
Chapter 6. Homotopy of Paths, and The Fundamental Group

Homotopy and The Fundamental Group

6.1 Definition: Let X be a topological space and let α, β : [0, 1] → X be paths from
a to b in X. An (endpoint-fixing) homotopy from α to β in X is a continuous map
F : [0, 1] × [0, 1] → X such that F (0, t) = α(t) and F (1, t) = β(t) for all t ∈ [0, 1], and
F (s, 0) = a and F (s, 1) = b for all ∈ [0, 1]. Note that, in this case, for each s ∈ [0, 1] the
map fs : [0, 1]→ X given by fs(t) = F (s, t) is a path from a to b in X. We say that α is
homotopic to β (or that α is homotopy-equivalent to β) in X, and we write α ∼ β in
X, when there exists a homotopy from α to β in X.

6.2 Theorem: LetX be a topological space, and let a, b ∈ X. Then homotopy-equivalence
is an equivalence relation on the set of all paths from a to b in X.

Proof: Let α, β, γ be paths from a to b in X. Note that α ∼ α: indeed the map F :
[0, l1] × [0, 1] → X given by F (s, t) = α(t) is a homotopy from α to α in X. Note
that if α ∼ β then β ∼ α: indeed if F is a homotopy from α to β in X then the map
G : [0, 1]×[0, 1]→ X given by G(s, t) = F (1−s, t) is a homotopy from β to α in X. Finally
note that if α ∼ β in X and β ∼ γ in X then α ∼ γ in X: indeed, if F is a homotopy from
α to β in X and G is a homotopy from β to γ in X, then the map H : [0, 1]× [0, 1]→ X
given by

H(s, t) =

{
F (2s, t) , if 0 ≤ s ≤ 1

2

G(2s− 1, t) , if 1
2 ≤ s ≤ 1

}
is a homotopy from α to γ in X.

6.3 Notation: Given a topological space X and a point a ∈ X, we denote the set of
homotopy-equivalence classes of loops at a in X by π1(X, a), that is

π1(X, a) =
{

[α]
∣∣α is a loop at a in X

}
, where

[α] =
{
β
∣∣β is a loop at a in X with β ∼ α in X

}
.

6.4 Notation: Let X be a topological space. When a ∈ X, we write κa to denote the
constant loop at a given by

κa(t) = a

for all t ∈ [0, 1]. When α is a path from a to b in X, we write α−1 to denote the inverse
path from b to a in X given by

α−1(t) = α(1− t) .
When α is a path from a to b in X and β is a path from b to c in X, we write αβ to denote
the product path from a to c in X given by

(αβ)(t) =

{
α(2t) , if 0 ≤ t ≤ 1

2

β(2t− 1) , if 1
2 ≤ t ≤ 1

}
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6.5 Theorem: Let X be a topological space

(1) When α and β are paths from a to b in X, if α ∼ β in X then α−1 ∼ β−1 in X.
(2) When α and β are paths from a to b in X, and γ and δ are paths from b to c in X, if
α ∼ γ in X and β ∼ δ in X then αγ ∼ βδ in X.

(3) When α is a path from a to b in X, we have κaα ∼ α in X and ακb ∼ α in X.
(4) When α is a path from a to b in X, we have αα−1 ∼ κa in X and α−1α ∼ κb in X.
(5) When α is a path from a to b in X and β is a path from b to c in X, and γ is a path
from c to d in X, we have (αβ)γ ∼ α(βγ) in X.

Proof: We prove some of the statements, and leave the proofs of the remaining statements
as an exercise. For Parts 3 and 4, let α be a path from a to b in X. Verify that the map
F : [0, 1]× [0, 1]→ X given by

F (s, t) =

{
a if 0≤ t≤ 1−s

2

α
( 2t−(1−s)

1+s

)
if 1−s

2 ≤ t≤ 1

}
is a (basepoint-fixing) homotopy from κaα to α in X, and the map G : [0, 1]× [0, 1]→ X
given by

G(s, t) =


α(2t) if 0≤ t≤ 1−s

2

α(1−s) if 1−s
2 ≤ t≤

1+s
2

α(2−2t) if 1+s
2 ≤ t≤1


is a (basepoint-fixing) homotopy from αα−1 to κa in X. For Part 5, let α be a path from
a to b in X, let β be a path from b to c in X, and let γ be a path from c to d in X. Verify
that the map H : [0, 1]× [0, 1]→ X given by

H(s, t) =


α
(

4t
1+s

)
if 0≤ t≤ 1+s

4

β
(
4t−(1+s)

)
if 1+s

4 ≤ t≤
2+s

4

γ
( 4t−(2+s)

2−s
)

if 2+s
4 ≤ t≤1


is a (basepoint-fixing) homotopy from (αβ)γ to α(βγ) in X.

6.6 Definition: Let X be a topological space and let a ∈ X. By the above theorem,
the set π1(X, a), of homotopy-equivalence classes of loops at a in X, is a group under the
operation given by [α][β] = [αβ], with identity element e = [κa] and with the inverse given
by [α]−1 = [α−1]. This group π1(X, a) is called the fundamental group of X at a.

6.7 Example: When X is a convex set in a normed linear space and a ∈ X, we have
π1(X, a) = {e} where e = [κa]. Indeed, for a loop α at a inX, the map F : [0, 1]×[0, 1]→ X
given by F (s, t) = α(t) + s(a− α(t)) is a homotopy from α to κa in X.
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Lifting Paths and Homotopies to Polar Coordinates

6.8 Theorem: Let X be a compact metric space and let S be an open cover of X. Then
there exists a number λ > 0, called a Lebesgue number for the open cover S, such that
for every a ∈ X the ball B(a, λ) is contained in one of the sets in S.
Proof: For each p ∈ X, choose Ux ∈ S such that p ∈ Up, then choose rp > 0 so that
B(p, 2rp) ⊆ Up. Note that

{
B(p, rp)

∣∣ p ∈ X} is an open cover of X and so, since X is
compact, we can choose points p1, p2, · · · , pn ∈ X such that X =

⋃n
k=1B(p, rpk). Let

λ = min{rp1 , rp2 , · · · , rpn}. We claim that for every a ∈ X, B(a, λ) is contained in one of
the sets in S. Let a ∈ X. Since X =

⋃n
k=1B(pk, rpk), we can choose an index k such that

a∈B(pk, rpk). Then for all x∈B(a, λ) we have d(x, pk) ≤ d(x, a)+d(a, pk) < λ+rpk ≤ 2 rpk
so that B(x, a) ⊆ B(pk, 2rpk) ⊆ Upk , as required.

6.9 Theorem: (Lifting Paths and Homotopies to Polar Coordinates)

(1) (Path Lifting) Let α : [0, 1] ⊆ R → C∗ be continuous with α(0) = p. Let r0 = |p|
and choose θ0 ∈ R such that p = r0e

i θ0 . Then there exist unique continuous maps
r, θ : [0, 1] ⊆ R → R with r(t) > 0 for all t ∈ [0, 1] and with θ(0) = θ0 such that
α(t) = r(t) ei θ(t) for all t ∈ [0, 1].

(2) (Homotopy Lifting) Let F : [0, 1] × [0, 1] → C∗ be continuous with F (0, 0) = p. Let
r0 = |p| and choose θ0 ∈ R such that p = r0e

i θ0 . Then there exist unique continuous
maps R,Θ : [0, 1] ⊆ R → R with R(s, t) > 0 for all s, t and with Θ(0, 0) = θ0 such that
F (s, t) = R(s, t) eiΘ(s,t) for all s, t ∈ [0, 1].

Proof: We prove Part 1 and leave the proof of Part 2 as an exercise (Part 2 is proven more
generally, for covering spaces, in Chapter 10). Write α(t) =

(
x(t), y(t)

)
= x(t) + i y(t)

where x, y : [0, 1]→ R, and note that x and y are continuous. It is clear that, in order to
have α(t) = r(t)ei θ(t), the map r must be given by r(t) =

∣∣α(t)
∣∣ =

√
x(t)2 + y(t)2 which

is continuous. Let us explain how to construct the map θ. Let

U1 =
{
x+iy

∣∣x>0
}

U2 =
{
x+iy

∣∣ y>0
}

U3 =
{
x+iy

∣∣x<0
}

U4 =
{
x+iy

∣∣ y<0
}

and, for k = 1, 2, 3, 4, define θk : Uk → R by

θ1(x, y) = sin−1 y√
x2+y2

θ2(x, y) = cos−1 x√
x2+y2

θ3(x, y) = π + sin−1 y√
x2+y2

θ4(x, y) = 2π − cos−1 x√
x2+y2

.

Note that when α(t) ∈ Uk, we must have θ(t) = θ
(
α(t)

)
+ 2πnk for some nk = nk(t) ∈ Z.

In order for θ to be continuous, the map nk(t) must be continuous. Since nk(t) takes
values in the discrete set Z, it must be locally constant, meaning that it is constant in any
interval I ⊆ α−1(Uk) ⊆ [0, 1].
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Note that the sets α−1(Uk) are open in [0, 1] and they cover [0, 1]. Choose a Lebesgue
number λ > 0 for this cover. Choose m ∈ Z+ large enough so that 1

m < λ, and note that

each subinterval Ij =
[
j−1
m , jm

]
is contained in the open ball Bj = B[0,1]

(
j
m , λ

)
in [0, 1],

and Bj is contained in one of the four open sets α−1(Uk), say Bj ⊆ α−1(Ukj ). It follows
that, in order for the required continuous map θ(t) to exist, there must exist constants
nj ∈ Z such that for all t ∈ Bj we have θ(t) = θkj

(
α(t)

)
+ 2πnj .

Note that the constants nj can be determined, in a unique way, so that the resulting
map θ(t) is continuous with θ(0) = θ0: indeed the value of n1 is uniquely determined
so that θk1(α(0)) + 2πn1 = θ(0) = θ0, then the value of n2 is uniquely determined so
that θk2

(
α
(

1
m

))
+ 2πn2 = θ

(
1
m

)
= θk1

(
α
(

1
m

))
+ 2πn1, then the value of n3 is uniquely

determined so that θk3
(
α
(

2
m

))
+ 2πn3 = θ

(
2
m

)
= θk2

(
α
(

2
m

))
+ 2πn2, and so on, so that

all values nj are uniquely determined. Finally note that, with these chosen values of nj ,
the resulting map θ : [0, 1] → R given by θ(t) = θkj (α(t)) + 2πnj when t ∈ Ij (or when
t ∈ Bj) is continuous, by the Glueing Lemma.

6.10 Definition: For α, r0 and θ0, as in Part 1 of the above theorem, the uniquely
determined path α̃ : [0, 1] ⊆ R→ R+×R given by α̃(t) =

(
r(t), θ(t)

)
is called the lift of α

at (r0, θ0) to polar coordinates. In the same vein, for F , r0 and θ0, as in Part 2 of the above

theorem, the unique map F̃ : [0, 1]× [0, 1]→ R+×R given by F (s, t) =
(
R(s, t),Θ(s, t)

)
is

called the lift of F at (r0, θ0) to polar coordinates.

6.11 Note: If α : [0, 1] ⊆ R→ C∗ is differentiable (or C1, or piecewise C1, or C∞) then so
is its lift α̃ to polar coordinates at (r0, θ0). Indeed, when α(t) = x(t)+i y(t) is differentiable
(or C1 etc), so are the maps x and y. The proof shows that for all t in Bj , which is open

in [0, 1], we have r(t) =
√
x2 + y2 and θ(t) = θkj

(
x(t), y(t)

)
, and these are elementary

functions composed with the functions x and y, so they are also differentiable (or C1, etc).
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The Winding Number of a Path in the Plane

6.12 Definition: Let α : [0, 1]→ C \ {u} be continuous with α(0) = a. Let p = a− u, let
r0 = |p| and choose θ0 ∈ R so that p = r0e

iθ0 . Define β : [0, 1] → C∗ by β(t) = α(t) − u,
and let (r(t), θ(t)) be the (unique) lift of β at (r0, θ0) so that

α(t) = u+ r(t)ei θ(t).

We define the winding number of α about u to be

wind(α, u) = θ(1)−θ(0)
2π .

Note that this does not depend on the choice of θ0 because, for any k ∈ Z we have
u+ reiθ(t) = u+ r(t)ei(θ(t)+2πk) for all t, so the unique lift of β at (r0, θ0+2πk) is equal to
(r(t), φ(t)) with φ(t) = θ(t) + 2πk for all t, so that φ(1) − φ(0) = θ(1) − θ(0). Also note
that in the case that α is a loop at a in C \ {u}, we have wind(α, u) ∈ Z.

6.13 Theorem: Let a, b, c ∈ C \ {u}, let α be a path from a to b in C \ {u}, and let β be
a path from b to c in C \ {u}. Then
(1) wind(κa, u) = 0,
(2) wind(α−1, u) = −wind(α, u),
(3) wind(αβ, a) = wind(α, u) + wind(β, u).

Proof: The proof is left as an exercise.

6.14 Definition: When a piecewise continuous map g : [0, 1] ⊆ R → C is given by

g(t) =
(
x(t), y(t)

)
= x(t) + i y(t) with x, y : [0, 1]→ R, we define the integral

∫ 1

0
g to be∫ 1

0

g =

∫ 1

0

g(t) dt =

∫ 1

0

x(t) dt+ i

∫ 1

0

y(t) dt.

When α : [0, 1] ⊆ R→ U ⊆ C is piecewise C1 and f : U ⊆ C→ C is continuous, we define
the path integral

∫
α
f to be∫

α

f =

∫
α

f(z) dz =

∫ 1

0

f(α(t))α′(t) dt.

6.15 Theorem: Let α : [0, 1] ⊆ R→ C \ {u} be piecewise C1 with α(0) = a and α(1) = b.
Let p = a− u, let r0 = |p| and choose θ0 ∈ R so that p = r0e

iθ0 . Let (r(t), θ(t)) be the lift
of β(t) = α(t)− u at (r0, θ0), so that α(t) = u+ r(t)eiθ(t) for all t. Then∫

α

dz

z − u
= ln r(1)

r(0) + i (θ(1)− θ(0)) = ln |b−u||a−u| + 2π i wind(α, u) .

In particular, in the case that a = b we have r(1) = r(0) and wind(α, u) ∈ Z with

wind(α, u) =
1

2π i

∫
α

dz

z − u
.

Proof: The proof is a straightforward calculation: we have∫
α

dz

z − u
=

∫ 1

t=0

α′(t) dt

α(t)− u
=

∫ 1

t=0

r′(t)eiθ(t) + r(t)eiθ(t) · iθ′(t)
r(t)eiθ(t)

dt

=

∫ 1

t=0

r′(t)

r(t)
+ i θ′(t) dt =

[
ln r(t) + i θ(t)

]1
0

= ln r(1)
r(0) + i (θ(1)− θ(0)).
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The Fundamental Group of an Annulus

6.16 Theorem: Let I be an interval in R with a ∈ I, and let A =
{
z∈C

∣∣ ‖z‖∈I}. Then
(1) For loops α and β at a in A, α ∼ β ⇐⇒ wind(α, 0) = wind(β, 0).
(2) π1(A, a) =

〈
[σ]
〉 ∼= Z where σ : [0, 1]→ A is the loop at a given by σ(t) = a ei 2πt.

Proof: To prove Part 1, let α and β be loops at a in A. Suppose first that wind(α, 0) =

wind(β, 0) = n ∈ Z. Let α̃(t) = (r(t), θ(t)) and β̃(t) = (ρ(t), φ(t)) be the lifts of α and β at
(r0, θ0) = (a, 0). Since wind(α, 0) = wind(β, 0) = n, we have θ(1) = φ(1) = 2πn. Note that

α̃ and β̃ are paths from (a, 0) to (a, 2πn) in the convex set I × R, so they are homotopic
in I × R, with a homotopy given by F (s, t) =

(
r(t)+s(ρ(t)−r(t) , θ(t)+s(φ(t)−θ(t)

)
. It

follows that α and β are homotopic in A with a homotopy G : [0, 1]× [0, 1]→ A given by

G(s, t) =
(
r(t)+s(ρ(t)−r(t)

)
e
i (θ(t)+s(φ(t)−θ(t))

.

Now suppose α ∼ β in A, and let G : [0, 1]× [0, 1]→ A be a homotopy from α to β in A.

Let α̃(t) = (r(t), θ(t)), β̃(t) = (ρ(t), φ(t)) and G̃(s, t) =
(
R(s, t),Θ(s, t)

)
be the lifts of α,

β and G at (r0, θ0) = (a, 0), and note that the lift κ̃0 of the constant loop κa at (a, θ(0))
is given by κ̃0 = (a, 0) and the lift κ̃1 of κa at (a, θ(1)) is given by κ̃1(t) = (a, θ(1)). By
the uniqueness of lifts of paths (with the same initial point), since G(0, t) = α(t) for all t

with G̃(0, 0) = (a, 0) = α̃(0), lifting at (a, 0) gives(
R(0, t),Θ(0, t)

)
= G̃(0, t) = α̃(t) = (r(t), θ(t)) for all t ∈ [0, 1]

so that R(0, t) = r(t) and Θ(0, t) = θ(t) for all t. In particular, we have R(0, 1) = a and

Θ(0, 1) = θ(1). Since G(s, 1) = a = κa(s) for all s with G̃(0, 1) = (a, θ(1)), lifting at κa at
(a, θ(1)) gives(

R(s, 1),Θ(s, 1)
)

= G̃(s, 1) = κ̃1(s) = (a, θ(1)) for all s ∈ [0, 1]

so that R(s, 1) = a and Θ(s, 1) = θ(1) for all s, hence, in particular, Θ(1, 1) = θ(1).

Similarly, since G(s, 0) = κa(t) with G̃(0, 0) = (a, 0), lifting κa at (a, 0) gives R(1, 0) = a

and Θ(1, 0) = 0, then since G(1, t) = β(t) with G̃(1, 0) = (a, 0) = β̃(0), lifting β at (a, 0)
gives Θ(1, 1) = φ(1). Thus θ(1) = Θ(1, 1) = φ(1) so that

wind(α, 0) = θ(1)
2π = φ(1)

2π = wind(β(, 0).

For Part 2, let σ0 = κa, let σ1 = σ and for n ∈ Z+ let σn+1 = σnσ and σ−n = (σn)−1.
For all n ∈ Z, we have [σn] = [σ]n and, by Theorem 6.13, we have wind(σn, u) = n. By
Part 1, when α is any loop at a in A with wind(α, 0) = n, we have α ∼ σn so that [α] = [σ]n

in π1(A, a). This proves that π1(A, a) =
〈
[σ]
〉

(the cyclic group generated by [σ]). Finally,

we note that
〈
[σ]
〉 ∼= Z because when n ∈ Z+ we have wind(σn, 0) = n 6= 0 = wind(κa, 0)

so that by Part 1, σn 6∼ κa, and hence [σ]n = [σn] 6= [κa]

6.17 Remark: For students who have seen Cauchy’s Theorem for Paths, from complex
analysis, here is an alternate proof that when α ∼ β we have wind(α, 0) = wind(β, 0).
Suppose that α ∼ β and let wind(α, 0) = n and wind(β, 0) = m. For k ∈ Z, let ωk be the
loop at a in A given by ωk(t) = aei 2πkt and note that ωk is C1 with wind(ωk, 0) = k. By the
first part of the proof of Part 1, since wind(α, 0) = n = wind(ωn, 0), we have α ∼ ωn and
since wind(β, 0) = m = wind(ωm, 0) we have β ∼ ωm. Thus we have ωn ∼ α ∼ β ∼ ωm.
Since the function f : C∗ → C given by f(z) = 1

z is holomorphic in C∗, and since ωn ∼ ωm
in A ⊆ C∗, it follows from Cauchy’s Theorem for paths (which, we remark, holds for
piecewise C1 paths, not for continuous paths), we have n = 1

2π i

∫
ωn
f = 1

2π i

∫
ωm

f = m.
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Basic Properties of the Fundamental Group

6.18 Note: When X is path-connected and P is the path-component of X which contains
the point a ∈ X, we have π1(X, a) = π1(P, a). Indeed, every loop α at a in X also lies in
P , and when α and β are homotopic loops at a in X, every homotopy F from α to β in
X takes values in P so that it is also a homotopy from α to β in P .

6.19 Note: When γ is a path from a to b in X, the map φγ : π1(X, a)→ π1(X, b) given by
φγ([α]) = [γ−1αγ] is a well-defined group isomorphism: It is well-defined because for loops
α, β at a in X, if α ∼ β then γ−1αγ ∼ γ−1βγ in X. It is a group homomorphism because
for loops α, β at a in X, we have γ−1αβ γ ∼ γ−1αγ γ−1βγ in X. It is bijective because it
has an inverse φγ

−1 = φγ−1 : π1(X, b)→ π1(X, a) which is given by φγ−1([β]) = γβγ−1.

6.20 Notation: When X is path-connected and a ∈ X, it is fairly common to write
π1(X, a) simply as π1(X).

6.21 Definition: A based topological space (or a pointed topological space) is
a pair (X, a) where X is a topological space and a ∈ X (the point a is called the base
point). A (continuous) map of based spaces f : (X, a) → (Y, b) is a continuous map
f : X → Y with f(a) = b. A homeomorphism from (X, a) → (Y, b) is a continuous
map f : (X, a) → (Y, b) with a continuous inverse map f−1 : (Y, b) → (X, a). We say
that (X, a) is homeomorphic to (Y, b), and write (X, a) ∼= (Y, b), when there exists a
homeomorphism f : (X, a)→ (Y, b).

6.22 Definition: Given a map f : (X, a)→ (Y, b) of based spaces, we define the induced
group homomorphism f∗ : π1(X, a) → π1(Y, b) by f∗([α]) = [f ◦ α]. Note that f∗ is
well-defined because, for loops α and β at a in X, if F is a homotopy from α to β in X
then G = f ◦ F is a homotopy from f ◦ α to f ◦ β in Y . Also note that f∗ is a group
homomorphism because, for loops α and β at a in X, we have f ◦ (αβ) = (f ◦ α)(f ◦ β).

6.23 Note: Note that id∗ = id, meaning that when id : (X, a) → (X, a) is the identity
map (given by id(x) = x for all x ∈ X, the induced map id∗ : π1(X, a)→ π1(X, a) is also
the identity map. Also note that when f : (X, a) → (Y, b) and g : (Y, b) → (Z, c) we have
(g ◦ f)∗ = g∗ ◦ f∗ because (g ◦ f) ◦ α = g ◦ (f ◦ α) for all loops α at a in X.

6.24 Remark: The above note can be summarized by saying the we have a (covariant)
functor F , from the category of based topological spaces to the category of groups, given
by F (X, a) = π1(X, a) with F (f) = f∗ when f : (X, a)→ (Y, b).

6.25 Theorem: When (X, a) ∼= (Y, b) we have π1(X, a) ∼= π1(Y, b).

Proof: This is immediate from the above note: indeed when f : (X, a) → (Y, b) is a
homeomorphism with inverse g = f−1 : (Y, b)→ (X, a), we have g ◦ f = id and f ◦ g = id,
and hence g∗ ◦ f∗ = (g ◦ f)∗ = id∗ = id and f∗ ◦ g∗ = (f ◦ g)∗ = id∗ = id, so that f∗ is
invertible with inverse g∗ = (f∗)

−1.

6.26 Theorem: π1

(
X × Y, (a, b)

) ∼= π1(X, a)× π1(Y, b).

Proof: Let p : X×Y → X and q : X×Y → Y be the projection maps. Since every loop γ at
(a, b) in X×Y is of the form γ(t) =

(
α(t), β(t)

)
where α = p◦γ (which is a loop at a in X)

and β = q◦γ (which is a loop at b in Y ), the map φ : π1

(
X×Y, (a, b)

)
→ π1(X, a)×π1(Y, b)

given by φ([γ]) =
(
[p◦γ], [q ◦γ]

)
=
(
p∗([γ]), q∗([γ])

)
is a surjective group homorphism, and

φ is injective because if F is a homotopy from α to κa in X and G is a homotopy from β
to κb in Y , then (F,G) is a homotopy from (α, β) to κ(a,b) in X × Y .

6.27 Example: Using the above theorem, we have π1(Tn) ∼= Zn.
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