
Chapter 9. The Seifert-Van Kampen Thheorem

The Seifert-Van Kampen Theorem

9.1 Note: Let α1, · · · , αn be paths in a topological space X, with the endpoint of αk
equal to the initial point of αk+1. Let P = (x0, x1, · · · , xn) and Q = (y0, y1, · · · , yn) be
two partitions of the interval [0, 1]. Let β and γ be the paths in X which follow the paths
α1, α2, · · · , αn with β(t) = αk

( t−xk−1

xk−xk−1

)
for t ∈ [xk−1, xk] and γ(t) = αk

( t−yk−1

yk−yk−1

)
for

t ∈ [yk−1, yk]. Then we have β ∼ γ: indeed a homotopy from β to γ in X is given by

F (s, t) = αk
( t−((1−s)xk−1+syk−1)

((1−s)xk+syk)−((1−s)xk−1+syk−1)

)
for t ∈

[
(1−s)xk−1+syk−1 , (1−s)xk+syk

]
.

9.2 Definition: When α1, α2, · · · , αn are paths in a topological space, with the endpoint
of αk equal to the endpoint of αk+1, we shall write α1α2 · · ·αn to denote the path γ which
follows the paths α1, · · · , αn with γ(t) = αk(nt − (k − 1)) for t ∈

[
k−1
n , kn

]
, so that αk is

the path obtained by restricting γ = α1α2 · · ·αn to the interval
[
k−1
n , kn

]
.

9.3 Note: Suppose that F : [a, b] × [c, d] → X is continuous, and let αa and αb, be the
paths obtained by restricting F to the intervals {a}× [c, d] and {b}× [c, d], so for example
αa is given by αa(t) = F

(
a, t−cd−c

)
, and let βc and βd be the paths obtained by restricting

F to [a, b] × {c} and [a, b] × {d}. Then we have αaβd ∼ βcαb: Indeed a homotopy from
αaβd to βcαb is given by

G(s, t) =

{
F
(
(1− 2t)(a, c) + 2t((1− s)(b, c) + s(a, d))

)
if 0 ≤ t ≤ 1

2

F
(
(2− 2t)((1− s)(b, c) + s(a, d)) + (2t− 1)(b, d)

)
if 1

2 ≤ t ≤ 1

}
.

9.4 Theorem: (The Seifert Van Kampen Theorem) Let X be a topological space with
a ∈ X. Suppose that X =

⋃
k∈K Uk where each Uk is open in X with a ∈ Uk. Suppose

that Uk, Uk ∩ U` and Uk ∩ U` ∩ Um are path-connected for all k, `,m ∈ K. Then

π1(X, a) ∼=
(

+×
k∈K

π1(Uk, a)
)/
N

where N is the normal subgroup generated by elements of the form [ω]k[ω−1]` where ω is
a loop at a in Uk ∩ U` and [ω]k ∈ π1(Uk, a) and [ω]` ∈ π1(U`, a).

Proof: Define φ : +×
k∈K

π1(Uk, a)→ π1(X, a) by

φ
(
[σ1]`1 [σ2]`2 · · · [σn]`n

)
= [σ1σ2 · · ·σn] ∈ π1(X, a)

where σi is a loop at a in U`i , and [σi]`i ∈ π1(U`i , a). Verify, as an exercise, that φ is
well-defined and φ is a group homomorphism.

We claim that φ is surjective. Let γ : [0, 1] → X be any loop at a in X. The sets
γ−1(Uk) form an open cover of [0, 1], which is compact. Choose a Lebesgue number λ > 0
for this cover. Choose n ∈ Z+ large enough so that 1

n < λ. Each interval Ij =
[
j−1
n , jn

]
is contained in one of the open sets γ−1(Uk), say Ij ⊆ γ−1(U`j ), that is γ(Ij) ⊆ U`j . For
1 ≤ j ≤ n, let αj be the path obtained by restricting γ to the interval Ij , that is let
αj(t) = γ

(
t
n + j−1

n

)
. For 1 ≤ j ≤ n− 1 we have j

n ∈ Ij ∩ Ij+1 so that γ
(
j
n

)
∈ U`j ∩ U`j+1

,

which is path-connected, so we can choose a path ρj from a to γ
(
j
n

)
in U`j ∩ U`j+1 . Also,

let ρ0 and ρn be the constant loop κ at a. For 1≤ j≤n, let σj = ρj−1αjρ
−1
j , which is a

loop at a in U`j . We have γ ∼ α1α2 · · ·αn ∼ ρ0α1ρ
−1
1 ρ1α2ρ

−1
2 · · · ρn−1αnρ−1n = σ1σ2 · · ·σn

so that φ
(
[σ1]`1 [σ2]`2 · · · [σn]`n = [σ1σ2 · · ·σn] = [γ]. Thus φ is surjective, as claimed.
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Since φ is surjective, it follows from the First Isomorphism Theorem that

π1(X, a) ∼=
(

+×
k∈K

π1(Uk, a)
)/

Kerφ.

We need to prove that Kerφ = N where N is the normal subgroup generated by elements
of the form [ω]k[ω−1]` where ω is a loop at a in Uk∩U`. Note that when ω is a loop at a in
Uk ∩ U` we have φ

(
[ω]k[ω−1]`

)
= [ωω−1] = [κ], which is the identity element in π1(X, a),

so we have N ⊆ Kerφ.

It remains to show that Kerφ ⊆ N . For now, suppose that each quadruple intersection
Uk ∩ U` ∩ Um ∩ Un is path-connected, where k, `,m, n ∈ K. Later we shall show how to
modify the proof so that it suffices to suppose that each triple intersection Uk ∩U` ∩Um is
path-connected. Let [σ1]`1 [σ2]`2 · · · [σn]`n ∈ Kerφ, where each σj is a loop at a in U`j with
`j ∈ K. This means that σ1σ2 · · ·σn ∼ κ in X. Let F : [0, 1]× [0, 1]→ X be a homotopy
from σ1σ2 · · ·σn to κ in X. The sets F−1(Uk) form an open cover of [0, 1] × [0, 1], which
is compact. Choose a Lebesgue number λ > 0 for this open cover. Choose m to be a
multiple of n which is large enough so that 1

m < λ. Each square Ii,j =
[
i−1
m , im

]
×
[
j−1
m , jm

]
is contained in one of the sets F−1(Uk), say Ii,j ⊆ F−1(Uki,j ), that is F (Ii,j) ⊆ Uki,j .

For 0≤ i, j≤m, let xi,k = F
(
i
m ,

j
m

)
. Note that xi,0 = xi,m = xm,j = a. For 0≤ i≤m

and 1 ≤ j ≤ m, let αi,j be the path from xi,j−1 to xi,j obtained by restricting F to the
interval

{
i
m

}
×
[
j−1
m , jm

]
. For 1 ≤ i ≤ m and 0 ≤ j ≤ m, let βi,j be the path from xi−1,j to

xi,j obtained by restricting F to the interval
[
i−1
m , im

]
×
{
j
m

}
. Recall that m is a multiple

of n, say m = pn. Then we have σ1 = α0,1α0,2 · · ·α0,p and σ2 = α0,p+1α0,p+2 · · ·α0,2p, and
so on. Let k0,1 = k0,2 = · · ·= k0,p= `1 and k0,p+1 = k0,p+2 = · · ·= k0,2p= `2 and so on.

Note that (if j > 0) xi,j lies in Uki,j and (if i < m and j > 0) in Uki+1,j
and (if

j < m) in Uki,j+1
and (if i < m and j < m) in Uki+1,j+1

. For 0 ≤ i < m and 1 ≤ j < m,
choose a path ρi,j from a to xi,j which lies in all the relevant sets Uki,j , Uki+1,j

, Uki,j+1
and

Uki+1,j+1 (we can do this since quadruple intersections are path-connected). Also, noting
that xi,0 = xi,m = xm,j = a, for all i, j, we choose ρi,0 = ρi,m = ρm,j = κ, the constant
loop at a. For 0 ≤ i ≤ m and 1 ≤ j ≤ m, let σi,j = ρi,j−1αi,jρ

−1
i,j . Note that σi,j is a loop

at a which lies in Uki,j and (if i < m) in Uki+1,j
, and that σm,j = κ. For 1 ≤ i ≤ m and

0 ≤ j ≤ m, let τi,j = ρi−1,jβi,jρ
−1
i,j . Note that τi,j is a loop at a which (if j > 0) lies in

Uki,j and (if j < m) in Uki,j+1
, and that τi,0 = τm,0 = κ.

For 0 ≤ i ≤ m, let ui = [σi,1]ki,1 [σi,2]ki,2 · · · [σi,m]ki,m . Note that

[σ1]`1 [σ2]`2 · · · [σn]`n = [σ0,1]k0,1 [σ0,2]k0,2 · · · [σ0,m]k0,m = u0.

For u, v ∈ +×
k∈K

π1(Uk, a), write u ≡ v to indicate that uN = vN . We shall complete the

proof by showing that u0 ≡ u1 ≡ · · · ≡ um and noting that um = 0 (the empty string in
+×
k∈K

π1(Uk, a)), so that u0 ∈ N . We do this using a sequence of steps, at each step using

one of the following two observations. First, note that when ω is a loop at a in Uk ∩ U`,
since [ω]k[ω−1]` ∈ N , we have [ω]` ≡ [ω]k[ω−1]`[ω]` = [ω]k. Second, note that by Note
6.3, in the set Uki,j we have αi−1,jβi,j ∼ βi,j−1αi,j so that σi−1,jτi,j ∼ τi,j−1σi,j , hence

τ−1i,j−1σi−1,j ∼ σi,jτ
−1
i,j , and so we have [τ−1i,j−1]ki,j [σi−1,j ]ki,j = [σi,j ]ki,j [τ−1i,j ]ki,j .
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Using the above two observations, repeatedly, gives

ui−1 = [σi−1,1]ki−1,1
[σi−1,2]ki−1,2

[σi−1,3]ki−1,3
· · · [σi−1,m]ki−1,m

= [τ−1i,0 ]ki,0 [σi−1,1]ki−1,1
[σi−1,2]ki−1,2

[σi−1,3]ki−1,3
· · · [σi−1,m]ki−1,m

≡ [τ−1i,0 ]ki,1 [σi−1,1]ki,1 [σi−1,2]ki−1,2
[σi−1,3]ki−1,3

· · · [σi−1,m]ki−1,m

= [σi,1]ki,1 [τ−1i,1 ]ki,1 [σi−1,2]ki−1,2 [σi−1,3]ki−1,3 · · · [σi−1,m]ki−1,m

≡ [σi,1]ki,1 [τ−1i,1 ]ki,2 [σi−1,2]ki,2 [σi−1,3]ki−1,3 · · · [σi−1,m]ki−1,m

= [σi,1]ki,1 [σi,2]ki,2 [τ−1i,2 ]ki,2 [σi−1,3]ki−1,3
· · · [σi−1,m]ki−1,m

...

= [σi,1]ki,1 [σi,2]ki,2 · · · [σi,m−1]ki,m−1
[τ−1i,m−1]ki,m−1

[σi−1,m]ki−1,m

≡ [σi,1]ki,1 [σi,2]ki,2 · · · [σi,m−1]ki,m−1
[τ−1i,m−1]ki,m [σi−1,m]ki,m

= [σi,1]ki,1 [σi,2]ki,2 · · · [σi,m−1]ki,m−1 [σi,m]ki,m [τ−1i,m]ki,m

= [σi,1]ki,1 [σi,2]ki,2 · · · [σi,m−1]ki,m−1
[σi,m]ki,m = ui+1.

Thus [σ1]`1 · · · [σn]`n ≡ u1 ≡ um = [σm,1]km,1
· · · [σm,m]km,m

= 0 since each σm,j = κ. This
proves that [σ1]`1 [σ2]`2 · · · [σn]`n ∈ N and hence Kerφ ⊆ N , as required.

This completes the proof, under the assumption that quadruple intersections are path-
connected. We can modify the proof so that only triple intersections need to be path-
connected as follows. Rather than partitioning the domain of F into the squares Ii,j =[
i−1
m , im

]
×
[
j−1
m , jm

]
, which sometimes meet four squares at a vertex, we can partition

the domain of F into squares and rectangles Ri,j with at most three meeting at each
vertex: when i is even, let Ri,j = Ii,j , when i is odd, move the horizontal edges up by
1

3m letting Ri,1 =
[
i−1
m , im

]
×
[
0, 4

3m

]
and Ri,j = Ii,j +

(
0, 1

3m

)
for 1 < j < m, and

Ri,m =
[
i−1
m , im

]
×
[
m−1
m + 1

3m , 1
]
. Note that the largest rectangles have sides of length

1
m and 4

3m , hence their diameter is 5
3m < 2

m < 2λ, so they lie in an open ball of radius λ,
and hence they lie in one of the open sets F−1(Uk), k ∈ K. Thus we can repeat the same
argument used above to show that Kerφ ⊆ N , and we only need to assume that triple
intersections are path-connected.

9.5 Corollary: Let X be a topological space with a ∈ X. Suppose that X = U ∪V where
U and V are open in X with a ∈ U ∩V . Suppose that U , V and U ∩V are path-connected.
Then

π1(X, a) ∼=
(
π1(U, a) ∗ π1(V, a)

)/
N

where N is the normal subgroup generated by elements of the form [ω]U [ω−1]V and
[ω]V [ω−1]U , where ω is a loop at a in U ∩ V . Also, we have the following two partic-
ular cases:

(1) If π1(U ∩ V ) = 0 then π1(X, a) ∼= π1(U, a) ∗ π1(V, a).
(2) If π1(V, a) = 0 then π1(X, a) ∼= π1(U, a)/N where N is the normal subgroup generated
by elements of the form [ω]U where ω is a loop at a in U ∩ V .

9.6 Example: Note that when n ≥ 2 we have π1(Sn) = 0: Indeed, let 1 = (1, 0, · · · , 0)
and p = (0, · · · , 0, 1), and take U = Sn \{p} and V = Sn \{−p}. Then, using stereographic
projection, we have U ∼= Rn so that π1(U, 1) = 0 and V ∼= Rn so that π1(V, 1) = 0, and
U ∩ V ∼= Rn \ {0} which is path-connected, and hence π1(X, 1) = 0 by the Seifert Van
Kampen Theorem.
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9.7 Definition: For based topological spaces (Xk, ak), where K is a nonempty set, the
wedge product

∧
k∈K(Xk, ak) is the quotient space of the disjoint union

⊔
k∈K Xk under

the equivalence relation which identifies all the basepoints. The equivance class containing
the basepoints is the basepoint of the wedge product.

9.8 Example: The finite wedge product of circles
∧n
k=1(S1, 1) is homeomorphic to the

n-loop space, which is the union of the images of the loops αk(t) = (sinπt)ei 2π(k+t)/n

for 1 ≤ k ≤ n, and also to the shrinking wedge of n circles, which is the union of the
images of the loops αk(t) = 1

k (sinπt)ei πt for 1 ≤ k ≤ n.
The countable wedge of circles

∧∞
k=1(S1, 1), by contrast, is not homeomorphic to the

countable shrinking wedge of circles, which is the union of the images of the loops
αk(t) = 1

k (sinπt)ei πt for k ∈ Z+. One way to see this is to note that the countable wedge
of circles is locally simply connected, but the countable shrinking wedge of circles is not.

9.9 Example: Show that π1
(∧n

k=1(S1, 1)
)

=
〈
α1, · · · , αn

〉 ∼= +×nk=1 Z where αk is the loop
which goes once around the kth circle Sk = S1.

9.10 Example: Let G be a finite connected graph (consisting of a finite set of vertices
and a finite set of edges), and let a be a vertex of G. Let T be a maximal tree in G (that
is a maximal subgraph which contains no cycles). Let E1, · · · , En be the edges in G which
do not lie in T (so for each k, the graph T ∪Ek contains a cycle). For each k, let αk be a
loop in G∪Ek which follows a path γ along T from a to an endpoint of Ek, then follows a
cycle in T ∪Ek, then follows γ−1 back to a. Show that π1(G, a) ∼= 〈α1, · · · , αn〉 ∼= +×nk=1 Z.

9.11 Example: Recall that (T2)#g is homeomorphic to the quotient space T 2
g = D/ ∼

where D is the closed unit disc and ∼ is the equivalence relation which identifies points on
the boundary S = ∂D according to the word α1β1α

−1
1 β−11 α2β2α

−1
2 β−12 · · ·αgβgα−1g β−1g .

Show that π1(T 2
g , 1)=

〈
α1, β1, α2, β2, · · · , αgβg

∣∣α1β1α
−1
1 β−11 α2β2α

−1
2 β−12 · · ·αgβgα−1g β−1g

〉
.

Also recall that (P2)#h ∼= P 2
h = D/ ∼ where ∼ identifies points on S = ∂D accord-

ing to α2
1α

2
2 · · ·α2

h. Show that π1(P 2
h , 1) =

〈
α1, α2, · · · , αh

∣∣α2
1α

2
2 · · ·α2

h

〉
. Deduce that

Ab
(
π1(T 2

g )
) ∼= Z2g and Ab(π1(P 2

h )) ∼= Zh−1 × Z2.

9.12 Example: Show that given any group of the form G ∼= 〈α1, · · · , αn
∣∣w1, · · · , w`

〉
, we

can construct a based topological space (X, a) with π1(X, a) ∼= G as follows. Let (W,a) be
the wedge product of n circles, and let αk be the loop at a which goes once around the kth

circle Sk = S1. Let X be the quotient space of the disjoint union of W with ` closed discs
D1, D2, · · · , D` under the equivalence relation which identifies points on the boundary of
the circle Tj = ∂Dj with points on W according to word wj .

9.13 Definition: A (finite) CW complex is a topological space X which is obtained as
follows: We begin with a finite discrete set of points X0. Having constructed Xk−1, we let
Xk be the quotient space of the disjoint union of Xk−1 with finitely many closed k-balls
D1, D2, · · · , D`, under the equivalence relation which identifies points on the boundary
Sj = ∂Dj with points on Xk−1 in accordance with a continuous map fj : Sj → Xk−1.
Eventually the construction ends with X = Xn. The space Xk is called the k skeleton
of X.

9.14 Remark: The fundamental group of a CW complex is equal to the fundamental
group of its 2-skeleton.
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