

PMATH 450/650 Exercises for Chapter 1

1: (a) Show that for all sets $A \subseteq \mathbf{R}$ we have $c^*(\overline{A}) = c^*(A)$.
(b) Show that for every compact set $A \subseteq \mathbf{R}$ we have $c^*(A) = \lambda^*(A)$.

2: (a) Let $A \subseteq \mathbf{R}$ with $\lambda^*(A) > 0$. Show that there is a bounded open interval I such that $\lambda^*(A \cap I) > \frac{1}{2}|I|$.
(b) Let $A \subseteq \mathbf{R}$ be bounded. Show that there is a set $B \subseteq A$ with $\lambda^*(B) = \frac{1}{2}\lambda^*(A)$.

3: (a) Let $A \subseteq \mathbf{R}$ be measurable with $\lambda(A) > 0$. Show that there exists a nonmeasurable set $B \subseteq A$.
(b) Show that there exist disjoint sets $A, B \subseteq \mathbf{R}$ such that $\lambda^*(A \cup B) \neq \lambda^*(A) + \lambda^*(B)$.

4: (a) Show that $\mathcal{F} \subseteq \mathcal{G}_\delta$ (or, equivalently, that $\mathcal{G} \subseteq \mathcal{F}_\sigma$).
(b) Show that $\mathcal{F}_\sigma \neq \mathcal{G}_\delta$.
(c) Show that $\mathcal{G}_\delta \neq \mathcal{G}_{\delta\sigma}$ (or, equivalently, that $\mathcal{F}_\sigma \neq \mathcal{F}_{\sigma\delta}$).