

Chapter 6. Dedekind Domains

6.1 Definition: A commutative ring R is called **Noetherian** when it satisfies the ascending chain condition on ideals, that is when, for every chain of ideals $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$ in R , there exists an index $m \in \mathbf{Z}^+$ such that $A_k = A_m$ for all $k \geq m$.

6.2 Theorem: Let R be a commutative ring. Then R is Noetherian if and only if every ideal in R is finitely generated as an R -module.

Proof: Suppose that R is Noetherian and let A be any ideal in R . Suppose, for a contradiction, that A is not finitely generated as an R -module. Note that $A \neq \{0\}$ (since the ideal $\{0\}$ is generated by the set $\{0\}$). Choose $0 \neq a_1 \in A$. Since $a_1 \in A$ we have $(a_1) \subseteq A$, but since A is not finitely generated we have $A \neq (a_1)$, and so $(a_1) \subsetneq A$. Choose $a_2 \in A$ with $a_2 \notin (a_1)$. Since $a_2 \notin (a_1)$ we have $(a_1) \subsetneq (a_1, a_2)$, since $a_1, a_2 \in A$ we have $(a_1, a_2) \subseteq A$, and since A is not finitely generated we have $(a_1, a_2) \neq A$, and so $(a_1) \subsetneq (a_1, a_2) \subsetneq A$. Continuing this procedure, we obtain an infinite ascending chain of ideals $\{0\} \subsetneq (a_1) \subsetneq (a_1, a_2) \subsetneq (a_1, a_2, a_3) \subsetneq \dots$ which contradicts the fact that R is Noetherian.

Suppose, conversely, that every ideal in R is finitely generated as an R -module. Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$ be an ascending chain of ideals in R . Let $A = \bigcup_{k=1}^{\infty} A_k$. Then A is an ideal in R so it is finitely generated as an R -module. Choose elements a_1, a_2, \dots, a_n so that $A = (a_1, \dots, a_n)$. For each index $i \in \{1, 2, \dots, n\}$, since $a_i \in A = \bigcup_{k=1}^{\infty} A_k$ we can choose an index k_i such that $a_i \in A_{k_i}$. Let $m = \max\{k_1, k_2, \dots, k_n\}$. For each index i we have $a_i \in A_{k_i} \subseteq A_m$ and so $A = (a_1, \dots, a_n) \subseteq A_m$. For all $k \geq m$ we have $A_k \subseteq \bigcup_{j=1}^{\infty} A_j = A \subseteq A_m \subseteq A_k$ and hence $A_k = A_m$. Thus R is Noetherian, as required.

6.3 Theorem: Let R be a commutative Noetherian ring. For every nonzero ideal A in R there exist prime ideals P_1, P_2, \dots, P_ℓ in R such that $P_1 P_2 \cdots P_\ell \subseteq A$.

Proof: Let S be the set of all nonzero ideals A in R for which there do not exist prime ideals P_i with $P_1 P_2 \cdots P_\ell \subseteq A$. Suppose, for a contradiction, that $S \neq \emptyset$. Since R is Noetherian, it follows that every chain in S has a maximal (indeed a maximum) element. By Zorn's Lemma, it follows that S has a maximal element. Let A be a maximal elements in S . Note that A is not prime (because no prime ideal lies in S). Since A is not prime we can choose elements $a, b \in R$ such that $ab \in A$ but $a \notin A$ and $b \notin A$. Since $a \notin A$ we have $A \subseteq A + (a)$ and so (since A is maximal in S) $A + (a) \notin S$. Since $A + (a) \notin S$ we can choose prime ideals P_i such that $P_1 P_2 \cdots P_\ell \subseteq A + (a)$. Similarly $A + (b) \notin S$ so we can choose prime ideals Q_i such that $Q_1 Q_2 \cdots Q_m \subseteq A + (b)$. But then it follows that

$$P_1 P_2 \cdots P_\ell Q_1 Q_2 \cdots Q_m \subseteq (A + (a))(A + (b)) = AA + A(b) + A(a) + (ab) \subseteq A$$

which implies that $A \notin S$, giving the desired contradiction.

6.4 Definition: A **Dedekind domain** is a Noetherian, integrally closed, integral domain in which every nonzero prime ideal is maximal.

6.5 Definition: Let R be a Dedekind domain with quotient field K . For a subset $A \subset R$ we write

$$A^* = \{u \in K \mid uA \subseteq R\} = \{u \in K \mid ua \in R \text{ for all } a \in A\}.$$

Note that if A is an ideal in R then we have $A \subseteq R \subseteq A^*$ and $AA^* \subseteq R$.

6.6 Theorem: Let R be a Dedekind domain and let P be a nonzero prime ideal in R , and let A be any nonzero ideal in R . Then

- (1) $R \subsetneq P^*$,
- (2) $A \subseteq AP^*$, and
- (3) $PP^* = R$.

Proof: We know that $P \subsetneq R \subseteq P^*$. To prove that $R \neq P^*$ we shall construct an element $u = \frac{a}{b} \in K$ with $u \in P^* \setminus R$. Choose $0 \neq b \in P$. Choose nonzero prime ideals P_i such that $P_1 P_2 \cdots P_\ell \subseteq (b) = bR$ with the number ℓ as small as possible. Since P is prime and $P_1 P_2 \cdots P_\ell \subseteq (b) \subseteq P$, it follows that $P_i \subseteq P$ for some index i , say $P_1 \subseteq P$. Since every prime ideal in R is maximal, the ideal P_1 is maximal. Since P_1 is maximal and $P_1 \subseteq P \subsetneq R$, we have $P = P_1$. In the case that $\ell = 1$, we have $P = P_1 \subseteq (b) \subseteq P$ hence $P = (b)$. In this case, we take $a = 1$ and let $u = \frac{a}{b} = \frac{1}{b}$. Since $(b) = P \subsetneq R$ it follows that b is not a unit so $u = \frac{1}{b} \notin R$. Since $\frac{1}{b}P = \frac{1}{b}bR = R$, it follows that $u = \frac{1}{b} \in P^*$. Suppose now that $\ell > 1$. Since ℓ was chosen to be as small as possible, $P_2 P_3 \cdots P_\ell$ is not a subset of (b) . Choose $a \in P_2 P_3 \cdots P_\ell$ with $a \notin (b)$ and let $u = \frac{a}{b}$. Since $a \notin (b)$ we have $a \neq br$ for any $r \in R$ and so $u = \frac{a}{b} \notin R$. Since $a \in P_2 P_3 \cdots P_\ell$ it follows that $aP = aP_1 \in P_1 P_2 \cdots P_\ell \subseteq (b) = bR$ and so $uP = \frac{a}{b}P \in R$ hence $\frac{a}{b} \in P^*$. Thus $R \subseteq P^*$, as required.

Let us prove Part (2). Since $R \subseteq P^*$ we have $A = AR \subset AP^*$. Suppose, for a contradiction, that $A = AP^*$. Since R is Noetherian, A is finitely generated as an R -module, so we can choose $a_1, a_2, \dots, a_n \in A$ such that $A = (a_1, a_2, \dots, a_n) = \text{Span}_R\{a_1, a_2, \dots, a_n\}$.

6.7 Theorem: Let A be a free \mathbf{Z} -module of rank n . Let B be a submodule of A . Then B is free of rank r for some $r \leq n$. Indeed there exists a basis $\{u_1, u_2, \dots, u_n\}$ for A over \mathbf{Z} , an integer r with $0 \leq r \leq n$, and positive integers d_1, d_2, \dots, d_r with $d_1|d_2, d_2|d_3, \dots, d_{r-1}|d_r$, such that $\{d_1u_1, d_2u_2, \dots, d_ru_r\}$ is a basis for B over \mathbf{Z} .

Proof: I may include a proof later.