Chapter 9. The Seifert-Van Kampen Thheorem

The Seifert-Van Kampen Theorem

9.1 Note: Let ay,---,a, be paths in a topological space X, with the endpoint of ay

equal to the initial point of agyi. Let P = (zo,x1,---,2,) and Q = (Yo, Y1, -, Yn) be

two partitions of the interval [0,1]. Let 8 and  be the paths in X which follow the paths
. t—xp_ t—yp_

a1, Qg, -, o with B(t) = ak(#) for t € [xg—1,z] and y(t) = ak(yk_yﬁ) for

t € [yk—1,yx].- Then we have § ~ 7: indeed a homotopy from f to v in X is given by

. t—((1—s)Tp_1+5Yx—1)
F(s,t) = ak(((1_8)“4_8%)_((1_8)%71+syk71)) fort € [(1—s)xk_1+syk_1 , (l—s)xk—ksyk}.
9.2 Definition: When a1, as, - - -, a,, are paths in a topological space, with the endpoint
of o equal to the endpoint of a1, we shall write ajas - - - o, to denote the path v which

follows the paths av, -, a, with v(t) = ag(nt — (k — 1)) for t € [2==1, E] 5o that oy, is
k-1 E}

the path obtained by restricting v = ajas - - - a, to the interval [ —, =]
9.3 Note: Suppose that F' : [a,b] X [¢,d] — X is continuous, and let a, and a3, be the
paths obtained by restricting F to the intervals {a} X [c,d] and {b} X [e, d], so for example
oy is given by a,(t) = F(a, i C) and let 8. and 5 be the paths obtained by restricting
F to [a,b] x {c} and [a,b] x {d}. Then we have a,Bq ~ B.ap: Indeed a homotopy from

aqBq to Beay is given by
Gs.t) F((1=2t)(a,c) +2t((1 — s)(b,c) + s(a,d))) if0o<t<i
(2 26)((1 - 8)(bye) + s(a,d) + (2t — 1)(b,d)) if £ <t <1

9.4 Theorem: (The Seifert Van Kampen Theorem) Let X be a topological space with
a € X. Suppose that X = J,cx Ur where each Uy is open in X with a € Uy. Suppose
that Uy, U, N"Uy; and U, " Uy N U, are path-connected for all k,¢{,m € K. Then

wl(X,a)%(élé 1 Uk, )/N

where N is the normal subgroup generated by elements of the form [w][w '], where w is
a loop at a in Uy N Uy and [w]y € 71 (U, a) and |[w]y € m1(Uy, a).

Proof: Define ¢ : % m1(Ug,a) — 71 (X, a) by
keK

d([o1]e, (2], - - lomle,) = o102 - 4] € T (X, a)

where o; is a loop at a in Uy, and [o;]s, € m1(Uy,,a). Verify, as an exercise, that ¢ is
well-defined and ¢ is a group homomorphism.
We claim that ¢ is surjective. Let v : [0,1] — X be any loop at a in X. The sets
~1(Uy) form an open cover of [0, 1], which is compact Choose a Lebesgue number A > 0
for this cover. Choose n € ZT large enough so that £ < . Each interval I; [j ;1, %}
is contained in one of the open sets v~!(Uy), say I, C v~ (Uy,), that is v(I; ) C Uy,. For
1 < j < mn, let a; be the path obtained by restricting v to the interval [;, that is let
a;(t) = ”y( + = 1) For 1 < j <n—1 we have fl € I; NI41 so that 'y(n) €Uy, NUy,,,,
which is path-connected, so we can choose a path p; from a to 7(%) in Up, NUy,,,. Also,
let po and p, be the constant loop x at a. For 1 <j<n, let o; = pj_lajpj_l, which is a
loop at a in Ug;. We have v ~ ajaz -+ -y ~ poalpl_l p1052[)2_1 . -pn_loznp;l = 0109 0p
so that ¢([o1]e, [02)e, -+ [onle, = [0102 -+ 0,] = [7]. Thus ¢ is surjective, as claimed.



Since ¢ is surjective, it follows from the First Isomorphism Theorem that

m(X,a) = ( 9Ié 71(Uk, a)) /Ker ¢.

We need to prove that Ker ¢ = N where N is the normal subgroup generated by elements
of the form [w][w™!], where w is a loop at a in Uy NU,. Note that when w is a loop at a in
U, N Up we have ¢([w]g[w™]¢) = [ww™!] = [k], which is the identity element in m (X, a),
so we have N C Ker ¢.

It remains to show that Ker ¢ C N. For now, suppose that each quadruple intersection
U. U, NU, NU, is path-connected, where k,/,m,n € K. Later we shall show how to
modify the proof so that it suffices to suppose that each triple intersection Uy NU, NU,, is
path-connected. Let [01]¢,[02]e, - - - [0n]e, € Ker ¢, where each ¢ is a loop at a in Uy, with
¢; € K. This means that o102 ---0, ~ kin X. Let F': [0,1] x [0,1] = X be a homotopy
from o109+ 0, to k in X. The sets F~1(Uy) form an open cover of [0,1] x [0,1], which
is compact. Choose a Lebesgue number )\ > 0 for this open cover. Choose m to be a
multiple of n which is large enough SO that = < \. Each square I; ; = [" 1 i} X [E i}

’m m ’m

is contained in one of the sets F'~1(Uy), say Im C F~ (UkL ), that is F'(I; ;) C U, ;.

For 0<14,7<m, let mzk—F(é,é) Note that x;,0 = Zj.;m = Tm,; = a. For 0<i<m

and 1 < j < m, let a; ; be the path from x; j_; to x; ; obtained by restricting F' to the
interval {-£} x [J ! i] For 1 <i<mand0 <j <m,let 3 ; be the path from z;_; ; to
x; j obtained by restricting F’ to the interval [%, %] X {%} Recall that m is a multiple
of n, say m = pn. Then we have 01 = ap1000,2 - - - v p and 02 = g py1Q0 p+2 - - 0 2p, and
so on. Let ]{70,1 = ko,g == kO,p: £1 and kO,p—l—l = kO,p-l—Q == ko’gp: éQ and so on.

Note that (if j > 0) ;; lies in Uy, ; and (if ¢ < m and j > 0) in Uy,,, ; and (if
Jj<m)in Uy, ., and (if i <m and j <m) in Uy, ,,. For 0 <i<mand 1 <j <m,
choose a path p; ; from a to x; ; which lies in all the relevant sets Uy, ., Uy, ,, ;, Uk, ,,, and
Uk,.1 ;4. (we can do this since quadruple intersections are path-connected). Also, notlng
that ;0 = i m = Tm,; = a, for all 4, j, we choose p; 0 = pi,m = pm,; = K, the constant
loop at a. For 0 <7 <mand 1< j <m,let o;; = pi,j_lozi,jpi_,jl. Note that o; ; is a loop
at a which lies in Uy, ; and (if i < m) in Ug,,, ;, and that o,, ; = k. For 1 <i < m and
0<j<m,let 7,; =pi_ Ljﬂi,jp;jl. Note that 7; ; is a loop at @ which (if j > 0) lies in
Ui, . and (lfj < m) in Uy, and that 7,0 = 70 = K.

ki, G+1)

For 0 S 7 S m, let U; = [O-i,l]ki,l [O'i’g]]ﬂ,2 ce [o-i7m]ki,m' Note that

[o1]e,[02]e, -+ [on]e, = [00,1]ko.1 [00,2]k0.2 =+ [00,m]ko..n = Uo-

For u,v € % m1(Ug,a), write v = v to indicate that uN = vN. We shall complete the
kEK

proof by showing that uwg = u; = -+ = u,, and noting that w,, = 0 (the empty string in
* 71(Ug,a)), so that ug € N. We do this using a sequence of steps, at each step using
keK

one of the following two observations. First, note that when w is a loop at a in U N Uy,
since [w]i[w™r € N, we have [w], = [w]i[w ™ ¢[w]e = [w]k. Second, note that by Note
6.3, in the set Uki,j we have O‘i—l,jﬁi,j ~ ﬁi,j_lozi,j so that 0i—1,5Ti,j ~ Tij—104,5, hence

T, j—10i-1 ~ 017, and so we have 7,0 Tk, (001,506, = 0]k, (70 The
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Using the above two observations, repeatedly, gives

i1 = [0 11k 11 10i-1,2)ks1.210i-13]ks 15 [Tic1m ki1

[ 7; ol]ki O[Ui 1 1]ki 1,1 [Ui 1 2]ki 1, 2[% 1 B]ki 1,3 " [Ui—l,m]ki,l,m

= [0 kia[Timtlkin [0i—1,2)ke 10 10i—1.8]k0 1+ [Timtm ki s
= (o0t )kin [T 1 ke [Gim1.2]ki 2[00 180k0 s - [Timtm ki

= (001 )kis [Ti 1 Thea T 12]ke o [0 18]k s - (it m] ki
N[ 7 P e P o P PR [ P e S

= [inlkia [002]k o - [Oim—1]ke o [Tm ke [T tmk

= [0i1)kis [002)ksa *  [Tim—1]ks s [Tomm— 1) ks [Oi— 1 m

= [oialkis [00.2)ks o+ [0 1Lk o2 [O1m s [Tom i e

= [0i1)ki1 [0 2]kin [Tim—1]ks 1 [Tim] ki = Wit1

Thus [o1]e, - [on]e, =1 = Um = [Om1)km * [Om.m]km .. = 0 since each o, ; = k. This
proves that [o1]¢, [02]e, - - - [on]e, € N and hence Ker ¢ C N, as required.

This completes the proof, under the assumption that quadruple intersections are path-
connected. We can modify the proof so that only triple intersections need to be path-
connected as follows. Rather than partitioning the domain of F' into the squares I; ; =
[1;1, %} X [%, %], which sometimes meet four squares at a vertex, we can partition
the domain of F' into squares and rectangles R;; with at most three meeting at each
vertex: when ¢ is even, let R; ; = I; ;, when ¢ is odd, move the horizontal edges up by
# letting R;1 = [l;l,#} [0, —m} and R;; = I; ; + (0,3%1) for 1 < j < m, and

Rim = Li_l L] x ==l 4 L 1]. Note that the largest rectangles have sides of length

1 ’ m 'm 3m7 5 2 . . .

= and hence their diameter is 3>~ < ;= < 2, so they lie in an open ball of radius A,
and hence they lie in one of the open sets F'~(Uy), k € K. Thus we can repeat the same
argument used above to show that Ker¢ C N, and we only need to assume that triple

intersections are path-connected.

9.5 Corollary: Let X be a topological space with a € X. Suppose that X = UUV where
U and V are open in X witha € UNV. Suppose that U, V and UNV are path-connected.
Then

m(X,a) = (m(U,a) * 7 (V,a)) /N

where N is the normal subgroup generated by elements of the form [w]y[w™1]y and
[w]v[w™ty, where w is a loop at a in U N V. Also, we have the following two partic-
ular cases:

(1) If 1 (UNV) =0 then m (X, a) 2 m (U,a) *m(V,a).

(2) If m(V,a) = 0 then m1(X,a) = w1 (U,a)/N where N is the normal subgroup generated
by elements of the form [w]|y where w is a loop at a in UNV.

9.6 Example: Note that when n > 2 we have m(S™) = 0: Indeed, let 1 = (1,0,---,0)
and p = (0,---,0,1), and take U = S™\ {p} and V = S™\ {—p}. Then, using stereographic
projection, we have U = R™ so that m(U,1) = 0 and V = R"” so that 71 (V,1) = 0, and
UnNV = R™\ {0} which is path-connected, and hence m(X,1) = 0 by the Seifert Van
Kampen Theorem.



9.7 Definition: For based topological spaces (X, ay), where K is a nonempty set, the
wedge product A, (X}, ay) is the quotient space of the disjoint union | |, o ;o X3 under
the equivalence relation which identifies all the basepoints. The equivance class containing
the basepoints is the basepoint of the wedge product.

9.8 Example: The finite wedge product of circles A;_,(S',1) is homeomorphic to the
n-loop space, which is the union of the images of the loops ay(t) = (sinmt)e? 27 (k+t)/n
for 1 < k < n, and also to the shrinking wedge of n circles, which is the union of the
images of the loops ay(t) = 1 (sin7t)e’™ for 1 < k < n.

The countable wedge of circles Ag—, (S, 1), by contrast, is not homeomorphic to the
countable shrinking wedge of circles, which is the union of the images of the loops
ar(t) = $(sinmt)e! ™ for k € ZT. One way to see this is to note that the countable wedge
of circles is locally simply connected, but the countable shrinking wedge of circles is not.
9.9 Example: Show that 7 ( Nr_, (S, 1)) = <a1, e ,an> >~ 1, Z where «y is the loop
which goes once around the k*" circle Sj, = S.

9.10 Example: Let G be a finite connected graph (consisting of a finite set of vertices
and a finite set of edges), and let a be a vertex of G. Let T' be a maximal tree in G (that
is a maximal subgraph which contains no cycles). Let Ey,---, E, be the edges in G which
do not lie in T' (so for each k, the graph T'U Ej contains a cycle). For each k, let oy be a
loop in G U E}, which follows a path v along 7" from a to an endpoint of Ej, then follows a
cycle in T'U Ey, then follows y~! back to a. Show that 7 (G, a) = {(aq,- -, ap) = *¥7_, Z.

9.11 Example: Recall that (T?)#9 is homeomorphic to the quotient space T = D/ ~
where D is the closed unit disc and ~ is the equivalence relation which identifies points on
the boundary S = 0D according to the word 04161041_161_1042,320[2_152_1 e agﬁgaglﬂg_l.
Show that 1 (T2,1) = (a1, B1, as, B2, -+, By | a1 Bro7 1By TanBocy Byt -+ agBya, 18,1,
Also recall that (P?)#" =~ P2 = D/ ~ where ~ identifies points on S = 9D accord-
ing to afa3---aj. Show that m(PZ,1) = (a1, a2, -, ap|afad - ai). Deduce that
Ab(ﬂ'l(Tg)) ~ 729 and Ab(ﬂ'l(Pﬁ)) o~ gh—1 Zo.

9.12 Example: Show that given any group of the form G = (ay, -+, ay, ‘ wy, -, wg>, we
can construct a based topological space (X, a) with 71 (X, a) = G as follows. Let (W, a) be
the wedge product of n circles, and let a, be the loop at a which goes once around the k"
circle Sj, = S!. Let X be the quotient space of the disjoint union of W with ¢ closed discs
Dy, Dy, ---, Dy under the equivalence relation which identifies points on the boundary of
the circle T; = 0D; with points on W according to word wj.

9.13 Definition: A (finite) CW complex is a topological space X which is obtained as
follows: We begin with a finite discrete set of points X°. Having constructed X*~1, we let
X* be the quotient space of the disjoint union of X*~! with finitely many closed k-balls
Dq,Ds,---, Dy, under the equivalence relation which identifies points on the boundary
S; = 0D, with points on X*=1in accordance with a continuous map fi S — Xkl
Eventually the construction ends with X = X™. The space X* is called the k skeleton
of X.

9.14 Remark: The fundamental group of a CW complex is equal to the fundamental
group of its 2-skeleton.



