Chapter 3. Galois Theory

3.1 Theorem: (The Separability of Subfields of C) Let K be a field with Q C K C C
and let f(x) € K[z]. If f(x) is irreducible in K|z|, then f(x) has no multiple roots in C.

Proof: Suppose that f(z) has a multiple root in C. Choose a € C such that (x—a)zlf(x) in
Claz], say f(z) = (x—a)?g(z) with g(z) € C[z]. Since f'(z) = 2(z —a)g(a) + (z - a)’¢'(x),
we see that (z —a)|f'(x) in Clz]. Since (z—a)|f() and (z —a)| f'(z) we have (z —a)|d(z)
where d(z) = ged (f(), f'(z)) in Clz]. Since f(z) € K[z] and f'(z) € K[z], when we
calculate d(z) using the Euclidean Algorithm we obtain d(z) € K [z] and we have d(z)| f (=
in K[z] and d(z)|f'(z) in K[z]. Since (z — a)|d(z) in Clz] we have deg(d) > 1. Slnce
)| f'(z) and deg(f’ ) = deg(f) — 1, we have deg(d) < deg(f). Since d(z)|f(z) in K[x]
and 1 < deg(d) < deg(f) it follows that f(x) is reducible in K|x].

3.2 Theorem: (The Primitive Element Theorem) Let K and L be fields with Q C K C
L C C. If[L : K] is finite then there exists an element a € L such that L = K]Ja].

Proof: Suppose that [L : K] is finite. Let {uy,us,--,u,} be a basis for L over K. Then
we have L = K[uy,us, -, uy,]. Note that it suffices for us to show that for all u,v € L we
can find w € L such that K[u,v] = K[w] because then we can find elements w; such that

Kluy, us]=wsq , Klu1,ug, ug)=Klws, ug)=Klws] , Klui,us,us, us]=K[ws, us] = K[w,]

and so on. Let u,v € L. Let f(x) € K[x] be the minimal polynomial of u over K and
let g(z) € K|z] be the minimal polynomial of v over K. Let ay,as,---,a; be the roots of
f(z) in C with a1 = u, and let by, ba, - - -, by be the roots of g(z) in C with b3 = v. Choose
any element ¢t € K such that ¢ # —*= a; for any indices 7,7 and let w = u + tv. Note that
w=u+tv € Klu,v] so we have K[ | € Klu,v]. We claim that K[u,v] C K[w]. Let
hz) = f(w—tz) = fu+t(v—z)) € K[w][z] and let d(z) = ged (g(z), h(z)) € K[w][z].
Note that v is a root of d(z) since g(v) = 0 and h(v) = g(w — tv) = h(u) = 0. Our choice
of ¢t ensures that v is the only common root of g(x) and h(z) in C. Indeed, given z € C,
if g(z) = 0 then we must have x = b; for some index j, and if z = b; and h(z) = 0 then
we must have 0 = h(b;) = f(u +t(v —b;)) so that u+t(v—b;) = a; for some index 4, but
then ¢t = ﬁ Since v is the only common root of g(z) and h(z) in C it follows that
d(x) = (x — v). Since d(z) = (x —v) and d(x) € K[w|[x] it follows that v € K[w]. Since
v € K[w] and u = w — tv we also have u € K[w]. Since v € K[w] and v € K[w] it follows
that K[u,v] C K[w], as claimed.

3.3 Definition: Let K, L and M be fields with K C L C M. An embedding of L into
M is an injective ring homomorphism ¢ : L — M. An automorphism of L is a bijective
ring homomorphism ¢ : L — L. For a ring homomorphism ¢ : L — M, we say that ¢
fixes K, or that ¢ is K-fixing, when ¢(x) = x for all x € K. We use the notation

Hom (L, M) = {K-ﬁxing embeddings ¢ : L — M}
Aut (L) = { K-fixing automorphhisms ¢ : L — L}.
Note that Aut,-(L) is a group and we have Aut (L) C Hom (L, M).




3.4 Note: Let K, L and M be fields with K C L C M such that [L : K] finite. For
¢ € Hom (L, M) we have ¢ € Aut (L)<= ¢(L) C L.

Proof: Let ¢ € Hom,(L,M). If ¢ € Aut, (L) then we have ¢(L) = L so ¢(L) C L.
Suppose, conversely, that ¢(L) C L. Since ¢ fixes K we have K C ¢(L). Since ¢ gives
a K-fixing isomorphism ¢ : L — ¢(L), if {uy,us, -, u,} is a basis for L over K then
{p(w1), -+, d(uy,)} is a basis for ¢(L) over K, and so we have [¢(L) : K| = [L : K]. Since
K C¢(L) C Land [¢(L) : K] = [L : K], it follows that ¢(L) = L and so ¢ € Aut,(L).
3.5 Theorem: (The Embedding Extension Theorem) Let K be a field with Q C K C C.

Let a € C be algebraic over K and let n = [K(a) : K]. Then every embedding of K into
C extends to exactly n embeddings of L into C.

Proof: Let ¢ : K — C be an embedding of K into C. Let f(x) € K[x] be the minimal
polynomial of a over K. Say f(z) = > ¢;z* with each ¢; € K and ¢, = 1. Let ¢ : L — C
i=0

be an embedding of L into C. In order for ¢ to extend ¢, we must have ¥(c¢;) = ¢(c;) for
all indices ¢ so that

0 = 4(0) = ¥(f(a)) = ¥( ; ¢ia?) = g b(ei)(a)’ = ; lei)ila).

This shows that for 1 to extend ¢, the element ¢ (a) must be a root of the polynomial
g(z) = > ¢(c;)x* which lies in ¢(K)[z]. Since ¢ : K — ¢(K) is an isomorphism, the map
i—0

® : K[z] = ¢(K)[z] given by ®( > w;z;) =Y ¢(u;)z’ is also an isomorphism. Since f(z)
is irreducible in K [x] with deg(f) = n, and we have g(x) = ®(f(z)), it follows that g(x) is
irreducible in ¢(K)[z] with deg(g) = n. Let by,ba,- -, b, be the roots of g(x) in C. Thus
in order for ¢ to extend ¢, we must have ¢(a) = by for some index k. On the other hand,
for each index k, there is a unique embedding ¢y, : L — C with 9y (a) = bg. Indeed the set

{1,a,a%,---,a™ 1} is a basis for L over K, so each x € L can be written uniquely in the
n—1 .
form > r;a” with each r; € K, and the unique embedding vy : L — C with ¢ (a) = by
i=0
must be given by the formula
n—1 ) n—1 .
Ur( X mat) = 3 o(r)by’,
i=0 i=0

and the above formula does indeed define an embedding ¥ : L. — C which extends ¢. We
also remark that the above map 1), gives an isomorphism ¢, : L = K[a] — ¢(K)[bs].

3.6 Corollary: Let K and L be fields with Q C K C L C C. If [L : K] =n € Z* then
every embedding of K into C extends to exactly n embeddings of L into C.

Proof: Suppose [L : K| = n. By the Primitive Element Theorem, we can choose a € L
such that L = K(a). By the above theorem, every embedding of K into C extends to
exactly n embeddings of L = K(a) into C.

3.7 Corollary: Let K and L be fields with Q C K C L C C with [L : K] finite. Then
[Hom . (L,C)| = [L : K].

Proof: Let n = [L : K]. The identity embedding I : K — C (given by I(z) = x for all
x € K) extends to exactly n embeddings of L into C. These are precisely the elements in
Hom, (L, C).



3.8 Definition: Let K and L be a fields with Q C K C L C C and let f(z) € K[z]. We
say that f(x) splits in L when f(z) factors completely into linear factors in L[z]. We say
that L is the splitting field of f(x) when L = K(ay,as,---,a,) where a,as, -, a, are
the roots of f(z) in C.

3.9 Theorem: Let K and L be fields with Q C K C L C C such that [L : K] is finite.
Then the following statements are equivalent:

(1) |Aut,(L)| = [L : K],

(2) Hom (L, C) = Aut (L),

(3) for every a € L, the minimal polynomial of a over K splits in L, and
(4) L is the splitting field of some polynomial f(x) € K|x].

Proof: First let us show that (1) <= (2). Note that [Hom (L, C)| = [L : K] because the
identity embedding I : K — C given by I(z) = x for all z € K extends to exactly [L : K]
embeddings from L into C. Since Aut,.(L) € Hom (L, C), it follows that (1) <= (2).

Next, let us prove that (2) = (3). Suppose that Hom . (L,C) = Aut.(L). Let a € L
and let f(z) € K[z] be the minimal polynomial for @ over K. Let ay,as,- - -, as be the roots
of f(z) in C with a = a;. Note that [K(a) : K| = deg(f) = ¢. The identity embedding
I : K — C extends to the ¢ embeddings ¢, : K(a) — C with ¢;(a) = a;. Each embedding
¢; : K — C extends to at least one embedding v; : L — C. Since ¢; fixes K and v;
extends ¢, it follows that ; also fixes K. Since 1; € Hom (L, C) = Aut,.(L), we have
Yj(x) € L for all z € L so, in particular, we have a; = 1;(a) € L. Since a; € L for all
indices j, it follows that f(z) splits in L.

Now let us prove that (3) = (4). Suppose that for every a € L the minimal polyno-
mial of a over K splits in L. Choose a € L so that L = K(a). Let f(x) € K|z]| be the
minimal polynomial of @ over K, and let ay, as, - - -, a,, be the roots of f(z) in C with a = a;.
Since f(z) splits in L, each a; € L. It follows that L = K(a) = K(a1) = K(a1,a2,- -, an).
Thus L is the splitting field of f(z).

Finally, let us prove that (4) = (1). Let L be the splitting field of f(z) € KJ[z] over
K. Let aj,as,- -, ay be the roots of f(z) in C and note that each a; € L. If f(z) has only
linear factors in K[z] then we have K = L and |Aut,(L)| = 1 = [L : K]. Otherwise, let
g1(x) € K[z] be a nonlinear irreducible factor of f(x) in Kz]|. Let a1,1,a1.2,---,a1,, be
the roots of g1 (z) in C. Note that {a1,1,---,a1,¢,} C {a1,a2,---,a,} and that deg(g1) =
¢y = [K(a1,1) : K]. The identity embedding I : K — C extends to the ¢; embeddings
¢4, + K(a1,1) = K(a1,,) € L determined by ¢;,(a1,1) = a1,j,. Note that since L is the
splitting field of f(z) over K, it is also the splitting field of f(x) over K (a1 1). If f(x) splits
in K(ay,1) then L = K(a1,1) = L(a;,j,) and we are done. Otherwise, let go(x) € K(a1,1)[z]
be a nonlinear irreducible factor of f(z) in K(ay1)[x]. Let as1,a22, - -,a24, be the
roots of gso(x) in C. Note that {a11,---,a1,0,,a21, - -,a20,} < {a1,---,a,} and that
deg(gg) = £2 = [K(al,l,azl) : K(CLLl)]. The 61 embeddings ¢j1 : K(al,l) — C extend
to give a total of ¢1¢y embeddings ¢;, j, : K(a1,1,a21) — C where ¢;, j,(az21) = asz,j,.
Repeating this procedure inductively, we eventually obtain L = K(a11,a2.1, -, Gm 1) after
m steps giving a total of {145 - - - ¢, embeddings ¢;, j,.....j,. : K(a11, -, am,1) = C with
[K(am, cee ,CLi,l) . K(al,l, s ,ai,m)} = Ez and 5162 tee gm =n = [L : K] Since the image
of the embedding ¢;,,...;, : L - Cisafield Ewith K CECLand [E: K|=n=[L: K],
we must have I/ = L so that ¢;, ... ;, is an automorphism of L. This procedure produces
every possible K-fixing embedding of L in C, and every one of them is an automorphism
of L, so we have |[Hom (L, C)| = |[Aut, (L)| = l14s -y, =n = [L : K.



3.10 Definition: When K and L are fields with Q C K C L C C and [L : K] is finite, we
say that L is Galois over K when the equivalent statements in the above theorem hold.

3.11 Definition: Let K and L be fields with Q C K C L C C. The Galois group of L
over K is the group Aut, (L). For a subgroup H C G, the fixed field of H is the set

Fix(H) ={z € L|o(z) =x forall o0 € H}.
It is not difficult to verify that Fix(H) is a subfield of L.



