

# Chapter 3. Connected, Path-Connected, and Compact Spaces

## Connectedness and Connected Components

**3.1 Definition:** Let  $X$  be a topological space. We say that two subsets  $A, B \subseteq X$  **separate**  $X$  when  $A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset$  and  $A \cup B = X$ . We say that  $X$  is **connected** when there do not exist two open sets in  $X$  which separate  $X$ . Equivalently (as you can verify)  $X$  is connected when  $\emptyset$  and  $X$  are the only two subsets of  $X$  which are both open and closed in  $X$ . We say that  $X$  is **disconnected** when it is not connected.

**3.2 Exercise:** Prove that the connected subspaces of  $\mathbb{R}$  are the intervals (including  $\emptyset$ , 1-point sets, and  $\mathbb{R}$ ), and the nonempty connected subspaces of  $\mathbb{Q}$  are the 1-point sets.

**3.3 Theorem:** *The image of a connected space under a continuous map is connected. In particular, if two spaces are homeomorphic and one is connected, then so is the other.*

Proof: Let  $f : X \rightarrow Y$  be a continuous map between topological spaces. Note that, by Theorem 1.35,  $f : X \rightarrow f(X)$  is also continuous. Suppose that  $f(X)$  is disconnected. Choose disjoint nonempty open sets  $A$  and  $B$  in  $f(X)$  with  $A \cup B = f(X)$ . Then  $f^{-1}(A)$  and  $f^{-1}(B)$  are disjoint nonempty open sets in  $X$  with  $f^{-1}(A) \cup f^{-1}(B) = X$ , so  $X$  is disconnected.

**3.4 Lemma:** *Let  $X$  be a subspace of  $Y$ . Suppose that  $Y$  is disconnected and that  $A$  and  $B$  are open sets in  $Y$  which separate  $Y$ . If  $X$  is connected, then either  $X \subseteq A$  or  $X \subseteq B$ .*

Proof: Suppose that  $X$  is connected. Note that  $A \cap X$  and  $B \cap X$  are disjoint open sets in  $X$ . If both of the sets  $A \cap X$  and  $B \cap X$  were nonempty, then they would be open sets in  $X$  which separate  $X$ . Since  $X$  is connected, this is not possible, so either  $A \cap X = \emptyset$  or  $B \cap X = \emptyset$ . If  $A \cap X = \emptyset$  then we have  $X = X \cap Y = X \cap (A \cup B) = (X \cap A) \cup (X \cap B) = X \cap B$  so that  $X \subseteq B$ . Similarly, if  $B \cap X = \emptyset$  then  $X \subseteq A$ .

**3.5 Theorem:** *Let  $X = \bigcup_{k \in K} A_k$ . If each  $A_k$  is a connected subspace of  $X$  and  $\bigcap_{k \in K} A_k \neq \emptyset$  then  $X$  is connected.*

Proof: Suppose that each  $A_k$  is connected with  $p \in \bigcap_{k \in K} A_k$ . Suppose, for a contradiction, that  $X = \bigcup_{k \in K} A_k$  is disconnected. Choose open sets  $U$  and  $V$  in  $X$  which separate  $X$ . Note that  $p$  lies either in  $U$  or in  $V$  (but not both), say  $p \in U$  (and  $p \notin V$ ). Let  $k \in K$  be arbitrary. Since  $A_k$  is connected, by the above lemma, either  $A_k \subseteq U$ , or  $A_k \subseteq V$ . Since  $p \in A_k$  and  $p \notin V$ , we do not have  $A_k \subseteq V$  so we must have  $A_k \subseteq U$ . Since  $k \in K$  was arbitrary, we have  $A_k \subseteq U$  for every  $k \in K$ , and hence  $X = \bigcup_{k \in K} A_k \subseteq U$ . But this contradicts the fact that  $U$  and  $V$  separate  $X$ , giving the desired contradiction.

**3.6 Lemma:** *Let  $X$  be a subspace of  $Y$  and let  $A$  and  $B$  be subsets of  $X$  which separate  $X$ . Then  $A$  and  $B$  are open in  $X$  (so that  $X$  is disconnected) if and only if  $\overline{A} \cap B = \emptyset$  and  $\overline{B} \cap A = \emptyset$  (where  $\overline{A}$  and  $\overline{B}$  are the closures in  $Y$ ).*

Proof: Suppose that  $A$  and  $B$  are open in  $X$ . Note that  $A = B^c = X \setminus B$  is closed in  $X$  so we have  $A = \text{Cl}_X(A) = \overline{A} \cap X = \overline{A} \cap (A \cup B) = (\overline{A} \cap A) \cup (\overline{A} \cap B) = A \cup (\overline{A} \cap B)$  and hence  $\overline{A} \cap B = \emptyset$ . Similarly  $\overline{B} \cap A = \emptyset$ .

Suppose, conversely, that there exist disjoint nonempty sets  $A, B \subseteq X$  with  $A \cup B = X$  such that  $\overline{A} \cap B = \emptyset$  and  $\overline{B} \cap A = \emptyset$ . Since  $\overline{A} \cap B = \emptyset$ , we have  $\overline{A} \cap X = A$  so that  $\text{Cl}_X(A) = \overline{A} \cap X = A$  and hence  $A$  is closed. Similarly  $B$  is closed. Since  $X$  is the disjoint union of  $A$  and  $B$ , it follows that  $A$  and  $B$  are both open in  $X$  hence  $X$  is not connected.

**3.7 Theorem:** Let  $X$  be a topological space and let  $A \subseteq X$ . Suppose that  $A \subseteq B \subseteq \overline{A}$ . If  $A$  is connected, as a subspace of  $X$ , then so is  $B$ .

Proof: Suppose that  $A$  is connected, and suppose, for a contradiction, that  $B$  is disconnected. Let  $C$  and  $D$  be open sets in  $B$  which separate  $B$ . By Lemma 3.5, we have  $\overline{C} \cap D = \emptyset$  and  $\overline{D} \cap C = \emptyset$ . Since  $A$  is connected, by Lemma 3.3, either  $A \subseteq C$  or  $A \subseteq D$ . Say  $A \subseteq C$ . Then we have  $B \subseteq \overline{A} \subseteq \overline{C}$ . Since  $D \subseteq B \subseteq \overline{C}$  and  $\overline{C} \cap D = \emptyset$ , we have  $D = \emptyset$ , which contradicts the fact that  $C$  and  $D$  separate  $B$ .

**3.8 Theorem:** The cartesian product of two connected spaces is connected.

Proof: Let  $X$  and  $Y$  be connected topological spaces. If  $X = \emptyset$  or  $Y = \emptyset$  then  $X \times Y = \emptyset$ , which is connected. Suppose that  $X \neq \emptyset$  and  $Y \neq \emptyset$ . Choose  $a \in X$  and  $b \in Y$ . Note that  $X \times \{b\}$  is connected, since it is homeomorphic to  $X$ . Likewise, for each  $x \in X$ , the subspace  $\{x\} \times Y$  is connected since it is homeomorphic to  $Y$ . Since  $X \times \{b\}$  and  $\{x\} \times Y$  are connected with  $(x, b) \in (X \times \{b\}) \cap (\{x\} \times Y)$  it follows, from Theorem 3.5, that  $(X \times \{b\}) \cup (\{x\} \times Y)$  is connected. Since  $(X \times \{b\}) \cup (\{x\} \times Y)$  is connected for every  $x \in X$  and  $(a, b) \in \bigcap_{x \in X} (X \times \{b\}) \cup (\{x\} \times Y)$  it follows, again from Theorem 3.5, that  $X \times Y = \bigcup_{x \in X} (X \times \{b\}) \cup (\{x\} \times Y)$  is connected.

**3.9 Theorem:** The cartesian product of an arbitrary set of connected spaces is connected using the product topology.

Proof: Let  $X_k$  be a connected topological space for each  $k \in K$ . If  $X_k = \emptyset$  for some  $k \in K$  then  $\prod_{k \in K} X_k = \emptyset$ . Suppose that  $X_k \neq \emptyset$  for all  $k \in K$ . For each  $k \in K$  choose  $a_k \in X_k$  and let  $a$  be the element in  $\prod_{k \in K} X_k$  given by  $a(k) = a_k$  for all  $k \in K$ . Let  $\mathcal{F}$  be the set of all finite subsets of  $K$ . For each  $J \in \mathcal{F}$ , let  $Y_J = \{y \in \prod_{k \in K} X_k \mid y_k = a_k \text{ for all } k \notin J\}$ , using the subspace topology. We claim that  $Y_J \cong \prod_{j \in J} X_j$ . Define  $f : Y_J \rightarrow \prod_{j \in J} X_j$  by  $f(y)(j) = y_j$ . This map is continuous because given  $U_j$  open in  $X_j$  for each  $j \in J$ , so that  $\prod_{j \in J} U_j$  is a basic open set in  $\prod_{j \in J} X_j$ , and letting  $U_k = X_k$  for all  $k \in K \setminus J$ , we have  $f^{-1}(\prod_{j \in J} U_j) = \{y \in Y_J \mid y_j \in U_j \text{ for all } j \in J\} = \{y \in Y_J \mid y_k \in U_k \text{ for all } k \in K\} = (\prod_{k \in K} U_k) \cap Y_J$ , which is a basic open set in  $Y_J$  (using the subspace topology). The inverse of  $f$  is the map  $g = f^{-1} : \prod_{j \in J} X_j \rightarrow Y_J$  by  $g(x)(k) = \begin{cases} x_k & \text{if } k \in J \\ a_k & \text{if } k \notin J \end{cases}$ . This map is continuous because given  $I \in \mathcal{F}$  and given open sets  $U_k$  in  $X_k$  with  $U_k = X_k$  for all  $k \notin I$ , so that the set  $(\prod_{k \in K} U_k) \cap Y_J$  is a basic open set in  $Y_J$ , we have  $g^{-1}((\prod_{k \in K} U_k) \cap Y_J) = \{x \in \prod_{j \in J} X_j \mid x_k \in U_k \text{ for all } k \in J \text{ and } a_k \in U_k \text{ for all } k \notin J\} = \{x \in \prod_{j \in J} X_j \mid x_k \in U_k \text{ for all } k \in J \cap I\} = \prod_{j \in J} V_j$  where  $V_j = U_j$  for  $j \in J \cap I$  and  $V_j = X_j$  for  $j \in J \setminus I$ , and this is a basic open set in  $\prod_{j \in J} X_j$ . This we have  $Y_J \cong \prod_{j \in J} X_j$ , as claimed.

Since  $J$  is finite, and each  $X_j$  is connected, the space  $\prod_{j \in J} X_j$  is connected by the previous theorem (and by induction), and hence  $Y_J = g(\prod_{j \in J} X_j)$  is connected by Theorem 3.3. Since  $Y_J$  is connected for every  $J \in \mathcal{F}$ , and since  $a \in Y_J$  for all  $J \in \mathcal{F}$ , it follows from Theorem 3.5 that  $\bigcup_{J \in \mathcal{F}} Y_J$  is connected. Finally, we note that  $\overline{\bigcup_{J \in \mathcal{F}} Y_J} = \prod_{k \in K} X_k$ : indeed, given  $I \in \mathcal{F}$  and given open sets  $U_k \subseteq X_k$  with  $U_k = X_k$  for all  $k \notin I$ , so that  $\prod_{k \in K} U_k$  is a basic open set in  $\prod_{k \in K} X_k$ , we have  $\emptyset \neq \prod_{k \in K} U_k \cap Y_I \subseteq \prod_{k \in K} X_k \cap \bigcup_{J \in \mathcal{F}} Y_J$ . Since  $\bigcup_{J \in \mathcal{F}} Y_J$  is connected, and  $\prod_{k \in K} X_k = \overline{\bigcup_{J \in \mathcal{F}} Y_J}$ , it follows that  $\prod_{k \in K} X_k$  is connected by Theorem 3.7.

**3.10 Example:** The result of the above theorem does not necessarily hold when  $\prod_{k \in K} X_k$  uses the box topology. For example you can verify that in the space  $\mathbb{R}^\omega = \prod_{k=1}^\infty \mathbb{R}$  using the box topology, the sets  $U = \{x \in \mathbb{R}^\omega \mid \|x\|_\infty < \infty\}$  and  $V = \{x \in \mathbb{R}^\omega \mid \|x\|_\infty = \infty\}$  are open sets which separate  $\mathbb{R}^\omega$ .

**3.11 Definition:** Let  $X$  be a topological space. Define a relation  $\sim$  on  $X$  by setting  $x \sim y$  if and only if there exists a connected subspace of  $X$  which contains both  $x$  and  $y$ . We note that  $\sim$  is an equivalence relation on  $X$ : indeed, given  $x, y, z \in X$ , we have  $x \sim x$  because  $\{x\}$  is connected, and if  $x \sim y$  then clearly  $y \sim x$ , and if  $x \sim y$  and  $y \sim z$  then we can choose connected spaces  $A, B \subseteq X$  with  $x, y \in A$  and  $y, z \in B$  and then, by Theorem 3.5, since  $y \in A \cap B$  it follows that  $A \cup B$  is connected, and we have  $x, z \in A \cup B$ . The equivalence classes under this equivalence relation are called the **connected components** of  $X$ . Note that if  $X$  is connected then the only connected component of  $X$  is  $X$  itself.

**3.12 Theorem:** *The connected components of a topological space  $X$  are connected, and every non-empty connected subspace of  $X$  is contained in exactly one of the connected components.*

Proof: We claim that every nonempty connected subspace of  $X$  is contained in exactly one connected component. Let  $A$  be a nonempty connected subspace of  $X$ . Let  $a \in A$ . Let  $C$  be the equivalence class of  $a$ , that is  $C = [a] = \{x \in X \mid x \sim a\}$  and note that  $A \cap C \neq \emptyset$  since  $a \in A \cap C$ . Let  $D$  be any equivalence class with  $A \cap D \neq \emptyset$ . Choose  $b \in A \cap D$ . Since  $A$  is connected with  $a \in A$  and  $b \in A$  we have  $a \sim b$  so that  $C = [a] = [b] = D$ . Thus  $A$  intersects with exactly one connected component, namely  $C$ . Since the connected components (being equivalence classes) cover  $X$ , it follows that  $A \subseteq C$ .

We claim that each connected component of  $X$  is connected. Let  $C$  be a connected component and let  $a \in C$  so that  $C = [a] = \{x \in X \mid x \sim a\}$ . For each  $x \in C$ , since  $x \sim a$  we can choose a connected set  $A_x$  in  $X$  with  $a, x \in A$ . By the previous claim, since  $A_x$  is connected with  $a \in A_x \cap C$ , it follows that  $A_x \subseteq C$ . Since  $x \in A_x \subseteq C$  for all  $x \in C$ , we have  $C = \bigcup_{x \in C} A_x$ . This is connected by Theorem 3.5, since each  $A_x$  is connected and  $a \in \bigcap_{x \in C} A_x$ .

**3.13 Note:** The connected components of a topological space are closed: indeed if  $C$  is a connected component of  $X$  then, by the above theorem,  $C$  is a maximal connected set in  $X$ , and by Theorem 3.7,  $\overline{C}$  is a connected connected set with  $C \subseteq \overline{C}$ , and hence  $\overline{C} = C$ .

**3.14 Example:** Since  $\mathbb{R}$  is connected, it has only one connected component, namely  $\mathbb{R}$ . The one-point sets are the connected components of  $\mathbb{Q}$ .

## Path-Connectedness and Path-Components

**3.15 Definition:** Let  $X$  be a topological space and let  $a, b \in X$ . A (continuous) **path** from  $a$  to  $b$  in  $X$  is a continuous map  $\alpha : [0, 1] \rightarrow X$  with  $\alpha(0) = a$  and  $\alpha(1) = b$ . A **loop** at  $a$  in  $X$  is a path from  $a$  to  $a$  in  $X$ . We say that  $X$  is **path-connected** when for every  $a, b \in X$  there exists a path from  $a$  to  $b$  in  $X$ .

**3.16 Theorem:** *The image of a path-connected space under a continuous map is path-connected. In particular, if  $X \cong Y$  and  $X$  is path-connected, then so is  $Y$ .*

Proof: Let  $f : X \rightarrow Y$  be continuous and suppose  $X$  is path connected. Let  $c, d \in f(X)$ . Choose  $a, b \in X$  such that  $f(a) = c$  and  $f(b) = d$ . Let  $\alpha$  be a path in  $X$  from  $a$  to  $b$ . Then  $\beta = f \circ \alpha$  is a path in  $Y$  from  $c$  to  $d$ .

**3.17 Theorem:** *Every path-connected topological space is connected.*

Proof: Let  $X$  be a path-connected topological space. Suppose, for a contradiction, that  $X$  is not connected. Choose nonempty disjoint open sets  $U$  and  $V$  in  $X$  which separate  $X$  (meaning that  $X = U \cup V$ ). Choose  $a \in U$  and  $b \in V$ . Let  $\alpha : [0, 1] \rightarrow X$  be a path from  $a$  to  $b$  in  $X$ . Then  $\alpha^{-1}(U)$  and  $\alpha^{-1}(V)$  are nonempty disjoint open sets in  $[0, 1]$  which separate  $[0, 1]$ . This is not possible since  $[0, 1]$  is connected.

**3.18 Example:** Every **convex set** in a normed linear space is path-connected, hence connected. Indeed if  $X$  is a convex set then, given  $a, b \in X$ , the map  $\alpha : [0, 1] \rightarrow X$  given by  $\alpha(t) = a + t(b - a)$  is a path from  $a$  to  $b$  in  $X$  ( $\alpha$  takes values in  $X$  because  $X$  is convex).

**3.19 Theorem:** *Let  $X$  be a topological space. The relation  $\sim$  on  $X$ , given by  $a \sim b$  when there exists a path from  $a$  to  $b$  in  $X$ , is an equivalence relation on  $X$ , which we call **path-equivalence**.*

Proof: We have  $a \sim a$  because the constant path  $\kappa = \kappa_a : [0, 1] \rightarrow X$ , given by  $\kappa(t) = a$  for all  $t$ , is a path from  $a$  to  $a$  in  $X$ . Note that if  $a \sim b$  then  $b \sim a$ : indeed if  $\alpha$  is a path from  $a$  to  $b$  in  $X$  then the map  $\beta = \alpha^{-1} : [0, 1] \rightarrow X$  given by  $\beta(t) = \alpha(1 - t)$  is a path from  $b$  to  $a$  in  $X$ . Finally, note that if  $a \sim b$  and  $b \sim c$  then  $a \sim c$ : indeed if  $\alpha$  is a path from  $a$  to  $b$  in  $X$  and  $\beta$  is a path from  $b$  to  $c$  in  $X$  then the map  $\gamma = \alpha\beta : [0, 1] \rightarrow X$  given by  $\gamma(t) = \alpha(2t)$  when  $0 \leq t \leq \frac{1}{2}$ , and by  $\gamma(t) = \beta(2t - 1)$  when  $\frac{1}{2} \leq t \leq 1$ , is a path from  $a$  to  $c$  in  $X$  ( $\gamma$  is continuous by Theorem 1.36).

**3.20 Definition:** Let  $X$  be a topological space. The equivalence classes under the path-equivalence relation on  $X$  are called the **path-components** of  $X$ .

**3.21 Theorem:** *The path components of a topological space  $X$  are the maximal path-connected subspaces of  $X$ : indeed each path-component of  $X$  is path-connected, and every nonempty path-connected subset of  $X$  is contained in exactly one of the path-components.*

Solution: Let  $P$  be a path-component of  $X$ , say  $a \in P$  so that  $P = [a] = \{x \in X \mid x \sim a\}$ . Then  $P$  is path-connected because if  $b, c \in P$  then we have  $b \sim a$  and  $c \sim a$ , and hence  $b \sim c$ . Now let  $S$  be any path-connected subset of  $X$ . Suppose that  $S$  intersects two path-components, say  $P$  and  $Q$ , of  $X$ . Choose  $p \in P \cap S$  and  $q \in Q \cap S$ . Since  $p, q \in S$  and  $S$  is path-connected, we have  $p \sim q$ . Since  $p \sim q$  we have  $P = [p] = [q] = Q$ .

**3.22 Note:** In a topological space  $X$ , since each path-component is path-connected, hence connected, it is contained in one of the connected components of  $X$ . It follows that each connected component of  $X$  is the (disjoint) union of the path-components which it contains.

**3.23 Exercise:** Let  $A = \{(x, \sin \frac{1}{x}) \mid x > 0\}$ . The closure  $\overline{A}$  of  $A$  in  $\mathbb{R}^2$  is called the **topologist's sine curve**. Note that  $\overline{A} = A \cup B$  where  $B = \{(0, y) \mid y \in [-1, 1]\}$ . Show that  $\overline{A}$  is connected but not path-connected, and the sets  $A$  and  $B$  are the path-components.

## Compactness

**3.24 Definition:** Let  $X$  be a topological space. For a set  $\mathcal{S}$  of subsets of  $X$ , we say that  $\mathcal{S}$  **covers**  $X$  when  $\bigcup \mathcal{S} = X$ . An **open cover** of  $X$  is a set  $\mathcal{S}$  of open sets which covers  $X$ . When  $\mathcal{S}$  is an open cover of  $X$ , a **subcover** of  $\mathcal{S}$  is a subset  $\mathcal{R} \subseteq \mathcal{S}$  with  $\bigcup \mathcal{R} = X$ . We say that  $X$  is **compact** when every open cover of  $X$  has a finite subcover. Equivalently,  $X$  is compact when it has the property that if  $K$  is a set, and  $U_k$  is an open set in  $X$  for each  $k \in K$ , and  $\bigcup_{k \in K} U_k = X$ , then there is a finite subset  $L \subseteq K$  such that  $\bigcup_{k \in L} U_k = X$ .

**3.25 Theorem:** (The Heine-Borel Theorem) A subspace of  $\mathbb{R}^n$  is compact if and only if it is closed and bounded.

Proof: We omit the proof. This theorem is proven in a real analysis course.

**3.26 Theorem:** The image of a compact space under a continuous map is compact. In particular, if  $X \cong Y$  and  $X$  is compact, then so is  $Y$ .

Proof: Let  $f : X \rightarrow Y$  be continuous and suppose  $X$  is compact. By restricting the codomain, the map  $f : X \rightarrow f(X)$  is also continuous. Let  $\mathcal{T}$  be an open cover of  $f(X)$ . Then the set  $\mathcal{S} = \{f^{-1}(V) \mid V \in \mathcal{T}\}$  is an open cover of  $X$ . Since  $X$  is compact,  $\mathcal{S}$  has a finite subcover, so we can choose  $V_1, V_2, \dots, V_n \in \mathcal{T}$  such that  $X = \bigcup_{k=1}^n f^{-1}(V_k)$ . Then  $f(X) = \bigcup_{k=1}^n V_k$  so that  $\{V_1, V_2, \dots, V_n\}$  is a finite subcover of  $\mathcal{T}$ .

**3.27 Theorem:** Let  $X$  be a subspace of  $Y$ . Then  $X$  is compact if and only if for every set  $\mathcal{T}$  of open sets in  $Y$  with  $X \subseteq \bigcup \mathcal{T}$  there exists a finite set  $\mathcal{Q} \subseteq \mathcal{T}$  such that  $X \subseteq \bigcup \mathcal{Q}$ .

Proof: Suppose that  $X$  is compact. Let  $\mathcal{T}$  be a set of open sets in  $Y$  such that  $X \subseteq \bigcup \mathcal{T}$ . Let  $\mathcal{S} = \{V \cap X \mid V \in \mathcal{T}\}$ . Then  $\mathcal{S}$  is an open cover of  $X$ . Since  $X$  is compact, we can choose  $V_1, \dots, V_n \in \mathcal{T}$  such that  $X = \bigcup_{k=1}^n (V_k \cap X)$ . Since  $X = \bigcup_{k=1}^n (V_k \cap X) = (\bigcup_{k=1}^n V_k) \cap X$  we have  $X \subseteq \bigcup_{k=1}^n V_k$ .

Suppose, conversely, that for every set  $\mathcal{T}$  of open sets in  $Y$  with  $X \subseteq \bigcup \mathcal{T}$  there is a finite subset  $\mathcal{Q} \subseteq \mathcal{T}$  such that  $X \subseteq \bigcup \mathcal{Q}$ . Let  $\mathcal{S}$  be a set of open sets in  $X$  with  $X = \bigcup \mathcal{S}$ . For each  $U \in \mathcal{S}$ , since  $U$  is open in  $X$  we can choose an open set  $V_U$  in  $Y$  such that  $U = V_U \cap X$ . Let  $\mathcal{T} = \{V_U \mid U \in \mathcal{S}\}$ . Choose a finite subset  $\{V_{U_1}, V_{U_2}, \dots, V_{U_n}\}$  of  $\mathcal{T}$  such that  $X \subseteq \bigcup_{k=1}^n V_{U_k}$ . Then we have  $\bigcup_{k=1}^n U_k = \bigcup_{k=1}^n (V_{U_k} \cap X) = (\bigcup_{k=1}^n V_{U_k}) \cap X = X$  so that  $\{U_1, U_2, \dots, U_n\}$  is a finite subcover of  $\mathcal{S}$ .

**3.28 Theorem:** Every closed subspace of a compact space is compact.

Proof: Let  $X$  be a closed subspace of the compact space  $Y$ . Let  $\mathcal{T}$  be a set of open sets in  $Y$  such that  $X \subseteq \bigcup \mathcal{T}$ . Then  $\mathcal{T} \cup \{X^c\}$  is an open cover of  $Y$ , where  $X^c = Y \setminus X$ . Since  $Y$  is compact, we can choose  $V_1, V_2, \dots, V_n \in \mathcal{T}$  such that  $V_1 \cup V_2 \cup \dots \cup V_n \cup X^c = Y$ . It follows that  $X \subseteq V_1 \cup V_2 \cup \dots \cup V_n$ . Thus  $X$  is compact by Theorem 3.27.

**3.29 Theorem:** Every compact subspace of a Hausdorff space is closed.

Proof: Let  $X$  be a compact subspace of the Hausdorff space  $Y$ . To show that  $X$  is closed in  $Y$ , we show that for every  $b \in X^c = Y \setminus X$  there exists an open set  $V$  in  $Y$  with  $b \in V \subseteq X^c$ . Let  $b \in X^c$ . For each  $a \in X$ , since  $Y$  is Hausdorff we can choose disjoint open sets  $U_a$  and  $V_a$  in  $Y$  with  $a \in U_a$  and  $b \in V_a$ . Since  $X \subseteq \bigcup_{a \in X} U_a$  and  $X$  is compact, by Theorem 3.27 we can choose  $a_1, a_2, \dots, a_n \in X$  such that  $X \subseteq \bigcup_{k=1}^n U_{a_k}$ . Let  $U = \bigcup_{k=1}^n U_{a_k}$  and  $V = \bigcap_{k=1}^n V_{a_k}$ . Note that  $U$  and  $V$  are open in  $Y$  with  $X \subseteq U$  and  $b \in V$ . Also note that  $U$  and  $V$  are disjoint because, for  $y \in Y$ , if  $y \in U = \bigcup_{k=1}^n U_{a_k}$  then we can choose an index  $\ell$  such that  $y \in U_{a_\ell}$ , and then  $y \notin V_{a_\ell}$  and hence  $y \notin \bigcap_{k=1}^n V_{a_k} = V$ . Since  $X \subseteq U$  and  $b \in V$  and  $U \cap V = \emptyset$ , we have found an open set  $V$  in  $Y$  with  $b \in V \subseteq X^c$ , as required.

**3.30 Theorem:** *If  $X$  is compact and  $Y$  is Hausdorff and  $f : X \rightarrow Y$  is continuous and bijective, then the inverse of  $f$  is also continuous, so that  $f$  is a homeomorphism.*

Proof: Let  $X$  be compact, let  $Y$  be Hausdorff, let  $f : X \rightarrow Y$  be continuous and bijective, and let  $g = f^{-1} : Y \rightarrow X$ . Let  $U$  be an open set in  $X$ . Then  $U^c$  is closed in  $X$ , where  $U^c = X \setminus U$ . By Theorem 3.26, since  $U^c$  is closed in  $X$  and  $X$  is compact, it follows that  $U^c$  is compact. By Theorem 3.25, since  $U^c$  is compact and  $f$  is continuous, it follows that  $f(U^c)$  is compact. Since  $f$  is bijective, we have  $f(U^c) = f(U)^c = Y \setminus f(U)$ . By Theorem 3.27, since  $f(U)^c$  is compact and  $Y$  is Hausdorff, it follows that  $f(U)^c$  is closed in  $Y$ , and hence  $g^{-1}(U) = f(U)$  is open in  $Y$ . Thus  $g$  is continuous, as required.

**3.31 Example:** Show that no two of the spaces  $(0, 1)$ ,  $(0, 1]$  and  $[0, 1]$  are homeomorphic.

Solution: Since  $[0, 1]$  is compact while  $(0, 1)$  and  $(0, 1]$  are not, we see that  $[0, 1]$  cannot be homeomorphic either to  $(0, 1)$  or to  $(0, 1]$ . Also note that  $(0, 1] \setminus \{1\}$  is connected while  $(0, 1) \setminus \{p\}$  is not connected for any  $p \in (0, 1)$ , and so it follows that  $(0, 1]$  cannot be homeomorphic to  $(0, 1)$ . Indeed if  $f : (0, 1] \rightarrow (0, 1)$  was a homeomorphism with  $p = f(0)$  then the map  $f : (0, 1] \setminus \{0\} \rightarrow (0, 1) \setminus \{p\}$  would also be a homeomorphism.

**3.32 Example:** Show that no two of the spaces  $\mathbb{R}^1$ ,  $\mathbb{R}^2$ ,  $\mathbb{S}^1$  and  $\mathbb{S}^2$  are homeomorphic.

Solution: Since  $\mathbb{S}^1$  and  $\mathbb{S}^2$  are compact while  $\mathbb{R}^1$  and  $\mathbb{R}^2$  are not, neither  $\mathbb{S}^1$  nor  $\mathbb{S}^2$  can be homeomorphic to either  $\mathbb{R}^1$  or  $\mathbb{R}^2$ . Since  $\mathbb{R}^2 \setminus \{(0, 0)\}$  is connected while  $\mathbb{R} \setminus \{x\}$  is not connected for any  $x \in \mathbb{R}$ , it follows that  $\mathbb{R}^2$  is not homeomorphic to  $\mathbb{R}^1$ . Since  $\mathbb{S}^2 \setminus \{(0, 0, 1)\} \cong \mathbb{R}^2$ , and  $\mathbb{S}^1 \setminus \{x\} \cong \mathbb{R}^1$  for any  $x \in \mathbb{S}^1$  (under the composite of a rotation with the stereographic projection), and since  $\mathbb{R}^2$  is not homeomorphic to  $\mathbb{R}^1$ , it follows that  $\mathbb{S}^2$  is not homeomorphic to  $\mathbb{S}^1$ .

**3.33 Theorem:** *Let  $X$  and  $Y$  be topological spaces.*

- (1) *If  $X$  and  $Y$  are connected then so is  $X \times Y$ .*
- (2) *If  $X$  and  $Y$  are path-connected then so is  $X \times Y$ .*
- (3) *If  $X$  and  $Y$  are compact then so is  $X \times Y$ .*

Proof: The proof is left as an exercise.

**3.34 Theorem:** *Let  $\sim$  be an equivalence relation on a topological space  $X$ .*

- (1) *If  $X$  is connected then so is  $X / \sim$ .*
- (2) *If  $X$  is path-connected then so is  $X / \sim$ .*
- (3) *If  $X$  is compact then so is  $X / \sim$ .*

Proof: The proof is left as an exercise.

**3.35 Definition:** Let  $X$  be an ordered set. For  $A \subseteq X$  and  $b \in X$ , we say that  $b$  is an **upper bound** for  $A$  in  $X$  when  $b \geq x$  for every  $x \in A$ , and we say that  $b$  is the **supremum** (or the **least upper bound**) of  $A$  in  $X$  when  $b$  is an upper bound for  $A$  in  $X$  and  $b \leq c$  for every upper bound  $c$  of  $A$  in  $X$ . Note that when  $A$  has a supremum in  $X$ , the supremum is unique, and we denote it by  $\sup X$ . We say that  $X$  has the **supremum property** (or the **least upper bound property**) when every nonempty subset of  $X$  which has an upper bound in  $X$  also has a supremum in  $X$ .

**3.36 Theorem:** *Let  $X$  be an ordered set with the supremum property. Let  $a, b \in X$  with  $a < b$ . Then the interval  $[a, b]$  is compact.*

Proof: We leave the proof as an exercise.

**3.37 Theorem:** Let  $X$  be a topological space. Then  $X$  is compact if and only if  $X$  has the **finite intersection property on closed sets**: for every set  $T$  of closed sets in  $X$ , if every finite subset of  $T$  has non-empty intersection, then  $T$  has non-empty intersection.

Proof: Suppose that  $X$  is compact. Let  $T$  be a set of closed sets in  $X$ . Suppose that  $T$  has empty intersection, that is suppose  $\bigcap_{A \in T} A = \emptyset$ . Then  $\bigcup_{A \in T} A^c = X$  so the set  $S = \{A^c \mid A \in T\}$  is an open cover for  $X$ . Since  $X$  is compact, we can choose a finite subcover, say  $\{A_1^c, \dots, A_n^c\}$  of  $S$  for  $X$ . Then we have  $A_1 \cap A_2 \cap \dots \cap A_n = \emptyset$ , showing that some finite subset of  $T$  has empty intersection.

Suppose, conversely, that  $X$  has the finite intersection property on closed sets. Let  $S$  be an open cover of  $X$ . Let  $T = \{U^c \mid U \in S\}$ . Since  $\bigcup S = X$  we have  $\bigcap T = (\bigcup S)^c = \emptyset$ . Since  $X$  has the finite intersection on closed sets, there exists a finite subset of  $T$  with empty intersection. so we can choose  $U_1, U_2, \dots, U_n \in S$  such that  $U_1^c \cap \dots \cap U_n^c = \emptyset$ . It follows that  $U_1 \cup \dots \cup U_n = X$ , so  $S$  has a finite subcover.

**3.38 Theorem:** (Tychanoff's Theorem) The product of any indexed set of compact spaces is compact, using the product topology.

Proof: Let  $X_k$  be compact for each  $k \in K$ . We shall prove that  $\prod X_k$  has the finite intersection property on closed sets. Let  $T$  be a set of closed sets in  $\prod X_k$  such that every finite subset of  $T$  has non-empty intersection. We need to show that  $\bigcap T \neq \emptyset$ . By Zorn's Lemma, we can choose a maximal set  $S$  of subsets of  $\prod X_k$  with  $T \subseteq S$  such that every finite subset of  $S$  has non-empty intersection (let  $\mathcal{R}$  be the set of all such sets  $S$  and note that for every chain  $\mathcal{C}$  in  $\mathcal{R}$  we have  $\bigcup \mathcal{C} \in \mathcal{R}$ ). Note that the maximality of  $S$  implies that  $S$  is closed under finite intersection (since if  $A_1, \dots, A_n \in S$  then every intersection of a finite subset of  $S \cup \{A_1 \cap \dots \cap A_n\}$  is also an intersection of a finite subset of  $S$ ).

We shall show that  $\bigcap \{\overline{A} \mid A \in S\} \neq \emptyset$ , hence  $\bigcap T \neq \emptyset$  since if  $A \in T$  then  $A = \overline{A} \in S$ . Let  $k \in K$ . Note that finite subsets of  $\{p_k(A) \mid A \in S\}$  have non-empty intersection (because if  $A_1, \dots, A_n \in S$  then  $p_k(A_1) \cap \dots \cap p_k(A_n) = p_k(A_1 \cap \dots \cap A_n) \neq \emptyset$ ), and hence finite subsets of  $\{\overline{p_k(A)} \mid A \in S\}$  also have nonempty intersection. Since  $X_k$  is compact, so  $X_k$  has the finite intersection property on closed sets, it follows that  $\bigcap \{\overline{p_k(A)} \mid A \in S\} \neq \emptyset$ , so we can choose  $a_k \in X_k$  such that  $a_k \in \overline{p_k(A)}$  for every  $A \in S$ . We do this for each  $k \in K$ , that is for each  $k \in K$  we choose  $a_k \in X_k$  with  $a_k \in \overline{p_k(A)}$  for every  $A \in S$ , then we let  $a = (a_k)_{k \in K} \in \prod_{k \in K} X_k$ .

We claim that  $a \in \overline{A}$  for every  $A \in S$ . Let  $k \in K$ . Let  $U_k$  be an open set in  $X_k$  with  $a_k \in U_k$ . Then for every  $A \in S$ , we have  $a_k \in p_k(A) \cap U_k$  so that  $p_k(A) \cap U_k \neq \emptyset$  hence  $p_k(A) \cap U_k \neq \emptyset$  (if we had  $p_k(A) \cap U_k = \emptyset$  then  $p_k(A) \subseteq U_k^c$  hence  $p_k(A) \subseteq U_k^c$  so that  $\overline{p_k(A)} \cap U_k = \emptyset$ ). For each  $A \in S$ , since  $p_k(A) \cap U_k \neq \emptyset$ , we can choose  $b \in A$  such that  $p_k(b) \in U_k$ , that is  $b \in p_k^{-1}(U_k)$ , and hence  $p_k^{-1}(U_k) \cap A \neq \emptyset$ . Since  $S$  is closed under finite intersection and  $p_k^{-1}(U_k) \cap A \neq \emptyset$  for every  $A \in S$ , the maximality of  $S$  implies that  $p_k^{-1}(U_k) \in S$ . Let  $V$  be any basic open set in  $\prod X_k$  with  $a \in V$ , say  $V = \prod U_k$  where each  $U_k \subseteq X_k$  is open with  $a_k \in U_k$ , and with  $U_k = X_k$  for all  $k \in F$  where  $F$  is a finite subset of  $K$ . Since  $p_k^{-1}(U_k) \in S$  for every  $k \in K$  and  $S$  is closed under finite intersection, we have

$$V = \{(x_k)_{k \in K} \mid x_k \in U_k \text{ for all } k \in F\} = \bigcap_{k \in F} p_k^{-1}(U_k) \in S.$$

Since  $V \in S$  and every finite subset of  $S$  has non-empty intersection, we have  $A \cap V \neq \emptyset$  for all  $A \in S$ . Given  $A \in S$ , since  $A \cap V \neq \emptyset$  for every basic open set  $V$  in  $\prod X_k$  with  $a \in V$ , it follows that  $a \in \overline{A}$ . Thus  $a \in \overline{A}$  for all  $A \in S$ , so  $\bigcap \{\overline{A} \mid A \in S\} \neq \emptyset$ , as required.