

Chapter 4. Trace, Norm and Discriminant

4.1 Definition: Let K and L be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq \mathbf{C}$ such that $[L : K] = n$. For $a \in L$ we define the **characteristic polynomial** of a , the **trace** of a and the **norm** of a over K to be

$$\begin{aligned} f_a(x) &= f_{L/K,a}(x) = \det(xI - M_a) \in K[x], \\ T(a) &= T_{L/K}(a) = \text{trace}(M_a) \in K, \text{ and} \\ N(a) &= N_{L/K}(a) = \det M_a \in K, \end{aligned}$$

where $M_a : L \rightarrow L$ is the linear map given by

$$M_a(x) = ax.$$

Note that for $a, b \in L$ we have $T(a + b) = T(a) + T(b)$, $N(ab) = N(a)N(b)$ and

$$f_a(x) = x^n - T(a)x + \cdots + (-1)^n N(a).$$

4.2 Example: Let K be the quadratic number field $K = \mathbf{Q}(\sqrt{d})$ where $d \in \mathbf{Z}$ is square-free, and let $u = a + b\sqrt{d}$ where $a, b \in \mathbf{Q}$. For $x, y \in \mathbf{Q}$ we have $(a + b\sqrt{d})(x + y\sqrt{d}) = (ax + bdy) + (ay + bx)\sqrt{d}$ and so, relative to the basis $\{1, \sqrt{d}\}$ for K over \mathbf{Q} , the linear map M_u is given by the matrix

$$M_u = \begin{pmatrix} a & bd \\ b & a \end{pmatrix}$$

so $f_u(x) = (x - a)^2 - db^2 = x^2 - (2a)x + (a^2 - db^2)$ and $T(u) = 2u$ and $N(u) = a^2 - db^2$.

4.3 Theorem: Let K and L be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq \mathbf{C}$ and $[L : K]$ finite. Let $a \in L$, let $p(x)$ be the minimal polynomial of a over K , and let $m = [L : K(a)]$. Then

$$\begin{aligned} f_a(x) &= p(x)^m = \prod_{\sigma \in \text{Hom}_K(L, \mathbf{C})} (x - \sigma(a)) \\ T(a) &= \sum_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \sigma(a) \text{ and} \\ N(a) &= \prod_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \sigma(a). \end{aligned}$$

Proof: Let $\ell = \deg(p) = [K(a) : K]$ so that $\{1, a, a^2, \dots, a^{\ell-1}\}$ is a basis for $K(a)$ over K , and let $\{u_1, u_2, \dots, u_m\}$ be a basis for L over $K(a)$. Then the set

$$\{u_1, au_1, \dots, a^{\ell-1}u_1, u_2, au_2, \dots, a^{\ell-1}u_2, \dots, u_m a u_m, \dots, a^{\ell-1}u_m\}$$

is a basis for L over $K(a)$ and, relative to this basis, the map M_a is given by

$$M_a = \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A \end{pmatrix} \text{ with } m \text{ copies of the matrix } A = \begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & & \vdots & \vdots \\ \vdots & & \ddots & 0 & -c_{\ell-2} \\ 0 & \cdots & 0 & 1 & -c_{\ell-1} \end{pmatrix}$$

and so we have $f_a(x) = \det(xA - I)^m = p(x)^m$. Now let a_1, a_2, \dots, a_ℓ be the roots of $p(x)$ in \mathbf{C} and let $\text{Hom}_K(K(a), \mathbf{C}) = \{\sigma_1, \sigma_2, \dots, \sigma_\ell\}$ where the embedding σ_i is determined by

$\sigma_i(a) = a_i$. Since each embedding σ_i extends to give m elements $\sigma_{i,j} \in \text{Hom}_K(L, \mathbf{C})$, we have

$$p(x) = \prod_{i=1}^{\ell} (x - a_i) = \prod_{i=1}^{\ell} (x - \sigma_i(a)) = \prod_{\sigma \in \text{Hom}_K(K(a), \mathbf{C})} (x - \sigma(a))$$

$$f_a(x) = p(x)^m = \prod_{i=1}^{\ell} (x - \sigma_i(a))^m = \prod_{i=1}^{\ell} \prod_{j=1}^m (x - \sigma_{i,j}(a)) = \prod_{\sigma \in \text{Hom}_K(L, \mathbf{C})} (x - \sigma(a)).$$

Since $f_a(x) = x^n - T(a)x^{n-1} + \cdots + (-1)^n N(a)$ it follows from Vieta's Identities that

$$T(a) = \sum_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \sigma(a) \quad \text{and} \quad N(a) = \prod_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \sigma(a).$$

4.4 Corollary: Let K, L and M be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq M \subseteq \mathbf{C}$ and $[M : K]$ finite. Then $T_{M/K} = T_{L/K} T_{M/L}$ and $N_{M/K} = N_{L/K} N_{M/L}$.

Proof: Let $n = [M : K]$ and choose $u_1, u_2, \dots, u_n \in M$ so that $M = K[u_1, u_2, \dots, u_n]$ and let F be the splitting field of $\prod_{i=1}^n p_i(x)$ where $p_i(x)$ is the minimal polynomial of u_i over K so that we have $K \subseteq F$ with F Galois over K . For each $\sigma \in \text{Hom}_K(L, \mathbf{C})$, choose an extension $\bar{\sigma} \in \text{Aut}_K(F)$, and for each $\tau \in \text{Hom}_L(M, \mathbf{C})$, choose an extension $\bar{\tau} \in \text{Aut}_L(F)$. Note that given $\sigma \in \text{Hom}_K(L, \mathbf{C})$, the m extensions of σ to $\text{Aut}_K(F)$ are the m elements $\bar{\sigma} \bar{\tau}$ with $\tau \in \text{Hom}_L(M, \mathbf{C})$. Thus for all $a \in M$ we have

$$T_{M/K}(a) = \sum_{\rho \in \text{Hom}_K(M, \mathbf{C})} \rho(a) = \sum_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \left(\sum_{\tau \in \text{Hom}_L(M, \mathbf{C})} \bar{\sigma} \bar{\tau}(a) \right)$$

$$= \sum_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \bar{\sigma} \left(\sum_{\tau \in \text{Hom}_L(M, \mathbf{C})} \bar{\tau}(a) \right) = \sum_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \bar{\sigma} \left(\sum_{\tau \in \text{Hom}_L(M, \mathbf{C})} \tau(a) \right)$$

$$= \sum_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \bar{\sigma}(N_{M/L}(a)) = \sum_{\sigma \in \text{Hom}_K(L, \mathbf{C})} \sigma(N_{M/L}(a)) = N_{L/K}(N_{M/L}(a))$$

and similarly $N_{M/K}(a) = N_{M/L}(N_{L/K}(a))$.

4.5 Definition: Let K and L be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq \mathbf{C}$ and $[L : K] = n$. For $u_1, u_2, \dots, u_n \in L$, we define the **discriminant** of the n -tuple (u_1, u_2, \dots, u_n) over K to be

$$d(u_1, u_2, \dots, u_n) = d_{K/L}(u_1, u_2, \dots, u_n) = \det A \in L$$

where $A \in M_n(L)$ is the matrix with entries $A_{j,k} = T(u_j u_k)$.

4.6 Theorem: Let K and L be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq \mathbf{C}$ and $[L : K] = n$. Let $\text{Hom}_K(L, \mathbf{C}) = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ and let $u_1, u_2, \dots, u_n \in L$. Let $A \in M_n(K)$ be the matrix with entries $A_{j,k} = T(u_j u_k)$ and let $B \in M_n(\mathbf{C})$ be the matrix with entries $B_{j,k} = \sigma_j(u_k)$. Then $B^T B = A$ and so $d(u_1, u_2, \dots, u_n) = \det A = (\det B)^2$.

Proof: Note that for all indices j, k we have

$$(B^T B)_{j,k} = \sum_{i=1}^n B_{i,j} B_{i,k} = \sum_{i=1}^n \sigma_i(u_j) \sigma_i(u_k)$$

$$= \sum_{i=1}^n \sigma_i(u_j u_k) = T(u_j u_k) = A_{j,k}$$

and so $B^T B = A$.

4.7 Theorem: (Change of Basis) Let K and L be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq \mathbf{C}$ such that $[L : K] = n$. Let $U = \{u_1, u_2, \dots, u_n\}$ be a basis for L over K and let $v_1, v_2, \dots, v_n \in L$. For $x \in L$, when $x = \sum_{i=1}^n t_i u_i$ with each $t_i \in K$ we write $[x]_U = t \in K^n$. Then

$$d(v_1, v_2, \dots, v_n) = (\det C)^2 d(u_1, u_2, \dots, u_n)$$

where C is the matrix $C = ([v_1]_U, [v_2]_U, \dots, [v_n]_U) \in M_n(K)$.

Proof: Let B^U and B^V be the matrices with entries $B_{j,k}^U = \sigma_j(u_k)$ and $B_{j,k}^V = \sigma_j(v_k)$. Since $C = ([v_1]_U, \dots, [v_n]_U)$ we have $v_k = \sum_{i=1}^n C_{i,k} u_i$ for all indices k . It follows that for all indices j, k we have

$$B_{j,k}^V = \sigma_j(v_k) = \sigma_j\left(\sum_{i=1}^n C_{i,k} u_i\right) = \sum_{i=1}^n C_{i,k} \sigma_j(u_i) = \sum_{i=1}^n C_{i,k} B_{j,i}^U = (B^U C)_{j,k}.$$

Thus we have $B^V = B^U C$ and so

$$d(v_1, v_2, \dots, v_n) = (\det B^V)^2 = \det(B^U C)^2 = (\det C)^2 d(u_1, u_2, \dots, u_n).$$

4.8 Definition: When R is an integral domain and $a_1, a_2, \dots, a_n \in R$, the **Vandermonde matrix** on the n -tuple (a_1, a_2, \dots, a_n) is the matrix

$$V(a_1, a_2, \dots, a_n) = \begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & & & & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{pmatrix} \in M_n(R).$$

4.9 Theorem: Let R be an integral domain and let $a_1, a_2, \dots, a_n \in R$. Then

$$\det V(a_1, a_2, \dots, a_n) = \prod_{1 \leq j < k \leq n} (a_j - a_k).$$

Proof: I may include a proof later.

4.10 Definition: When R is an integral domain and $f(x)$ and $g(x)$ are polynomials in $R[x]$ given by $f(x) = \sum_{i=0}^n a_i x^i$ and $g(x) = \sum_{j=0}^m b_j x^j$, the **resultant matrix** of $f(x)$ and $g(x)$ is the matrix

$$R(f, g) = \begin{pmatrix} a_0 & 0 & \cdots & 0 & b_0 & \cdots & 0 \\ a_1 & a_0 & & & b_1 & \ddots & \vdots \\ \vdots & a_1 & \ddots & \vdots & \vdots & & b_0 \\ a_n & \vdots & & a_0 & \vdots & & b_1 \\ 0 & a_n & & a_1 & b_m & & \vdots \\ \vdots & \ddots & \vdots & \vdots & \ddots & & \vdots \\ 0 & \cdots & \cdots & a_n & 0 & \cdots & b_m \end{pmatrix} \in M_{n+m}(R)$$

where the first m columns involve the coefficients a_i and the last m columns involve b_j .

4.11 Theorem: Let R be a ring with $R \subseteq \mathbf{C}$ and let $f(x), g(x) \in R[x]$ with $\deg(f) = n$ and $\deg(g) = m$. Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be the roots of $f(x)$ in \mathbf{C} and let $\beta_1, \beta_2, \dots, \beta_m$ be the

roots of $g(x)$ in \mathbf{C} . Then

$$\begin{aligned}\det R(f, g) &= (-1)^{nm} a_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (\alpha_i - \beta_j) \\ &= (-1)^{nm} b_m^n \prod_{j=1}^m f(\beta_j) = (-1)^{nm} a_n^m \prod_{i=1}^n g(\alpha_i).\end{aligned}$$

Proof: I may include a proof later.

4.12 Theorem: Let K and L be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq \mathbf{C}$ such that $[L : K] = n$. Let $a \in L$ be such that $K = L(a)$. Recall that $\{1, a, a^2, \dots, a^{n-1}\}$ is a basis for L over K . Let $p(x) \in K[x]$ be the minimal polynomial for a over K , and let a_1, a_2, \dots, a_n be the roots of $p(x)$ in \mathbf{C} . Then

$$\begin{aligned}d(1, a, a^2, \dots, a^{n-1}) &= \det V(a_1, a_2, \dots, a_n)^2 = \prod_{1 \leq i < j \leq n} (a_i - a_j)^2 \\ &= (-1)^{\binom{n}{2}} N(p'(a)) = (-1)^{\binom{n}{2}} \det R(p, p').\end{aligned}$$

Proof: Let $\text{Hom}_K(L, \mathbf{C}) = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$ where $\sigma_i(a) = a_i$. By Theorem 3.6, we have $d(1, a, \dots, a^{n-1}) = (\det B)^2$ where $B_{j,k} = \sigma_j(a^{k-1})$. Notice that $B_{j,k} = \sigma_j(a^{k-1}) = a_j^{k-1}$ which is equal to the (j, k) -entry of the Vandermonde matrix $V(a_1, \dots, a_n)$ so we have

$$d(1, a, \dots, a^{n-1}) = (\det B)^2 = \det V(a_1, a_2, \dots, a_n)^2 = \prod_{1 \leq i < j \leq n} (a_i - a_j)^2.$$

Next note that since $p(x) = \prod_{i=1}^n (x - a_i)$ we have $p'(x) = \sum_{i=1}^n \prod_{j \neq i} (x - a_j)$ and so for each index i we have $p'(a_i) = \prod_{j \neq i} (a_i - a_j)$. It follows that

$$\begin{aligned}N(p'(a)) &= \prod_{i=1}^n \sigma_i(p'(a)) = \prod_{i=1}^n p'(\sigma_i(a)) = \prod_{i=1}^n p'(a_i) = \prod_{i=1}^n \prod_{j \neq i} (a_i - a_j) \\ &= (-1)^{\binom{n}{2}} \prod_{1 \leq i < j \leq n} (a_i - a_j)^2 = (-1)^{\binom{n}{2}} d(1, a, \dots, a^{n-1}).\end{aligned}$$

Finally, by putting $f = p$ and $g = p'$ into the formula $\det R(f, g) = (-1)^{nm} a_n^m \prod_{i=1}^n g(\alpha_i)$ we obtain

$$\det R(p, p') = (-1)^{n(n-1)} 1^{n-1} \prod_{i=1}^n p'(a_i) = \prod_{i=1}^n p'(a_i) = N(p'(a)).$$

4.13 Definition: When R is a commutative ring and $p(x) \in R[x]$ is monic, we define the **discriminant** of $p(x)$ to be

$$d(p) = (-1)^{\binom{n}{2}} \det R(p, p').$$

When $p(x)$ is the minimal polynomial of $a \in L$ over K we have $d(1, a, \dots, a^{n-1}) = d(p)$.

4.14 Exercise: Show that when $p(x) = x^2 + bx + c$ we have $d(p) = b^2 - 4c$ and when $p(x) = x^3 + px + q$ we have $d(p) = -(4p^3 + 27q^2)$.

4.15 Corollary: Let K and L be fields with $\mathbf{Q} \subseteq K \subseteq L \subseteq \mathbf{C}$ such that $[L : K] = n$ and let $v_1, v_2, \dots, v_n \in L$. Then $\{v_1, v_2, \dots, v_n\}$ is linearly independent over K if and only if $d(v_1, v_2, \dots, v_n) \neq 0$.

Proof: Let $V = \{v_1, v_2, \dots, v_n\}$. Choose $a \in L$ so that $L = K(a)$. Let $U = \{1, a, \dots, a^{n-1}\}$ and note that U is linearly independent. Let $f(x)$ be the minimal polynomial for a over K . Let a_1, a_2, \dots, a_n be the roots of f in \mathbf{C} . Since the roots a_i are distinct, we have $d(1, a, \dots, a^{n-1}) = \prod_{1 \leq i < j \leq n} (a_i - a_j)^2 \neq 0$. Let C be the matrix $C = ([v_1]_U, [v_2]_U, \dots, [v_n]_U)$.

By the Change of Basis Theorem we have $d(v_1, v_2, \dots, v_n) = (\det C)^2 d(1, a, \dots, a^{n-1})$. Since $d(1, a, \dots, a^{n-1}) \neq 0$ it follows that $d(v_1, v_2, \dots, v_n) \neq 0$ if and only if $\det C \neq 0$, and we recall, from linear algebra, that V is linearly independent if and only if $\det C \neq 0$.

4.16 Theorem: Let K be an algebraic number field and let $T = T_{K/\mathbf{Q}}$ and $N = N_{K/\mathbf{Q}}$. When $u \in \mathcal{O}_K$ we have $T(u) \in \mathbf{Z}$ and $N(u) \in \mathbf{Z}$. It follows that u is a unit in \mathcal{O}_K if and only if $N(u) = \pm 1$.

Proof: Let $u \in K$. Let f be the minimal polynomial of u over \mathbf{Q} . For each $\sigma \in \text{Hom}_{\mathbf{Q}}(K, \mathbf{C})$ we note that $f(\sigma(u)) = \sigma(f(u)) = \sigma(0) = 0$ so that $\sigma(u)$ is also a root of f , and so $\sigma(u)$ is integral over \mathbf{Z} . Since $T(u) = \sum_{\sigma \in \text{Hom}_{\mathbf{Q}}(K, \mathbf{C})} \sigma(u)$ and each $\sigma(u)$ is integral over \mathbf{Z} , it follows

that $T(u)$ is integral over \mathbf{Z} . Since $T(u) \in \mathbf{Q}$ and $T(u)$ is integral over \mathbf{Z} , it follows that $T(u) \in \mathbf{Z}$ (indeed if $a \in \mathbf{Q}$ then its minimal polynomial over \mathbf{Q} is $g(x) = x - a$, and if a is also integral over \mathbf{Z} then the coefficients of g lie in \mathbf{Z} so that $a \in \mathbf{Z}$). Similarly $N(u) \in \mathbf{Z}$.

4.17 Theorem: Let K be an algebraic number field with $[K : \mathbf{Q}] = n$. Then \mathcal{O}_K is a free \mathbf{Z} -module of rank n . Indeed there exist elements $u_1, u_2, \dots, u_n \in \mathcal{O}_K$ such that $\{u_1, u_2, \dots, u_n\}$ is a basis for K over \mathbf{Q} and $\{u_1, u_2, \dots, u_n\}$ is a basis for \mathcal{O}_K over \mathbf{Z} .

Proof:

4.18 Definition: Let K be an algebraic number field. An **integral basis** for K (or an **integral basis** for \mathcal{O}_K) is a set $U = \{u_1, u_2, \dots, u_n\}$ with each $u_i \in \mathcal{O}_K$ such that U is a basis for K over \mathbf{Q} and U is a basis for \mathcal{O}_K over \mathbf{Z} .

4.19 Example: When K is the quadratic number field $K = \mathbf{Q}(\sqrt{d})$ where $d \in \mathbf{Z}$ is square-free we have $\mathcal{O}_K = \text{Span}_{\mathbf{Z}}\{1, \omega\}$ where $\omega = \sqrt{d}$ if $d \neq 1 \pmod{4}$ and $\omega = \frac{1+\sqrt{d}}{2}$ if $d = 1 \pmod{4}$, and so $\{1, \omega\}$ is an integral basis for K . When $d \neq 1 \pmod{4}$ and $\omega = \sqrt{d}$, the minimal polynomial of ω is $p(x) = x^2 - d$ and we have $d(K) = d(p) = 4d$. When $d = 1 \pmod{4}$ and $\omega = \frac{1+\sqrt{d}}{2}$, the minimal polynomial of ω is $p(x) = x^2 - x + \frac{1-d}{4}$ and we have $d(K) = d(p) = d$.

4.20 Theorem: Let K be an algebraic number field and let $\{u_1, \dots, u_n\}$ and $\{v_1, \dots, v_n\}$ be two integral bases for K . Then $d(u_1, u_2, \dots, u_n) = d(v_1, v_2, \dots, v_n)$.

Proof: I may include a proof later.

4.21 Definition: Let K be an algebraic number field. We define the **discriminant** of K (or the **discriminant** of \mathcal{O}_K) to be $d(K) = d(u_1, u_2, \dots, u_n) \in \mathbf{Z}$ where $\{u_1, u_2, \dots, u_n\}$ is any integral basis for K .

4.22 Theorem: (Stickelberger) Let K be an algebraic number field. Then

$$d(K) \in \{0, 1\} \pmod{4}.$$

Proof: I may include a proof later.

4.23 Exercise: Let $K = \mathbf{Q}(u)$ where u is a root of the polynomial $f(x) = x^3 - x + 2$. Show that $\mathcal{O}_K = \mathbf{Z}[u]$ and that $\{1, u, u^2\}$ is an integral basis for K .

4.24 Theorem: Let K be an algebraic number field with $[K : \mathbf{Q}] = n$. Let $\{u_1, u_2, \dots, u_n\}$ be a basis for K over \mathbf{Q} with each $u_i \in \mathcal{O}_K$ and let $d = d(u_1, u_2, \dots, u_n)$. Then we have

$$\text{Span}_{\mathbf{Z}}\{u_1, u_2, \dots, u_n\} \subseteq \mathcal{O}_K \subseteq \text{Span}_{\mathbf{Z}}\left\{\frac{u_1}{d}, \frac{u_2}{d}, \dots, \frac{u_n}{d}\right\}.$$

Proof: I may include a proof later.

4.25 Theorem: Let K and L be algebraic number fields with $[K : \mathbf{Q}] = k$ and $[L : \mathbf{Q}] = \ell$. Let $U = \{u_1, \dots, u_k\}$ be an integral basis for K and let $V = \{v_1, \dots, v_\ell\}$ be an integral basis for L . Let $M = KL = \left\{ \sum_{i=1}^n a_i b_i \mid n \in \mathbf{Z}^+, a_i \in K, b_i \in L \right\}$. Suppose that $[M : \mathbf{Q}] = k\ell$ and that $\gcd(d(K), d(L)) = 1$. Then $W = \{u_i v_j \mid u_i \in U, v_j \in V\}$ is an integral basis for M and we have $d(M) = d(K)^\ell d(L)^k$.

Proof: I may include a proof later.