Chapter 8. Free Groups and Free Products of Groups

Direct Products and Sums of Groups

8.1 Definition: Let K be a nonempty set, and let G} be a group for each k € K. The
(direct) product of the groups Gy, is the set

HGk:{a:K—> U Gk

ke K keK

a(k) € Gk}.

For a € [[;cx Ga we write ax = a(k). The operation is given by (ab)(k) = a(k)b(k) € Gi.
For each £ € K, we have the projection map p; : [],.x Gr — G¢ given by pe(a) = ay,
and the inclusion map iy : Gy — [],cx Gk given by iy(7)(k) = e € Gy when k # £ and
i¢(x)(¢) = z. The maps p; and iy are group homomorphisms.

In the case that K = {1,2,3,---}, we also write [ [, x G = [[r—; Gk, and in the case
that K = {1,2,---,n} we also write [],cp Gk = [[_1 Gk = G1 X G2 X --- x Gy,.

Recall, or verify, that the product group is characterized, up to isomorphism, by the
following, so called, universal mapping property: for every group H, and for all group
homomorphisms fi : H — Gy, there is a unique group homomorphism f : H — [[,cx G
such that pp o f = fi for all k € K.

8.2 Remark: The fact that [], ., G is characterized by the above mapping property
can be summarized by saying that [], ., G is a product in the category of groups. In
the case that each group Gy is abelian, the product [], ., G is also abelian, and it is
characterized, up to isomorphism, by the same universal mapping property for all abelian
groups H, so we can also say that [ ], G is a product in the category of abelian groups.

8.3 Definition: Let K be a nonempty set, and let Gy be a group for each k € K. The
(direct) sum of the groups G, is the subgroup of [], ., G given by

Z Gy = {a € [] Gk ‘ak = e € G}, for all but finitely many k € K}
kEK keK

Recall, or verify, that when the groups Gy are abelian, the sum }, _, Gy is abelian, and
it is characterized, up to isomorphism, by the following universal mapping property: for
every abelian group H, and for all group homomorphisms fr : Gy — H, there exists a
unique group homomorphism f : >, _, Gr — H such that foiy = fi for all k € K.

In the case that K = {1,2,3,---}, we also write >, Gx = >, Gi. In the case
that K = {1,2,---,n} we have >, 1 Gr = [[,cx Gr = [[i—iGr =G1 x Gy X -+ X G,

In the case that all of the groups G}, are additive abelian groups, we sometimes write
Y ke Gk = @Brex Gr, and in the case that the groups Gy are additive abelian groups
and K = {1,2,---,n}, we also write @, ., G =@, _1Gr =G1 G2 & --- & G,,.

8.4 Remark: The fact that ), Gy is characterized by the above mapping property,
when the groups G and H are abelian, can be summarized by saying that >, . Gy is
a coproduct in the category of abelian groups. In the case that the groups Gy are not
abelian, the sum ), _,- G does not satisfy the above mapping property for all groups H,
and so0 ), . Gy is not a coproduct in the category of all groups.



Free Products of Groups

8.5 Definition: Let K be a nonempty set and let G be a group for each k € K. A word
on the groups Gy, is a string, on the disjoint union leeK Gy, of the form w = ajas---a,
where n > 0 (when n = 0 this gives the empty string () and each a; € Gy, for some k; € K.
This word is said to be reduced when a; # e € Gy, for all i, and k; # k;41 for all i. Any
word can be reduced using the following reduction operations: if a; = e € Gy, then we
can remove the term a; from the word, and if k; = k; 1 and say a;a,+1 = b € Gy, then we
can replace the pair of terms a;a;41 by the single term b, with b € G. The free product
of the groups Gy, denoted by *rex Gy, is the set of reduced words on | |, Gr (or,
alternatively, the quotient of the set of all words under the relation given by equivalence
under the reduction operations). The operation on *cx Gy is given by concatenation,
followed by reduction. Thus

¥ Gp={aaz-ay

keK

nZO,aiEGki}

and, if we wish, we can require that a; # e € Gy, and that k; # k;11. For each £ € K we
have the natural inclusion map i, : Gy — ¥rex Gk given by is(a) = a, where a € Gy.

In the case that K = {1,2,3,---} we also write ¥rex G = ¥;—; Gx. In the case
that K = {1,2,---,n} we also write ¥rcx G = ¥1_1 G = G1 xGax--- x G,,.

Recall, or verify, that the free product is characterized by the following universal
mapping property: for every group H and for all group homomorphisms fj, : G — H, there
exists a unique group homomorphism f : ¥icx — H such that f o, = fi for all k € K.
This group homomorphism is given by f(ajas---ay) = fi,(a1) fr,(a2) - fx, (an) € H.

8.6 Remark: The fact that ¥rcx G is characterized by the above mapping property
can be summarized by saying that ¥ rcx G is a coproduct in the category of groups.

8.7 Example: We have Gx H = {@,al, bl,ale,blag,albgag, blagbg, s |CLZ' € G, bj € H}



Free Abelian Groups and Free Groups

8.8 Definition: Let A be a nonempty set. A (formal) linear combination on A is an
expression of the form Y )'_, k;a; where n > 0 (when n = 0 we obtain the empty sum
which we write as 0) and each a; € A and each k; € Z. The above linear combination is
reduced when each k; # 0 and the elements a; are distinct. Any linear combination can
be reduced using the following reduction operations: the terms can be reordered, when
a; = aj = a the two terms k;a; and k;a; (that is the terms k;a and kja) can be replaced
by the single term (k; + k;)a, and when k; = 0 the term k;a; (that is the term Oa;) can
be omitted. The free abelian group on A (or generated by A), denoted by FAb(A),
is the set of linear combinations on A (or, to be more precise, the quotient of the set of
linear combinations under the relation given by the reduction operations). The operation
is addition, which is assumed to be abelian. Thus we have

FAb(A) = Spany A = { Y kia;neN,aq, € A, k; € Z}

k=1
and, if we want, we can require that each k; # 0 and that the elements a; are distinct.
The natural inclusion map i : A — FAb(A) is given by i(a) = a = 1a.

Recall, or verify, that the free abelian group on A is characterized, up to isomorphism,
by the following universal mapping property: for every additive abelian group G and for
every map of sets f : A — G, there is a unique group homomorphism g : FAb(A) — G
such that g oi = f. This map g is given by g( Y1, kia;) = > iy kif(a;).

8.9 Remark: The fact that F'Ab(A) is characterized by the above mapping property can
be summarized by saying that F'Ab(A) is a free object in the category of abelian groups.

8.10 Definition: Let A be a nonempty set. A word on the set A is a string of the form
w=1[, a;® = a;¥1ax*? - a,F where n > 0 (n = 0 gives the empty word ()) and each
a; € A and each k; € Z. This word is reduced when k; # 0 for all < and a; # a;4+1 for all
7. Any word can be reduced using the following reduction operations: if k; = 0 then we
can remove the term a;* (that is the term a;°) from the string, and if a; = a;;1 = a then
we can replace the pair of terms aikia?j_ﬁl by the single term a*:t*i+1. The free group on
A (or the free group generated by A), denoted by F(A), is the set of all reduced words on
the set A (or, equivalently, the quotient of the set of all words on A under the relation given
by the reduction operations). The operation on F'(A) is given by concatenation followed
by reduction. Thus we have

F(4) = { 1:1 a;

and, if we want, we can require that k; # 0 and that a; # a;11. The natural inclusion

map i : A — F(A) is given by i(a) = aal.

nZO,CL,‘GA,kZ‘EZ}

Recall, or verify, that the free group is characterized, up to isomorphism, by the
following property: for every group G and for every map of sets f : A — G, there is a
unique group homomorphism ¢ : F'(A) — G such that goi = f. This map ¢ is given by
9(ITizy ai®) = ITi=y f(ai)™.

8.11 Remark: The fact that the free group is characterized by the above universal
mapping property may be summarized by saying the F'(A) is a free object in the category
of groups.



Generators and Relations

8.12 Note: Note that every group G is a homomorphic image of a free group. Indeed
if A C G is any subset of G which generates GG, then we have a natural surjective group
homomorphism ¢ : F(A) — G given by (b(]_[Z Lati ) = [1i-, a;*. It follows, from the
First Isomorphism Theorem, that G = F(A)/K where K = Ker¢. Thus every group G is
of the form F(A)/N for some nonempty set A and some normal subgroup N < G.

8.13 Definition: When A is a nonempty set and W C F(A), we define
(AlW) = F(A)/N
where N is the normal subgroup of F'(A) generated by W. In the case that A = {a1, -, a,}
and W = {wy, -+, w,,}, we often omit set brackets, and we often write w; =e to indicate
that w; € N, so
(AIW) = (a1, - ,an w1, -, wp) = (a1, -, ay |wi=e,wa=e,- -, wy,=¢).
In addition, when w = uv with u,v € F(A), we might write w = e as u = v~1.
8.14 Example: Here are a few examples
F (A) = (A]0)
(a]0)
(ala™) ={a|a"=¢)
22 (a,b|aba™'b"') = (a,b|ab=ba)
(
(

IIZ I

112

Ty X Loy =2 (a,b|a™, b™, aba™'b71) = (a,b| a" =e,b™ =e, ab=ba)
L % Loy, = (a,b] a™, ™)

8.15 Example: Show that D, = (0,7 |0", 7% 070T).
8.16 Example: When A and B are disjoint we have (A| W) (B|V) = (AUB|VUW).

8.17 Example: Show that (A|WUV) = (F(A)/N)/M where N is the normal subgroup
of F(A) generated by the elements in W, and M is the normal subgroup of F(A)/N
generated by elements in V' (or, to be precise, by elements vN € F(A)/N where v € V).

8.18 Definition: For a group G, the abelianization of G is the group Ab(G) = G/N
where N is the normal subgroup of G generated by the elements of the form aba='b~1
where a,b € G. Recall, or verify, that Ab(G) is an abelian group.

8.19 Example: Show that Ab(F(A)) = FAb(A) = Spany(A).

8.20 Example: For w = [[;_, ;" € F(A), let p(w) = Y1, kia; € Spany(A). Show
that
AD(A1W)) 2 Span (4)/

where N is the subgroup of Spany(A) generated by {¢(w) |w € W}.
8.21 Example: Show that

Ab(D,) = { Zo X Zo if n is even}

Zo if nis odd



