
Chapter 3. Galois Theory

3.1 Theorem: (The Separability of Subfields of C) Let K be a field with Q ⊆ K ⊆ C
and let f(x) ∈ K[x]. If f(x) is irreducible in K[x], then f(x) has no multiple roots in C.

Proof: Suppose that f(x) has a multiple root in C. Choose a ∈ C such that (x−a)2
∣∣f(x) in

C[x], say f(x) = (x−a)2g(x) with g(x) ∈ C[x]. Since f ′(x) = 2(x−a)g(a)+(x−a)2g′(x),
we see that (x−a)

∣∣f ′(x) in C[x]. Since (x−a)
∣∣f(x) and (x−a)

∣∣f ′(x) we have (x−a)
∣∣d(x)

where d(x) = gcd
(
f(x), f ′(x)

)
in C[x]. Since f(x) ∈ K[x] and f ′(x) ∈ K[x], when we

calculate d(x) using the Euclidean Algorithm we obtain d(x) ∈ K[x] and we have d(x)
∣∣f(x)

in K[x] and d(x)
∣∣f ′(x) in K[x]. Since (x − a)

∣∣d(x) in C[x] we have deg(d) ≥ 1. Since

d(x)
∣∣f ′(x) and deg(f ′) = deg(f) − 1, we have deg(d) < deg(f). Since d(x)

∣∣f(x) in K[x]
and 1 ≤ deg(d) < deg(f) it follows that f(x) is reducible in K[x].

3.2 Theorem: (The Primitive Element Theorem) Let K and L be fields with Q ⊆ K ⊆
L ⊆ C. If [L : K] is finite then there exists an element a ∈ L such that L = K[a].

Proof: Suppose that [L : K] is finite. Let {u1, u2, · · · , un} be a basis for L over K. Then
we have L = K[u1, u2, · · · , un]. Note that it suffices for us to show that for all u, v ∈ L we
can find w ∈ L such that K[u, v] = K[w] because then we can find elements wi such that

K[u1, u2]=w2 , K[u1, u2, u3]=K[w2, u3]=K[w3] , K[u1, u2, u3, u4]=K[w3, u4]=K[w4]

and so on. Let u, v ∈ L. Let f(x) ∈ K[x] be the minimal polynomial of u over K and
let g(x) ∈ K[x] be the minimal polynomial of v over K. Let a1, a2, · · · , ak be the roots of
f(x) in C with a1 = u, and let b1, b2, · · · , b` be the roots of g(x) in C with b1 = v. Choose
any element t ∈ K such that t 6= −u−ai

v−bj for any indices i, j and let w = u+ tv. Note that

w = u + tv ∈ K[u, v] so we have K[w] ⊆ K[u, v]. We claim that K[u, v] ⊆ K[w]. Let
h(x) = f(w − tx) = f(u + t(v − x)) ∈ K[w][x] and let d(x) = gcd

(
g(x), h(x)

)
∈ K[w][x].

Note that v is a root of d(x) since g(v) = 0 and h(v) = g(w − tv) = h(u) = 0. Our choice
of t ensures that v is the only common root of g(x) and h(x) in C. Indeed, given x ∈ C,
if g(x) = 0 then we must have x = bj for some index j, and if x = bj and h(x) = 0 then
we must have 0 = h(bj) = f

(
u+ t(v− bj)

)
so that u+ t(v− bj) = ai for some index i, but

then t = −u−ai

v−bj . Since v is the only common root of g(x) and h(x) in C it follows that

d(x) = (x − v). Since d(x) = (x − v) and d(x) ∈ K[w][x] it follows that v ∈ K[w]. Since
v ∈ K[w] and u = w − tv we also have u ∈ K[w]. Since u ∈ K[w] and v ∈ K[w] it follows
that K[u, v] ⊆ K[w], as claimed.

3.3 Definition: Let K, L and M be fields with K ⊆ L ⊆ M . An embedding of L into
M is an injective ring homomorphism φ : L→M . An automorphism of L is a bijective
ring homomorphism φ : L → L. For a ring homomorphism φ : L → M , we say that φ
fixes K, or that φ is K-fixing, when φ(x) = x for all x ∈ K. We use the notation

Hom
K

(L,M) =
{
K-fixing embeddings φ : L→M

}
Aut

K
(L) =

{
K-fixing automorphhisms φ : L→ L

}
.

Note that Aut
K

(L) is a group and we have Aut
K

(L) ⊆ Hom
K

(L,M).
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3.4 Note: Let K, L and M be fields with K ⊆ L ⊆ M such that [L : K] finite. For
φ ∈ Hom

K
(L,M) we have φ ∈ Aut

K
(L)⇐⇒φ(L) ⊆ L.

Proof: Let φ ∈ Hom
K

(L,M). If φ ∈ Aut
K

(L) then we have φ(L) = L so φ(L) ⊆ L.
Suppose, conversely, that φ(L) ⊆ L. Since φ fixes K we have K ⊆ φ(L). Since φ gives
a K-fixing isomorphism φ : L → φ(L), if {u1, u2, · · · , un} is a basis for L over K then
{φ(u1), · · · , φ(un)

}
is a basis for φ(L) over K, and so we have [φ(L) : K] = [L : K]. Since

K ⊆ φ(L) ⊆ L and [φ(L) : K] = [L : K], it follows that φ(L) = L and so φ ∈ Aut
K

(L).

3.5 Theorem: (The Embedding Extension Theorem) Let K be a field with Q ⊆ K ⊆ C.
Let a ∈ C be algebraic over K and let n = [K(a) : K]. Then every embedding of K into
C extends to exactly n embeddings of L into C.

Proof: Let φ : K → C be an embedding of K into C. Let f(x) ∈ K[x] be the minimal

polynomial of a over K. Say f(x) =
n∑

i=0

cix
i with each ci ∈ K and cn = 1. Let ψ : L→ C

be an embedding of L into C. In order for ψ to extend φ, we must have ψ(ci) = φ(ci) for
all indices i so that

0 = ψ(0) = ψ
(
f(a)

)
= ψ

( n∑
i=0

cia
i
)

=
n∑

i=0

φ(ci)ψ(a)i =
n∑

i=0

ψ(ci)ψ(a)i.

This shows that for ψ to extend φ, the element ψ(a) must be a root of the polynomial

g(x) =
n∑

i−0
φ(ci)x

i which lies in φ(K)[x]. Since φ : K → φ(K) is an isomorphism, the map

Φ : K[x]→ φ(K)[x] given by Φ
(∑

uixi
)

=
∑
φ(ui)x

i is also an isomorphism. Since f(x)
is irreducible in K[x] with deg(f) = n, and we have g(x) = Φ(f(x)), it follows that g(x) is
irreducible in φ(K)[x] with deg(g) = n. Let b1, b2, · · · , bn be the roots of g(x) in C. Thus
in order for ψ to extend φ, we must have ψ(a) = bk for some index k. On the other hand,
for each index k, there is a unique embedding ψk : L→ C with ψk(a) = bk. Indeed the set
{1, a, a2, · · · , an−1} is a basis for L over K, so each x ∈ L can be written uniquely in the

form
n−1∑
i=0

ria
i with each ri ∈ K, and the unique embedding ψk : L → C with ψk(a) = bk

must be given by the formula

ψk

( n−1∑
i=0

ria
i
)

=
n−1∑
i=0

φ(ri)bk
i,

and the above formula does indeed define an embedding ψk : L→ C which extends φ. We
also remark that the above map ψk gives an isomorphism ψk : L = K[a]→ φ(K)[bk].

3.6 Corollary: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C. If [L : K] = n ∈ Z+ then
every embedding of K into C extends to exactly n embeddings of L into C.

Proof: Suppose [L : K] = n. By the Primitive Element Theorem, we can choose a ∈ L
such that L = K(a). By the above theorem, every embedding of K into C extends to
exactly n embeddings of L = K(a) into C.

3.7 Corollary: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C with [L : K] finite. Then∣∣Hom
K

(L,C)
∣∣ = [L : K].

Proof: Let n = [L : K]. The identity embedding I : K → C (given by I(x) = x for all
x ∈ K) extends to exactly n embeddings of L into C. These are precisely the elements in
Hom

K
(L,C).
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3.8 Definition: Let K and L be a fields with Q ⊆ K ⊆ L ⊆ C and let f(x) ∈ K[x]. We
say that f(x) splits in L when f(x) factors completely into linear factors in L[x]. We say
that L is the splitting field of f(x) when L = K(a1, a2, · · · , an) where a1, a2, · · · , an are
the roots of f(x) in C.

3.9 Theorem: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C such that [L : K] is finite.
Then the following statements are equivalent:

(1)
∣∣Aut

K
(L)
∣∣ = [L : K],

(2) Hom
K

(L,C) = Aut
K

(L),

(3) for every a ∈ L, the minimal polynomial of a over K splits in L, and

(4) L is the splitting field of some polynomial f(x) ∈ K[x].

Proof: First let us show that (1)⇐⇒ (2). Note that
∣∣Hom

K
(L,C)

∣∣ = [L : K] because the
identity embedding I : K → C given by I(x) = x for all x ∈ K extends to exactly [L : K]
embeddings from L into C. Since Aut

K
(L) ⊆ Hom

K
(L,C), it follows that (1)⇐⇒ (2).

Next, let us prove that (2) =⇒ (3). Suppose that Hom
K

(L,C) = Aut
K

(L). Let a ∈ L
and let f(x) ∈ K[x] be the minimal polynomial for a over K. Let a1, a2, · · · , a` be the roots
of f(x) in C with a = a1. Note that [K(a) : K] = deg(f) = `. The identity embedding
I : K → C extends to the ` embeddings φj : K(a)→ C with φj(a) = aj . Each embedding
φj : K → C extends to at least one embedding ψj : L → C. Since φj fixes K and ψj

extends φj , it follows that ψj also fixes K. Since ψj ∈ Hom
K

(L,C) = Aut
K

(L), we have
ψj(x) ∈ L for all x ∈ L so, in particular, we have aj = ψj(a) ∈ L. Since aj ∈ L for all
indices j, it follows that f(x) splits in L.

Now let us prove that (3) =⇒ (4). Suppose that for every a ∈ L the minimal polyno-
mial of a over K splits in L. Choose a ∈ L so that L = K(a). Let f(x) ∈ K[x] be the
minimal polynomial of a overK, and let a1, a2, · · · , an be the roots of f(x) in C with a = a1.
Since f(x) splits in L, each ai ∈ L. It follows that L = K(a) = K(a1) = K(a1, a2, · · · , an).
Thus L is the splitting field of f(x).

Finally, let us prove that (4) =⇒ (1). Let L be the splitting field of f(x) ∈ K[x] over
K. Let a1, a2, · · · , an be the roots of f(x) in C and note that each ai ∈ L. If f(x) has only
linear factors in K[x] then we have K = L and |Aut

K
(L)| = 1 = [L : K]. Otherwise, let

g1(x) ∈ K[x] be a nonlinear irreducible factor of f(x) in K[x]. Let a1,1, a1,2, · · · , a1,`1 be
the roots of g1(x) in C. Note that {a1,1, · · · , a1,`1} ⊆ {a1, a2, · · · , an} and that deg(g1) =
`1 = [K(a1,1) : K]. The identity embedding I : K → C extends to the `1 embeddings
φj1 : K(a1,1) → K(a1,j1) ⊆ L determined by φj1(a1,1) = a1,j1 . Note that since L is the
splitting field of f(x) over K, it is also the splitting field of f(x) over K(a1,1). If f(x) splits
in K(a1,1) then L = K(a1,1) = L(a1,j1) and we are done. Otherwise, let g2(x) ∈ K(a1,1)[x]
be a nonlinear irreducible factor of f(x) in K(a1,1)[x]. Let a2,1, a2,2, · · · , a2,`2 be the
roots of g2(x) in C. Note that {a1,1, · · · , a1,`1 , a2,1, · · · , a2,`2} ⊆ {a1, · · · , an} and that
deg(g2) = `2 = [K(a1,1, a2,1) : K(a1,1)]. The `1 embeddings φj1 : K(a1,1) → C extend
to give a total of `1`2 embeddings φj1,j2 : K(a1,1, a2,1) → C where φj1,j2(a2,1) = a2,j2 .
Repeating this procedure inductively, we eventually obtain L = K(a1,1, a2,1, · · · , am,1) after
m steps giving a total of `1`2 · · · `m embeddings φj1,j2,···,jm : K(a1,1, · · · , am,1) → C with[
K(a1,1, · · · , ai,1) : K(a1,1, · · · , ai−1,1)

]
= `i and `1`2 · · · `m = n = [L : K]. Since the image

of the embedding φj1,···,j` : L→ C is a field E with K ⊆ E ⊆ L and [E : K] = n = [L : K],
we must have E = L so that φj1,···,j` is an automorphism of L. This procedure produces
every possible K-fixing embedding of L in C, and every one of them is an automorphism
of L, so we have

∣∣Hom
K

(L,C)
∣∣ =

∣∣Aut
K

(L)
∣∣ = `1`2 · · · `m = n = [L : K].
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3.10 Definition: When K and L are fields with Q ⊆ K ⊆ L ⊆ C and [L : K] is finite, we
say that L is Galois over K when the equivalent statements in the above theorem hold.

3.11 Definition: Let K and L be fields with Q ⊆ K ⊆ L ⊆ C. The Galois group of L
over K is the group Aut

K
(L). For a subgroup H ⊆ G, the fixed field of H is the set

Fix(H) =
{
x ∈ L

∣∣σ(x) = x for all σ ∈ H
}
.

It is not difficult to verify that Fix(H) is a subfield of L.
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