Chapter 3. Connected, Path-Connected, and Compact Spaces

Connectedness and Connected Components

3.1 Definition: Let X be a topological space. We say that two subsets A,B C X
separate X when A # (), B# (), ANB = () and AUB = X. We say that X is connected
when there do not exist two open sets in X which separate X. Equivalently (as you can
verify) X is connected when () and X are the only two subsets of X which are both open
and closed in X. We say that X is disconnected when it is not connected.

3.2 Exercise: Prove that the connected subspaces of R are the intervals (including 0,
1-point sets, and R), and the nonempty connected subspaces of Q are the 1-point sets.

3.3 Theorem: The image of a connected space under a continuous map is connected. In
particular, if two spaces are homeomorphic and one is connected, then so is the other.

Proof: Let f : X — Y be a continuous map between topological spaces. Note that, by
Theorem 1.35, f : X — f(X) is also continuous. Suppose that f(X) is disconnected.
Choose disjoint nonempty open sets A and B in f(X) with AU B = f(X). Then f~1(A)
and f~1(B) are disjoint nonempty open sets in X with f~1(4)U f~1(B) = X, so X is
disconnected.

3.4 Lemma: Let X be a subspace of Y. Suppose that Y is disconnected and that A and
B are open sets in Y which separate Y. If X is connected, then either X C A or X C B.

Proof: Suppose that X is connected. Note that A N X and B N X are disjoint open sets
in X. If both of the sets AN X and BN X were nonempty, then they would be open sets
in X which separate X. Since X is connected, this is not possible, so either AN X = () or
BNX = 0. If AnX = () then we have X = XNY = XN(AUB) = (XNA)U(XNB) = XNB
so that X C B. Similarly, if BN X = () then X C A.

3.5 Theorem: Let X = UkeK Ap. If each Ay is a connected subspace of X and
Niex Ak # 0 then X is connected.

Proof: Suppose that each Ay is connected with p € (1, o, Ax. Suppose, for a contradiction,
that X = (J,cx Ar is disconnected. Choose open sets U and V' in X which separate X.
Note that p lies either in U or in V' (but not both), say p € U (and p ¢ V). Let k € K be
arbitrary. Since Ay is connected, by the above lemma, either A, C U, or Ay C V. Since
p € A and p ¢ V, we do not have Ay C V so we must have Ay C U. Since k € K was
arbitrary, we have Ay C U for every k € K, and hence X = (J,.x Ax € U. But this
contradicts the fact that U and V separate X, giving the desired contradiction.

3.6 Lemma: Let X be a subspace of Y and let A and B be subsets of X which separate
X. Then A and B are open in X (so that X is disconnected) if and only if AN B = () and
BN A= (where A and B are the closures in Y).

Proof: Suppose that A and B are open in X Note that A = B¢ = X \ B is closed in X
so we have A = Clx(A) = ANX =AN(AUB)=(ANA)U(ANB)=AU(ANB) and
hence AN B = (). Similarly BN A = 0.

Suppose, conversely, that there exist disjoint nonempty sets A, B C X with AUB = X
such that AN B = () and BN A = (). Since AN B = (), we have AN X = A so that
Clx(A) = AN X = A and hence A is closed. Similarly B is closed. Since X is the disjoint
union of A and B, it follows that A and B are both open in X hence X is not connected.



3.7 Theorem: Let X be a topological space and let A C X. Suppose that A C B C A.
If A is connected, as a subspace of X, then so is B.

Proof: Suppose that A is connected, and suppose, for a contradiction, that B is discon-
nected. Let C and D be open sets in B which separate B. By Lemma 3.5, we have
CND=0and DNC = 0. Since A is connected, by Lemma 3.3, either A C C or A C D.
Say A C C. Then we have BC A C C. Since D C BC C and CND = (), we have D = 0,
which contradicts the fact that C' and D separate B.

3.8 Theorem: The cartesian product of two connected spaces is connected.

Proof: Let X and Y be connected topological spaces. If X =@ or Y = () then X x Y = (),
which is connected. Suppose that X # () and Y # (). Choose a € X and b € Y. Note
that X x {b} is connected, since it is homeomorphic to X. Likewise, for each x € X the
subspace {x} x Y is connected since it is homeomorhic to Y. Since X x {b} and {z} x Y
are connected with (z,b) € (X x {b}) N ({z} x Y) it follows, from Theorem 3.5, that
(X x {b}) U ({z} xY) is connected. Since (X x {b})U ({x} x Y) is connected for every
r € X and (a,b) € (,cx (X x {b}) U ({z} x Y) it follows, again from Theorem 3.5, that
X XY =Uex(X x{b}) U ({z} xY) is connected.

3.9 Theorem: The cartesian product of an arbitrary set of connected spaces is connected
using the product topology.

Proof: Let X be a connected topological space for each k € K. If X}, = () for some k € K
then erK X, = 0. Suppose that X, # () for all k € K. For each k € K choose a, € X},
and let a be the element in ], _, X given by a(k) = ay for all k € K. Let F be the set
of all finite subsets of K. For each J € F, let Y; = {yEerK X | yr = ay, for all k ¢ J}
using the subspace topology. We claim that Y; = [[;.; X;. Define f : Y; — H]EJ
by f(y)(j) = y;. This map is continuous because given U; open in X; for each j € J, so
that [[;c; U; is a basic open set in [, ; X;, and letting Uy = Xi for all k € K\ J, we
have f~' (e, U;) = {yeYslyseUjforall jeJ} = {yeV;|yp€Us forall ke K} =
(erK Uk) NY;, which is a basic open set in Y (using the subspace topology). The
inverse of f is the map g = f~1: [Tjes X; = Yy by g(z)(k) = {zk ii:;j} This map is
continuous because given I € F and given open sets Uy in Xy Witlfl Up =Xy forall k ¢ 1,
so that the set (erK Uk) NY is a basic open set in Y, we have g~! (( Ilick Uk) ﬂYJ) =
{:)3 € HjeJXj‘CL'k € Uy for all k € J and ay, € Uy, for all k ¢ J} = {:1: € HJGJX-}a:k €
Uy forallke JNI} = HJGJV where V; = Uj for j € JNT and V; = X for j € J\ I,
and this is a basic open set in ngJ Xj. ThlS we have Y; = ngJ Xj, as Clalmed

Since J is finite, and each X, is connected, the space H cj Xj is connected by
the previous theorem (and by induction), and hence Y; = g(HJe ;X;) is connected
by Theorem. 3.3. Since Y is connected for every J € JF, and since a € Y for all
J € F, it follows from Theorem 3.5 that |J;. Y is connected. Finally, we note that
User Y7 = [iex Xi: indeed, given I € F and given open sets Uy C Xj, with Uy = Xj,
forall k ¢ I, sothat [], ., Uk is a basic open set in [ ], o x Xk, we have 0 # [], o UrNY7 C
[iex Xe NU jerYs. Since ;o 7Yy is connected, and [], o Xx = U e 7 Y7, it follows
that [ ], Xk is connected by Theorem 3.7.



3.10 Example: The result of the above theorem does not necessarily hold when [ ], ., Xi
uses the box topology. For example you can verify that in the space R* = [[7-; R using
the box topology, the sets U = {z € R¥|||z[o < 00} and V = {z € R¥|||z|o = oo} are
open sets which separate R“.

3.11 Definition: Let X be a topological space. Define a relation ~ on X by setting
x ~ y if and only if there exists a connected subspace of X which contains both = and y.
We note that ~ is an equivalence relation on X: indeed, given x,y,2z € X, we have x ~ x
because {x} is connected, and if = ~ y then clearly y ~ z, and if z ~ y and y ~ z then we
can choose connected spaces A, B C X with z,y € A and y, 2z € B and then, by Theorem
3.5, since y € AN B it follows that A U B is connected, and we have z,z € AU B. The
equivalence classes under this equivalence relation are called the connected components
of X. Note that if X is connected then the only connected component of X is X itself.

3.12 Theorem: The connected components of a topological space X are connected, and
every non-empty connected subspace of X is contained in exactly one of the connected
components.

Proof: We claim that every nonempty connected subspace of X is contained in exactly one
connected component. Let A be a nonempty connected subspace of X. Let a € A. Let C'
be the equivalence class of a, that is C = [a] = {z € X |z ~ a} and note that ANC #
since a € ANC. Let D be any equivalence class with AN D # (). Choose b € AN D.
Since A is connected with a € A and b € A we have a ~ b so that C = [a] = [b] = D.
Thus A intersects with exactly one connected component, namely C. Since the connected
components (being equivalence classes) cover X, it follows that A C C.

We claim that each connected component of X is connected. Let C be a connected
component and let a € C' so that C' = [a] = {x € X |z ~ a}. For each x € C, since x ~ a
we can choose a connected set A, in X with a,x € A. By the previous claim, since A, is
connected with a € A, N C, it follows that A, C C. Since x € A, C C for all z € C, we
have C' = (J, .o Az. This is connected by Theorem 3.5, since each A, is connected and

a € Npee Ae-

3.13 Note: The connected components of a topological space are closed: indeed if C' is a
connected component of X then, by the above theorem, Cisa maximal connected set in
X, and by Theorem 3.7, C' is a connected connected set with C' C C, and hence C = C.

3.14 Example: Since R is connected, it has only one connected component, namely R.
The one-point sets are the connected components of Q.

Path-Connectedness and Path-Components

3.15 Definition: Let X be a topological space and let a,b € X. A (continuous) path
from a to b in X is a continuous map « : [0,1] — X with a(0) = a and a(1) = b. A loop
at a in X is a path from a to a in X. We say that X is path-connected when for every
a,b € X there exists a path from a to b in X.



3.16 Theorem: The image of a path-connected space under a continuous map is path-
connected. In particular, if X 2Y and X is path-connected, then so is Y.

Proof: Let f: X — Y be continuous and suppose X is path connected. Let ¢,d € f(X).
Choose a,b € X such that f(a) = ¢ and f(b) = d. Let a be a path in X from a to b. Then
B = foaisapathinY from c to d.

3.17 Theorem: Every path-connected topological space is connected.

Proof: Let X be a path-connected topological space. Suppose, for a contradiction, that X
is not connected. Choose nonempty disjoint open sets U and V' in X which separate X
(meaning that X = U U V). Choose a € U and b € V. Let a: [0,1] — X be a path from
a to bin X. Then a~!(U) and a~}(V) are nonempty disjoint open sets in [0, 1] which
separate [0, 1]. This is not possible since [0, 1] is connected.

3.18 Example: Every convex set in a normed linear space is path-connected, hence
connected. Indeed if X is a convex set then, given a,b € X, the map « : [0,1] — X given
by a(t) = a+t(b—a) is a path from a to b in X (« takes values in X because X is convex).

3.19 Theorem: Let X be a topological space. The relation ~ on X, given by a ~ b
when there exists a path from a to b in X, is an equivalence relation on X, which we call
path-equivalence.

Proof: We have a ~ a because the constant path kK = K, : [0,1] — X, given by k(t) = a
for all ¢, is a path from a to a in X. Note that if a ~ b then b ~ a: indeed if « is a path
from a to b in X then the map 8 = a~! : [0,1] — X given by 8(t) = a(l —t) is a path
from b to a in X. Finally, note that if a ~ b and b ~ ¢ then a ~ ¢: indeed if « is a path
from a to b in X and S is a path from b to ¢ in X then the map v = a3 : [0,1] — X given
by v(t) = a(2t) when 0 < ¢ < 1, and by v(t) = (2t — 1) when 1 < ¢ <1, is a path from
a to ¢ in X (v is continuous by Theorem 1.36).

3.20 Definition: Let X be a topological space. The equivalence classes under the path-
equivalence relation on X are called the path-components of X.

3.21 Theorem: The path components of a topological space X are the maximal path-
connected subspaces of X : indeed each path-component of X is path-connected, and every
nonempty path-connected subset of X is contained in exactly one of the path-components.

Solution: Let P be a path-component of X, say a € P so that P = [a] = {z € X } T ~a}.
Then P is path-connected because if b,¢ € P then we have b ~ a and ¢ ~ a, and hence
b ~ c. Now let S be any path-connected subset of X. Suppose that S intersects two
path-components, say P and @, of X. Choose p € PN S and ¢ € QN S. Since p,q € S
and S is path-connected, we have p ~ ¢. Since p ~ g we have P = [p| = [q] = Q.

3.22 Note: In a topological space X, since each path-component is path-connected, hence
connected, it is contained in one of the connected components of X. It follows that each
connected component of X is the (disjoint) union of the path-components which it contains.

3.23 Exercise: Let A = {(ac,sin%) ‘m > 0}. The closure A of A in R? is called the
topologist’s sine curve. Note that A = AU B where B = {(0, Y) ! y € [—1, 1]} Show
that A is connected but not path-connected, and the sets A and B are the path-components.



Compactness

3.24 Definition: Let X be a topological space. For a set S of subsets of X, we say that
S covers X when | JS = X. An open cover of X is a set S of open sets which covers X.
When S is an open cover of X, a subcover of S is a subset R C S with [JR = X. We say
that X is compact when every open cover of X has a finite subcover. Equivalently, X is
compact when it has the property that if K is a set, and Uy is an open set in X for each
k€ K, and ;i Ur = X, then there is a finite subset L C K such that J, ., Ur = X.

3.25 Theorem: (The Heine-Borel Theorem) A subspace of R™ is compact if and only if
it is closed and bounded.

Proof: We omit the proof. This theorem is proven in a real analysis course.

3.26 Theorem: The image of a compact space under a continuous map is compact. In
particular, if X 2Y and X is compact, then so is Y.

Proof: Let f : X — Y be continuous and suppose X is compact. By restricting the
codomain, the map f : X — f(X) is also continuous. Let 7 be an open cover of f(X).
Then the set S = {f_l(V) ‘ \%4 G’T} is an open cover of X. Since X is compact, S has a
finite subcover, so we can choose Vi, Va,---,V,, € T such that X = J;_, f~'(Vi). Then
f(X) =i, Vi so that {Vl, Vo, -+, Vy,} is a finite subcover of T.

3.27 Theorem: Let X be a subspace of Y. Then X is compact if and only if for every
set T of open sets in Y with X C |JT there exists a finite set Q C T such that X C |J Q.

Proof: Suppose that X is compact. Let 7 be a set of open sets in Y such that X CJT.
Let S = {VNnX ‘ Ve T}. Then § is an open cover of X. Since X is compact, we can choose
Vi,-++,V, € T such that X = {J;_;(Vx N X). Since X =J;_;(VinX) = (Ui, Vo) N X
we have X C (J7_, Vi.

Suppose, conversely, that for every set T of open sets in Y with X C [JT there is a
finite subset Q@ C T such that X C |J Q. Let S be a set of open sets in X with X =JS.
For each U € S, since U is open in X we can choose an open set Vi in Y such that
U=VynX. Let T = {VU‘ UGS}. Choose a finite subset {VUNVUQ, . ~,VUn} of T such
that X C U,_; Vu,. Then we have J;_; Uy = U1 (Vu, N X) = (Uj—; Vo, ) N X = X so
that {Uy,Us,---,U,} is a finite subcover of S.

3.28 Theorem: Every closed subspace of a compact space is compact.

Proof: Let X be a closed subspace of the compact space Y. Let 7 be a set of open sets in
Y such that X C [J7. Then 7 U{X°} is an open cover of Y, where X¢ =Y \ X. Since
Y is compact, we can choose Vi, Vs,---,V,, € T such that ViUV, U---UV,UXc =Y. It
follows that X C V; UVoU---UV,. Thus X is compact by Theorem 3.27.

3.29 Theorem: Every compact subspace of a Hausdorff space is closed.

Proof: Let X be a compact subspace of the Hausdorff space Y. To show that X is closed in
Y, we show that for every b € X¢ = Y\ X there exists an open set V in Y withb € V' C X°.
Let b € X€. For each a € X, since Y is Hausdorff we can choose disjoint open sets U, and
Vo,inY with a € U, and b € V,. Since X C Uan U, and X is compact, by Theorem
3.27 we can choose ay,az,---,a, € X such that X C {J,_, U,,. Let U = U;_, U,, and
V =p—; Va,- Note that U and V are open in Y with X C U and b € V. Also note that
U and V are disjoint because, fory € Y, ify € U = UZ:1 U,, then we can choose an index
¢ such that y € U,,, and then y ¢ V,, and hence y ¢ ()_, Vo, = V. Since X C U and
beV and UNV = (), we have found an open set V in Y with b € V C X¢, as required.
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3.30 Theorem: If X is compact and Y is Hausdorff and f : X — Y is continuous and
bijective, then the inverse of f is also continuous, so that f is a homeomorphism.

Proof: Let X be compact, let Y be Hausdorff, let f : X — Y be continuous and bijective,
and let g = f~' : Y — X. Let U be an open set in X. Then U€ is closed in X, where
U¢ = X \U. By Theorem 3.26, since U€ is closed in X and X is compact, it follows that
U*€ is compact. By Theorem 3.25, since U€ is compact and f is continuous, it follows that
f(U€) is compact. Since f is bijective, we have f(U¢) = f(U)¢ =Y \ f(U). By Theorem
3.27, since f(U)¢ is compact and Y is Hausdorff, it follows that f(U)¢ is closed in Y, and
hence g~ 1(U) = f(U) is open in Y. Thus g is continuous, as required.

3.31 Example: Show that no two of the spaces (0,1), (0,1] and [0, 1] are homeomorphic.

Solution: Since [0,1] is compact while (0,1) and (0, 1] are not, we see that [0, 1] cannot
be homeomorphic either to (0, 1) or to (0,1]. Also note that (0,1]\ {1} is connected while
(0,1) \ {p} is not connected for any p € (0,1), and so it follows that (0,1] cannot be
homeomorphic to (0,1). Indeed if f : (0,1] — (0,1) was a homeomorphism with p = f(0)
then the map f: (0,1} \ {0} — (0,1) \ {p} would also be a homeomorphism.

3.32 Example: Show that no two of the spaces R!, R?, S' and S? are homeomorphic.

Solution: Since S! and S? are compact while R' and R? are not, neither S! nor S? can
be homeomorphic to either R! or R2. Since R? \ {(0,0)} is connected while R \ {x}
is not connected for any =z € R, it follows that R? is not homeomorphic to R'. Since
S2\ {(0,0,1)} 2 R?, and S* \ {} 2 R! for any € S' (under the composite of a rotation
with the stereographic projection), and since R? is not homeomorphic to R, it follows
that S? is not homeomorphic to S!.

3.33 Theorem: Let X and Y be topological spaces.
(1) If X and Y are connected then so is X x Y.

(2) If X and Y are path-connected then so is X x Y.
(3) If X and Y are compact then so is X x Y.

Proof: The proof is left as an exercise.

3.34 Theorem: Let ~ be an equivalence relation on a topological space X.

(1) If X is connected then so is X | ~.
(2) If X is path-connected then so is X / ~.
(3) If X is compact then so is X / ~.

Proof: The proof is left as an exercise.

3.35 Definition: Let X be an ordered set. For A C X and b € X, we say that b is an
upper bound for A in X when b > z for every x € A, and we say that b is the supremum
(or the least upper bound) of A in X when b is an upper bound for A in X and b < ¢ for
every upper bound c of A in X. Note that when A has a supremum in X, the supremum
is unique, and we denote it by sup X. We say that X has the supremum property (or
the least upper bound property) when every nonempty subset of X which has
an upper bound in X also has a supremum in X.

3.36 Theorem: Let X be an ordered set with the supremum property. Let a,b € X with
a < b. Then the interval [a, b] is compact.

Proof: We leave the proof as an exercise.



3.37 Theorem: Let X be a topological space. Then X is compact if and only if X has
the finite intersection property on closed sets: for every set T of closed sets in X, if
every finite subset of I' has non-empty intersection, then T' has non-empty intersection.

Proof: Suppose that X is compact. Let T be a set of closed sets in X. Suppose that
T has empty intersection, that is suppose (|, cp A = (). Then Uaer A° = X so the set
S = {AC}A € T} is an open cover for X. Since X is compact, we can choose a finite
subcover, say {Alc, e ,Anc} of S for X. Then we have 41 N A;N---N A, = (), showing
that some finite subset of T" has empty intersection.

Suppose, conversely, that X has the finite intersection property on closed sets. Let .S
be an open cover of X. Let T' = {U® ! U € S}. Since JS = X we have T = (US)C = 0.
Since X has the finite intersection on closed sets, there exists a finite subset of T' with empty
intersection. so we can choose Uy, Us, ---U, € S such that U;°N---NU,° = 0. It follows
that Uy U---UU, = X, so S has a finite subcover.

3.38 Theorem: (Tychanoff’s Theorem) The product of any indexed set of compact spaces
is compact, using the product topology.

Proof: Let Xj be compact for each k € K. We shall prove that [[ X; has the finite
intersection property on closed sets. Let T" be a set of closed sets in [[ X}, such that every
finite subset of T' has non-empty intersection. We need to show that (7T # . By Zorn’s
Lemma, we can choose a maximal set S of subsets of [[ X; with 7" C S such that every
finite subset of S has non-empty intersection (let R be the set of all such sets S and note
that for every chain C in R we have | JC € R) Note that the maximality of S implies that
S is closed under finite intersection (since if A;,---, A, € S then every intersection of a
finite subset of S U{A; N---NA,} is also an intersection of a finite subset of 5).

We shall show that () {A| A€ S} # 0, hence (T # 0 since if A € T then A=A € S.
Let £ € K. Note that finite subsets of {pk(A) | AeS } have non-empty intersection
(because if Ay, -+, A, € Sthen pi(A1)N---Nprp(An) =pe(A1N---NA,) # (Z)), and hence
finite subsets of { pr(A) ‘ AeS } also have nonempty intersection. Since X} is compact, so
X}, has the finite intersection property on closed sets, it follows that () {pk(A) |A €S } # 0,
so we can choose ap € X such that ax € pi(A) for every A € S. We do this for each
k € K, that is for each k € K we choose a € X with ai € pip(A) for every A € S, then
we let a = (ar)rer € [[ex Xk-

We claim that a € A for every A € S. Let k € K. Let U, be an open set in X}, with
ay € Ug. Then for every A € S, we have ap € pr(A) N Uy so that pi(A) N Uy # ) hence
pi(A) N U, # 0 (if we had py(A) N Uy = 0 then py(A) C Uy® hence py(A) C Ui® so that
pe(A)NU, = (D). For each A € S, since pi(A) N Uy # B, we can choose b € A such that
pr(b) € Uy, that is b € pp =1 (Uyx), and hence p =1 (Ux) N A # 0. Since S is closed under
finite intersection and py ~*(U,) N A # 0 for every A € S, the maximality of S implies that
pr 1 (Ug) € S. Let V be any basic open set in [][ Xy with a € V, say V = [] Up where
each U, C X}, is open with ai € Uy, and with Uy = X, for all k € F' where F' is a finite
subset of K. Since pp~1(Uy) € S for every k € K and S is closed under finite intersection,
we have

V = {(ar)kex |x € Uy for allk € F} = (cppr *(Uk) € S.

Since V € S and every finite subset of S has non-empty intersection, we have ANV # ()
for all A € S. Given A € §, since ANV # () for every basic open set V' in [[ X} with
a € V, it follows that a € A. Thus a € A for all A € S, so () {A | AES} # (), as required.



