
Chapter 2. Algebraic Number Fields

2.1 Definition: When F and K are fields with F ⊆ K, the field K is a vector space over
the field F , and we write [K : F ] = dim

F
K.

2.2 Theorem: Let F , K and L be fields with F ⊆ K ⊆ L. Then [L : F ] = [K : F ][L : K].
Indeed if U is a basis for K over F and V is a basis for L over K then

W =
{
uv
∣∣u ∈ U, v ∈ V

}
is a basis for K over F .

Proof: The proof is left as an exercise.

2.3 Definition: When R and S are commutative rings with R ⊆ S and U is a subset of
S, the subring of S generated by U over R, denoted by R[U ], is the smallest subring
of S which contains R∪U . When U = {u1, u2, · · · , un} we write R[U ] as R[u1, u2, · · · , un],
and we have

R[u1, u2, · · · , un] =
{
f(u1, u2, · · · , un)

∣∣ f ∈ R[x1, x2, · · · , xn)
}
.

When S = F [u1, u2, · · · , un] for some u1, u2, · · · , un ∈ S, we say that S is finitely gener-
ated as a ring over R. When F and K are fields with F ⊆ K and U ⊆ K, the subfield
of K generated by U over F , denoted by F (U), is the smallest subfield of K which
contains F ∪ U . When U = {u1, u2, · · · , un} we write F (U) as F (u1, u2, · · · , un), and we
have

F (u1, · · · , un) =

{
f(u1, · · · , un)

g(u1, · · · , un)

∣∣∣∣ f, g ∈ F [x1, · · · , xn] and g(u1, · · · , un) 6= 0

}
.

When K = F (u1, · · · , un) for some u1, · · · , un ∈ K, we say that K is finitely generated
as a field over F .

2.4 Definition: Let F and K be fields with F ⊆ K. For a ∈ K, we say that a is algebraic
over F when there exists a polynomial f(x) ∈ F [x] such that f(a) = 0 in K, otherwise
we say that a is transcendental over F . We say that K is algebraic over F when every
element a ∈ K is algebraic over F , otherwise we say that K is transcendental over F .

2.5 Theorem: Let F and K be fields with F ⊆ K and let a ∈ K.

(1) If a is transcendental over F then we have

F [a] ∼= F [x] and F (a) ∼= F (x).

In this case [F (a) : F ] =∞ and the set {1, a, a2, · · ·} is linearly independent over F .

(2) If a is algebraic over F then there is a unique monic irreducible polynomial f(x) ∈ F [x]
with f(a) = 0, the ideal generated by this polynomial in F [x] is 〈f〉 =

{
g ∈ F [x]

∣∣ g(a) = 0
}

and we have

F (a) = F [a] ∼= F [x]/〈f〉

and for n = deg(f) the set {1, a, a2, · · · , an−1} is a basis for F (a) over F and we have
[F (a) : F ] = n.

Proof: The proof is left as an exercise.
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2.6 Definition: When F and K are fields with F ⊆ K and a ∈ K is algebraic over F ,
the unique monic irreducible polynomial f(x) ∈ K[x] with f(a) = 0 in K is called the
minimal polynomial of a over F .

2.7 Corollary: Let F , K and L be fields with F ⊆ K ⊆ L and let a ∈ L. If f(x) ∈ F [x]
is the minimal polynomial for a over F and g(x) ∈ K[x] is the minimal polynomial for a
over K, then we have g(x)

∣∣f(x) in K[x].

Proof: The proof is left as an exercise.

2.8 Corollary: Let F and K be fields with F ⊆ K, Then [K : F ] is finite if and only if
K is algebraic and finitely generated as a field over F .

Proof: The proof is left as an exercise.

2.9 Corollary: Let F , K and L be fields with F ⊆ K ⊆ L. If L is algebraic over K and
K is algebraic over F then L is algebraic over F .

Proof: The proof is left as an exercise.

2.10 Definition: Let R be a commutative ring. A module over R (or an R-module) is
a set A with an element 0 ∈ A, an operations + : A× A→ A where for a, b ∈ A we write
+(a, b) as a + b, and an operation × : R × A → A where for r ∈ R and a ∈ A we write
×(r, a) as r · a or as ra, such that

(1) + is associative: for all a, b, c ∈ A we have (a + b) + c = a + (b + c),
(2) + is commutative: for all a, b ∈ A we have a + b = b + a,
(3) 0 is an additive identity: for all a ∈ A we have a + 0 = a,
(4) every a ∈ A has a negative: for every a ∈ A there exists b ∈ A such that a + b = 0,
(5) × in R is associative with × in A: for all r, s ∈ R and all a ∈ A we have (rs)a = r(sa),
(6) 1 ∈ R is a multiplicative identity: for all a ∈ R we have 1 · a = a,
(7) × is distributive over + in A: for all r ∈ R and all a, b ∈ A we have r(a+ b) = ra+ rb,
(8) × is distributive over + in R: for all r, s ∈ R and all a ∈ A we have (r+ s)a = ra+ sa.

A submodule of an R-module A is a subset B ⊆ A which is also an R-module using the
(restrictions of the) same operations that are used in A. In order for a subset B of A to be
a submodule, it is necessary and sufficient that 0 ∈ B and that for all a, b ∈ B and r ∈ R
we have ra + bnB and ra ∈ B.

2.11 Example: When F is a field, a module over F is the same thing as a vector space
over F . A module over Z is the same thing as an abelian group. For a commutative ring
R, the sets {0} and R are both R-modules, and more generally the set Rn is an R-module
for n ∈ N. An ideal of R is the same thing as a submodule of the R-module R. When R is
a subring of S, every S-module is also an R-module, and in particular S is an R-module.

2.12 Definition: Let R be a commutative ring, let A be an R-module, and let U be a
subset of A. The submodule of A generated by U is the smallest submodule of A
which contains the set U , namely the set

Span
R

(U) =
{ n∑

k=0

riui

∣∣∣n ∈ N , each ri ∈ R , each ui ∈ X
}

where in the case that n = 0 we take the sum to be equal to 0 ∈ A. We say that U
generates A over R (or that U spans A over R) when A = Span

R
(U). We say that A

is finitely generated (as an R-module) when A = Span
R

(U) for some finite set U .
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2.13 Theorem: Let R be a subring of S and let A be an S-module. Suppose that
S = Span

R
(U) and A = Span

S
(V ). Then S = Span

R

{
uv
∣∣u ∈ U, v ∈ V

}
.

Proof: Given u ∈ U and v ∈ V , we have uv ∈ A because u ∈ S, v ∈ A and A is an
S-module. It follows that Span

R

{
uv
∣∣u ∈ U, v ∈ V

}
⊆ A.

Given a ∈ A, since A = Span
S

(V ) we can write a =
m∑
j=1

sjvj with each sj ∈ S and each

vj ∈ V , and then since S = Span
R

(U), for each index j we can write sj =
n∑

i=1

ri,jui (where

we can use the same value of n for each index j by allowing some of the elements ri,j to be

zero), and then we have a =
n∑

i=1

m∑
j=1

ri,juivj . It follows that A ⊆ Span
R

{
uv
∣∣u ∈ U, v ∈ V

}
.

2.14 Definition: Let R be a commutative ring, let A be an R-module. For a subset U ⊆ A,
we say that U is linearly independent (over R) when it has the property that for all

n ∈ Z+, for all r1, r2, · · · , rn ∈ R, and for all distinct u1, u2, · · · , un ∈ U , if
n∑

i=1

riui = 0

then r1 = r2 = · · · = rn = 0, otherwise we say that U is linearly dependent (over R).
For U ⊆ A, we say that U is a basis for A (over R) when U is linearly independent over R
and Span

R
(U) = A. We say that A is a free R-module when there exists a subset U ⊆ A

which is a basis for A over R.

2.15 Example: When R is a commutative ring and n ∈ N, the set Rn is a free R-module
with the usual standard basis {e1, e2, · · · , en}.

2.16 Example: For n ∈ Z+, the ring Zn is a Z-module, but it is not free (since the empty
set does not span Zn and every nonempty subset of Zn is linearly dependent).

2.17 Definition: Let R and S be commutative rings with R ⊆ S. For a ∈ S, we say the a
is integral over R when there exists a monic polynomial f(x) ∈ R[x] such that f(a) = 0.
We say that S is integral over R when every element a ∈ S is integral over R.

2.18 Theorem: Let R and S be commutative rings with R ⊆ S and let a ∈ S. Then the
following are equivalent.

(1) a is integral over R,
(2) the ring R[a] is finitely generated as an R-module, and
(3) a ∈ T for some ring T which is finitely generated as an R-module with R ⊆ T ⊆ S.

Proof: I may include a proof later.

2.19 Corollary: Let R, S and T be commutative rings with R ⊆ S ⊆ T . If T is integral
over S and S is integral over R then T is integral over R.

Proof: Suppose that T is integral over S and that S is integral over R. Let a ∈ T . Since a

is integral over S, we can choose a monic polynomial f(x) =
n∑

i=0

cix
i with each ci ∈ S and

cn = 1 such that f(a) = 0 in T . We have a tower of extension rings

R ⊆ R[c0] ⊆ R[c0, c1] ⊆ · · · ⊆ R[c0, c1, · · · , cn−1] ⊆ R[c0, c1, · · · , cn−1, a].

Each ring is finitely generated as a module over the previous ring by the above theorem,
and so R[c0, c1, · · · , cn−1, a] is finitely generated over R by Theorem 2.4. Thus a is integral
over R by the above theorem.
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2.20 Corollary: Let R and S be commutative rings with R ⊆ S. Then the set

R =
{
a ∈ S

∣∣a is integral over R
}

is a ring.

Proof: Let a, b ∈ R. In the tower of rings R ⊆ R[a] ⊆ R[a, b], each ring is finitely generated
as a module over the previous ring, and so R[a, b] is finitely generated over R. It follows
that every element in R[a, b] is integral over R, and in particular, the elements a ± b and
ab are integral over R. Thus a± b ∈ R and ab ∈ R and so R is a subring of S.

2.21 Definition: When R and S are commutative rings with R ⊆ S, the ring

R =
{
a ∈ S

∣∣a is integral over R
}

is called integral closure of R in S. We say that R is integrally closed in S when
R = R (that is when every element in S which is integral over R already lies in R). Note

that R = R and so the ring R is integrally closed in S. When R is an integral domain, we
say that R is integrally closed when R is integrally closed in its quotient field.

2.22 Definition: For a ∈ C, we say that a is algebraic when it is algebraic over Q, and
we say that a is integral when it is integral over Z. An algebraic number field is a field
K with Q ⊆ K ⊆ C such that [K : Q] is finite. In other words, an algebraic number field
is a subfield of C which is algebraic and finitely generated as a field over Q. The ring of
integral elements in an algebraic number field K, denoted by OK , is the integral closure
of Z in K, that is

OK =
{
a ∈ K

∣∣ a is integral over Z
}
.

2.23 Theorem: Let a ∈ C. Then a is integral if and only if a is algebraic and its minimal
polynomial lies in Z[x].

Proof: If a is algebraic and its minimal polynomial lies in Z[x], then of course a is integral.
Suppose that a is integral. Choose a monic polynomial f(x) ∈ Z[x] such that f(a) = 0.
Write f(x) = g1(x)g2(x) · · · gn(x) where each gi(x) is a monic irreducible polynomial in
Z[x]. Since 0 = f(a) = g1(a)g2(a) · · · gn(a), we must have gk(a) = 0 for some index k.
Since gk(x) is monic and irreducible in Z[x], it is also irreducible in Q[x] by Gauss’ Lemma.
Thus gk(x) is equal to the minimal polynomial of a over Q, so the minimal polynomial of
a over Q does indeed lie in Z[x].

2.24 Theorem: Let d ∈ Z+ be square-free. Let K = Q(
√
d). Then OK = Z[ω] where

ω =

{ √
d if d 6= 1 mod 4,

1+
√
d

2 if d = 1 mod 4.

Proof: I may include a solution later.

2.25 Definition: A quadratic number field is an algebraic number field of the form
K = Q(

√
d) for some square-free d ∈ Z+. A quadratic integer ring is a ring of the form

Z[ω] = OK for some quadratic number field K.
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2.26 Theorem: Let K be an algebraic number field. For every u ∈ K there exists b ∈ Z+

such that bu ∈ OK .

Proof: Let u ∈ K. Since u is algebraic over Q, we can choose a polynomial f(x) ∈ Q[x]
such that f(a) = 0. By multiplying by a common denominator of the coefficients of f(x),

and then by multiplying by −1 if necessary, we obtain a polynomial g(x) =
n∑

k=0

ckx
k

with each ck ∈ Z and cn ∈ Z+ such that g(a) = 0. Multiply both sides of the equality

0 = g(a) =
n∑

k=0

cka
k by cn

n−1 to get 0 =
n∑

k=1

ckcn
n−1uk =

n∑
k=0

ckcn
n−k−1(cnu)k. It follows

that cku is a root of the polynomial g(x) =
n∑

k=0

ckcn
n−k−1xk which lies in Z[x] and is

monic. Thus cnu is integral over Q and so cnu ∈ OK .

2.27 Corollary: An algebraic number field K is equal to the quotient field of its ring of
integers OK . In particular, the ring OK is integrally closed.
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