1].

Then y ∈ c for some equivalence class c, and then we have y ∼ xc hence y− xc ∈ Q. Since y ∈ [k, k+ 1] and
xc ∈ [k, k+ 1] we have y− xc ∈ [−1, 1]. Since y− xc ∈ Q∩ [−1, 1] we have y− cc = ak for some k ∈ Z+ and

then y = ak + xc ∈ ak +B = Bk ⊆
∞⋃
k=1

Bk. This proves that S ⊆
∞⋃
k=1

Bk, as claimed.

Suppose, for a contradiction, that B is measurable. Then the translated sets Bk = ak+B are measurable
with λ(Bk) = λ(B) for all k ∈ Z. Since the sets Bk are disjoint, it follows that

λ
( ∞⋃
k=1

Bk
)

=
∞∑
k=1

λ(Bk) =
∞∑
k=1

λ(B) =

{
0 , if λ(B) = 0,

∞ , if λ(B) > 0

But since S ⊆
∞⋃
k=1

Bk ⊆ [k − 1, k + 2] we have 0 < λ(S) ≤ λ
( ∞⋃
k=1

Bk
)
≤ 3 giving the desired contradiction.

(b) Show that there exist disjoint sets A,B ⊆ R such that λ∗(A ∪B) 6= λ∗(A) + λ∗(B).

Solution: Choose a nonmeasurable set C ⊆ R. Choose a set X ⊆ R such that λ∗(X) 6= λ∗(X∩A)+λ∗(X\A).
Let A = X ∩C and B = X \C). Then A and B are disjoint with A ∪B = X and so λ∗(A ∪B) = λ∗(X) 6=
λ∗(A) + λ∗(B).



4: (a) Show that F ⊆ Gδ (or, equivalently, that G ⊆ Fσ).

Solution: Let ∅ 6= A ∈ F . Since A is closed, for each x ∈ R the function gx : A→ [0,∞) given by gx = |x−a|
attains its minimum value. Define f : R→ [0,∞) by f(x) = dist(x,A) = min

{
|x− a|

∣∣a ∈ A} and note that
f(x) = 0 ⇐⇒ x ∈ A. We claim that f is continuous. Choose a ∈ A so that |x − a| = dist(x,A) = f(x).
Then

f(y) = dist(y,A) ≤ |y − a| = |y − x+ x− a| ≤ |y − x|+ |x− a| ≤ |y − x|+ f(x)

so we have f(y)−f(x) ≤ |y−x|. By symmetry, we also have f(x)−f(y) ≤ |x−y| so that
∣∣f(y)−f(x)

∣∣ ≤ |y−x|.
Since

∣∣f(y)−f(x)
∣∣ ≤ |y−x| for all x, y ∈ R, it follows that f is continuous, as claimed. Since f is continuous,

the set
{
x ∈ R

∣∣f(x) < 1
n

}
= f−1

(
1
n ,∞

)
is open for each n ∈ Z+. and so

A =
{
x ∈ R

∣∣f(x) = 0
}

=
∞⋂
n=1

{
x ∈ R

∣∣fx < 1
n

}
∈ Gδ.

(b) Show that Fσ 6= Gδ.

Solution: Recall that Q ∈ Fσ
(
indeed if Q = {a1, a2, · · ·} then Q =

∞⋃
k=1

{ak}
)

and it follows (by taking the

complement) that Qc ∈ Gδ. We claim that Qc /∈ Fσ (and hence, by taking complements, Q /∈ Gδ). Suppose,

for a contradiction, that Qc ∈ Fσ. Let Q =
∞⋃
k=1

Ak where each Ak is a closed set (which is contained in Q)

and let Qc =
∞⋃
k=1

Bk where each Bk is a closed set (which is contained in Qc). Then R = Q ∪Qc =
∞⋃
n=1

Cn

where C2k = Ak and C2k−1 = Bk. For each n ∈ Z+, when n is even Cn is contained in Q and when n is odd
Cn is contained in Qc and, in either case, it follows that C has an empty interior. Thus R is a countable
union of closed sets with empty interiors, and so R is first category. We know this is impossible, by the
Baire Category Theorem, and so we have obtained the desired contradiction.

(c) Show that Gδ 6= Gδσ (or, equivalently, that Fσ 6= Fσδ).
Solution: Since F ⊆ Gδ, we have Fσ ⊆ Gδσ. Since Q ∈ Fσ and Fσ ⊆ Gδσ, we have Q ∈ Gδσ. Since Qc /∈ Fσ
we have Q /∈ Gδ. Since Q ∈ Gδσ but Q /∈ Gδ it follows that Gδ 6= Gδσ.


