
Chapter 3. Connected, Path-Connected, and Compact Spaces

Connectedness and Connected Components

3.1 Definition: Let X be a topological space. We say that two subsets A,B ⊆ X
separate X when A 6= ∅, B 6= ∅, A∩B = ∅ and A∪B = X. We say that X is connected
when there do not exist two open sets in X which separate X. Equivalently (as you can
verify) X is connected when ∅ and X are the only two subsets of X which are both open
and closed in X. We say that X is disconnected when it is not connected.

3.2 Exercise: Prove that the connected subspaces of R are the intervals (including ∅,
1-point sets, and R), and the nonempty connected subspaces of Q are the 1-point sets.

3.3 Theorem: The image of a connected space under a continuous map is connected. In
particular, if two spaces are homeomorphic and one is connected, then so is the other.

Proof: Let f : X → Y be a continuous map between topological spaces. Note that, by
Theorem 1.35, f : X → f(X) is also continuous. Suppose that f(X) is disconnected.
Choose disjoint nonempty open sets A and B in f(X) with A ∪B = f(X). Then f−1(A)
and f−1(B) are disjoint nonempty open sets in X with f−1(A) ∪ f−1(B) = X, so X is
disconnected.

3.4 Lemma: Let X be a subspace of Y . Suppose that Y is disconnected and that A and
B are open sets in Y which separate Y . If X is connected, then either X ⊆ A or X ⊆ B.

Proof: Suppose that X is connected. Note that A ∩X and B ∩X are disjoint open sets
in X. If both of the sets A ∩X and B ∩X were nonempty, then they would be open sets
in X which separate X. Since X is connected, this is not possible, so either A ∩X = ∅ or
B∩X = ∅. If A∩X = ∅ then we have X = X∩Y = X∩(A∪B) = (X∩A)∪(X∩B) = X∩B
so that X ⊆ B. Similarly, if B ∩X = ∅ then X ⊆ A.

3.5 Theorem: Let X =
⋃

k∈K Ak. If each Ak is a connected subspace of X and⋂
k∈K Ak 6= ∅ then X is connected.

Proof: Suppose that each Ak is connected with p ∈
⋂

k∈K Ak. Suppose, for a contradiction,
that X =

⋃
k∈K Ak is disconnected. Choose open sets U and V in X which separate X.

Note that p lies either in U or in V (but not both), say p ∈ U (and p /∈ V ). Let k ∈ K be
arbitrary. Since Ak is connected, by the above lemma, either Ak ⊆ U , or Ak ⊆ V . Since
p ∈ Ak and p /∈ V , we do not have Ak ⊆ V so we must have Ak ⊆ U . Since k ∈ K was
arbitrary, we have Ak ⊆ U for every k ∈ K, and hence X =

⋃
k∈K Ak ⊆ U . But this

contradicts the fact that U and V separate X, giving the desired contradiction.

3.6 Lemma: Let X be a subspace of Y and let A and B be subsets of X which separate
X. Then A and B are open in X (so that X is disconnected) if and only if A∩B = ∅ and
B ∩A = ∅ (where A and B are the closures in Y ).

Proof: Suppose that A and B are open in X Note that A = Bc = X \ B is closed in X
so we have A = ClX(A) = A ∩X = A ∩ (A ∪B) = (A ∩ A) ∪ (A ∩B) = A ∪ (A ∩B) and
hence A ∩B = ∅. Similarly B ∩A = ∅.

Suppose, conversely, that there exist disjoint nonempty sets A,B ⊆ X with A∪B = X
such that A ∩ B = ∅ and B ∩ A = ∅. Since A ∩ B = ∅, we have A ∩ X = A so that
ClX(A) = A∩X = A and hence A is closed. Similarly B is closed. Since X is the disjoint
union of A and B, it follows that A and B are both open in X hence X is not connected.
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3.7 Theorem: Let X be a topological space and let A ⊆ X. Suppose that A ⊆ B ⊆ A.
If A is connected, as a subspace of X, then so is B.

Proof: Suppose that A is connected, and suppose, for a contradiction, that B is discon-
nected. Let C and D be open sets in B which separate B. By Lemma 3.5, we have
C ∩D = ∅ and D ∩ C = ∅. Since A is connected, by Lemma 3.3, either A ⊆ C or A ⊆ D.
Say A ⊆ C. Then we have B ⊆ A ⊆ C. Since D ⊆ B ⊆ C and C ∩D = ∅, we have D = ∅,
which contradicts the fact that C and D separate B.

3.8 Theorem: The cartesian product of two connected spaces is connected.

Proof: Let X and Y be connected topological spaces. If X = ∅ or Y = ∅ then X × Y = ∅,
which is connected. Suppose that X 6= ∅ and Y 6= ∅. Choose a ∈ X and b ∈ Y . Note
that X × {b} is connected, since it is homeomorphic to X. Likewise, for each x ∈ X, the
subspace {x} × Y is connected since it is homeomorhic to Y . Since X × {b} and {x} × Y
are connected with (x, b) ∈ (X × {b}) ∩ ({x} × Y ) it follows, from Theorem 3.5, that
(X × {b}) ∪ ({x} × Y ) is connected. Since (X × {b}) ∪ ({x} × Y ) is connected for every
x ∈ X and (a, b) ∈

⋂
x∈X(X × {b}) ∪ ({x} × Y ) it follows, again from Theorem 3.5, that

X × Y =
⋃

x∈X(X × {b}) ∪ ({x} × Y ) is connected.

3.9 Theorem: The cartesian product of an arbitrary set of connected spaces is connected
using the product topology.

Proof: Let Xk be a connected topological space for each k ∈ K. If Xk = ∅ for some k ∈ K
then

∏
k∈K Xk = ∅. Suppose that Xk 6= ∅ for all k ∈ K. For each k ∈ K choose ak ∈ Xk

and let a be the element in
∏

k∈K Xk given by a(k) = ak for all k ∈ K. Let F be the set

of all finite subsets of K. For each J ∈ F , let YJ =
{
y∈
∏

k∈K Xk

∣∣ yk = ak for all k /∈ J
}

,
using the subspace topology. We claim that YJ ∼=

∏
j∈J Xj . Define f : YJ →

∏
j∈J Xj

by f(y)(j) = yj . This map is continuous because given Uj open in Xj for each j ∈ J , so
that

∏
j∈J Uj is a basic open set in

∏
j∈J Xj , and letting Uk = Xk for all k ∈ K \ J , we

have f−1
(∏

j∈J Uj

)
=
{
y ∈ YJ

∣∣yj ∈Uj for all j ∈ J
}

=
{
y ∈ YJ

∣∣ yk ∈Uk for all k ∈K
}

=(∏
k∈K Uk

)
∩ YJ , which is a basic open set in YJ (using the subspace topology). The

inverse of f is the map g = f−1 :
∏

j∈J Xj → YJ by g(x)(k) =
{xk if k∈J
ak if k /∈J

}
. This map is

continuous because given I ∈ F and given open sets Uk in Xk with Uk = Xk for all k /∈ I,
so that the set

(∏
k∈K Uk

)
∩YJ is a basic open set in YJ , we have g−1

((∏
k∈K Uk

)
∩YJ

)
={

x ∈
∏

j∈J Xj

∣∣xk ∈ Uk for all k ∈ J and ak ∈ Uk for all k /∈ J
}

=
{
x ∈

∏
j∈J Xj

∣∣xk ∈
Uk for all k ∈ J ∩ I

}
=
∏

j∈J Vj where Vj = Uj for j ∈ J ∩ I and Vj = Xj for j ∈ J \ I,
and this is a basic open set in

∏
j∈J Xj . This we have YJ ∼=

∏
j∈J Xj , as claimed.

Since J is finite, and each Xj is connected, the space
∏

j∈J Xj is connected by

the previous theorem (and by induction), and hence YJ = g
(∏

j∈J Xj

)
is connected

by Theorem. 3.3. Since YJ is connected for every J ∈ F , and since a ∈ YJ for all
J ∈ F , it follows from Theorem 3.5 that

⋃
J∈F YJ is connected. Finally, we note that⋃

J∈F YJ =
∏

k∈K Xk: indeed, given I ∈ F and given open sets Uk ⊆ Xk with Uk = Xk

for all k /∈ I , so that
∏

k∈K Uk is a basic open set in
∏

k∈K Xk, we have ∅ 6=
∏

k∈K Uk∩YI ⊆∏
k∈K Xk ∩

⋃
J∈F YJ . Since

⋃
J∈F YJ is connected, and

∏
k∈K Xk =

⋃
J∈F YJ , it follows

that
∏

k∈K Xk is connected by Theorem 3.7.
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3.10 Example: The result of the above theorem does not necessarily hold when
∏

k∈K Xk

uses the box topology. For example you can verify that in the space Rω =
∏∞

k=1 R using
the box topology, the sets U =

{
x ∈ Rω

∣∣ ‖x‖∞ <∞
}

and V =
{
x ∈ Rω

∣∣ ‖x‖∞ =∞
}

are
open sets which separate Rω.

3.11 Definition: Let X be a topological space. Define a relation ∼ on X by setting
x ∼ y if and only if there exists a connected subspace of X which contains both x and y.
We note that ∼ is an equivalence relation on X: indeed, given x, y, z ∈ X, we have x ∼ x
because {x} is connected, and if x ∼ y then clearly y ∼ x, and if x ∼ y and y ∼ z then we
can choose connected spaces A,B ⊆ X with x, y ∈ A and y, z ∈ B and then, by Theorem
3.5, since y ∈ A ∩ B it follows that A ∪ B is connected, and we have x, z ∈ A ∪ B. The
equivalence classes under this equivalence relation are called the connected components
of X. Note that if X is connected then the only connected component of X is X itself.

3.12 Theorem: The connected components of a topological space X are connected, and
every non-empty connected subspace of X is contained in exactly one of the connected
components.

Proof: We claim that every nonempty connected subspace of X is contained in exactly one
connected component. Let A be a nonempty connected subspace of X. Let a ∈ A. Let C
be the equivalence class of a, that is C = [a] = {x∈X |x ∼ a} and note that A ∩ C 6= ∅
since a ∈ A ∩ C. Let D be any equivalence class with A ∩ D 6= ∅. Choose b ∈ A ∩ D.
Since A is connected with a ∈ A and b ∈ A we have a ∼ b so that C = [a] = [b] = D.
Thus A intersects with exactly one connected component, namely C. Since the connected
components (being equivalence classes) cover X, it follows that A ⊆ C.

We claim that each connected component of X is connected. Let C be a connected
component and let a ∈ C so that C = [a] = {x∈X |x ∼ a}. For each x ∈ C, since x ∼ a
we can choose a connected set Ax in X with a, x ∈ A. By the previous claim, since Ax is
connected with a ∈ Ax ∩ C, it follows that Ax ⊆ C. Since x ∈ Ax ⊆ C for all x ∈ C, we
have C =

⋃
x∈C Ax. This is connected by Theorem 3.5, since each Ax is connected and

a ∈
⋂

x∈C Ax.

3.13 Note: The connected components of a topological space are closed: indeed if C is a
connected component of X then, by the above theorem, C is a maximal connected set in
X, and by Theorem 3.7, C is a connected connected set with C ⊆ C, and hence C = C.

3.14 Example: Since R is connected, it has only one connected component, namely R.
The one-point sets are the connected components of Q.

Path-Connectedness and Path-Components

3.15 Definition: Let X be a topological space and let a, b ∈ X. A (continuous) path
from a to b in X is a continuous map α : [0, 1]→ X with α(0) = a and α(1) = b. A loop
at a in X is a path from a to a in X. We say that X is path-connected when for every
a, b ∈ X there exists a path from a to b in X.
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3.16 Theorem: The image of a path-connected space under a continuous map is path-
connected. In particular, if X ∼= Y and X is path-connected, then so is Y .

Proof: Let f : X → Y be continuous and suppose X is path connected. Let c, d ∈ f(X).
Choose a, b ∈ X such that f(a) = c and f(b) = d. Let α be a path in X from a to b. Then
β = f ◦ α is a path in Y from c to d.

3.17 Theorem: Every path-connected topological space is connected.

Proof: Let X be a path-connected topological space. Suppose, for a contradiction, that X
is not connected. Choose nonempty disjoint open sets U and V in X which separate X
(meaning that X = U ∪ V ). Choose a ∈ U and b ∈ V . Let α : [0, 1]→ X be a path from
a to b in X. Then α−1(U) and α−1(V ) are nonempty disjoint open sets in [0, 1] which
separate [0, 1]. This is not possible since [0, 1] is connected.

3.18 Example: Every convex set in a normed linear space is path-connected, hence
connected. Indeed if X is a convex set then, given a, b ∈ X, the map α : [0, 1]→ X given
by α(t) = a+ t(b−a) is a path from a to b in X (α takes values in X because X is convex).

3.19 Theorem: Let X be a topological space. The relation ∼ on X, given by a ∼ b
when there exists a path from a to b in X, is an equivalence relation on X, which we call
path-equivalence.

Proof: We have a ∼ a because the constant path κ = κa : [0, 1] → X, given by κ(t) = a
for all t, is a path from a to a in X. Note that if a ∼ b then b ∼ a: indeed if α is a path
from a to b in X then the map β = α−1 : [0, 1] → X given by β(t) = α(1 − t) is a path
from b to a in X. Finally, note that if a ∼ b and b ∼ c then a ∼ c: indeed if α is a path
from a to b in X and β is a path from b to c in X then the map γ = αβ : [0, 1]→ X given
by γ(t) = α(2t) when 0 ≤ t ≤ 1

2 , and by γ(t) = β(2t− 1) when 1
2 ≤ t ≤ 1, is a path from

a to c in X (γ is continuous by Theorem 1.36).

3.20 Definition: Let X be a topological space. The equivalence classes under the path-
equivalence relation on X are called the path-components of X.

3.21 Theorem: The path components of a topological space X are the maximal path-
connected subspaces of X: indeed each path-component of X is path-connected, and every
nonempty path-connected subset of X is contained in exactly one of the path-components.

Solution: Let P be a path-component of X, say a ∈ P so that P = [a] =
{
x ∈ X

∣∣x ∼ a}.
Then P is path-connected because if b, c ∈ P then we have b ∼ a and c ∼ a, and hence
b ∼ c. Now let S be any path-connected subset of X. Suppose that S intersects two
path-components, say P and Q, of X. Choose p ∈ P ∩ S and q ∈ Q ∩ S. Since p, q ∈ S
and S is path-connected, we have p ∼ q. Since p ∼ q we have P = [p] = [q] = Q.

3.22 Note: In a topological space X, since each path-component is path-connected, hence
connected, it is contained in one of the connected components of X. It follows that each
connected component of X is the (disjoint) union of the path-components which it contains.

3.23 Exercise: Let A =
{(
x, sin 1

x

) ∣∣x > 0
}

. The closure A of A in R2 is called the

topologist’s sine curve. Note that A = A ∪ B where B =
{(

0, y)
∣∣ y ∈ [−1, 1]

}
. Show

thatA is connected but not path-connected, and the setsA andB are the path-components.
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Compactness

3.24 Definition: Let X be a topological space. For a set S of subsets of X, we say that
S covers X when

⋃
S = X. An open cover of X is a set S of open sets which covers X.

When S is an open cover of X, a subcover of S is a subset R ⊆ S with
⋃
R = X. We say

that X is compact when every open cover of X has a finite subcover. Equivalently, X is
compact when it has the property that if K is a set, and Uk is an open set in X for each
k ∈ K, and

⋃
k∈K Uk = X, then there is a finite subset L ⊆ K such that

⋃
k∈L Uk = X.

3.25 Theorem: (The Heine-Borel Theorem) A subspace of Rn is compact if and only if
it is closed and bounded.

Proof: We omit the proof. This theorem is proven in a real analysis course.

3.26 Theorem: The image of a compact space under a continuous map is compact. In
particular, if X ∼= Y and X is compact, then so is Y .

Proof: Let f : X → Y be continuous and suppose X is compact. By restricting the
codomain, the map f : X → f(X) is also continuous. Let T be an open cover of f(X).
Then the set S =

{
f−1(V )

∣∣V ∈T } is an open cover of X. Since X is compact, S has a
finite subcover, so we can choose V1, V2, · · · , Vn ∈ T such that X =

⋃n
k=1 f

−1(Vk). Then
f(X) =

⋃n
k=1 Vk so that

{
V1, V2, · · · , Vn} is a finite subcover of T .

3.27 Theorem: Let X be a subspace of Y . Then X is compact if and only if for every
set T of open sets in Y with X ⊆

⋃
T there exists a finite set Q ⊆ T such that X ⊆

⋃
Q.

Proof: Suppose that X is compact. Let T be a set of open sets in Y such that X ⊆
⋃
T .

Let S = {V ∩X
∣∣V ∈T }. Then S is an open cover of X. Since X is compact, we can choose

V1, · · · , Vn ∈ T such that X =
⋃n

k=1(Vk ∩X). Since X =
⋃n

k=1(Vk ∩X) =
(⋃n

k=1 Vk
)
∩X

we have X ⊆
⋃n

k=1 Vk.
Suppose, conversely, that for every set T of open sets in Y with X ⊆

⋃
T there is a

finite subset Q ⊆ T such that X ⊆
⋃
Q. Let S be a set of open sets in X with X =

⋃
S.

For each U ∈ S, since U is open in X we can choose an open set VU in Y such that
U = VU ∩X. Let T =

{
VU
∣∣U ∈S}. Choose a finite subset

{
VU1

, VU2
, · · · , VUn

}
of T such

that X ⊆
⋃n

k=1 VUk
. Then we have

⋃n
k=1 Uk =

⋃n
k=1(VUk

∩X) =
(⋃n

k=1 VUk

)
∩X = X so

that {U1, U2, · · · , Un} is a finite subcover of S.

3.28 Theorem: Every closed subspace of a compact space is compact.

Proof: Let X be a closed subspace of the compact space Y . Let T be a set of open sets in
Y such that X ⊆

⋃
T . Then T ∪ {Xc} is an open cover of Y , where Xc = Y \X. Since

Y is compact, we can choose V1, V2, · · · , Vn ∈ T such that V1 ∪ V2 ∪ · · · ∪ Vn ∪Xc = Y . It
follows that X ⊆ V1 ∪ V2 ∪ · · · ∪ Vn. Thus X is compact by Theorem 3.27.

3.29 Theorem: Every compact subspace of a Hausdorff space is closed.

Proof: Let X be a compact subspace of the Hausdorff space Y . To show that X is closed in
Y , we show that for every b ∈ Xc = Y\X there exists an open set V in Y with b ∈ V ⊆ Xc.
Let b ∈ Xc. For each a ∈ X, since Y is Hausdorff we can choose disjoint open sets Ua and
Va in Y with a ∈ Ua and b ∈ Va. Since X ⊆

⋃
a∈X Ua and X is compact, by Theorem

3.27 we can choose a1, a2, · · · , an ∈ X such that X ⊆
⋃n

k=1 Uak
. Let U =

⋃n
k=1 Uak

and
V =

⋂n
k=1 Vak

. Note that U and V are open in Y with X ⊆ U and b ∈ V . Also note that
U and V are disjoint because, for y ∈ Y , if y ∈ U =

⋃n
k=1 Uak

then we can choose an index
` such that y ∈ Ua`

, and then y /∈ Va`
and hence y /∈

⋂n
k=1 Vak

= V . Since X ⊆ U and
b ∈ V and U ∩ V = ∅, we have found an open set V in Y with b ∈ V ⊆ Xc, as required.
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3.30 Theorem: If X is compact and Y is Hausdorff and f : X → Y is continuous and
bijective, then the inverse of f is also continuous, so that f is a homeomorphism.

Proof: Let X be compact, let Y be Hausdorff, let f : X → Y be continuous and bijective,
and let g = f−1 : Y → X. Let U be an open set in X. Then U c is closed in X, where
U c = X \ U . By Theorem 3.26, since U c is closed in X and X is compact, it follows that
U c is compact. By Theorem 3.25, since U c is compact and f is continuous, it follows that
f(U c) is compact. Since f is bijective, we have f(U c) = f(U)c = Y \ f(U). By Theorem
3.27, since f(U)c is compact and Y is Hausdorff, it follows that f(U)c is closed in Y , and
hence g−1(U) = f(U) is open in Y . Thus g is continuous, as required.

3.31 Example: Show that no two of the spaces (0, 1), (0, 1] and [0, 1] are homeomorphic.

Solution: Since [0, 1] is compact while (0, 1) and (0, 1] are not, we see that [0, 1] cannot
be homeomorphic either to (0, 1) or to (0, 1]. Also note that (0, 1] \ {1} is connected while
(0, 1) \ {p} is not connected for any p ∈ (0, 1), and so it follows that (0, 1] cannot be
homeomorphic to (0, 1). Indeed if f : (0, 1]→ (0, 1) was a homeomorphism with p = f(0)
then the map f : (0, 1] \ {0} → (0, 1) \ {p} would also be a homeomorphism.

3.32 Example: Show that no two of the spaces R1, R2, S1 and S2 are homeomorphic.

Solution: Since S1 and S2 are compact while R1 and R2 are not, neither S1 nor S2 can
be homeomorphic to either R1 or R2. Since R2 \ {(0, 0)} is connected while R \ {x}
is not connected for any x ∈ R, it follows that R2 is not homeomorphic to R1. Since
S2 \ {(0, 0, 1)} ∼= R2, and S1 \ {x} ∼= R1 for any x ∈ S1 (under the composite of a rotation
with the stereographic projection), and since R2 is not homeomorphic to R1, it follows
that S2 is not homeomorphic to S1.

3.33 Theorem: Let X and Y be topological spaces.

(1) If X and Y are connected then so is X × Y .
(2) If X and Y are path-connected then so is X × Y .
(3) If X and Y are compact then so is X × Y .

Proof: The proof is left as an exercise.

3.34 Theorem: Let ∼ be an equivalence relation on a topological space X.

(1) If X is connected then so is X
/
∼.

(2) If X is path-connected then so is X
/
∼.

(3) If X is compact then so is X
/
∼.

Proof: The proof is left as an exercise.

3.35 Definition: Let X be an ordered set. For A ⊆ X and b ∈ X, we say that b is an
upper bound for A in X when b ≥ x for every x ∈ A, and we say that b is the supremum
(or the least upper bound) of A in X when b is an upper bound for A in X and b ≤ c for
every upper bound c of A in X. Note that when A has a supremum in X, the supremum
is unique, and we denote it by supX. We say that X has the supremum property (or
the least upper bound property) when every nonempty subset of X which has
an upper bound in X also has a supremum in X.

3.36 Theorem: Let X be an ordered set with the supremum property. Let a, b ∈ X with
a < b. Then the interval [a, b] is compact.

Proof: We leave the proof as an exercise.
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3.37 Theorem: Let X be a topological space. Then X is compact if and only if X has
the finite intersection property on closed sets: for every set T of closed sets in X, if
every finite subset of T has non-empty intersection, then T has non-empty intersection.

Proof: Suppose that X is compact. Let T be a set of closed sets in X. Suppose that
T has empty intersection, that is suppose

⋂
A∈T A = ∅. Then

⋃
A∈T A

c = X so the set

S =
{
Ac
∣∣A ∈ T

}
is an open cover for X. Since X is compact, we can choose a finite

subcover, say
{
A1

c, · · · , An
c
}

of S for X. Then we have A1 ∩ A2 ∩ · · · ∩ An = ∅, showing
that some finite subset of T has empty intersection.

Suppose, conversely, that X has the finite intersection property on closed sets. Let S
be an open cover of X. Let T =

{
U c
∣∣U ∈ S}. Since

⋃
S = X we have

⋂
T =

(⋃
S
)c

= ∅.
Since X has the finite intersection on closed sets, there exists a finite subset of T with empty
intersection. so we can choose U1, U2, · · ·Un ∈ S such that U1

c ∩ · · · ∩ Un
c = ∅. It follows

that U1 ∪ · · · ∪ Un = X, so S has a finite subcover.

3.38 Theorem: (Tychanoff’s Theorem) The product of any indexed set of compact spaces
is compact, using the product topology.

Proof: Let Xk be compact for each k ∈ K. We shall prove that
∏
Xk has the finite

intersection property on closed sets. Let T be a set of closed sets in
∏
Xk such that every

finite subset of T has non-empty intersection. We need to show that
⋂
T 6= ∅. By Zorn’s

Lemma, we can choose a maximal set S of subsets of
∏
Xk with T ⊆ S such that every

finite subset of S has non-empty intersection
(
let R be the set of all such sets S and note

that for every chain C in R we have
⋃
C ∈ R

)
. Note that the maximality of S implies that

S is closed under finite intersection (since if A1, · · · , An ∈ S then every intersection of a
finite subset of S ∪ {A1 ∩ · · · ∩An} is also an intersection of a finite subset of S

)
.

We shall show that
⋂{

A
∣∣A∈S} 6= ∅, hence

⋂
T 6= ∅ since if A ∈ T then A = A ∈ S.

Let k ∈ K. Note that finite subsets of
{
pk(A)

∣∣A ∈ S} have non-empty intersection(
because if A1, · · · , An ∈ S then pk(A1)∩ · · ·∩pk(An) = pk(A1∩ · · ·∩An) 6= ∅

)
, and hence

finite subsets of
{
pk(A)

∣∣A∈S} also have nonempty intersection. Since Xk is compact, so

Xk has the finite intersection property on closed sets, it follows that
⋂{

pk(A)
∣∣A∈S} 6= ∅,

so we can choose ak ∈ Xk such that ak ∈ pk(A) for every A ∈ S. We do this for each
k ∈ K, that is for each k ∈ K we choose ak ∈ Xk with ak ∈ pk(A) for every A ∈ S, then
we let a = (ak)k∈K ∈

∏
k∈K Xk.

We claim that a ∈ A for every A ∈ S. Let k ∈ K. Let Uk be an open set in Xk with
ak ∈ Uk. Then for every A ∈ S, we have ak ∈ pk(A) ∩ Uk so that pk(A) ∩ Uk 6= ∅ hence

pk(A) ∩ Uk 6= ∅
(
if we had pk(A) ∩ Uk = ∅ then pk(A) ⊆ Uk

c hence pk(A) ⊆ Uk
c so that

pk(A) ∩ Uk = ∅
)
. For each A ∈ S, since pk(A) ∩ Uk 6= ∅, we can choose b ∈ A such that

pk(b) ∈ Uk, that is b ∈ pk−1(Uk), and hence pk
−1(Uk) ∩ A 6= ∅. Since S is closed under

finite intersection and pk
−1(Uk)∩A 6= ∅ for every A ∈ S, the maximality of S implies that

pk
−1(Uk) ∈ S. Let V be any basic open set in

∏
Xk with a ∈ V , say V =

∏
Uk where

each Uk ⊆ Xk is open with ak ∈ Uk, and with Uk = Xk for all k ∈ F where F is a finite
subset of K. Since pk

−1(Uk) ∈ S for every k ∈ K and S is closed under finite intersection,
we have

V =
{

(xk)k∈K
∣∣xk ∈ Uk for all k ∈ F

}
=
⋂

k∈F pk
−1(Uk) ∈ S.

Since V ∈ S and every finite subset of S has non-empty intersection, we have A ∩ V 6= ∅
for all A ∈ S. Given A ∈ S, since A ∩ V 6= ∅ for every basic open set V in

∏
Xk with

a ∈ V , it follows that a ∈ A. Thus a ∈ A for all A ∈ S, so
⋂{

A
∣∣A∈S} 6= ∅, as required.
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