
Chapter 6. Dedekind Domains

6.1 Definition: A commutative ring R is called Noetherian when it satisfies the ascend-
ing chain condition on ideals, that is when, for every chain of ideals A1 ⊆ A2 ⊆ A3 ⊆ · · ·
in R, there exists an index m ∈ Z+ such that Ak = Am for all k ≥ m.

6.2 Theorem: Let R be a commutative ring. Then R is Noetherian if and only if every
ideal in R is finitely generated as an R-module.

Proof: Suppose that R is Noetherian and let A be any ideal in R. Suppose, for a con-
tradiction, that A is not finitely generated as an R-module. Note that A 6= {0} (since
the ideal {0} is generated by the set {0}). Choose 0 6= a1 ∈ A. Since a1 ∈ A we have
(a1) ⊆ A, but since A is not finitely generated we have A 6= (a1), and so (a1) ⊂6= A. Choose

a2 ∈ A with a2 /∈ (a1). Since a2 /∈ (a1) we have (a1) ⊂6= (a1, a2), since a1, a2 ∈ A we

have (a1, a2) ⊆ A, and since A is not finitely generated we have (a1, a2) 6= A, and so
(a1) ⊂6= (a1, a2) ⊂6= A. Continuing this procedure, we obtain an infinite ascending chain

of ideals {0} ⊂6= (a1) ⊂6= (a1, a2) ⊂6= (a1, a2, a3) ⊂6= · · · which contradicts the fact that R is

Noetherian.
Suppose, conversely, that every ideal in R is finitely generated as an R-module. Let

A1 ⊆ A2 ⊆ A3 ⊆ · · · be an ascending chain of ideals in R. Let A =
⋃∞

k=1 Ak. Then A
is an ideal in R so it is finitely generated as an R-module. Choose elements a1, a2, · · · , an
so that A = (a1, · · · , an). For each index i ∈ {1, 2, · · · , n}, since ai ∈ A =

⋃∞
k=1 Ak

we can choose an index ki such that ai ∈ Aki . Let m = max{k1, k2, · · · , kn}. For each
index i we have ai ∈ Aki ⊆ Am and so A = (a1, · · · , an) ⊆ Am. For all k ≥ m we have
Ak ⊆

⋃∞
j=1 Aj = A ⊆ Am ⊆ Ak and hence Ak = Am. Thus R is Noetherian, as required.

6.3 Theorem: Let R be a commutative Noetherian ring. For every nonzero ideal A in R
there exist prime ideals P1, P2, · · · , P` in R such that P1P2 · · ·P` ⊆ A.

Proof: Let S be the set of all nonzero ideals A in R for which there do not exist prime
ideals Pi with P1P2 · · ·P` ⊆ A. Suppose, for a contradiction, that S 6= ∅. Since R is
Noetherian, it follows that every chain in S has a maximal (indeed a maximum) element.
By Zorn’s Lemma, it follows that S has a maximal element. Let A be a maximal elements
in S. Note that A is not prime (because no prime ideal lies in S). Since A is not prime
we can choose elements a, b ∈ R such that ab ∈ A but a /∈ A and b /∈ A. Since a /∈ A we
have A ⊆ A+ (a) and so (since A is maximal in S) A+ (a) /∈ S. Since A+ (a) /∈ S we can
choose prime ideals Pi such that P1P2 · · ·P` ⊆ A + (a). Similarly A + (b) /∈ R so we can
choose prime ideals Qi such that Q1Q2 · · ·Qm ⊆ A + (b). But then it follows that

P1P2 · · ·P`Q1Q2 · · ·Qm ⊆
(
A + (a)

)(
B + (b)

)
= AA + A(b) + A(a) + (ab) ⊆ A

which implies that A /∈ S, giving the desired contradiction.

6.4 Definition: A Dedekind domain is a Noetherian, integrally closed, integral domain
in which every nonzero prime ideal is maximal.

6.5 Definition: Let R be a Dedekind domain with quotient field K. For a subset A ⊂ R
we write

A∗ =
{
u ∈ K

∣∣uA ⊆ R
}

=
{
u ∈ K

∣∣ua ∈ R for all a ∈ A
}
.

Note that if A is an ideal in R then we have A ⊆ R ⊆ A∗ and AA∗ ⊆ R.
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6.6 Theorem: Let R be a Dedekind domain and let P be a nonzero prime ideal in R,
and let A be any nonzero ideal in R. Then

(1) R ⊂6= P ∗,

(2) A ⊆ AP ∗, and
(3) PP ∗ = R.

Proof: We know that P ⊂6= R ⊆ P ∗. To prove that R 6= P ∗ we shall construct an element

u = a
b ∈ K with u ∈ P ∗ \ R. Choose 0 6= b ∈ P . Choose nonzero prime ideals Pi such

that P1P2 · · ·P` ⊆ (b) = bR with the number ` as small as possible. Since P is prime and
P1P2 · · ·P` ⊆ (b) ⊆ P , it follows that Pi ⊆ P for some index i, say P1 ⊆ P . Since every
prime ideal in R is maximal, the ideal P1 is maximal. Since P1 is maximal and P1 ⊆ P ⊂6= R,

we have P = P1. In the case that ` = 1, we have P = P1 ⊆ (b) ⊆ P hence P = (b). In this
case, we take a = 1 and let u = a

b = 1
b . Since (b) = P ⊂6= R it follows that b is not a unit so

u = 1
b /∈ R. Since 1

bP = 1
b bR = R, it follows that u = 1

b ∈ P ∗. Suppose now that ` > 1.
Since ` was chosen to be as small as possible, P2P3 · · ·P` is not a subset of (b). Choose
a ∈ P2P3 · · ·P` with a /∈ (b) and let u = a

b . Since a /∈ (b) we have a 6= br for any r ∈ R and
so u = a

b /∈ R. Since a ∈ P2P3 · · ·P` it follows that aP = aP1 ∈ P1P2 · · ·P` ⊆ (b) = bR
and so uP = a

bP ∈ R hence a
b ∈ P ∗. Thus R ⊆ P ∗, as required.

Let us prove Part (2). Since R ⊆ P ∗ we have A = AR ⊂ AP ∗. Suppose, for a contra-
diction, that A = AP ∗. Since R is Noetherian, A is finitely generated as an R-module, so
we can choose a1, a2, · · · , an ∈ A such that A = (a1, a2, · · · , an) = Span

R
{a1, a2, · · · , an}.
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6.7 Theorem: Let A be a free Z-module of rank n. Let B be a submodule of A.
Then B is free of rank r for some r ≤ n. Indeed there exists a basis {u1, u2, · · · , un}
for A over Z, an integer r with 0− ≤ r ≤ n, and positive integers d1, d2, · · · , dr with
d1|d2 , d2|d3 , · · · , dr−1|dr, such that

{
d1u1, d2u2, · · · , drur

}
is a basis for B over Z.

Proof: I may include a proof later.
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