
Chapter 4. Countability and Separation Axioms

The Countability Axioms

4.1 Definition: Let X be a topological space. For a subset A ⊆ X, we say that A is
dense in X when A = X. Equivalently, A is dense in X when every nonempty open set
in X contains a point in A.

4.2 Definition: Let X be a topological space. We say that X is first-countable when
for every a ∈ X there exists a (finite or) countable set Ba of open sets such that for every
set U in X with a ∈ U there is a set B ∈ Ba such that a ∈ B ⊆ U . We say that X is
second-countable when X has a (finite or) countable basis for its topology. We say that
X is Lindelöf when every open cover of X contains a (finite or) countable sub-cover. We
say that X is separable when X has a (finite or) countable dense subset.

4.3 Theorem: Let X be a metric space. Then X is first-countable and the following are
equivalent:

(1) X is second-countable.
(2) X is Lindelöf.
(3) X is separable

Proof: The proof is left as an exercise (this is often proven in a real analysis course).

4.4 Theorem: Every second-countable topological space is Lindelöf and separable.

Proof: Let X be a second-countable topological space. Let B = {B1, B2, · · ·} be a (finite
or) countable basis for X. We claim that X is Lindelöf. Let S be any open cover of X.
Let K =

{
k ∈ Z+

∣∣∃U ∈S Bk ⊆ U
}

. For each k ∈ K, choose Uk ∈ S such that Bk ⊆ Uk

}
.

Then the (finite or) countable set
{
Uk

∣∣ k∈K} is a subcover of S because for every a ∈ X
we can choose U ∈ S with a ∈ U , then we can choose Bk ∈ B with a ∈ Bk ⊆ U and then
we have k ∈ K and a ∈ Bk ⊆ Uk.

We claim that X is separable. Let K =
{
k ∈Z+

∣∣Bk 6= ∅
}

. For each k ∈ K, choose

ak ∈ Bk. Then the (finite or) countable set A = {ak
∣∣ k∈K} is dense in X: indeed given

any nonempty open set U in X, we can choose x ∈ U , then we can choose Bk ∈ B with
x ∈ Bk, and then we have ak ∈ Bk ∩A ⊆ U ∩A.

4.5 Theorem: Every subspace of a first-countable set is first-countable. Every subspace
of a second-countable space is second countable.

Solution: We prove the first statement and leave the proof of the second statement as an
exercise. Let Y be a first-countable space and let X ⊆ Y be a subspace. Let a ∈ X.
Since Y is first-counatble and a ∈ Y , we can choose a (finite or) countable set C of open
sets in Y such that for every open set V in Y with a ∈ V , there exists C ∈ C such that
a ∈ C ⊆ V . Let B =

{
C ∩X

∣∣C ∈ C}. Then B is (finite or) countable and, given any open
set U in X with a ∈ U we can choose an open set V in Y such that U = V ∩X, then we
can choose C ∈ C such that a ∈ C ⊆ V , and then for B = C ∩ X we have B ∈ B with
a ∈ B = C ∩X ⊆ V ∩X = U .
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4.6 Theorem: The product of two first-coountable spaces is first-countable. The product
of two second-countable spaces is second-countable. The product of two separable spaces
is separable

Proof: We prove the first statement. Let X and Y be first-countable spaces. Let a ∈ X
and b ∈ Y so that (a, b) ∈ X×Y . Choose a (finite or) countable set B of open sets in X so
that for every open set U in X with a ∈ U there is a set B ∈ B such that a ∈ B ⊆ U , and
choose a (finite or) countable set C of open sets in Y so that for every open set V in Y with
b ∈ V there is a set C ∈ C such that b ∈ C ⊆ V . Let P =

{
B×C

∣∣B∈B , C∈C}, and note
that P is (finite or) countable. Let W be an open set in X × Y with (a, b) ∈W . Since the
sets of the form. U × V with U open in X and V open in Y form a basis for the topology
on X × Y , we can choose U open in X and V open in Y such that (a, b) ∈ U × V ⊆ W .
Since a ∈ U we can choose B ∈ B such that a ∈ B ⊆ U , and since b ∈ V we can choose
C ∈ C such that b ∈ C ⊆ V . Then we have B × C ∈ P and (a, b) ∈ B × C ⊆ U × V ⊆W .

4.7 Exercise: Generalize the above theorem to include countable products, using the
product topology.

4.8 Exercise: Let R` be the set R using the lower limit topology. Show that R` is
first-countable and Lindelöf and separable, but not second countable.

4.9 Exercise: Let I = [0, 1] and let I2o be the set I2 using the order topology for the
dictionary order on I2. Show that I2o is first countable and compact, hence Lindelöf, but
not separable. Also, show that the subspace A = I × (0, 1) is not Lindelöf.

4.10 Exercise: The Moore plane Γ is the closed upper half plane Γ =
{

(x, y)∈R2
∣∣ y≥

0
}

using the topology with basis consisting of the balls B
(
(a, b), r

)
with 0 < r < b and the

sets B
(
(a, r), r

)
∪{(a, 0)}. Show that Γ is first countable and separable, but not Lindelöff.

Also, show that the subspace R× {0} is not separable.

4.11 Exercise: Let Rcf be the set R using the co-finite topology (in which the closed
proper subsets of R are the finite sets), let Rcc be the set R using the co-countable topology
(in which the closed proper subsets of R are the finite or countable sets), and let Rd be the
set R using the discrete topology (in which all subsets are both open and closed). For each
of the spaces Rcf , Rcc and Rd, determine whether the space is first countable, whether it
is Lindelöff, and whether it is separable.

4.12 Exercise: Let R` be the set R using the lower limit topology. Recall, from Exercise
4.7, that R` is Lindelöf. Show that R` × R` is not Lindelöf.
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The Separation Axioms

4.13 Definition: Let X be a topological space. We say that X is T1 when for all a, b ∈ X
with a 6= b, there exists an open set V in X with a /∈ V and b ∈ V . We say that X is T2,
or that X is Hausdorff, when for all a, b ∈ X with a 6= b, there exist disjoint open sets
U and V in X with a ∈ U and b ∈ V . We say that X is T3, or that X is regular, when
X is T1 and for every point a in X and every closed set B in X with a /∈ B, there exist
disjoint open sets U and V in X with a ∈ U and B ⊆ V . We say that X is T4, or that
X is normal, when X is T1 and for every pair of disjoint closed sets A and B in X there
exist disjoint open sets U and V in X with A ⊆ U and B ⊆ V .

4.14 Theorem: Let X be a topological space. Then X is T1 if and only if the 1-point
subsets of X are closed in X.

Proof: If X is T1 and we let a ∈ X, then for each b ∈ X we can choose an open set Va

in X such that a /∈ V and b ∈ Vb, and then we have {a}c =
⋃

b∈Ac Ub, which is open.
Conversely, if the 1-point subsets of X are closed in X, then given a, b ∈ X with a 6= b we
can let V be the open set V = {a}c, and then a /∈ V and b ∈ V .

4.15 Theorem: Let X be a T1 topological space. Then X is regular if and only if for
every a ∈ X and for every open set W in X with a ∈W , there exists an open set U in X
with a ∈ U ⊆ U ⊆W .

Proof: Suppose that X is regular. Let W be open in X with a ∈ W . Then W c is closed
with a /∈ W c. Since X is regular, we can choose disjoint open sets U and V in X with
a ∈ U and W c ⊆ V . Since W c ⊆ V we have V c ⊆ W . Since U ∩ V = ∅ we have U ⊆ V c,
which is closed, and hence a ∈ U ∈ U ⊆ V c ⊆W .

Suppose, conversely, that for every a ∈ X and every open set W in X with a ∈ W
there exists an open set U in X with a ∈ U ⊆ U ⊆ W . Let a ∈ X and let B be a closed
set in X with a /∈ B. Then a ∈ Bc, which is open, so we can choose an open set U in X
with a ∈ U ⊆ U ⊆ Bc. Let V = U

c
, which is open. Since U ⊆ U = V c we have U ∩V = ∅.

Since V c = U ⊆ Bc we have B ⊆ V .

4.16 Definition: Let X be a topological space. We say that X is metrizable when there
exists a metric on X for which the topology on X is the metric topology.

4.17 Theorem: Every metrizable space is normal, every normal space is regular, every
regular space is Hausdorff, and every Hausdorff space is T1.

Proof: The proof is left as an exercise.

4.18 Theorem: Every subspace of a T1 space is T1, every subspace of a Hausdorff space
is Hausdorff, and every subspace of a regular space is regular.

Proof: Let X be a subspace of Y . If the 1-point subsets of Y are closed in Y , then given
a ∈ X, since {a} is closed in Y and {a} = {a} ∩X, it follows that {a} is closed in X.

Suppose Y is Hausdorff. Let a, b ∈ X. Choose disjoint open sets U and V in Y with
a ∈ U and b ∈ Y . Then U ∩X and V ∩X are disjoint open sets in X with a ∈ U ∩X and
b ∈ V ∩X.

Now suppose that Y is regular. As shown above, X is T1. Let a ∈ X and let B be
a closed set in X with a /∈ B. Then we have B = ClX(B) = B ∩X where B = ClY (B).
Since a ∈ X and a /∈ B = B ∩X, it follows that a /∈ B. Since Y is regular, we can find
open sets U and V in Y with a ∈ U and B ⊆ V . Then the sets U ∩X and V ∩X are open
in X with a ∈ U ∩X and B = B ∩X ⊆ B ∩X.
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4.19 Theorem: When using the product or the box topology, the product of an indexed
set of T1 spaces is T1, the product of an indexed set of Hausdorff spaces is Hausdorff, and
the product of an indexed set of regular spaces is regular.

Proof: Let Xk be a topological space for each k ∈ K. Suppose first that each Xk is T1.
Let a ∈

∏
k∈K Xk. For each k ∈ K, since Xk is T1, the set {ak} is closed in Xk so that

{ak} = {ak}. Note that {a} =
∏

k∈K{ak}. By Theorem 2.16 we have {a} =
∏

k∈K{ak} =∏
k∈K {ak} =

∏
k∈K{ak} = {a} and hence {a} is closed in

∏
k∈K Xk.

Now suppose that each Xk is Hausdorff. Let a, b ∈
∏

k∈K Xk with a 6= b. Since
a 6= b we can choose ` ∈ K so that a` 6= b`. Since X` is Hausdorff, we can choose disjoint
open sets U` and V` in X` with a` ∈ U` and b` ∈ V`. For each k ∈ K with k 6= `, let
Uk = Vk = Xk. Then the sets U =

∏
k∈K Uk and V =

∏
k∈K Vk are disjoint basic open

sets in
∏

k∈K Xk with a ∈ U and b ∈ V .
Finally, suppose that each Xk is regular. Note that since each Xk is T1 it follows,

from the first paragraph, that
∏

k∈K Xk is T1. Using Theorem 4.15, in order to show that∏
k∈K Xk is regular, it suffices to show that for every open set W in

∏
k∈K Xk and for

every a ∈ W , there exists an open set U in
∏

k∈K Xk with a ∈ U ⊆ U ⊆ W . Let W be
an open set in

∏
k∈K Xk and let a ∈ W . Choose a basic open set V in

∏
k∈K Xk with

a ∈ V ⊆ W , say V =
∏

k∈K Vk where each Vk is open in Xk with ak ∈ Vk. For each
k ∈ K, since Xk is regular, by Theorem 4.15, we can choose an open set Uk in Xk with
a ∈ Uk ⊆ Uk ⊆ Vk. Let U =

∏
k∈K Uk and note that a ∈ U . By Theorem 2.16, we have

U =
∏

k∈K Uk =
∏

k∈K Uk ⊆
∏

k∈K Vk = V ⊆W , so that a ∈ U ⊆ U ⊆W , as required.

4.20 Exercise: Show that R` is normal but not metrizable.

4.21 Exercise: Show that R` × R` is regular but not normal.

4.22 Exercise: Let K =
{

1
n

∣∣n ∈ Z+
}

. The K-topology on R is the topology generated
by the sets of the form (a, b) with a < b together with the sets of the form (a, b) \ K
with a < b. We write RK for the set R equipped with the K-topology. Show that RK is
Hausdorff but not regular.

4.23 Exercise: Let X be an infinite set using the co-finite topology. Show that X is T1
but not Hausdorff.

4.24 Remark: A subspace of a normal space is not necessarily normal. As an example,
without proof, when K is uncountable, the space [0, 1]K is compact, using the product
topology (by Tichanoff’s Theorem), and Hausdorff (by Theorem 4.19), so it is normal
(by Theorem 4.24, below), but it can be shown (see Exercise 9 of Chapter 32 on page
206 of Munkres’ book) that the subspace (0, 1)K is not normal. As another example,
without proof, the space R`×R` is not normal, by Exercise 4.21, but it can be shown (see
Theorem 33.2 on page 211 and Theorem 34.3 on page 218 of Munkres’ book) that R`×R`

is homeomorphic to a subspace of [0, 1]K for some (necessarily uncountable) set K.
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4.25 Theorem: Every compact Hausdorff space is normal.

Proof: Let X be a compact Hausdorff space. First, we claim that X is regular. Let
a ∈ A and let B be a closed set in X with a /∈ B. For each b ∈ B, since X is Hausdorff
we can choose disjoint open sets Ub and Vb in X with a ∈ Ub and b ∈ Vb. Note that
for S =

{
Vb

∣∣ b ∈ B
}

iwe have B ⊆
⋃
S. Since B is a closed subspace of the Hausdorff

space X, it is compact, so we can choose b1, b2, · · · , bm ∈ B such that B ⊆
⋃m

k=1 Vbk . Let
U =

⋂m
k=1 Ubk and V =

⋃m
k=1 Vbk . Then U and V are disjoint open sets in X with a ∈ U

and B ⊆ V . This shows that X is regular, as claimed.
Now let us show that X is normal. Let A and B be disjoint closed sets in X. For each

a ∈ A, since X is regular we can choose disjoint open sets Ua and Va in X with a ∈ Ua and
B ⊆ Va. Note that for R =

{
Ua

∣∣ a ∈ A
}

, we have A ⊆
⋃
R Since A is a closed subspace

of the Hausdorff space X, it is compact, so we can choose a1, a2, · · · , an ∈ A such that
A ⊆

⋃n
k=1 Uak

. Let U =
⋃n

k=1 Uak
and let V =

⋂n
k=1 Vak

. Then U and V are disjoint open
sets in X with A ⊆ U and B ⊆ V . Thus A is normal, as required.

4.26 Theorem: Every regular space with a (finite or) countable basis is normal.

Proof: Let X be a regular space with a countable basis B. First note that given a ∈ X
and given an open set W in X with a ∈W , by Theorem 4.15 we can choose an open set U
in X with a ∈ U ⊆ U ⊆ W , then we can choose a basic open set C ∈ B with a ∈ C ⊆ U ,
and then we have C ⊆ U so that a ∈ C ⊆ C ⊆W .

Let A and B be disjoint closed sets in X. For each a ∈ A, choose a basic open set
Ca ∈ B with a ∈ Ca ⊆ Ca ⊆ Bc and note that Ca∩B = ∅. Note that S = {Ca|a∈A} is an
open cover of A. Since S ⊆ B and B is (finite or) countable, it follows that S is (finite or)
countable, so we can choose a1, a2, a3, · · · in A so that S = {Ca1

, Ca2
, · · ·}, and note that for

each a ∈ A we have Ca = Cak
for some k. Similarly, for each b ∈ B, we choose Db ∈ B with

b ∈ Db such that Db∩A = ∅, and say T = {Db|, b ∈ B} = {Db1 , Db2 , · · ·}. Let U =
⋃

n≥1 Un

where Un = Can
\
⋃n

k=1 Dbn , and let V =
⋃

n≥1 Vn where Vn = Dbn \
⋃n

k=1 Cak
. Note that

U and V are open sets in X. Note that A ⊆ U because for each a ∈ A, a lies in one of the
sets Ca`

and a lies in none of the sets Dbk . Similarly, we have B ⊆ V . Finally, note that
U ∩V = ∅ because if we had x ∈ U ∩V then we would have x ∈ U` for some ` and x ∈ Vm

for some m, but if say ` ≤ m then x ∈ Vm =⇒ x /∈
⋃m

k=1 Cak
=⇒ x /∈ Ca`

=⇒ x /∈ Ua`
.

4.27 Exercise: Show that every ordered set with a minimum element (or with a maximum
element) is normal.
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Urysohn’s Lemma

4.28 Theorem: (Urysohn’s Lemma) Let X be a normal topological space. For any
disjoint closed sets A,B ⊆ X there exists a continuous map f : X → [0, 1] with f(x) = 0
for all x ∈ A and f(x) = 1 for all x ∈ B.

Proof: Let A,B ⊆ X be closed. Say [0, 1]∩Q = {a0, a1, a2, a3, · · ·} where the terms ak are
distinct with a0 = 0 and a1 = 1. Choose disjoint open sets U0, V0 ⊆ X with A ⊆ U0 and
B ⊆ V0. Note that

U0 ∩ V0 = ∅ =⇒ U0 ⊆ V0
c =⇒ U0 ⊆ V0

c =⇒ U0 ⊆ Bc.

Let U1 = Bc so that A ⊆ U0 ⊆ U0 ⊆ U1 = Bc. Let n ≥ 2 and suppose, inductively, that
we have defined open sets Ua0

, Ua1
, · · ·Uan−1

such that when ak < a` we have Uak
⊆ Ua`

.
Define Uan

as follows. Rearrange the terms in the set {a0, a1, · · · , an} in increasing order

and say ak < an < a` are consecutive. Since Uak
⊆ Ua`

, we have Uak
∩ Ua`

c = ∅, so we

can choose disjoint open sets Uan
, Van

⊆ X with Uak
⊆ Uan

and U c
a`
⊆ Van

, and then

Uan
∩ Van

= ∅ =⇒ Uan
⊆ Van

c =⇒ Uan
⊆ V c

an
⊆ Ua`

.

Recursively, we have defined Uan for all n ≥ 0, so we have defined Ur for all r ∈ [0, 1]∩Q.
For r ∈ Q with r < 0 we define Ur = ∅, and for r ∈ Q with r > 1 we define Ur = X, and
then we have defined Ur for all r ∈ Q so that whenever r < s we have Ur ⊆ Us.

Define f : X → [0, 1] by

f(x) = inf
{
r∈Q

∣∣x∈Ur

}
Note that f does take values in [0, 1]: indeed for all x ∈ X, we have f(x) ≥ 0 because
r < 0 =⇒ Ur = ∅ =⇒ x /∈ Ur, and we have f(x) ≤ 1 because r > 1 =⇒ Ur = X =⇒ x ∈ Ur.
Also note that when x ∈ A we have x ∈ U0 so that f(x) = 0 and when x ∈ B and r ≤ 1
we have Ur ⊆ U1 = Bc so that x /∈ Ur, and so f(x) = 1.

It remains to show that f is continuous. We shall show that the inverse image of every
open interval is open. Let c, d ∈ R with c < d. Let a ∈ f−1(c, d) so we have c < f(a) < d.

Choose r, s ∈ Q with c < r < f(a) < s < d. We claim that a ∈ Us \ Ur ⊆ f−1(c, d). First
we make two observations: for x ∈ X and p ∈ Q,

(1) if x ∈ Up then x ∈ Ur for all r > p and so f(x) ≤ p, and
(2) if x /∈ Up then x /∈ Ur for any r ≤ p and so f(x) ≥ p.

Since r < f(a) it follows from the first observation that a /∈ Ur, and since f(a) < s it

follows from the second observation that a ∈ Us, and this shows that a ∈ Us \ Ur. On

the other hand, when x ∈ Us \ Ur, since x ∈ Us it follows from the first observation that

f(x) ≤ s, and since x /∈ Ur it follows from the second observation that f(x) ≥ r, and so

we have f(x) ∈ [r, s] ⊆ (c, d). Thus we have a ∈ Us \ Ur ⊆ f−1(c, d), as claimed. Since

Us \Ur is open, we can choose a basic open set V with a ∈ V ⊆ Us \Ur ⊆ f−1(c, d). Since
for every a ∈ f−1(c, d) there is a basic open set V with a ∈ V ⊆ f−1(c, d), it follows that
f−1(c, d) is open, so that f is continuous, as required.
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The Tietze Extension Theorem

4.29 Theorem: (The Tietze Extension Theorem) Let X be a normal topological space,
let A ⊆ X be closed, and let a, b ∈ R with a < b.

(1) Every continuous map f :A→ [a, b] can be extended to a continuous map g :X→ [a, b].
(2) Every continuous map f :A→(a, b) can be extended to a continuous map g :X→(a, b).

Proof: Note that since [a, b] is homeomorphic to the interval [−1, 1], we may replace [a, b]
by [−1, 1]. Suppose that f : A→ [−1, 1] is continuous.

We begin with an observation. If h : A → [−r, r] is continuous, then h−1
([
− r,− r

3

])
and h−1

([
r
3 , r
])

are disjoint closed sets in X, so by scaling and translating the map given

by Urysohn’s Lemma, we can construct a map g : X →
[
− r

3 ,
r
3

]
with g(x) = − r

3 for all

x ∈ h−1
([
− r,− r

3

])
and g(x) = r

3 for all x ∈ h−1
([

r
3 , r
])

. We then have
∣∣g(x)

∣∣ ≤ r
3 for all

x ∈ X, and we have
∣∣h(x)− g(x)

∣∣ ≤ 2r
3 for all x ∈ A.

Since f : A → [−1, 1] is continuous, by the above observation we can construct a
continuous map g1 : X →

[
− 1

3 ,
1
3

]
such that

∣∣f(x) − g1(x)
∣∣ ≤ 2

3 for all x ∈ A. Since

(f − g1) : A →
[
− 2

3 ,
2
3

]
is continuous, we can apply the obove observation again to con-

struct a continuous map g2 : X →
[
− 2

9 ,
2
9

]
such that

∣∣f(x) − g1(x) − g2(x)
∣∣ ≤ 4

9 for all

x ∈ A. Repeating this procedure, we construct maps gk : X →
[
− 2k−1

3k
, 2k−1

3k

]
such that∣∣f(x) −

n∑
k=1

gk(x)
∣∣ ≤ 2n

3n for all x ∈ A. Since
∣∣gk(x)

∣∣ ≤ 2k−1

3k
for all x ∈ X, the series

∞∑
k=1

gk converges uniformly on X by the Weierstrass M-Test. Define g(x) =
∞∑
k=1

gk(x) for

all x ∈ X. Note that g is continuous by uniform convergence, note that for all x ∈ X we

have
∣∣g(x)

∣∣ ≤ ∞∑
k=1

|gk(x)| ≤
∞∑
k=1

2n−1

3n = 1 so that g : X → [−1, 1], and note that for all

x ∈ A, since
∣∣f(x)−

n∑
k=1

gk(x)
∣∣ ≤ 2n

3n we have f(x) =
∞∑
k=1

gk(x) = g(x), and so g extends f .

This completes the proof of Part 1.

To prove Part 2, suppose that f : A → (a, b) is continuous. Note that f is also
continuous as a map f : A → [a, b] so, by Part 1, we can extend f to a continuous map
h : X → [a, b]. Let B = h−1(a) ∪ h−1(b) and note that B is closed in X and B is disjoint
from A. By Urysohn’s Lemma, we can construct a continuous map k : X → [0, 1] with
k(x) = 0 for all x ∈ B and k(x) = 1 for all x ∈ A. Then g = kh : X → (a, b) is continuous
on X with g(x) = h(x) = f(x) for all x ∈ A.

Urysohn’s Metrization Theorem

4.30 Exercise: The following theorem shows that Rω is metrizable, using the product
topology. Show that Rω is not metrizable in the box topology, and show that when K is
uncountable, RK is not metrizable in the product topology.
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4.31 Theorem: Let Xk be metrizable for each k ∈ Z+. Then
∏∞

k=1 Xk is metrizable, in
the product topology

Proof: We outline a proof, and leave the details as an exercise. Verify that when d is a
metric on a set X, the map d : X ×X → R given by d(x, y) = min

{
d(x, y), 1

}
, is another

metric on X which induces the same topology as d. This metric d is called the bounded
metric on X corresponding to d.

For each k ∈ Z+, let dk be a metric which induces the topology on Xk, and let dk be
the corresponding bounded metric. For x, y ∈

∏∞
k=1 Xk, let

d(x, y) = sup
{

dk(xk,yk)
k

∣∣∣ k∈Z+
}
.

Verify that d is a metric on
∏∞

k=1 Xk which induces the product topology.

4.32 Theorem: (Urysohn’s Metrization Theorem) Every regular space with a countable
basis for its topology is metrizable.

Proof: Let X be a regular topological space with a countable basis B = {B1, B2, B3, · · ·}
for its topology. Note that X is normal, by Theorem 4.25. We shall construct a sequence
(fn)n≥1 of continuous functions fn : X → [0, 1] with the property that for every a ∈ X
and for every open set U in X with a ∈ U , there exists n ∈ Z+ such that fn(a) = 1 and
fn(x) = 0 for all x ∈ U c = X \ U . Let S =

{
(k, `) ∈ Z+ × Z+

∣∣Bk ⊆ B`

}
, and note that

S is countable. For each pair (k, `) ∈ S, since Bk ⊆ B` we have Bk ∩ Bc
` = ∅ so, that by

Urysohn’s Lemma, we can choose a continuous map gk,` : X → [0, 1] with gk,`(x) = 1 for
all x ∈ Bk and gk,`(x) = 0 for all x ∈ Bc

` . Since the set
{
gk,`
∣∣ (k, `) ∈ S} is countable, we

can list the elements as
{
gk,`
∣∣(k, `) ∈ S} =

{
f1, f2, f3, · · ·

}
where (fn)n≥1 is a sequence of

functions fn : X → [0, 1]. Given an open set U in X and given a ∈ U , we can choose a
basic open set B` with a ∈ B` ⊆ U then, since X is regular, we can choose an open set V
with a ∈ V ⊆ V ⊆ B`, then we can choose another basic open set Bk with a ∈ Bk ⊆ V ,
and then we have a ∈ Bk ⊆ Bk ⊆ V ⊆ B` ⊆ U , and finally we can choose n ∈ Z+ so that
fn = gk,` to get f(x) = 1 for all x ∈ Bk (so that f(a) = 1) and f(x) = 0 for all x ∈ Bc

` (so
that f(x) = 0 for all x ∈ U c).

Let f : X → [0, 1]ω ⊆ Rω be the function given by f(x) =
(
f1(x), f2(x), · · ·

)
. Note

that f is continuous because Rω is using the product topology and each fk is continuous.
Note that f is injective because given a, b ∈ X with a 6= b, we can choose disjoint open
sets U and V in X with a ∈ U and b ∈ V , then we can choose n ∈ Z+ such that fn(a) = 1
and fn(x) = 0 for all x ∈ U c so that fn(b) = 0 and hence, since fn(a) 6= fn(b) we
have f(a) 6= f(b). By restricting the codomain, we obtain a bijective continuous map
f : X → f(X) ⊆ [0, 1]ω ⊆ Rω.

To complete the proof it suffices to show that g = f−1 : f(X) → X is continuous,
when f(X) ⊆ Rω uses the subspace topology. It suffices to show that g−1(U) is open in
f(X) for every open set U in X. Let U be open in X and note that g−1(U) = f(U).
We must show that f(U) is open in f(X). Let b ∈ f(U). Let a ∈ U with f(a) = b.
Choose n ∈ Z+ such that fn(a) = 1 and fn(x) = 0 for all x /∈ U . Let pn : Rω → R
be the nth projection map. Let V = p−1n

(
(0,∞)

)
=
{
y ∈ Rω

∣∣ yn > 0
}

and note that V
is open in Rω. Let W = V ∩ f(X), which is open in f(X). Note that b ∈ W because
bn = pn(b) = pn(f(a)) = fn(a) = 1 > 0. We claim that W ⊆ f(U). Let y ∈W = V ∩f(X).
Since y ∈ f(X) we can choose x ∈ X such that y = f(x). Since f(x) = y ∈ V we have
fn(x) = yn > 0. Since fn(x) > 0 we have x ∈ U (since fn(x) = 0 for all x /∈ U). Thus
y = f(x) ∈ f(U) so that W ⊆ f(U), as claimed. For each b ∈ f(U) we have found an open
set W in f(X) with b ∈W ⊆ f(X), which shows that f(X) is open, as required.
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