Chapter 2. Algebraic Number Fields

2.1 Definition: When F and K are fields with F' C K, the field K is a vector space over
the field F', and we write [K : F] = dim . K.

2.2 Theorem: Let F, K and L be fields with F C K C L. Then [L : F] = [K : F][L : K]|.
Indeed if U is a basis for K over F' and V is a basis for L over K then

W:{UU‘UEU,UEV}
is a basis for K over F'.
Proof: The proof is left as an exercise.

2.3 Definition: When R and S are commutative rings with R C S and U is a subset of
S, the subring of S generated by U over R, denoted by R[U], is the smallest subring
of S which contains RUU. When U = {uy,ug, -, u,} we write R[U] as Rluy,ug, -+, up],
and we have

R[u17u27"'7un] — {f(UhUQa"'vun) | f S R[,Tl,xQ,"',xn)}.

When S = Fluy,ug, -, uy,] for some uq,ug,---,u, € S, we say that S is finitely gener-
ated as a ring over R. When F' and K are fields with ' C K and U C K, the subfield
of K generated by U over F, denoted by F(U), is the smallest subfield of K which
contains FFUU. When U = {uy,us,--,u,} we write F(U) as F(uy,us, -, u,), and we
have

f(ula"'vun)
g(ula"'7un>

When K = F(uy,---,uy,) for some uy,---,u, € K, we say that K is finitely generated
as a field over F.

F(ul’...7un) :{

f,g € Flz1,---,x,] and g(uy, -, uy) #O}.

2.4 Definition: Let F' and K be fields with F' C K. For a € K, we say that a is algebraic
over F' when there exists a polynomial f(z) € F[z]| such that f(a) = 0 in K, otherwise
we say that a is transcendental over F'. We say that K is algebraic over F' when every
element a € K is algebraic over F', otherwise we say that K is transcendental over F'.
2.5 Theorem: Let F' and K be fields with F' C K and let a € K.

(1) If a is transcendental over F' then we have
Fla] = Flx] and F(a)= F(x).
In this case [F(a) : F] = oo and the set {1,a,a?,---} is linearly independent over F.

(2) If a is algebraic over F' then there is a unique monic irreducible polynomial f(x) € F|[x]
with f(a) = 0, the ideal generated by this polynomial in F[z] is (f) = {g € F[z] | g(a) = 0}
and we have

F(a) = Fla] = Flz]/(f)

and for n = deg(f) the set {1,a,a?,---,a" '} is a basis for F(a) over F' and we have
[F(a): F] =n.

Proof: The proof is left as an exercise.



2.6 Definition: When F' and K are fields with ' C K and a € K is algebraic over F,
the unique monic irreducible polynomial f(z) € K[x] with f(a) = 0 in K is called the
minimal polynomial of a over F.

2.7 Corollary: Let F, K and L be fields with F C K C L and let a € L. If f(x) € F|z]
is the minimal polynomial for a over F' and g(z) € K|z| is the minimal polynomial for a
over K, then we have g(z)| f(z) in K|x].

Proof: The proof is left as an exercise.

2.8 Corollary: Let F' and K be fields with FF C K, Then [K : F] is finite if and only if
K is algebraic and finitely generated as a field over F.

Proof: The proof is left as an exercise.

2.9 Corollary: Let F', K and L be fields with FF C K C L. If L is algebraic over K and
K is algebraic over F' then L is algebraic over F'.

Proof: The proof is left as an exercise.

2.10 Definition: Let R be a commutative ring. A module over R (or an R-module) is
a set A with an element 0 € A, an operations + : A x A — A where for a,b € A we write
+(a,b) as a + b, and an operation x : R x A — A where for r € R and a € A we write
x(r,a) as r - a or as ra, such that

(1) + is associative: for all a,b,c € A we have (a +b) +c=a+ (b+ ¢),

(2) + is commutative: for all a,b € A we have a+b =0+ a,

(3) 0 is an additive identity: for all a € A we have a + 0 = a,

(4) every a € A has a negative: for every a € A there exists b € A such that a +b =0,
(5) x in R is associative with x in A: for all , s € R and all a € A we have (rs)a = r(sa),
(6) 1 € R is a multiplicative identity: for all a € R we have 1-a = a,

(7) x is distributive over + in A: for all r € R and all a,b € A we have r(a+b) = ra+rb,
(8) x is distributive over + in R: for all 7, s € R and all a € A we have (r + s)a = ra + sa.

A submodule of an R-module A is a subset B C A which is also an R-module using the
(restrictions of the) same operations that are used in A. In order for a subset B of A to be
a submodule, it is necessary and sufficient that 0 € B and that for all a,b € B and r € R
we have ra + bnB and ra € B.

2.11 Example: When F'is a field, a module over F' is the same thing as a vector space
over I'. A module over Z is the same thing as an abelian group. For a commutative ring
R, the sets {0} and R are both R-modules, and more generally the set R™ is an R-module
for n € N. An ideal of R is the same thing as a submodule of the R-module R. When R is
a subring of S, every S-module is also an R-module, and in particular S is an R-module.

2.12 Definition: Let R be a commutative ring, let A be an R-module, and let U be a
subset of A. The submodule of A generated by U is the smallest submodule of A
which contains the set U, namely the set

Span _(U) = 3 iU
R( ) {k;o

n € N, each r; € R, each u; GX}
where in the case that n = 0 we take the sum to be equal to 0 € A. We say that U
generates A over R (or that U spans A over R) when A = Span ,(U). We say that A

is finitely generated (as an R-module) when A = Span ,(U) for some finite set U.
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2.13 Theorem: Let R be a subring of S and let A be an S-module. Suppose that
S =Span ,(U) and A = Span (V). Then S = SpanR{uv|u eUveV}.

Proof: Given u € U and v € V, we have uv € A because u € S, v € A and A is an
S-module. It follows that SpanR{uv‘u eU,ve V} C A.

m
Given a € A, since A = Span (V') we can write a = 21 sjv; with each s; € S and each
]:

n

v; € V, and then since S = SpanR(U), for each index j we can write s; = ) 7; ju; (where
i=1

we can use the same value of n for each index j by allowing some of the elements 7; ; to be

zero), and then we have a = > > 7 ju;v;. It follows that A C SpanR{uv‘u ceUwveV}.
i=1j=1

2.14 Definition: Let R be a commutative ring, let A be an R-module. For a subset U C A,
we say that U is linearly independent (over R) when it has the property that for all

n
n € Z*, for all r1,ry,---,7, € R, and for all distinct uy,us, -+, u, € U, if > ru; =0
i=1

then ry = ro = -+ = r, = 0, otherwise we say that U is linearly dependent (over R).
For U C A, we say that U is a basis for A (over R) when U is linearly independent over R
and Span ,(U) = A. We say that A is a free R-module when there exists a subset U C A
which is a basis for A over R.

2.15 Example: When R is a commutative ring and n € N, the set R" is a free R-module
with the usual standard basis {ej, ez, -, €, }.

2.16 Example: For n € ZT, the ring Z,, is a Z-module, but it is not free (since the empty
set does not span Z,, and every nonempty subset of Z,, is linearly dependent).

2.17 Definition: Let R and S be commutative rings with R C S. For a € S, we say the a
is integral over R when there exists a monic polynomial f(z) € R[x] such that f(a) = 0.
We say that S is integral over R when every element a € S is integral over R.

2.18 Theorem: Let R and S be commutative rings with R C S and let a € S. Then the
following are equivalent.

(1) a is integral over R,
(2) the ring R|a] is finitely generated as an R-module, and
(3) a € T for some ring T which is finitely generated as an R-module with R CT C S.

Proof: I may include a proof later.

2.19 Corollary: Let R, S and T be commutative rings with R C S CT. If T is integral
over S and S is integral over R then T is integral over R.

Proof: Suppose that T is integral over S and that S is integral over R. Let a € T'. Since a
n

is integral over S, we can choose a monic polynomial f(z) = _ ¢;z" with each ¢; € S and
i=0
¢n, = 1 such that f(a) =0 in 7. We have a tower of extension rings

R C Rlco] € Rlcog,c1] € -+ C Rleg,c1, -+ en—1] € Rlco, €1, Cn—1,0].

Each ring is finitely generated as a module over the previous ring by the above theorem,
and so Rlcg,c1,- -+, Cn—1,a] is finitely generated over R by Theorem 2.4. Thus a is integral
over R by the above theorem.



2.20 Corollary: Let R and S be commutative rings with R C S. Then the set
R= {a € S’a is integral over R}
is a ring.

Proof: Let a,b € R. In the tower of rings R C R[a] C R[a, b], each ring is finitely generated
as a module over the previous ring, and so R|a, b] is finitely generated over R. It follows
that every element in R|a,b] is integral over R, and in particular, the elements a 4+ b and
ab are integral over R. Thus a £b € R and ab € R and so R is a subring of S.

2.21 Definition: When R and S are commutative rings with R C S, the ring
R= {a € S’a is integral over R}

is called integral closure of R in S. We say that R is integrally closed in S when
R = R (that is when every element in S which is integral over R already lies in R). Note

that R = R and so the ring R is integrally closed in S. When R is an integral domain, we
say that R is integrally closed when R is integrally closed in its quotient field.

2.22 Definition: For a € C, we say that a is algebraic when it is algebraic over Q, and
we say that a is integral when it is integral over Z. An algebraic number field is a field
K with Q C K C C such that [K : Q] is finite. In other words, an algebraic number field
is a subfield of C which is algebraic and finitely generated as a field over Q. The ring of
integral elements in an algebraic number field K, denoted by O, is the integral closure
of Z in K, that is

Ok = {a eK | a is integral over Z}.

2.23 Theorem: Let a € C. Then a is integral if and only if a is algebraic and its minimal
polynomial lies in Z[z].

Proof: If a is algebraic and its minimal polynomial lies in Z[x], then of course a is integral.
Suppose that a is integral. Choose a monic polynomial f(z) € Z[z] such that f(a) = 0.
Write f(z) = g1(x)g2(z) - - gn(z) where each g;(z) is a monic irreducible polynomial in
Z[z]. Since 0 = f(a) = gi(a)g2(a)---gn(a), we must have gx(a) = 0 for some index k.
Since g (x) is monic and irreducible in Z[x], it is also irreducible in Q[z] by Gauss’ Lemma.
Thus g () is equal to the minimal polynomial of a over Q, so the minimal polynomial of
a over Q does indeed lie in Z[z].

2.24 Theorem: Let d € Z* be square-free. Let K = Q(v/d). Then O = Z[w] where
Vd ifd# 1 mod 4,
w =
L4vd jif g = 1 mod 4.
Proof: I may include a solution later.

2.25 Definition: A quadratic number field is an algebraic number field of the form
K = Q(V/d) for some square-free d € Zt. A quadratic integer ring is a ring of the form
Z|w] = Ok for some quadratic number field K.



2.26 Theorem: Let K be an algebraic number field. For every u € K there exists b € Z™
such that bu € Oy

Proof: Let u € K. Since u is algebraic over Q, we can choose a polynomial f(x) € Q[z]

such that f(a) = 0. By multiplying by a common denominator of the coefficients of f(z),

and then by multiplying by —1 if necessary, we obtain a polynomial g(z) = . cpa®
k=0
with each ck € Z and ¢, € Z™ such that g( ) = 0. Mult1p1y both sides of the equality

0=g(a) = E cra® by ¢," ! to get 0 = E cpen U = Z cren” (e u)k. Tt follows
- = k=0

that cxu is a root of the polynomial g(x) = z ckCn" " F~12F which lies in Z[z] and is
monic. Thus c,u is integral over Q and so ¢, u €0 K-

2.27 Corollary: An algebraic number field K is equal to the quotient field of its ring of
integers Ok . In particular, the ring O is integrally closed.



