

Chapter 9. The Seifert-Van Kampen Theorem

The Seifert-Van Kampen Theorem

9.1 Note: Let $\alpha_1, \dots, \alpha_n$ be paths in a topological space X , with the endpoint of α_k equal to the initial point of α_{k+1} . Let $P = (x_0, x_1, \dots, x_n)$ and $Q = (y_0, y_1, \dots, y_n)$ be two partitions of the interval $[0, 1]$. Let β and γ be the paths in X which follow the paths $\alpha_1, \alpha_2, \dots, \alpha_n$ with $\beta(t) = \alpha_k(\frac{t-x_{k-1}}{x_k-x_{k-1}})$ for $t \in [x_{k-1}, x_k]$ and $\gamma(t) = \alpha_k(\frac{t-y_{k-1}}{y_k-y_{k-1}})$ for $t \in [y_{k-1}, y_k]$. Then we have $\beta \sim \gamma$: indeed a homotopy from β to γ in X is given by

$$F(s, t) = \alpha_k\left(\frac{t - ((1-s)x_{k-1} + sy_{k-1})}{((1-s)x_k + sy_k) - ((1-s)x_{k-1} + sy_{k-1})}\right) \text{ for } t \in [(1-s)x_{k-1} + sy_{k-1}, (1-s)x_k + sy_k].$$

9.2 Definition: When $\alpha_1, \alpha_2, \dots, \alpha_n$ are paths in a topological space, with the endpoint of α_k equal to the endpoint of α_{k+1} , we shall write $\alpha_1\alpha_2 \dots \alpha_n$ to denote the path γ which follows the paths $\alpha_1, \dots, \alpha_n$ with $\gamma(t) = \alpha_k(nt - (k-1))$ for $t \in [\frac{k-1}{n}, \frac{k}{n}]$, so that α_k is the path obtained by restricting $\gamma = \alpha_1\alpha_2 \dots \alpha_n$ to the interval $[\frac{k-1}{n}, \frac{k}{n}]$.

9.3 Note: Suppose that $F : [a, b] \times [c, d] \rightarrow X$ is continuous, and let α_a and α_b , be the paths obtained by restricting F to the intervals $\{a\} \times [c, d]$ and $\{b\} \times [c, d]$, so for example α_a is given by $\alpha_a(t) = F(a, \frac{t-c}{d-c})$, and let β_c and β_d be the paths obtained by restricting F to $[a, b] \times \{c\}$ and $[a, b] \times \{d\}$. Then we have $\alpha_a\beta_d \sim \beta_c\alpha_b$: Indeed a homotopy from $\alpha_a\beta_d$ to $\beta_c\alpha_b$ is given by

$$G(s, t) = \begin{cases} F((1-2t)(a, c) + 2t((1-s)(b, c) + s(a, d))) & \text{if } 0 \leq t \leq \frac{1}{2} \\ F((2-2t)((1-s)(b, c) + s(a, d)) + (2t-1)(b, d)) & \text{if } \frac{1}{2} \leq t \leq 1 \end{cases}.$$

9.4 Theorem: (The Seifert Van Kampen Theorem) Let X be a topological space with $a \in X$. Suppose that $X = \bigcup_{k \in K} U_k$ where each U_k is open in X with $a \in U_k$. Suppose that $U_k, U_k \cap U_\ell$ and $U_k \cap U_\ell \cap U_m$ are path-connected for all $k, \ell, m \in K$. Then

$$\pi_1(X, a) \cong (\ast_{k \in K} \pi_1(U_k, a)) / N$$

where N is the normal subgroup generated by elements of the form $[\omega]_k[\omega^{-1}]_\ell$ where ω is a loop at a in $U_k \cap U_\ell$ and $[\omega]_k \in \pi_1(U_k, a)$ and $[\omega]_\ell \in \pi_1(U_\ell, a)$.

Proof: Define $\phi : \ast_{k \in K} \pi_1(U_k, a) \rightarrow \pi_1(X, a)$ by

$$\phi([\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2} \dots [\sigma_n]_{\ell_n}) = [\sigma_1\sigma_2 \dots \sigma_n] \in \pi_1(X, a)$$

where σ_i is a loop at a in U_{ℓ_i} , and $[\sigma_i]_{\ell_i} \in \pi_1(U_{\ell_i}, a)$. Verify, as an exercise, that ϕ is well-defined and ϕ is a group homomorphism.

We claim that ϕ is surjective. Let $\gamma : [0, 1] \rightarrow X$ be any loop at a in X . The sets $\gamma^{-1}(U_k)$ form an open cover of $[0, 1]$, which is compact. Choose a Lebesgue number $\lambda > 0$ for this cover. Choose $n \in \mathbb{Z}^+$ large enough so that $\frac{1}{n} < \lambda$. Each interval $I_j = [\frac{j-1}{n}, \frac{j}{n}]$ is contained in one of the open sets $\gamma^{-1}(U_k)$, say $I_j \subseteq \gamma^{-1}(U_{\ell_j})$, that is $\gamma(I_j) \subseteq U_{\ell_j}$. For $1 \leq j \leq n$, let α_j be the path obtained by restricting γ to the interval I_j , that is let $\alpha_j(t) = \gamma(\frac{t}{n} + \frac{j-1}{n})$. For $1 \leq j \leq n-1$ we have $\frac{j}{n} \in I_j \cap I_{j+1}$ so that $\gamma(\frac{j}{n}) \in U_{\ell_j} \cap U_{\ell_{j+1}}$, which is path-connected, so we can choose a path ρ_j from a to $\gamma(\frac{j}{n})$ in $U_{\ell_j} \cap U_{\ell_{j+1}}$. Also, let ρ_0 and ρ_n be the constant loop κ at a . For $1 \leq j \leq n$, let $\sigma_j = \rho_{j-1}\alpha_j\rho_j^{-1}$, which is a loop at a in U_{ℓ_j} . We have $\gamma \sim \alpha_1\alpha_2 \dots \alpha_n \sim \rho_0\alpha_1\rho_1^{-1}\rho_1\alpha_2\rho_2^{-1} \dots \rho_{n-1}\alpha_n\rho_n^{-1} = \sigma_1\sigma_2 \dots \sigma_n$ so that $\phi([\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2} \dots [\sigma_n]_{\ell_n}) = [\sigma_1\sigma_2 \dots \sigma_n] = [\gamma]$. Thus ϕ is surjective, as claimed.

Since ϕ is surjective, it follows from the First Isomorphism Theorem that

$$\pi_1(X, a) \cong \left(\underset{k \in K}{*} \pi_1(U_k, a) \right) / \text{Ker } \phi.$$

We need to prove that $\text{Ker } \phi = N$ where N is the normal subgroup generated by elements of the form $[\omega]_k[\omega^{-1}]_\ell$ where ω is a loop at a in $U_k \cap U_\ell$. Note that when ω is a loop at a in $U_k \cap U_\ell$ we have $\phi([\omega]_k[\omega^{-1}]_\ell) = [\omega\omega^{-1}] = [\kappa]$, which is the identity element in $\pi_1(X, a)$, so we have $N \subseteq \text{Ker } \phi$.

It remains to show that $\text{Ker } \phi \subseteq N$. For now, suppose that each quadruple intersection $U_k \cap U_\ell \cap U_m \cap U_n$ is path-connected, where $k, \ell, m, n \in K$. Later we shall show how to modify the proof so that it suffices to suppose that each triple intersection $U_k \cap U_\ell \cap U_m$ is path-connected. Let $[\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2} \cdots [\sigma_n]_{\ell_n} \in \text{Ker } \phi$, where each σ_j is a loop at a in U_{ℓ_j} with $\ell_j \in K$. This means that $\sigma_1\sigma_2 \cdots \sigma_n \sim \kappa$ in X . Let $F : [0, 1] \times [0, 1] \rightarrow X$ be a homotopy from $\sigma_1\sigma_2 \cdots \sigma_n$ to κ in X . The sets $F^{-1}(U_k)$ form an open cover of $[0, 1] \times [0, 1]$, which is compact. Choose a Lebesgue number $\lambda > 0$ for this open cover. Choose m to be a multiple of n which is large enough so that $\frac{1}{m} < \lambda$. Each square $I_{i,j} = \left[\frac{i-1}{m}, \frac{i}{m} \right] \times \left[\frac{j-1}{m}, \frac{j}{m} \right]$ is contained in one of the sets $F^{-1}(U_k)$, say $I_{i,j} \subseteq F^{-1}(U_{k_{i,j}})$, that is $F(I_{i,j}) \subseteq U_{k_{i,j}}$.

For $0 \leq i, j \leq m$, let $x_{i,k} = F\left(\frac{i}{m}, \frac{j}{m}\right)$. Note that $x_{i,0} = x_{i,m} = x_{m,j} = a$. For $0 \leq i \leq m$ and $1 \leq j \leq m$, let $\alpha_{i,j}$ be the path from $x_{i,j-1}$ to $x_{i,j}$ obtained by restricting F to the interval $\left\{ \frac{i}{m} \right\} \times \left[\frac{j-1}{m}, \frac{j}{m} \right]$. For $1 \leq i \leq m$ and $0 \leq j \leq m$, let $\beta_{i,j}$ be the path from $x_{i-1,j}$ to $x_{i,j}$ obtained by restricting F to the interval $\left[\frac{i-1}{m}, \frac{i}{m} \right] \times \left\{ \frac{j}{m} \right\}$. Recall that m is a multiple of n , say $m = pn$. Then we have $\sigma_1 = \alpha_{0,1}\alpha_{0,2} \cdots \alpha_{0,p}$ and $\sigma_2 = \alpha_{0,p+1}\alpha_{0,p+2} \cdots \alpha_{0,2p}$, and so on. Let $k_{0,1} = k_{0,2} = \cdots = k_{0,p} = \ell_1$ and $k_{0,p+1} = k_{0,p+2} = \cdots = k_{0,2p} = \ell_2$ and so on.

Note that (if $j > 0$) $x_{i,j}$ lies in $U_{k_{i,j}}$ and (if $i < m$ and $j > 0$) in $U_{k_{i+1,j}}$ and (if $j < m$) in $U_{k_{i,j+1}}$ and (if $i < m$ and $j < m$) in $U_{k_{i+1,j+1}}$. For $0 \leq i < m$ and $1 \leq j < m$, choose a path $\rho_{i,j}$ from a to $x_{i,j}$ which lies in all the relevant sets $U_{k_{i,j}}, U_{k_{i+1,j}}, U_{k_{i,j+1}}$ and $U_{k_{i+1,j+1}}$ (we can do this since quadruple intersections are path-connected). Also, noting that $x_{i,0} = x_{i,m} = x_{m,j} = a$, for all i, j , we choose $\rho_{i,0} = \rho_{i,m} = \rho_{m,j} = \kappa$, the constant loop at a . For $0 \leq i \leq m$ and $1 \leq j \leq m$, let $\sigma_{i,j} = \rho_{i,j-1}\alpha_{i,j}\rho_{i,j}^{-1}$. Note that $\sigma_{i,j}$ is a loop at a which lies in $U_{k_{i,j}}$ and (if $i < m$) in $U_{k_{i+1,j}}$, and that $\sigma_{m,j} = \kappa$. For $1 \leq i \leq m$ and $0 \leq j \leq m$, let $\tau_{i,j} = \rho_{i-1,j}\beta_{i,j}\rho_{i,j}^{-1}$. Note that $\tau_{i,j}$ is a loop at a which (if $j > 0$) lies in $U_{k_{i,j}}$ and (if $j < m$) in $U_{k_{i,j+1}}$, and that $\tau_{i,0} = \tau_{m,0} = \kappa$.

For $0 \leq i \leq m$, let $u_i = [\sigma_{i,1}]_{k_{i,1}}[\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m}]_{k_{i,m}}$. Note that

$$[\sigma_1]_{\ell_1}[\sigma_2]_{\ell_2} \cdots [\sigma_n]_{\ell_n} = [\sigma_{0,1}]_{k_{0,1}}[\sigma_{0,2}]_{k_{0,2}} \cdots [\sigma_{0,m}]_{k_{0,m}} = u_0.$$

For $u, v \in \underset{k \in K}{*} \pi_1(U_k, a)$, write $u \equiv v$ to indicate that $uN = vN$. We shall complete the proof by showing that $u_0 \equiv u_1 \equiv \cdots \equiv u_m$ and noting that $u_m = 0$ (the empty string in $\underset{k \in K}{*} \pi_1(U_k, a)$), so that $u_0 \in N$. We do this using a sequence of steps, at each step using one of the following two observations. First, note that when ω is a loop at a in $U_k \cap U_\ell$, since $[\omega]_k[\omega^{-1}]_\ell \in N$, we have $[\omega]_\ell \equiv [\omega]_k[\omega^{-1}]_\ell[\omega]_\ell = [\omega]_k$. Second, note that by Note 6.3, in the set $U_{k_{i,j}}$ we have $\alpha_{i-1,j}\beta_{i,j} \sim \beta_{i,j-1}\alpha_{i,j}$ so that $\sigma_{i-1,j}\tau_{i,j} \sim \tau_{i,j-1}\sigma_{i,j}$, hence $\tau_{i,j-1}^{-1}\sigma_{i-1,j} \sim \sigma_{i,j}\tau_{i,j}^{-1}$, and so we have $[\tau_{i,j-1}^{-1}]_{k_{i,j}}[\sigma_{i-1,j}]_{k_{i,j}} = [\sigma_{i,j}]_{k_{i,j}}[\tau_{i,j}^{-1}]_{k_{i,j}}$.

Using the above two observations, repeatedly, gives

$$\begin{aligned}
u_{i-1} &= [\sigma_{i-1,1}]_{k_{i-1,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}} \\
&= [\tau_{i,0}^{-1}]_{k_{i,0}} [\sigma_{i-1,1}]_{k_{i-1,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}} \\
&\equiv [\tau_{i,0}^{-1}]_{k_{i,1}} [\sigma_{i-1,1}]_{k_{i,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}} \\
&= [\sigma_{i,1}]_{k_{i,1}} [\tau_{i,1}^{-1}]_{k_{i,1}} [\sigma_{i-1,2}]_{k_{i-1,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}} \\
&\equiv [\sigma_{i,1}]_{k_{i,1}} [\tau_{i,1}^{-1}]_{k_{i,2}} [\sigma_{i-1,2}]_{k_{i,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}} \\
&= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} [\tau_{i,2}^{-1}]_{k_{i,2}} [\sigma_{i-1,3}]_{k_{i-1,3}} \cdots [\sigma_{i-1,m}]_{k_{i-1,m}} \\
&\quad \vdots \\
&= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\tau_{i,m-1}^{-1}]_{k_{i,m-1}} [\sigma_{i-1,m}]_{k_{i-1,m}} \\
&\equiv [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\tau_{i,m-1}^{-1}]_{k_{i,m}} [\sigma_{i-1,m}]_{k_{i,m}} \\
&= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\sigma_{i,m}]_{k_{i,m}} [\tau_{i,m}^{-1}]_{k_{i,m}} \\
&= [\sigma_{i,1}]_{k_{i,1}} [\sigma_{i,2}]_{k_{i,2}} \cdots [\sigma_{i,m-1}]_{k_{i,m-1}} [\sigma_{i,m}]_{k_{i,m}} = u_{i+1}.
\end{aligned}$$

Thus $[\sigma_1]_{\ell_1} \cdots [\sigma_n]_{\ell_n} \equiv u_1 \equiv u_m = [\sigma_{m,1}]_{k_{m,1}} \cdots [\sigma_{m,m}]_{k_{m,m}} = 0$ since each $\sigma_{m,j} = \kappa$. This proves that $[\sigma_1]_{\ell_1} [\sigma_2]_{\ell_2} \cdots [\sigma_n]_{\ell_n} \in N$ and hence $\text{Ker } \phi \subseteq N$, as required.

This completes the proof, under the assumption that quadruple intersections are path-connected. We can modify the proof so that only triple intersections need to be path-connected as follows. Rather than partitioning the domain of F into the squares $I_{i,j} = [\frac{i-1}{m}, \frac{i}{m}] \times [\frac{j-1}{m}, \frac{j}{m}]$, which sometimes meet four squares at a vertex, we can partition the domain of F into squares and rectangles $R_{i,j}$ with at most three meeting at each vertex: when i is even, let $R_{i,j} = I_{i,j}$, when i is odd, move the horizontal edges up by $\frac{1}{3m}$ letting $R_{i,1} = [\frac{i-1}{m}, \frac{i}{m}] \times [0, \frac{4}{3m}]$ and $R_{i,j} = I_{i,j} + (0, \frac{1}{3m})$ for $1 < j < m$, and $R_{i,m} = [\frac{i-1}{m}, \frac{i}{m}] \times [\frac{m-1}{m} + \frac{1}{3m}, 1]$. Note that the largest rectangles have sides of length $\frac{1}{m}$ and $\frac{4}{3m}$, hence their diameter is $\frac{5}{3m} < \frac{2}{m} < 2\lambda$, so they lie in an open ball of radius λ , and hence they lie in one of the open sets $F^{-1}(U_k)$, $k \in K$. Thus we can repeat the same argument used above to show that $\text{Ker } \phi \subseteq N$, and we only need to assume that triple intersections are path-connected.

9.5 Corollary: Let X be a topological space with $a \in X$. Suppose that $X = U \cup V$ where U and V are open in X with $a \in U \cap V$. Suppose that U, V and $U \cap V$ are path-connected. Then

$$\pi_1(X, a) \cong (\pi_1(U, a) * \pi_1(V, a)) / N$$

where N is the normal subgroup generated by elements of the form $[\omega]_U [\omega^{-1}]_V$ and $[\omega]_V [\omega^{-1}]_U$, where ω is a loop at a in $U \cap V$. Also, we have the following two particular cases:

- (1) If $\pi_1(U \cap V) = 0$ then $\pi_1(X, a) \cong \pi_1(U, a) * \pi_1(V, a)$.
- (2) If $\pi_1(V, a) = 0$ then $\pi_1(X, a) \cong \pi_1(U, a) / N$ where N is the normal subgroup generated by elements of the form $[\omega]_U$ where ω is a loop at a in $U \cap V$.

9.6 Example: Note that when $n \geq 2$ we have $\pi_1(\mathbb{S}^n) = 0$: Indeed, let $1 = (1, 0, \dots, 0)$ and $p = (0, \dots, 0, 1)$, and take $U = \mathbb{S}^n \setminus \{p\}$ and $V = \mathbb{S}^n \setminus \{-p\}$. Then, using stereographic projection, we have $U \cong \mathbb{R}^n$ so that $\pi_1(U, 1) = 0$ and $V \cong \mathbb{R}^n$ so that $\pi_1(V, 1) = 0$, and $U \cap V \cong \mathbb{R}^n \setminus \{0\}$ which is path-connected, and hence $\pi_1(X, 1) = 0$ by the Seifert Van Kampen Theorem.

9.7 Definition: For based topological spaces (X_k, a_k) , where K is a nonempty set, the **wedge product** $\bigwedge_{k \in K} (X_k, a_k)$ is the quotient space of the disjoint union $\bigsqcup_{k \in K} X_k$ under the equivalence relation which identifies all the basepoints. The equivalence class containing the basepoints is the basepoint of the wedge product.

9.8 Example: The finite wedge product of circles $\bigwedge_{k=1}^n (\mathbb{S}^1, 1)$ is homeomorphic to the **n -loop space**, which is the union of the images of the loops $\alpha_k(t) = (\sin \pi t) e^{i 2\pi(k+t)/n}$ for $1 \leq k \leq n$, and also to the **shrinking wedge of n circles**, which is the union of the images of the loops $\alpha_k(t) = \frac{1}{k} (\sin \pi t) e^{i \pi t}$ for $1 \leq k \leq n$.

The countable wedge of circles $\bigwedge_{k=1}^\infty (\mathbb{S}^1, 1)$, by contrast, is not homeomorphic to the countable **shrinking wedge of circles**, which is the union of the images of the loops $\alpha_k(t) = \frac{1}{k} (\sin \pi t) e^{i \pi t}$ for $k \in \mathbb{Z}^+$. One way to see this is to note that the countable wedge of circles is locally simply connected, but the countable shrinking wedge of circles is not.

9.9 Example: Show that $\pi_1(\bigwedge_{k=1}^n (\mathbb{S}^1, 1)) = \langle \alpha_1, \dots, \alpha_n \rangle \cong \ast_{k=1}^n \mathbb{Z}$ where α_k is the loop which goes once around the k^{th} circle $S_k = \mathbb{S}^1$.

9.10 Example: Let G be a finite connected graph (consisting of a finite set of vertices and a finite set of edges), and let a be a vertex of G . Let T be a maximal tree in G (that is a maximal subgraph which contains no cycles). Let E_1, \dots, E_n be the edges in G which do not lie in T (so for each k , the graph $T \cup E_k$ contains a cycle). For each k , let α_k be a loop in $G \cup E_k$ which follows a path γ along T from a to an endpoint of E_k , then follows a cycle in $T \cup E_k$, then follows γ^{-1} back to a . Show that $\pi_1(G, a) \cong \langle \alpha_1, \dots, \alpha_n \rangle \cong \ast_{k=1}^n \mathbb{Z}$.

9.11 Example: Recall that $(\mathbb{T}^2)^{\#g}$ is homeomorphic to the quotient space $T_g^2 = D / \sim$ where D is the closed unit disc and \sim is the equivalence relation which identifies points on the boundary $S = \partial D$ according to the word $\alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \alpha_2 \beta_2 \alpha_2^{-1} \beta_2^{-1} \dots \alpha_g \beta_g \alpha_g^{-1} \beta_g^{-1}$. Show that $\pi_1(T_g^2, 1) = \langle \alpha_1, \beta_1, \alpha_2, \beta_2, \dots, \alpha_g \beta_g \mid \alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \alpha_2 \beta_2 \alpha_2^{-1} \beta_2^{-1} \dots \alpha_g \beta_g \alpha_g^{-1} \beta_g^{-1} \rangle$. Also recall that $(\mathbb{P}^2)^{\#h} \cong P_h^2 = D / \sim$ where \sim identifies points on $S = \partial D$ according to $\alpha_1^2 \alpha_2^2 \dots \alpha_h^2$. Show that $\pi_1(P_h^2, 1) = \langle \alpha_1, \alpha_2, \dots, \alpha_h \mid \alpha_1^2 \alpha_2^2 \dots \alpha_h^2 \rangle$. Deduce that $Ab(\pi_1(T_g^2)) \cong \mathbb{Z}^{2g}$ and $Ab(\pi_1(P_h^2)) \cong \mathbb{Z}^{h-1} \times \mathbb{Z}_2$.

9.12 Example: Show that given any group of the form $G \cong \langle \alpha_1, \dots, \alpha_n \mid w_1, \dots, w_\ell \rangle$, we can construct a based topological space (X, a) with $\pi_1(X, a) \cong G$ as follows. Let (W, a) be the wedge product of n circles, and let α_k be the loop at a which goes once around the k^{th} circle $S_k = \mathbb{S}^1$. Let X be the quotient space of the disjoint union of W with ℓ closed discs D_1, D_2, \dots, D_ℓ under the equivalence relation which identifies points on the boundary of the circle $T_j = \partial D_j$ with points on W according to word w_j .

9.13 Definition: A (finite) **CW complex** is a topological space X which is obtained as follows: We begin with a finite discrete set of points X^0 . Having constructed X^{k-1} , we let X^k be the quotient space of the disjoint union of X^{k-1} with finitely many closed k -balls D_1, D_2, \dots, D_ℓ , under the equivalence relation which identifies points on the boundary $S_j = \partial D_j$ with points on X^{k-1} in accordance with a continuous map $f_j : S_j \rightarrow X^{k-1}$. Eventually the construction ends with $X = X^n$. The space X^k is called the k **skeleton** of X .

9.14 Remark: The fundamental group of a CW complex is equal to the fundamental group of its 2-skeleton.