Chapter 5. Cyclotomic Number Fields

4.1 Definition: For n € Z*, the n*"" cyclotomic polynomial is the polynomial

b, (z) = H (x — wk)

where w = ¢ >™/™ and U,, = {k € Z,| ged(k,n) = 1}.

4.2 Theorem: The cyclotomic polynomials have the following properties.
(1) 2" =1 =[] ®a(x),
d|n

(2) ®u(x) € 2],
(3) ®1(0) = —1 and ¢,,(0) =1 forn > 2,

(4) When p is prime and k € Z", ®,(z) = 2P~ '+ 2P~ 2+ - -+2+1 and D« (z) = fbp(xpk_l)
and hence @, (1) = p.

Proof: The roots of ™ — 1 are the elements in the cyclic group C,, = {wk}k’ € Zn}. The
subgroups of C,, are the cyclic groups (w"*) = {ka,w%, . -,w"‘k} where k;‘n Each
element of C), (that is each root of ™ — 1) is a generators of one of these cyclic subgroups.
The roots of ®4(x) are the generators of the subgroup (w™'®). This proves Part (1).

We prove Part (2) by induction on n. We have ®1(z) = x — 1 € Z[z]. Suppose,
inductively, that ®x(x) € Z[z] for all k < n. By Part (1), 2™ — 1 = [[ Pa(x) = @, (x)g(x)

d|n
where g(z) = ][ ®q4(x). By our induction hypothesis, g(x) € Z[z]. Since 2™ —1 € Z[z]
d|n,d#n

and g(x) € Z[z] and g is monic, it follows that when we perform long division of ™ — 1
by g(z), the quotient ®,,(x) lies in Z[z]. This proves Part (2).

A similar induction argument may be used to prove Part (3). We have ®(z) =z —1

and ®o(z) = = + 1 so that ®1(0) = —1 and ®2(0) = 1. Suppose, inductively, that

$,(0) =1 for 1 < k < n. From Part (1) we have 2" — 1 = &, (z)®_;(x)h(x) where

h(z) = II ®4(z). Put in z =0 to get —1 = &,,(0)(—1)(1) and so ¢,,(0) = 1.
d|n,d#1,d#n

Let us prove Part (4). From Part (1) we know that 27 —1 = ®,(z)®;(z) = ®,(z)(z—1)

and so
P —1 1
Bp(z) = — ="+ Hat L

Similarly, 2" — 1 = D [ Pa(zr) = Ppr(x) (prl —1) and so
dlpk—1

k
P -1 - - -
() =~y = PV a4 1= 8 ().



4.3 Theorem: Let p be prime in Z* and let g € Zy[z]. Then g(z)P = g(aP).

m .

Proof: Let g(xz) = ) c;z* € Zpy[z]. When m = 0, since ¢o? = ¢y (by Fermat’s Little
i=0

Theorem), we have g(z)P = co? = ¢o = g(zP). Let m > 1 and suppose, inductively, that

m—1
for h(z) = > c;x* we have h(z)? = h(xP). Then
=0

(2

g(x)?P = (Co +cx+ -+ cmcm)p = (Co +cxr+---+ cm_lxm_l)p + (cma™)P
— (CO _|_ Clxp _|_ ng2p _|_ e _|_ Cmflf,c(m_l)p) + Cmpme
= o+ 12P + o 4 - 4 12 MTIP e, P = g(2P)

where on the first line we used the Binomial Theorem, noting that all terms are 0 mod p
except the first and last, and on the second line we used the inductive hypothesis, and on
the third line we used the fact that ¢,,,? = ¢,,, which follows from Fermat’s Little Theorem.

4.4 Theorem: (Gauss) Let n € Z*. Then ®,,(z) is irreducible in Q|z].

Proof: Let w be a root of ®,,(x). Let f € Q[z] be the minimal polynomial of w. Note that
f ‘@n. We shall show that @n‘ f by showing that every root of ®,, is also a root of f. Note
that w is integral over Z ,since it is a root of the monic polynomial ®,, € Z[z], and so we
have f € Z[z]. Also since w is aroot of " —1 we have f|z"—1in Q[z], say 2" —1 = f(z)g()
where g € Q[z]. Since 2" — 1 € Z[z] and f € Z[x] and f is monic, when we perform long
division of 2™ — 1 by f(x), the quotient g(z) lies in Z[z]. Let u be a root of f. Since
f’:z:” — 1, u is also a root of 2™ — 1, and so u is an n*® root of 1. Let p be a prime in Z+
with ged(p,n) = 1. Then u? is also an n'® root of 1. Since u? is a root of 2" —1 = f(z)g(z),
we know that either f(u”) =0 or g(uP) = 0. Suppose, for a contradiction, that f(u?) # 0.
Then we must have g(u”) = 0, so u is a root of the polynomial h(z) = g(«P). Since f is
the minimal polynomial of u we have f!h, say h = fk € Q[z]. As above, since h, f € Z[z]
with f monic, we have k € Z[z]. Reduce the coefficients of h, f and k£ modulo p to get
h = fk € Z,[z]. Note that h(z) = g(zP) = g(x)P from the above Lemma. Let ¢ be an
irreducible factor of f in Z,[r]. Since ?‘7 and fk = h = gP, it follows that ?|§p and hence
Z\g. Since 2™ — 1 = fg € Z[z], reducing modulo p gives 2" — 1 = fg € Z,[z]. Since ny
and Z|g we have zzlac“ — 1 and hence ¢ is a common divisor of 2" — 1 and (2" — 1) in
Z,[x]. But %(m” —1) = nz" ! and ged(p,n) = 1 so that n is invertible in Z,, and so
we have ged (2™ — 1, d%(m” —1)) =ged (2" — 1, nz" ) = ged(—1,nz" ') = 1. Thus we
have obtained the desired contradiction and so f(uP) = 0.

We have shown that if u is a root of of f and if p is a prime with ged(p,n) = 1 then
uP is also a root of f. Now let k € ZT with ged(k,n) = 1. Write k = p1ps---p; where
each p; is prime and note that since ged(k,n) = 1 we have ged(p;,n) = 1 for all indices 1.
Since w is a root of f, we see that each of w, wP', wPP2 ... wPP2Pi = w* is also a
root of f. Since w¥ is a root of f for all k € ZT with ged(k,n) = 1 it follows that every
root of @, is also a root of f and so ®,(z)|f(x). Since ®,|f and f|®, and f and ®,, are
monic, we have ®,, = f. Thus ®,, is equal to the minimal polynomial of w and so ®,, is
irreducible.



4.5 Corollary: Let w be a primitive n'® root of 1. Then Q(w) is Galois over Q with
[Q(w) : Q] = ¢(n), and we have AthQ(w) ~U,.

Proof: Since the roots of ®,,(x) are the elements w* with k € U,,, we see that all the roots
of @, lie in Q(w) so that Q(w) is the splitting field of &, (x) over Q (it is also the splitting
field of f(z) = 2™ — 1 over Q). Thus Q(w) is Galois over Q. Since ®,, is the minimal
polynomial of w and deg(®,,) = ¢(n), we have [Q(w) : Q] = ¢(n). Again since the roots
of ®,, are the elements w* with k € U,,, we see that HomQ (Q(w), C) = {ak‘k € Un} where
o is the homomorphism with oy (w) = w¥. Since Q(w) is Galois over Q, we know that
Aut,Q(w) = Homg, (Q(w), C) and so we can define a bijective map v : U,, — Aut,Q(w)

by (k) = op. Finally, note that 1 is a homomorphism because for k,l € U, we have
oror(w) = op(w') = (W) = WM = op(w) so that P(k)Y (1) = opor = o = Y(kl).

4.6 Corollary: Letn € Z™. Then the regular n-gon is constructible (in the ancient Greek
sense) if and only if n is of the form n = 2p py - - p; where [ > 0 and each p; is a Fermat
prime (that is a prime p of the form p = 2™ + 1 for some m € Z™*).

Proof: I may include a proof later.

4.7 Theorem: Let K = Q(w) where w is a primitive n'® root of 1. Then Oy = Z[w] and
¢

{1, w,w?,- -, w?™=1Y is an integral basis for K, and if n = [[ p;** where ¢ € Z™, the p;

=1
are distinct primes, and each k; € Z™, then we have

where a = (@(2”)) and b; = ¢(n)(k; L),

Proof: I may include a proof later.



