
Chapter 8. Free Groups and Free Products of Groups

Direct Products and Sums of Groups

8.1 Definition: Let K be a nonempty set, and let Gk be a group for each k ∈ K. The
(direct) product of the groups Gk is the set∏

k∈K

Gk =
{
a : K →

⋃
k∈K

Gk

∣∣∣ a(k) ∈ Gk
}
.

For a ∈
∏
k∈K Gα we write ak = a(k). The operation is given by (ab)(k) = a(k)b(k) ∈ Gk.

For each ` ∈ K, we have the projection map p` :
∏
k∈K Gk → G` given by p`(a) = a`,

and the inclusion map i` : G` →
∏
k∈K Gk given by i`(x)(k) = e ∈ Gk when k 6= ` and

i`(x)(`) = x. The maps p` and i` are group homomorphisms.

In the case that K = {1, 2, 3, · · ·}, we also write
∏
k∈K Gk =

∏∞
k=1Gk, and in the case

that K = {1, 2, · · · , n} we also write
∏
k∈K Gk =

∏n
k=1Gk = G1 ×G2 × · · · ×Gn.

Recall, or verify, that the product group is characterized, up to isomorphism, by the
following, so called, universal mapping property: for every group H, and for all group
homomorphisms fk : H → Gk, there is a unique group homomorphism f : H →

∏
k∈K Gk

such that pk ◦ f = fk for all k ∈ K.

8.2 Remark: The fact that
∏
k∈GGk is characterized by the above mapping property

can be summarized by saying that
∏
k∈K Gk is a product in the category of groups. In

the case that each group Gk is abelian, the product
∏
k∈K Gk is also abelian, and it is

characterized, up to isomorphism, by the same universal mapping property for all abelian
groups H, so we can also say that

∏
k∈K Gk is a product in the category of abelian groups.

8.3 Definition: Let K be a nonempty set, and let Gk be a group for each k ∈ K. The
(direct) sum of the groups Gk is the subgroup of

∏
k∈K Gk given by∑

k∈K

Gk =
{
a ∈

∏
k∈K

Gk

∣∣∣ ak = e ∈ Gk for all but finitely many k ∈ K
}
.

Recall, or verify, that when the groups Gk are abelian, the sum
∑
k∈K Gk is abelian, and

it is characterized, up to isomorphism, by the following universal mapping property: for
every abelian group H, and for all group homomorphisms fk : Gk → H, there exists a
unique group homomorphism f :

∑
k∈K Gk → H such that f ◦ ik = fk for all k ∈ K.

In the case that K = {1, 2, 3, · · ·}, we also write
∑
k∈K Gk =

∑∞
k=1Gk. In the case

that K = {1, 2, · · · , n} we have
∑
k∈K Gk =

∏
k∈K Gk =

∏n
k=1Gk = G1 ×G2 × · · · ×Gn.

In the case that all of the groups Gk are additive abelian groups, we sometimes write∑
k∈K Gk =

⊕
k∈K Gk, and in the case that the groups Gk are additive abelian groups

and K = {1, 2, · · · , n}, we also write
⊕

k∈K Gk =
⊕n

k=1Gk = G1 ⊕G2 ⊕ · · · ⊕Gn.

8.4 Remark: The fact that
∑
k∈K Gk is characterized by the above mapping property,

when the groups Gk and H are abelian, can be summarized by saying that
∑
k∈K Gk is

a coproduct in the category of abelian groups. In the case that the groups Gk are not
abelian, the sum

∑
k∈K Gk does not satisfy the above mapping property for all groups H,

and so
∑
k∈K Gk is not a coproduct in the category of all groups.
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Free Products of Groups

8.5 Definition: Let K be a nonempty set and let Gk be a group for each k ∈ K. A word
on the groups Gk is a string, on the disjoint union

⊔
k∈K Gk, of the form w = a1a2 · · · an

where n ≥ 0 (when n = 0 this gives the empty string ∅) and each ai ∈ Gki for some ki ∈ K.
This word is said to be reduced when ai 6= e ∈ Gki for all i, and ki 6= ki+1 for all i. Any
word can be reduced using the following reduction operations: if ai = e ∈ Gki then we
can remove the term ai from the word, and if ki = ki+1 and say aiai+1 = b ∈ Gki then we
can replace the pair of terms aiai+1 by the single term b, with b ∈ Gk. The free product
of the groups Gk, denoted by +×k∈K Gk, is the set of reduced words on

⊔
k∈K Gk (or,

alternatively, the quotient of the set of all words under the relation given by equivalence
under the reduction operations). The operation on +×k∈K Gk is given by concatenation,
followed by reduction. Thus

+×
k∈K

Gk =
{
a1a2 · · · an

∣∣∣n ≥ 0 , ai ∈ Gki
}

and, if we wish, we can require that ai 6= e ∈ Gki and that ki 6= ki+1. For each ` ∈ K we
have the natural inclusion map i` : G` →+×k∈K Gk given by i`(a) = a, where a ∈ G`.

In the case that K = {1, 2, 3, · · ·} we also write +×k∈K Gk = +×∞k=1Gk. In the case
that K = {1, 2, · · · , n} we also write +×k∈K Gk = +×nk=1Gk = G1 ∗G2 ∗ · · · ∗Gn.

Recall, or verify, that the free product is characterized by the following universal
mapping property: for every groupH and for all group homomorphisms fk : Gk → H, there
exists a unique group homomorphism f : +×k∈K → H such that f ◦ ik = fk for all k ∈ K.
This group homomorphism is given by f(a1a2 · · · an) = fk1(a1)fk2(a2) · · · fkn(an) ∈ H.

8.6 Remark: The fact that +×k∈K Gk is characterized by the above mapping property
can be summarized by saying that +×k∈K Gk is a coproduct in the category of groups.

8.7 Example: We have G∗H =
{
∅, a1, b1, a1b2, b1a2, a1b2a3, b1a2b3, · · ·

∣∣ ai ∈ G, bj ∈ H}.
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Free Abelian Groups and Free Groups

8.8 Definition: Let A be a nonempty set. A (formal) linear combination on A is an
expression of the form

∑n
k=0 kiai where n ≥ 0 (when n = 0 we obtain the empty sum

which we write as 0) and each ai ∈ A and each ki ∈ Z. The above linear combination is
reduced when each ki 6= 0 and the elements ai are distinct. Any linear combination can
be reduced using the following reduction operations: the terms can be reordered, when
ai = aj = a the two terms kiai and kjaj (that is the terms kia and kja) can be replaced
by the single term (ki + kj)a, and when ki = 0 the term kiai (that is the term 0ai) can
be omitted. The free abelian group on A (or generated by A), denoted by FAb(A),
is the set of linear combinations on A (or, to be more precise, the quotient of the set of
linear combinations under the relation given by the reduction operations). The operation
is addition, which is assumed to be abelian. Thus we have

FAb(A) = SpanZA =
{ n∑
k=1

kiai

∣∣∣n ∈ N , ai ∈ A , ki ∈ Z
}

and, if we want, we can require that each ki 6= 0 and that the elements ai are distinct.
The natural inclusion map i : A→ FAb(A) is given by i(a) = a = 1 a.

Recall, or verify, that the free abelian group on A is characterized, up to isomorphism,
by the following universal mapping property: for every additive abelian group G and for
every map of sets f : A → G, there is a unique group homomorphism g : FAb(A) → G
such that g ◦ i = f . This map g is given by g

(∑n
i=1 kiai

)
=
∑n
i=1 kif(ai).

8.9 Remark: The fact that FAb(A) is characterized by the above mapping property can
be summarized by saying that FAb(A) is a free object in the category of abelian groups.

8.10 Definition: Let A be a nonempty set. A word on the set A is a string of the form
w =

∏n
i=1 ai

ki = a1
k1a2

k2 · · · ankn where n ≥ 0 (n = 0 gives the empty word ∅) and each
ai ∈ A and each ki ∈ Z. This word is reduced when ki 6= 0 for all i and ai 6= ai+1 for all
i. Any word can be reduced using the following reduction operations: if ki = 0 then we
can remove the term ai

ki (that is the term ai
0) from the string, and if ai = ai+1 = a then

we can replace the pair of terms ai
kia

ki+1

i+1 by the single term aki+ki+1 . The free group on
A (or the free group generated by A), denoted by F (A), is the set of all reduced words on
the set A (or, equivalently, the quotient of the set of all words on A under the relation given
by the reduction operations). The operation on F (A) is given by concatenation followed
by reduction. Thus we have

F (A) =
{ n∏
i=1

ai
ki

∣∣∣n ≥ 0 , ai ∈ A , ki ∈ Z
}

and, if we want, we can require that ki 6= 0 and that ai 6= ai+1. The natural inclusion
map i : A→ F (A) is given by i(a) = aa1.

Recall, or verify, that the free group is characterized, up to isomorphism, by the
following property: for every group G and for every map of sets f : A → G, there is a
unique group homomorphism g : F (A) → G such that g ◦ i = f . This map g is given by
g
(∏n

i=1 ai
ki
)

=
∏n
i=1 f(ai)

ki .

8.11 Remark: The fact that the free group is characterized by the above universal
mapping property may be summarized by saying the F (A) is a free object in the category
of groups.
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Generators and Relations

8.12 Note: Note that every group G is a homomorphic image of a free group. Indeed
if A ⊆ G is any subset of G which generates G, then we have a natural surjective group
homomorphism φ : F (A) → G given by φ

(∏n
i=1 ai

ki
)

=
∏n
i=1 ai

ki . It follows, from the
First Isomorphism Theorem, that G ∼= F (A)/K where K = Kerφ. Thus every group G is
of the form F (A)/N for some nonempty set A and some normal subgroup N ≤ G.

8.13 Definition: When A is a nonempty set and W ⊆ F (A), we define

〈A|W 〉 = F (A)/N

whereN is the normal subgroup of F (A) generated byW . In the case thatA = {a1, · · · , an}
and W = {w1, · · · , wm}, we often omit set brackets, and we often write wi=e to indicate
that wi ∈ N , so

〈A|W 〉 = 〈a1, · · · , an |w1, · · · , wm〉 = 〈a1, · · · , an |w1 =e, w2 =e, · · · , wm=e〉.
In addition, when w = uv with u, v ∈ F (A), we might write w = e as u = v−1.

8.14 Example: Here are a few examples

F (A) ∼= 〈A | ∅〉
Z ∼= 〈a | ∅〉
Zn ∼= 〈a | an〉 = 〈a | an=e〉
Z2 ∼= 〈a, b | aba−1b−1〉 = 〈a, b | ab=ba〉

Zn × Zm∼= 〈a, b | an, bm, aba−1b−1〉 = 〈a, b | an=e, bm=e, ab=ba〉
Zn ∗ Zm ∼= 〈a, b | an, bm〉

8.15 Example: Show that Dn
∼= 〈σ, τ |σn, τ2, στστ〉.

8.16 Example: When A and B are disjoint we have 〈A |W 〉 ∗ 〈B |V 〉 ∼= 〈A∪B |V ∪W 〉.
8.17 Example: Show that 〈A |W ∪V 〉 ∼=

(
F (A)/N

)
/M where N is the normal subgroup

of F (A) generated by the elements in W , and M is the normal subgroup of F (A)/N
generated by elements in V (or, to be precise, by elements vN ∈ F (A)/N where v ∈ V ).

8.18 Definition: For a group G, the abelianization of G is the group Ab(G) = G/N
where N is the normal subgroup of G generated by the elements of the form aba−1b−1

where a, b ∈ G. Recall, or verify, that Ab(G) is an abelian group.

8.19 Example: Show that Ab
(
F (A)

) ∼= FAb(A) = SpanZ(A).

8.20 Example: For w =
∏n
i=1 ai

ki ∈ F (A), let ϕ(w) =
∑n
i=1 kiai ∈ SpanZ(A). Show

that
Ab
(
〈A |W 〉

) ∼= SpanZ(A)
/
N

where N is the subgroup of SpanZ(A) generated by
{
ϕ(w)

∣∣w ∈W}.

8.21 Example: Show that

Ab(Dn) ∼=

{
Z2 × Z2 if n is even

Z2 if n is odd

}
.
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