
Chapter 4. Trace, Norm and Discriminant

4.1 Definition: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C such that [L : K] = n. For
a ∈ L we define the characteristic polynomial of a, the trace of a and the norm of a
over K to be

fa(x) = fL/K,a(x) = det(xI −Ma) ∈ K[x],

T (a) = TL/K(a) = trace(Ma) ∈ K, and

N(a) = NL/K(a) = detMa ∈ K,

where Ma : L→ L is the linear map given by

Ma(x) = ax.

Note that for a, b ∈ L we have T (a+ b) = T (a) + T (b), N(ab) = N(a)N(b) and

fa(x) = xn − T (a)x+ · · ·+ (−1)nN(a).

4.2 Example: Let K be the quadratic number field K = Q(
√
d) where d ∈ Z is square-

free, and let u = a + b
√
d where a, b ∈ Q. For x, y ∈ Q we have (a + b

√
d)(x + y

√
d) =

(ax + bdy) + (ay + bx)
√
d and so, relative to the basis {1,

√
d} for K over Q, the linear

map Mu is given by the matrix

Mu =

(
a bd
b a

)
so fu(x) = (x− a)2 − db2 = x2 − (2a)x+ (a2 − db2) and T (u) = 2u and N(u) = a2 − db2.

4.3 Theorem: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C and [L : K] finite. Let a ∈ L,
let p(x) be the minimal polynomial of a over K, and let m = [L : K(a)]. Then

fa(x) = p(x)m =
∏

σ∈Hom
K
(L,C)

(
x− σ(a)

)
T (a) =

∑
σ∈Hom

K
(L,C)

σ(a) and

N(a) =
∏

σ∈Hom
K
(L,C)

σ(a).

Proof: Let ` = deg(p) = [K(a) : K] so that {1, a, a2, · · · , a`−1} is a basis for K(a) over K,
and let {u1, u2, · · · , um} be a basis for L over K(a). Then the set{

u1, au1, · · · , a`−1u1, u2, au2, · · · , a`−1u2, · · · , umaum, · · · , a`−1um
}

is a basis for L over K(a) and, relative to this basis, the map Ma is given by

Ma =


A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A

 with m copies of the matrix A =


0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1

...
...

...
. . . 0 −c−`−2

0 · · · 0 1 −c`−1


and so we have fa(x) = det(xA− I)m = p(x)m. Now let a1, a2, · · · , a` be the roots of p(x)
in C and let Hom

K

(
K(a),C

)
=
{
σ1, σ2, · · · , σ`} where the embedding σi is determined by
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σi(a) = ai. Since each embedding σi extends to give m elements σi,j ∈ Hom
K

(L,C), we
have

p(x) =
∏̀
i=1

(x− ai) =
∏̀
i=1

(
x− σi(a)

)
=

∏
σ∈Hom

K
(K(a),C)

(
x− σ(a)

)
fa(x) = p(x)m =

∏̀
i=1

(
x− σi(a)

)m
=
∏̀
i=1

m∏
j=1

(
x− σi,j(a)

)
=

∏
σ∈Hom

K
(L,C)

(
x− σ(a)

)
.

Since fa(x) = xn − T (a)xn−1 + · · ·+ (−1)nN(a) it follows from Vieta’s Identities that

T (a) =
∑

σ∈Hom
K
(L,C)

σ(a) and N(a) =
∏

σ∈Hom
K
(L,C)

σ(a).

4.4 Corollary: Let K, L and M be fields with Q ⊆ K ⊆ L ⊆M ⊆ C and [M : K] finite.
Then TM/K = TL/KTM/L and NM/K = NL/KNM/L.

Proof: Let n = [M : K] and choose u1, u2, · · · , un ∈M so that M = K[u1, u2, · · · , un] and

let F be the splitting field of
n∏
i=1

pi(x) where pi(x) is the minimal polynomial of ui over

K so that we have K ⊆ F with F Galois over K. For each σ ∈ Hom
K

(L,C), choose an
extension σ ∈ Aut

K
(F ), and for each τ ∈ Hom

L
(M,C), choose an extension τ ∈ Aut

L
(F ).

Note that given σ ∈ Hom
K

(L,C), the m extensions of σ to Aut
K

(F ) are the m elements
σ τ with τ ∈ Hom

L
(M,C). Thus for all a ∈M we have

TM/K(a) =
∑

ρ∈Hom
K
(M,C)

ρ(a) =
∑

σ∈Hom
K
(L,C)

( ∑
τ∈Hom

L
(M,C)

σ τ(a)
)

=
∑

σ∈Hom
K
(L,C)

σ
( ∑
τ∈Hom

L
(M,C)

τ(a)
)

=
∑

σ∈Hom
K
(L,C)

σ
( ∑
τ∈Hom

L
(M,C)

τ(a)
)

=
∑

σ∈Hom
K
(L,C)

σ
(
NM/L(a)

)
=

∑
σ∈Hom

K
(L,C)

σ
(
NM/L(a)

)
= NL/K

(
NM/L(a)

)
and similarly NM/K(a) = NM/L

(
NL/K(a)

)
.

4.5 Definition: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C and [L : K] = n. For
u1, u2, · · · , un ∈ L, we define the discriminant of the n-tuple (u1, u2, · · · , un) over K to
be

d(u1, u2, · · · , un) = dK/L(u1, u2, · · · , un) = detA ∈ L

where A ∈Mn(L) is the matrix with entries Aj,k = T (ujuk).

4.6 Theorem: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C and [L : K] = n. Let
Hom

K
(L,C) = {σ1, σ2, · · · , σn} and let u1, u2, · · · , un ∈ L. Let A ∈Mn(K) be the matrix

with entries Aj,k = T (ujuk) and let B ∈Mn(C) be the matrix with entries Bj,k = σj(uk).
Then BTB = A and so d(u1, u2, · · · , un) = detA = (detB)2.

Proof: Note that for all indices j, k we have

(BTB)j,k =
n∑
i=1

Bi,jBi,k =
n∑
i=1

σi(uj)σi(uk)

=
n∑
i=1

σi(ujuk) = T (ujuk) = Aj,k

and so BTB = A.
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4.7 Theorem: (Change of Basis) Let K and L be fields with Q ⊆ K ⊆ L ⊆ C such that
[L : K] = n. Let U = {u1, u2, · · · , un} be a basis for L over K and let v1, v2, · · · , vn ∈ L.

For x ∈ L, when x =
n∑
i=1

tiui with each ti ∈ K we write [x]U = t ∈ Kn. Then

d(v1, v2, · · · , vn) = (detC)2d(u1, u2, · · · , un)

where C is the matrix C =
(
[v1]U , [v2]U , · · · , [vn]U

)
∈Mn(K).

Proof: Let BU and BV be the matrices with entries BUj,k = σj(uk) and BVj,k = σj(uk).

Since C =
(
[v1]U , · · · , [vn]U

)
we have vk =

n∑
i=1

Ci,kui for all indices k. It follows that for

all indices j, k we have

BVj,k = σj(vk) = σj
( n∑
i=1

Ci,kui
)

=
n∑
i=1

Ci,kσj(ui) =
n∑
i=1

Ci,kB
U
j,i = (BUC)j,k.

Thus we have BV = BUC and so

d(v1, v2, · · · , vn) = (detBV )2 = det
(
BUC

)2
= (detC)2d(u1, u2, · · · , un).

4.8 Definition: When R is an integral domain and a1, a2, · · · , an ∈ R, the Vandermonde
matrix on the n-tuple (a1, a2, · · · , an) is the matrix

V (a1, a2, · · · , an) =


1 a1 a1

2 · · · a1
n−1

1 a2 a2
2 · · · a2

n−1

...
...

1 an an
2 · · · an

n−1

 ∈Mn(R).

4.9 Theorem: Let R be an integral domain and let a1, a2, · · · , an ∈ R. Then

detV (a1, a2, · · · , an) =
∏

1≤j<k≤n
(aj − ak).

Proof: I may include a proof later.

4.10 Definition: When R is an integral domain and f(x) and g(x) are polynomials in

R[x] given by f(x) =
n∑
i=0

aix
i and g(x) =

m∑
j=0

bjx
j , the resultant matrix of f(x) and g(x)

is the matrix

R
(
f, g
)

=



a0 0 · · · 0 b0 · · · 0

a1 a0
... b1

. . .
...

... a1 . . .
...

... b0

an
... a0

... b1

0 an a1 bm
...

...
. . .

...
...

. . .
...

0 · · · · · · an 0 · · · bm


∈Mn+m(R)

where the first m columns involve the coefficients ai and the last m columns involve bj .

4.11 Theorem: Let R be a ring with R ⊆ C and let f(x), g(x) ∈ R[x] with deg(f) = n
and deg(g) = m. Let α1, α2, · · · , αn be the roots of f(x) in C and let β1, β2, · · · , βm be the
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roots of g(x) in C. Then

detR
(
f, g
)

= (−1)nman
mbm

n
n∏
i=1

m∏
j=1

(αi − βj)

= (−1)nmbm
n
m∏
j=1

f(βj) = (−1)nman
m

n∏
i=1

g(αi).

Proof: I may include a proof later.

4.12 Theorem: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C such that [L : K] = n. Let
a ∈ L be such that K = L(a). Recall that {1, a, a2, · · · , an−1} is a basis for L over K. Let
p(x) ∈ K[x] be the minimal polynomial for a over K, and let a1, a2, · · · , an be the roots of
p(x) in C. Then

d(1, a, a2, · · · , an−1) = detV (a1, a2, · · · , an)2 =
∏

1≤i<j≤n
(ai − aj)2

= (−1)
(n

2 )
N
(
p′(a)

)
= (−1)

(n
2 )

detR
(
p, p′

)
.

Proof: Let Hom
K

(L,C) = {σ1, σ2, · · · , σn} where σi(a) = ai. By Theorem 3.6, we have
d(1, a, · · · , an−1) = (detB)2 where Bj,k = σj(a

k−1. Notice that Bj,k = σj(a)k−1 = aj
k−1

which is equal to the (j, k)-entry of the Vandermonde matrix V (a1, · · · , an) se we have

d(1, a, · · · , an−1) = (detB)2 = detV (a1, a2, · · · , an)2 =
∏

1≤i<j≤n
(ai − aj)2.

Next note that since p(x) =
n∏
i=1

(x − ai) we have p′(x) =
n∑
i=1

∏
j 6=i

(x − aj) and so for each

index i we have p′(ai) =
∏
j 6=i

(ai − aj). It follows that

N
(
p′(a)

)
=

n∏
i=1

σi
(
p′(a)

)
=

n∏
i=1

p′
(
σi(a)

)
=

n∏
i=1

p′(ai) =
n∏
i=1

∏
j 6=i

(ai − aj)

= (−1)
(n

2 ) ∏
1≤i<j≤n

(ai − aj)2 = (−1)
(n

2 )
d(1, a, · · · , an−1).

Finally, by putting f = p and g = p′ into the formula detR(f, g) = (−1)nman
m

n∏
i=1

g(αi)

we obtain

detR(p, p′) = (−1)n(n−1)1n−1
n∏
i=1

p′(ai) =
n∏
i=1

p′(ai) = N
(
p′(a)

)
.

4.13 Definition: When R is a commutative ring and p(x) ∈ R[x] is monic, we define the
discriminant of p(x) to be

d(p) = (−1)(
n
2 ) detR

(
p, p′

)
.

When p(x) is the minimal polynomial of a ∈ L over K we have d(1, a, · · · , an−1) = d(p).

4.14 Exercise: Show that when p(x) = x2 + bx + c we have d(p) = b2 − 4c and when
p(x) = x3 + px+ q we have d(p) = −(4p3 + 27q2).

4.15 Corollary: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C such that [L : K] = n and
let v1, v2, · · · , vn ∈ L. Then {v1, v2, · · · , vn} is linearly independent over K if and only if
d(v1, v2, · · · , vn) 6= 0.
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Proof: Let V = {v1, v2, · · · , vn}. Choose a ∈ L so that L = K(a). Let U = {1, a, · · · , an−1}
and note that U is linearly independent. Let f(x) be the minimal polynomial for a over
K. Let a1, a2, · · · , an be the roots of f in C. Since the roots ai are distinct, we have
d(1, a, · · · , an−1) =

∏
1≤i<j≤n

(ai−aj)2 6= 0. Let C be the matrix C =
(
[v1]U , [v1]U , · · · , [vn]U

)
.

By the Change of Basis Theorem we have d(v1, v2, · · · , vn) = (detC)2d(1, a, · · · , an−1).
Since d(1, a, · · · , an−1) 6= 0 it follows that d(v1, v2, · · · , vn) 6= 0 if and only if detC 6= 0,
and we recall, from linear algebra, that V is linearly independent if and only if detC 6= 0.

4.16 Theorem: Let K be an algebraic number field and let T = TK/Q and N = NK/Q.
When u ∈ OK we have T (u) ∈ Z and N(u) ∈ Z. It follows that u is a unit in OK if and
only if N(u) = ±1.

Proof: Let u ∈ K. Let f be the minimal polynomial of u over Q. For each σ ∈ HomQ(K,C)

we note that f
(
σ(u)

)
= σ

(
f(u)

)
= σ(0) = 0 so that σ(u) is also a root of f , and so σ(u) is

integral over Z. Since T (u) =
∑

σ∈Hom
Q
(K,C)

σ(u) and each σ(u) is integral over Z, it follows

that T (u) is integral over Z. Since T (u) ∈ Q and T (u) is integral over Z, it follows that
T (u) ∈ Z (indeed if a ∈ Q then its minimal polynomial over Q is g(x) = x− a, and if a is
also integral over Z then the coefficients of g lie in Z so that a ∈ Z). Similarly N(u) ∈ Z.

4.17 Theorem: Let K be an algebraic number field with [K : Q] = n. Then OK is
a free Z-module of rank n. Indeed there exist elements u1, u2, · · · , un ∈ OK such that
{u1, u2, · · · , un} is a basis for K over Q and {u1, u2, · · · , un} is a basis for OK over Z.

Proof:

4.18 Definition: Let K be an algebraic number field. An integral basis for K (or an
integral basis for OK) is a set U =

{
u1, u2, · · · , un} with each ui ∈ OK such that U is a

basis for K over Q and U is a basis for OK over Z.

4.19 Example: When K is the quadratic number field K = Q(
√
d) where d ∈ Z is

square-free we have OK = Span
Z
{1, ω} where ω =

√
d if d 6= 1 mod 4 and ω = 1+

√
d

2 if

d = 1 mod 4, and so {1, ω} is an integral basis for K. When d 6= 1 mod 4 and ω =
√
d,

the minimal polynomial of ω is p(x) = x2 − d and we have d(K) = d(p) = 4d. When

d = 1 mod 4 and ω = 1+
√
d

2 , the minimal polynomial of ω is p(x) = x2 − x+ 1−d
4 and we

have d(K) = d(p) = d.

4.20 Theorem: Let K be an algebraic number field and let {u1, · · · , un} and {v1, · · · , vn}
be two integral bases for K. Then d(u1, u2, · · · , un) = d(v1, v2, · · · , vn).

Proof: I may include a proof later.

4.21 Definition: Let K be an algebraic number field. We define the discriminant of K
(or the discriminant of OK) to be d(K) = d(u1, u2, · · · , un) ∈ Z where {u1, u2, · · · , un}
is any integral basis for K.

4.22 Theorem: (Stickelberger) Let K be an algebraic number field. Then

d(K) ∈ {0, 1} mod 4.

Proof: I may include a proof later.

4.23 Exercise: Let K = Q(u) where u is a root of the polynomial f(x) = x3 − x + 2.
Show that OK = Z[u] and that {1, u, u2} is an integral basis for K.
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4.24 Theorem: LetK be an algebraic number field with [K : Q] = n. Let {u1, u2, · · · , un}
be a basis for K over Q with each ui ∈ OK and let d = d(u1, u2, · · · , un). Then we have

Span
Z
{u1, u2, · · · , un} ⊆ OK ⊆ Span

Z

{u1

d ,
u2

d , · · · ,
un

d

}
.

Proof: I may include a proof later.

4.25 Theorem: Let K and L be algebraic number fields with [K : Q] = k and [L : Q] = `
Let U = {u1, · · · , uk} be an integral basis forK and let V = {v1, · · · , v`} be an integral basis

for L. Let M = KL =
{ n∑
i=1

aibi
∣∣n ∈ Z+, ai ∈ K, bi ∈ L

}
. Suppose that [M : Q] = k` and

that gcd
(
d(K), d(L)

)
= 1. Then W =

{
uivj

∣∣ui ∈ U, vj ∈ V } is an integral basis for M
and we have d(M) = d(K)`d(L)k.

Proof: I may include a proof later.
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