Chapter 6. Homotopy of Paths, and The Fundamental Group

Homotopy and The Fundamental Group

6.1 Definition: Let X be a topological space and let o, : [0,1] — X be paths from
a to b in X. An (endpoint-fixing) homotopy from a to § in X is a continuous map
F :]0,1] x [0,1] — X such that F(0,t) = «a(t) and F(1,t) = p(t) for all ¢t € [0,1], and
F(s,0) = a and F(s,1) = b for all € [0,1]. Note that, in this case, for each s € [0, 1] the
map fs :[0,1] — X given by fs(t) = F(s,t) is a path from a to b in X. We say that « is
homotopic to § (or that « is homotopy-equivalent to 3) in X, and we write a ~ 3 in
X, when there exists a homotopy from « to § in X.

6.2 Theorem: Let X be a topological space, and let a,b € X. Then homotopy-equivalence
is an equivalence relation on the set of all paths from a to b in X.

Proof: Let «, 3,7 be paths from a to b in X. Note that a ~ «: indeed the map F' :
[0,1] x [0,1] — X given by F(s,t) = «(t) is a homotopy from « to o in X. Note
that if @« ~ 8 then 8 ~ a: indeed if F is a homotopy from « to f in X then the map
G :10,1]x[0,1] — X given by G(s,t) = F(1—s,t) is a homotopy from /5 to « in X. Finally
note that if « ~ fin X and f ~ v in X then a ~ v in X: indeed, if F' is a homotopy from
a to fin X and G is a homotopy from g to v in X, then the map H :[0,1] x [0,1] — X
given by

His.t) = { F(2s,t) ?f
G(2s —1,t) , if

is a homotopy from « to v in X.

6.3 Notation: Given a topological space X and a point a € X, we denote the set of
homotopy-equivalence classes of loops at a in X by (X, a), that is
m(X,a) = {[a] | is a loop at a in X} , where
[a]:{B|BisaloopataianithﬁwainX}.

6.4 Notation: Let X be a topological space. When a € X, we write k, to denote the
constant loop at a given by
Ka(t) = a

for all ¢ € [0,1]. When « is a path from a to b in X, we write o' to denote the inverse
path from b to a in X given by

a () =a(l—1t).
When « is a path from a to b in X and ( is a path from b to ¢ in X, we write a3 to denote
the product path from a to ¢ in X given by
a(2t) ,ingtS%}
B2t —1),if 3§ <t <1

(aB)(t) = {



6.5 Theorem: Let X be a topological space

(1) When « and 3 are paths from a tob in X, ifa ~ 3 in X then a=! ~ 71 in X.

(2) When « and (8 are paths from a to b in X, and v and § are paths from b to ¢ in X, if
a~vyinX and B~ ¢ in X then ay ~ 36 in X.

(3) When « is a path from a to b in X, we have koo ~ o in X and akp ~ a in X.

(4) When « is a path from a to b in X, we have aa™! ~ k, in X and o ta ~ Ky in X.
(5) When « is a path from a to b in X and ( is a path from b to ¢ in X, and ~y is a path
from ¢ to d in X, we have (af8)y ~ a(fy) in X.

Proof: We prove some of the statements, and leave the proofs of the remaining statements
as an exercise. For Parts 3 and 4, let a be a path from a to b in X. Verify that the map
F:[0,1] x [0,1] = X given by

a if 0<t< 153}

F(s,t) =
(5:9) {a(2§%39)ﬁ153§t§1

is a (basepoint-fixing) homotopy from k.« to « in X, and the map G : [0,1] x [0,1] - X
given by
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is a (basepoint-fixing) homotopy from aa~! to k, in X. For Part 5, let a be a path from
a to bin X, let B be a path from b to ¢ in X, and let v be a path from ¢ to d in X. Verify
that the map H : [0,1] x [0,1] — X given by

a(ff) ifo<t<ie

4
H(s,t) = { B(4t—(1+s)) if 2 <p< s

1M f

is a (basepoint-fixing) homotopy from (a8)y to a(f7v) in X.

6.6 Definition: Let X be a topological space and let a € X. By the above theorem,
the set 71 (X, a), of homotopy-equivalence classes of loops at a in X, is a group under the
operation given by [o][5] = [af], with identity element e = [k,] and with the inverse given
by [a]™! = [@™1]. This group m1(X,a) is called the fundamental group of X at a.

6.7 Example: When X is a convex set in a normed linear space and a € X, we have
m1(X,a) = {e} where e = [k,]. Indeed, for aloop o at a in X, the map F' : [0,1]x[0,1] - X
given by F'(s,t) = a(t) + s(a — «a(t)) is a homotopy from « to k, in X.



Lifting Paths and Homotopies to Polar Coordinates

6.8 Theorem: Let X be a compact metric space and let S be an open cover of X. Then
there exists a number \ > 0, called a Lebesgue number for the open cover S, such that
for every a € X the ball B(a, \) is contained in one of the sets in S.

Proof: For each p € X, choose U, € S such that p € U,, then choose r, > 0 so that
B(p,2r,) C Up. Note that {B(p,r,) |p € X} is an open cover of X and so, since X is
compact, we can choose points pi,pz,---,pn € X such that X = (J;_, B(p,rp,). Let
A =min{rp,,rp,, -, p, }. We claim that for every a € X, B(a, \) is contained in one of
the sets in S. Let a € X. Since X = [J,_; B(pk,p, ), we can choose an index k such that
a€ B(pg,rp, ). Then for all x € B(a, ) we have d(x,py) < d(x,a)+d(a,pr) < A rp, <27y,
so that B(z,a) C B(pg, 2rp,) C Uy, , as required.

6.9 Theorem: (Lifting Paths and Homotopies to Polar Coordinates)

(1) (Path Lifting) Let o : [0,1] C R — C* be continuous with «(0) = p. Let 1o = |p|
and choose 0y € R such that p = roe*%. Then there exist unique continuous maps
6 :100,1] € R — R with r(t) > 0 for all t € [0,1] and with 6(0) = 6y such that
at) = r(t)et?® for all t € [0,1].
(2) (Homotopy Lifting) Let F' : [0,1] x [0,1] — C* be continuous with F'(0,0) = p. Let
ro = |p| and choose 0y € R such that p = rge’%. Then there exist unique continuous
maps R,0 : [0,1] C R — R with R(s,t) > 0 for all s,t and with ©(0,0) = 6y such that
F(s,t) = R(s,t) e'®Y for all s,t € [0,1].
Proof: We prove Part 1 and leave the proof of Part 2 as an exercise (Part 2 is proven more
generally, for covering spaces, in Chapter 10). Write a(t) = (z(t),y(t)) = z(t) + iy(t)
where z,y : [0,1] — R, and note that = and y are continuous It is Clear that in order to

have a(t) = r(t)e?®), the map r must be given by 7(t = |a(t)| = V&(t)? + y(t)* which

is continuous. Let us explam how to construct the map 9 Let
Uy = {z+iy| x>0}
U = {x+iy ‘ y>0}
Us = {m—i—iy ‘ x<0}
Us = {z+iy|y<0}
and, for k = 1,2, 3,4, define 0y : U, — R by

z2+y2 ’
Note that when a(t) € Uy, we must have 6(t) = 0(«a(t)) + 27ny, for some ny, = ny(t) € Z.
In order for # to be continuous, the map ny(t) must be continuous. Since n(t) takes

values in the discrete set Z, it must be locally constant, meaning that it is constant in any
interval I C o~ }(Uy) C [0,1].



Note that the sets a~!(Uy) are open in [0, 1] and they cover [0, 1]. Choose a Lebesgue
number A\ > 0 for this cover. Choose m € Z* large enough so that % < A, and note that

each subinterval I; = [%, %} is contained in the open ball B; = B (%,A) in [0, 1],
and Bj; is contained in one of the four open sets a~!(Uy), say B; C o *(Uy,). It follows
that, in order for the required continuous map 6(t) to exist, there must exist constants
n; € Z such that for all t € B; we have 0(t) = 0y, (a(t)) + 27n;.

Note that the constants n; can be determined, in a unique way, so that the resulting
map 6(t) is continuous with #(0) = 6y: indeed the value of ny is uniquely determined
so that O, (a(0)) + 27mny = 0(0) = 6y, then the value of ng is uniquely determined so
that 0y, (a(%)) + 21Ny = 9(%) = O, (a(%)) + 27mnq, then the value of ng is uniquely
determined so that 6y, (a(%)) + 2mng = «9(%) = O, (a(%)) + 27ns9, and so on, so that
all values n; are uniquely determined. Finally note that, with these chosen values of n;,
the resulting map 6 : [0,1] — R given by 0(t) = 0y, (a(t)) + 27n; when t € I; (or when
t € Bj) is continuous, by the Glueing Lemma.

6.10 Definition: For «a, rg and 6y, as in Part 1 of the above theorem, the uniquely
determined path & : [0,1] C R — RTxR given by a(t) = (r(t),6(t)) is called the lift of «
at (79, 6p) to polar coordinates. In the same vein, for F', rg and 6, as in Part 2 of the above
theorem, the unique map F : [0,1] x [0,1] = RTxR given by F(s,t) = (R(s,t), @(s,t)) is
called the lift of F' at (79, 0y) to polar coordinates.

6.11 Note: If a: [0,1] C R — C* is differentiable (or C!, or piecewise C!, or C°°) then so

is its lift & to polar coordinates at (r¢, 0p). Indeed, when «(t) = x(t)+1 y(t) is differentiable
(or C! etc), so are the maps x and y. The proof shows that for all ¢ in B;, which is open

in [0, 1], we have r(t) = /22 +y? and 0(t) = 0y, (x(t),y(t)), and these are elementary

functions composed with the functions x and y, so they are also differentiable (or C!, etc).



The Winding Number of a Path in the Plane

6.12 Definition: Let a : [0,1] — C\ {u} be continuous with «(0) = a. Let p = a — u, let
ro = |p| and choose 6y € R so that p = rge?c. Define 5 : [0,1] — C* by B(t) = a(t) — u,
and let (r(t),0(t)) be the (unique) lift of 5 at (rg,0y) so that

alt) = u+r(t)e W,

We define the winding number of o about u to be

0(1)—6(0)

wind (o, u) = ==5-

Note that this does not depend on the choice of 6, because, for any k € Z we have
u+ et = o 41 (t)e!OD+27E) for all t, so the unique lift of 8 at (7o, §o+27k) is equal to
(r(t),¢(t)) with ¢(t) = 0(t) + 2wk for all ¢, so that ¢(1) — ¢(0) = (1) — 6(0). Also note
that in the case that « is a loop at a in C\ {u}, we have wind(a, u) € Z.

6.13 Theorem: Let a,b,c € C\ {u}, let a be a path from a to b in C\ {u}, and let 3 be
a path from b to ¢ in C\ {u}. Then

(1) wind(kq,u) = 0,

(2) wind(a~t, u) = —wind(a, u),

(3) wind(af, a) = wind(a, u) + wind(5, u).

Proof: The proof is left as an exercise.

6.14 Definition: When a piecewise continuous map ¢ : [0,1] € R — C is given by
g(t) = (x(t),y(t)) = z(t) + iy(t) with z,y : [0,1] — R, we define the integral fol g to be

/Olgz/Olg(t)dtz/le(t)dtﬂ/oly(t)dt,

When o : [0,1] CR — U C C is piecewise C! and f : U C C — C is continuous, we define
the path integral [ f to be

/afZ/af(z)dz:/Olf(a(t))a’ t)dt

6.15 Theorem: Let o :[0,1] CR — C\ {u} be piecewise C1 With a(0) = a and a(1) = b.
Let p = a —u, let 1o = |p| and choose 0y € R so that p = rge’’. Let (r(t),0(t)) be the Iift
of B(t) = at) — u at (rg,0p), so that a(t) = u + r(t)e?®®) for a]l t. Then

d .
/ =B i (01) - 6(0) = I {222 + 2 wind (o, u)

In particular, in the case that a = b we have r(1) = r(0) and wind(«, u) € Z with

1
d —
wind (o, u) =3 /a

Proof: The proof is a straightforward calculation: we have
/ dz /1 o/ (t) dt /1 7 (£)e?® 4 (1)e?® .50 (t)
N — 7 : dt
a?Z=U  J—polt)—u S r(t)et
bl : VN R N
:/ ( +16'(t) dt = [lnr(t)+20(t) zlnmﬁ—z(e(l)—H(O)).

t)
t=0 T t) 0



The Fundamental Group of an Annulus

6.16 Theorem: Let I be an interval in R with a € I, and let A= {z€C|||z|€I}. Then
(1) For loops a and 8 at a in A, o ~ 8 <= wind(«a,0) = wind($3, 0).

(2) m1(A,a) = ([0]) =2 Z where o : [0,1] — A is the loop at a given by o(t) = ae'?™.
Proof: To prove Part 1, let a and 3 be loops at a in A. Suppose first that wind(c,0) =
wind(8,0) =n € Z. Let a(t) = (r(t),0(t)) and B(t) = (p(t), ¢(t)) be the lifts of o and S at
(r0,00) = (a,0). Since wind(a, 0) = wind(5,0) = n, we have §(1) = ¢(1) = 27n. Note that
& and f3 are paths from (a,0) to (a,27n) in the convex set I x R, so they are homotopic
in I x R, with a homotopy given by F(s,t) = (r(t)+s(p(t)—r(t), 6(t)+s(¢(t)—0(t)). It
follows that o and 8 are homotopic in A with a homotopy G : [0,1] x [0,1] — A given by

G(s,t) = (r(t)+s(p(t)—r(t))e COHEOO)

Now suppose o ~ 8 in A, and let G : [0,1] x [0,1] — A be a homotopy from « to 5 in A.
Let a(t) = (r(t),0(t), B(t) = (p(t), p(t)) and G(s,t) = (R(s,t),©O(s,t)) be the lifts of o,
g and G at (rg,0y) = (a,0), and note that the lift Ky of the constant loop k, at (a,#(0))
is given by Ko = (a,0) and the lift k; of k, at (a,0(1)) is given by k1(t) = (a,0(1)). By
the uniqueness of lifts of paths (with the same initial point), since G(0,t) = «(t) for all ¢
with G(0,0) = (a 0) = 62(0) lifting at (a 0) gives

(R( 1)) = = a(t) = (r(t),0(t)) forallt € 0,1]
so that R(0,t) = ( ) and @( ) ( ) for all ¢. In particular, we have R(0,1) = a and
©(0,1) = 6(1). Since G(s,1) = kiq(s) for all s with G(0,1) = (a, 6(1)), lifting at r, at

(a,0(1)) gives
(R(s,1),0(s,1))
so that R(s,1) = a and O(s, 1)

G(s,1) = ®1(s) = (a,0(1)) for all s € [0,1]

= 0(1) for all s, hence, in particular, ©(1,1) = 6(1).
Similarly, since G(s,0) = k,(t) with G(0,0) = (a,0), lifting x4 at (a,0) gives R(1,0) = a
and ©(1,0) = 0, then since G(1,t) = B(t) with G(1,0) = (a,0) = B(0), lifting 8 at (a,0)
gives ©(1,1) = ¢(1). Thus 6(1) = O(1,1) = ¢(1) so that

wind(a,0) = 40 — 2 — wind(4(,0).

For Part 2, let 0¥ = k,, let 01 = o and for n € ZT let 0" ! = ¢"c and 0™ = (™)L,

For all n € Z, we have [¢"] = [0]"™ and, by Theorem 6.13, we have wind(¢™,u) = n. By
Part 1, when « is any loop at a in A with wind(«, 0) = n, we have a ~ ¢™ so that [a] = [0]"
in 71 (A, a). This proves that m (4, a) = ([o]) (the cyclic group generated by [o]). Finally,
we note that ([0]) 2 Z because when n € Z* we have wind(c™,0) = n # 0 = wind(k,, 0)
so that by Part 1, o™ # k,, and hence [0]" = [0"] # [K4]

6.17 Remark: For students who have seen Cauchy’s Theorem for Paths, from complex
analysis, here is an alternate proof that when o ~ 8 we have wind(a,0) = wind(8,0).
Suppose that a ~ 8 and let wind(a, 0) = n and wind(3,0) = m. For k € Z, let wy be the
loop at @ in A given by wy,(t) = ae?2™** and note that wy, is C! with wind(wy,,0) = k. By the
first part of the proof of Part 1, since wind(«a, 0) = n = wind(w,,,0), we have a ~ w,, and
since wind(3,0) = m = wind(w,,,0) we have § ~ w,,. Thus we have w,, ~ a ~ 8 ~ wy,.
Since the function f : C* — C given by f(z) = % is holomorphic in C*, and since w,, ~ wm,
in A C C*, it follows from Cauchy’s Theorem for paths (Which we remark holds for
piecewise C! paths, not for continuous paths), we have n = 27” fwn f= 27” f f=m.



Basic Properties of the Fundamental Group

6.18 Note: When X is path-connected and P is the path-component of X which contains
the point a € X, we have m1 (X, a) = m1(P, a). Indeed, every loop « at a in X also lies in
P, and when a and 8 are homotopic loops at a in X, every homotopy F' from « to § in
X takes values in P so that it is also a homotopy from « to 3 in P.

6.19 Note: When 7 is a path from a to b in X, the map ¢, : 71 (X, a) = m1 (X, b) given by
é~([a]) = [y tay] is a well-defined group isomorphism: It is well-defined because for loops
a,B at ain X, if a ~ B then v 'ay ~ v~ !By in X. It is a group homomorphism because
for loops a, 8 at a in X, we have vy 'aB~vy ~ v ltayy~ 1By in X. It is bijective because it
has an inverse ¢, ' = ¢o-1 2 11 (X, b) — 71 (X, a) which is given by ¢.—1([8]) =877

6.20 Notation: When X is path-connected and a € X, it is fairly common to write
m1 (X, a) simply as 71 (X).

6.21 Definition: A based topological space (or a pointed topological space) is
a pair (X, a) where X is a topological space and a € X (the point a is called the base
point). A (continuous) map of based spaces f : (X,a) — (Y,b) is a continuous map
f: X =Y with f(a) = b. A homeomorphism from (X,a) — (Y,b) is a continuous
map f : (X,a) — (Y,b) with a continuous inverse map f=1 : (Y,b) — (X,a). We say
that (X, a) is homeomorphic to (Y,b), and write (X,a) = (Y,b), when there exists a
homeomorphism f: (X, a) — (Y,b).

6.22 Definition: Given a map f : (X,a) — (Y, b) of based spaces, we define the induced
group homomorphism f, : m(X,a) — m(Y,b) by f.«([o]) = [f o a]. Note that f, is
well-defined because, for loops o and 8 at a in X, if F' is a homotopy from « to § in X
then G = f o F' is a homotopy from foa to fo [ in Y. Also note that f, is a group
homomorphism because, for loops o and 8 at a in X, we have fo (af) = (foa)(f o).

6.23 Note: Note that id. = id, meaning that when id : (X,a) — (X, a) is the identity
map (given by id(z) = z for all x € X, the induced map id, : m1(X,a) = 71(X,a) is also
the identity map. Also note that when f : (X,a) — (Y,b) and g : (Y,b) — (Z, ¢) we have
(go f)« =g« o fx because (go f)oa =go (foa) for all loops « at a in X.

6.24 Remark: The above note can be summarized by saying the we have a (covariant)
functor F', from the category of based topological spaces to the category of groups, given
by F(X,a) = m1(X,a) with F(f) = f. when f: (X,a) — (Y,b).

6.25 Theorem: When (X,a) = (Y,b) we have m (X, a) = m (Y, ).

Proof: This is immediate from the above note: indeed when f : (X,a) — (Y,b) is a
homeomorphism with inverse g = f=1: (Y,b) — (X, a), we have go f = id and fog = id,
and hence g, o fu = (go f)x = ids = id and f, 0 g. = (f 0 g)« = id, = id, so that f, is
invertible with inverse g, = (f.)~ '

6.26 Theorem: 7;(X x Y, (a,b)) = m(X,a) x m (Y, b).

Proof: Let p: X XY — X and ¢ : X XY — Y be the projection maps. Since every loop v at
(a,b) in X x Y is of the form (t) = (a(t), B(t)) where o = po~y (which is a loop at a in X)
and 3 = go~y (which is aloop at bin Y'), the map ¢ : m; (X xY, (a, b)) — (X, a)xm(Y,b)

given by (7)) = ([po1], [97]) = (p. (1), 4. (1)) s a surjective group homorphism, and
¢ is injective because if I’ is a homotopy from « to s, in X and G is a homotopy from [
to kp in Y, then (F,G) is a homotopy from (o, 8) to K4 in X x Y.

6.27 Example: Using the above theorem, we have m (T™) = Z".



