Chapter 6. Dedekind Domains

6.1 Definition: A commutative ring R is called Noetherian when it satisfies the ascend-
ing chain condition on ideals, that is when, for every chain of ideals Ay C As C A3 C ---
in R, there exists an index m € ZT such that A, = A,,, for all £k > m.

6.2 Theorem: Let R be a commutative ring. Then R is Noetherian if and only if every
ideal in R is finitely generated as an R-module.

Proof: Suppose that R is Noetherian and let A be any ideal in R. Suppose, for a con-
tradiction, that A is not finitely generated as an R-module. Note that A # {0} (since
the ideal {0} is generated by the set {0}). Choose 0 # a; € A. Since a; € A we have
(a1) C A, but since A is not finitely generated we have A # (a1), and so (a1) % A. Choose

ay € A with ag ¢ (a1). Since as ¢ (a1) we have (aq) % (a1, az), since aj,a2 € A we

have (a1,az) C A, and since A is not finitely generated we have (aq1,as) # A, and so
(ay) % (a1,a2) ; A. Continuing this procedure, we obtain an infinite ascending chain

of ideals {0} % (ay) % (a1,as2) % (a1,a9,as3) % .-+ which contradicts the fact that R is

Noetherian.

Suppose, conversely, that every ideal in R is finitely generated as an R-module. Let
Ay C Ay C A3 C --- be an ascending chain of ideals in R. Let A = Uzozl Ap. Then A
is an ideal in R so it is finitely generated as an R-module. Choose elements aq,as,-- -, a,
so that A = (a1, --,ay,). For each index i € {1,2,---,n}, since a; € A = Ur—; Ax
we can choose an index k; such that a; € Ay,. Let m = max{kq, ks, -, k,}. For each
index ¢ we have a; € Ag, C A,, and so A = (ay,---,a,) C A,,. For all k > m we have
A C U;‘;l A; =AC A, C A and hence Ay = A,,. Thus R is Noetherian, as required.

6.3 Theorem: Let R be a commutative Noetherian ring. For every nonzero ideal A in R
there exist prime ideals Py, P»,---, Py in R such that P\ P, --- Py C A.

Proof: Let S be the set of all nonzero ideals A in R for which there do not exist prime
ideals P; with P{P,---P;, C A. Suppose, for a contradiction, that S # (). Since R is
Noetherian, it follows that every chain in S has a maximal (indeed a maximum) element.
By Zorn’s Lemma, it follows that S has a maximal element. Let A be a maximal elements
in S. Note that A is not prime (because no prime ideal lies in S). Since A is not prime
we can choose elements a,b € R such that ab € A but a ¢ A and b ¢ A. Since a ¢ A we
have A C A+ (a) and so (since A is maximal in S) A+ (a) ¢ S. Since A+ (a) ¢ S we can
choose prime ideals P; such that PyPy--- Py C A+ (a). Similarly A + (b) ¢ R so we can
choose prime ideals @; such that Q1Q2 - @, € A+ (b). But then it follows that

PP PQ1Qs - Qun C (A+ () (B + (b)) = AA+ A(D) + A(a) + (ab) € A
which implies that A ¢ S, giving the desired contradiction.

6.4 Definition: A Dedekind domain is a Noetherian, integrally closed, integral domain
in which every nonzero prime ideal is maximal.

6.5 Definition: Let R be a Dedekind domain with quotient field K. For a subset A C R
we write

A*={ue K|uACR}={uec K|uacRforallac A}.
Note that if A is an ideal in R then we have A C R C A* and AA* C R.
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6.6 Theorem: Let R be a Dedekind domain and let P be a nonzero prime ideal in R,
and let A be any nonzero ideal in R. Then

(1)RG P,

(2) AC AP*, and

(3) PP* = R.

Proof: We know that P % R C P*. To prove that R # P* we shall construct an element

u = ¢ € K with u € P*\ R. Choose 0 # b € P. Choose nonzero prime ideals P; such
that PPy --- P, C (b) = bR with the number ¢ as small as possible. Since P is prime and
PP,---P; C (b) C P, it follows that P; C P for some index i, say P; C P. Since every
prime ideal in R is maximal, the ideal P; is maximal. Since P; is maximal and P, C P & R,

we have P = Pj. In the case that { = 1, we have P = P; C (b) C P hence P = (b). In this
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case, we take @ = 1 and let u = ¢ = 3. Since (b) = P % R it follows that b is not a unit so
u = % ¢ R. Since %P = %bR = R, it follows that u = % € P*. Suppose now that £ > 1.
Since ¢ was chosen to be as small as possible, PoPs--- Py is not a subset of (b). Choose
a € PP3--- Py with a ¢ (b) and let u = ¢. Since a ¢ (b) we have a # br for any r € R and
sou= ¢ ¢ R. Since a € PPs--- P, it follows that aP = aP, € PP>--- Pl C (b) = bR
and so uP = P € R hence § € P*. Thus R C P*, as required.

Let us prove Part (2). Since R C P* we have A = AR C AP*. Suppose, for a contra-
diction, that A = AP*. Since R is Noetherian, A is finitely generated as an R-module, so

we can choose a1, as, -+, a, € A such that A = (ay,a9, -+, a,) = SpanR{al,ag, ceeLapt



6.7 Theorem: Let A be a free Z-module of rank n. Let B be a submodule of A.

Then B is free of rank r for some r < n. Indeed there exists a basis {uy,us, -, u,}
for A over Z, an integer r with 0— < r < n, and positive integers di,ds,---,d, with
dy|dy, dalds, -+, dr.—1|d,, such that {dlul, dousg, - - ,drur} is a basis for B over Z.

Proof: I may include a proof later.



