
Chapter 10. Covering Spaces

Covering Spaces

10.1 Definition: A covering consists of two topological spacesX and X̃ and a continuous
map p : X̃ → X such that every point in X is contained in an open set U in X which has the
property that p−1(U) is a disjoint union of open sets in X̃, each of which is homeomorphic

to U under the map p. The space X is called the base space, the space X̃ is called the
covering space and the map p : X̃ → X is called the covering map. An open set U in
X with the above-stated property is called an elementary open set in X.

10.2 Example: For n ∈ Z+, the map p : S1 → S1 given by p(z) = zn is a covering map.
The map q : R1 → S1 given by q(t) = ei t is a covering map.

10.3 Example: For n ∈ Z+, the map p : C∗ → C∗ given by p(z) = zn. The map
q : C → C∗ given by q(z) = ez is a covering map. A closely related covering map is the
polar coordinates map g : R+ × R→ C∗ given by g(r, θ) = reiθ.

10.4 Example: When p : X̃ → X and q : Ỹ → Y are covering maps, the map g :
X̃ × Ỹ → X × Y given by g(x, y) =

(
p(x), q(y)

)
is a covering map.

10.5 Example: For n,m ∈ Z+, the map p : T2 → T2 given by p(z, w) = (zn, wm) is a
covering map. The map q : R1 × S1 → T2 given by q(s, w) =

(
ei s, wm

)
is a covering map.

The map g : R2 → T2 given by g(s, t) =
(
eis, eit

)
is a covering map.

10.6 Example: In T2 = S1 × S1, let A = S1 ×{1} and B = {1}× S1. Note that A∪B is
homeomorphic to the wedge product of two circles. The three covering maps p, q and g in
the previous example, restricted to the inverse image of A ∪ B, give three covering maps
of the wedge product of two circles.

Path Lifting and Homotopy Lifting

10.7 Definition: Let p : X̃ → X be a covering and let f : Y → X be a continuous map,
where Y is a topological space. A lift of f is a continuous map f̃ : Y → X̃ such that
p ◦ f̃ = f .

10.8 Example: Let p : R+×R→ C∗ be the polar coordinates map p(r, θ) = reiθ. Given a
path α : [0, 1]→ C∗, a lift of α is a path α̃ : [0, 1]→ R+×R, say given by α̃(t) =

(
r(t), θ(t)

)
,

such that α(t) = r(t)ei θ(t) (giving a representation of α in polar coordinates).
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10.9 Theorem: Let p : X̃ → X be a covering.

(1) (Path Lifting) Given a path α in X with α(0) = a, and given ã ∈ p−1(a), there exists
a unique lift α̃ of α with α̃(0) = ã.
(2) (Homotopy Lifting) Given a continuous map F : [0, 1] × Y → X, and given a lift

f̃ : Y → X̃ of the function f : Y → X given by f(y) = F (0, y), there exists a unique lift

F̃ of F with F̃ (0, y) = f̃(y) for all y.

Proof: To prove Part 1, let α : [0, 1] → X with α(0) = a, and let ã ∈ p−1(a). Since X is
covered by elementary sets, the sets α−1(U) with U elementary form an open cover of [0, 1],
which is compact. Choose a Lebesgue number λ > 0 for this cover, and choose n ∈ Z+

with 1
n < λ. Then for each interval Ij =

[
j−1
n , jn

]
, the image α(Ij) lies in an elementary

set, say Uj , in X. Let j ≥ 1 and suppose, inductively, that we have constructed a lift

α̃ :
[
0, j−1n

]
→ X̃ of the restriction α :

[
0, j−1n

]
→ X, with α̃(0) = ã, and suppose this

lift is unique. We wish to extend the constructed lift to the interval
[
0, jn

]
: we have

constructed α̃
(
j−1
n

)
, and we need to extend α̃ to the rest of the interval Ij . We know that

α(Ij) ⊆ Uj , so in order to obtain p ◦ α̃ = α, we must have α̃(Ij) ⊆ p−1(Uj). Since Uj is
elementary, p−1(Uj) is a disjoint union of open sets, each of which is homeomorphic to Uj
under the (restriction of the) map p. Let Ũj be the open set in p−1(Uj) which contains

the point α̃
(
j−1
n

)
, and let pj : Ũj → Uj be the homeomorphism given by restricting p. In

order for α̃ to be continuous, the image α̃(Ij) must be connected, so since it contains the

point α̃
(
j−1
n

)
, it must lie entirely in the set Ũj

(
otherwise the disjoint open sets Ũj and

p−1(Uj) \ Ũj would be nonempty, and they would separate α̃(Ij)
)
. Thus, in order to have

p ◦ α̃ = α, the lift α̃ must be given by α̃(t) = pj
−1(α(t)) for all t ∈ Ij . Also note that by

defining α̃ according to this formula for all t ∈ Ij , we have uniquely extended the lift to
the interval

[
0, jn

]
(the extension is continuous by the glueing lemma).

To prove Part 2, let F : [0, 1] × Y → X be continuous, define f : Y → X by

f(y) = F (0, y), and let f̃ : Y → X̃ be a lift of f . Let u ∈ Y . For each s ∈ [0, 1], the point
F (s, u) is contained in an open elementary set, say Us, in X, and so (s, u) is contained
in the open set F−1(Us). Choose an open neighbourhood Js of s in [0, 1] and an open
neighbourhood Vs of u in Y so that Js × Vs ⊆ F−1(Us). The sets Js with s ∈ [0, 1]
form an open cover of [0, 1], which is compact. Choose a Lebesgue number λ > 0 for
this open cover, and choose n ∈ Z+ with 1

n < λ. Then for each interval Ij =
[
j−1
n , jn

]
,

we have Ij ⊆ Js for some s ∈ [0, 1], say Ij ⊆ Jsj , and hence Ij × Vsj ⊆ F−1(Usj ). Let
V =

⋂n
j=1 Vsj and simplify notation by writing Usj simply as Uj . Then for all indices j

we have Ij × V ⊆ F−1(Uj), hence we have F (Ij × V ) ⊆ Uj with Uj elementary.

Let W0 = V and define F̃ (0, y) = f̃(y) for all y ∈ W0. Let j ≥ 1 and suppose,
inductively, that we have constructed an open set Wj−1 in Y with u ∈Wj−1 ⊆ V , and a lift

F̃ :
[
0, j−1n

]
×Wj−1 → X̃ of the restriction F :

[
0, j−1n

]
×Wj−1 → X, with F̃ (0, y) = f̃(y)

for all y ∈ Wj−1. Since Wj−1 ⊆ Y we have F (Ij ×Wj−1) ⊆ Uj . To get p ◦ F̃ = F we

need F̃ (Ij ×Wj−1) ⊆ p−1(Uj). Since Uj is elementary, p−1(Uj) is a disjoint union of open

sets, each of which is homeomorphic to Uj under the restriction of p. Let Ũj be the one

which contains the point F̃
(
j−1
n , u

)
, and let pj : Ũj → Uj be the homeomorphism obtained

by restricting p. We remark that we do not know that Wj−1 is connected so we cannot

deduce that the image F̃
(
{ j−1n ×Wj−1

)
must be contained entirely in the set Ũj , and so

we shall restrict the open neighbourhood Wj−1 of u.
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Note that the restriction F̃ :
{
j−1
n

}
× Wj−1 → X̃ is continuous, so the inverse image

F̃−1(Ũj) is open in
{
j−1
n

}
×Wj−1. Choose an open set Wj with u ∈Wj ⊆Wj−1 such that

F̃
({

j−1
n

}
×Wj

)
⊆ Ũj . Restrict the domain of the constructed lift F̃ from

[
0, j−1n

]
×Wj−1

to
[
0, j−1n

]
×Wj , then we extend this to obtain a lift F̃ :

[
0, jn

]
×Wj → X̃ by defining

F̃
(
t, y) = pj

−1(F (t, y)) ∈ Ũj for all t ∈ Ij and all y ∈ Wj . This extension is continuous
by the glueing lemma. Thus, by induction, writing W = Wn, we can construct a lift
F̃ : [0, 1]×W → X̃ of the restriction F : [0, 1]×W → X with F̃ (0, y) = f̃(y) for all y ∈W .

The above construction was carried out after selecting an arbitrary element u ∈ Y ,
so we have proven that for every u ∈ Y there exists an open neighbourhood Wu of u in
Y and a lift F̃u : [0, 1] ×Wu → X̃ of (the restriction of) F with F̃u(0, y) = f̃(y) for all
y ∈Wu. To finish the proof, we note that these lifts are unique, and they glue together by
the glueing lemma to form a well-defined and continuous lift F̃ : [0, 1] × Y → X̃ because

for each u ∈ Y and each y ∈ Wu, the restriction of F̃u to the set [0, 1] × {y} is uniquely

determined by the uniqueness of path liftings: indeed the path α̃(t) = F̃u(t, y) must be

equal to the unique lift of the path α(t) = F (t, y) with α̃(0) = F̃u(0, y) = f̃(y).

10.10 Corollary: Let p : X̃ → X be a covering. Let α and β be two paths from a to b
in X. Let ã ∈ p−1(a) and let α̃ and β̃ be the lifts of α and β starting at the point ã (that
is with α̃(0) = β̃(0) = ã). If α ∼ β in X then α̃ and β̃ end at the same point.

Proof: Let F be a homotopy from α to β inX. Note that the constant function f̃(s) = ã is a

lift of the constant function f(s) = F (s, 0) = a. Let F̃ be the lift of F with F̃ (0, t) = f̃(t) =
ã. Then the unique lift of α starting at ã is α̃(t) = F̃ (0, t), the unique lift of β starting at

ã is β(t) = F̃ (1, t), the unique lift of the constant function a starting at ã is the constant

function F̃ (s, 0), and the unique lift of the constant function b starting at b̃ = α̃(1) = F̃ (0, 1)

is the constant function F̃ (s, 1). Thus α̃(1) = F̃ (0, 1) = b̃ = F̃ (1, 1) = β̃(1), as required.

10.11 Corollary: Let p : X̃ → X be a covering. Let α be a path from a to b in X. Let
ã ∈ p−1(a), let α̃ be the lift of α starting at ã, and let b̃ = α̃(1).

(1) Let α̃−1 be the lift of α−1 starting at b̃. Then α̃−1 = α̃
−1

.

(2) Let β be a path from b to c in X. Let α̃β be the lift of αβ starting at ã, and let β̃ be

the lift of β starting at the point b̃. Then α̃β = α̃ β̃.

Proof: Since p
(
α̃
−1

(t)
)

= p
(
α̃(1 − t)

)
= α(1 − t) = α−1(t) with α̃

−1
(1) = α̃(1) = b̃, it

follows that α̃
−1

is a lift of α−1 starting at b̃. By the uniqueness of lifts, it must be equal

to α̃−1. Similarly, α̃ β̃ is a lift of αβ starting at ã, so it must be equal to α̃β.

10.12 Corollary: Let p : X̃ → X be a covering. Let a ∈ X and let ã ∈ p−1(a). Then

the induced map p∗ : π1(X̃, ã) → π1(X, a) is injective. The image of p∗ consists of the
elements of the form [α] where α is a loop at a in X whose lift α̃, starting at ã, is a loop.

Proof: Let α̃ be a loop at ã in X̃. Let α = p ◦ α̃, so that α is a loop at a in X and we have
p∗(α̃] = [α]. Suppose that [α̃] ∈ Kerφ. Then we have [α] = 0 ∈ π1(X, a), which means
that α ∼ κ in X where κ is the constant loop at a in X. The lift of κ starting at ã is
the constant loop κ̃ at ã in X̃. A homotopy from α to κ in X lifts to a homotopy from α̃
to κ̃ in X̃, and so we have [α̃] = 0 in π1(X̃, ã). This shows that Ker p∗ = 0 so that p∗ is
injective. We leave it as an exercise to prove the statement about the image of p∗.
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10.13 Corollary: Let p : X̃ → X be a covering with X path-connected. Then the sets
p−1(a), a ∈ X, all have the same cardinality.

Proof: Suppose that X is path-connected. Let a, b ∈ X. Let α be a path in X from a
to b, and let β = α−1. Define φ : p−1(a) → p−1(b) by φ(ã) = α̃(1) where α̃ is the lift of
α starting at ã, and define ψ : p−1(b) → p−1(a) by ψ(b̃) = β̃(1) where β̃ is the lift of β
starting at b̃. We claim that φ and ψ are inverses of one another.

Let ã ∈ p−1(a), let b̃ = φ(ã) = α̃(1), let α̃ be the lift of α starting at ã, and let β̃ be
the lift of β starting at b̃. We have αβ = αα−1 ∼ κ in X, where κ is the constant loop at
a in X. The lift of κ at ã is the constant loop κ̃ at ã in X̃. Since αβ ∼ κ in X, the lifts

α̃β and κ̃ have the same endpoints, and so

ψ(φ(ã)) = ψ(b̃) = β̃(1) = (α̃β̃)(1) = α̃β(1) = κ̃(1) = ã.

This shows that ψ(φ(ã)) = ã for every ã ∈ p−1(a), and a similar argument shows that
φ(ψ(b̃)) = b̃ for all b̃ ∈ p−1(b).

10.14 Corollary: Let p : X̃ → X be a covering with X̃ path-connected, and let a ∈ X.

(1) Given ã ∈ p−1(a), the index of p∗
(
π1(X̃, ã)

)
in π1(X, a) is the cardinality of p−1(a).

(2) The set
{
p∗
(
π1(X̃, ã)

) ∣∣ ã ∈ p−1(a)
}

is a conjugacy class of subgroups of π1(X, a).

Proof: Let us write H = p∗(π1(X̃, ã)). Define a map φ from the set of right cosets of H
in π1(X, a) to p−1(a) by φ

(
H[α]

)
= α̃(a), where α is a loop at a in X and α̃ is the lift of

α starting at ã. We claim that this map is well-defined. First, note that α̃(1) does lie in
p−1(a) because p(α̃(1)) = α(1) = a. Next note that if α and β are two loops at a in X with
[α] = [β] ∈ π1(X, a), that is with α ∼ β in X, then the lifts α̃ and β̃, starting at ã, have
the same endpoint, that is α̃(1) = β̃(1). Finally, suppose that α and β are two loops at a

in X such that H[α] = H[β]. Then we have [α][β]−1 ∈ H, hence [αβ−1] ∈ H = p∗(X̃, ã).

By Corollary 2.12), the lift α̃β−1 of αβ−1, starting at ã, is a loop. By Corollary 2.11), we

have α̃β−1 = α̃β̃−1 = α̃β̃
−1

, so the path β̃
−1

starts at α̃(1) and ends at α̃(0) = ã, and
hence β̃(1) = α̃(1). This completes the proof that φ is well-defined.

We claim φ is injective. Let α and β be loops at a in X such that φ(H[α]) = φ(H[β]),
that is such that α̃(1) = β̃(1) where α̃ and β̃ are the lifts of α and β starting at ã. Let

b̃ = α̃(1) = β̃(1). Note that αβ−1 is a loop at a in X, and let α̃β−1 be the lift at ã.

By Corollary 2.11, since α̃ and β̃ are both paths from ã to b̃, we have α̃β−1 = α̃β̃
−1

,

which is a loop at ã in X̃. Since α̃β−1 is a loop, it follows from Corollary 2.12 that
αβ−1 ∈ p∗(π1(X̃, ã)) = H. Thus we have [α][β−1] = [αβ−1] ∈ H. This completes the
proof that φ is injective.

Finally, we note that φ is surjective because X̃ is path-connected: indeed, given
b̃ ∈ p−1(a), we can choose a path α̃ from ã to b̃ in X̃ and let α be the loop at a in X given
by α = p ◦ α̃, and then we have φ(H[α]) = α̃(1) = b̃. This completes the proof of Part 1.

We leave the proof of Part 2 as an exercise.
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Local Connectedness and Path-Connectedness

10.15 Definition: Let X be a topological space. We say that X is locally connected
at the point a ∈ X when every open neighbourhood of a in X contains a connected
open neighbourhood of a in X. We say that X is locally connected when it is locally
connected at every point. Similarly, we say that X is locally path-connected at the
point a ∈ X when every open neighbourhood of a in X contains a path-connected open
neighbourhood of a in X, and we say that X is locally path-connected when it is locally
path-connected at every point.

10.16 Example: The topologist’s sine curve is locally path-connected (hence locally
connected) at every point a ∈ A =

{(
x, sin 1

x

∣∣x > 0
}

, but is not locally path-connected
(or locally connected) at any point b ∈ B = {0} × [−1, 1].

10.17 Theorem: Let X be a topological space.

(1) X is locally connected if and only if X has the property that for every open set U in
X, the connected components of U are open in X.
(2) X is locally path-connected if and only if X has the property that for every open set
U in X, the path-connected components of U are open in X.

Proof: We prove Part 2 (the proof of Part 1 is similar). Suppose that X is path-connected.
Let U be an open set in X. Let P be a path-component of U . For each a ∈ P , since X
is locally path-connected and the open neighbourhood U of a contains a path-connected
open neighbourhood, say Ca, of a in X. Since P is the path-component of a in X and Ca
is path-connected, we must have Ca ⊆ P . Thus P =

⋃
a∈P Ca, which is open.

Suppose, conversely, that every path-component, of every open set in X, is open in X.
Let a ∈ X and let U be an open neighbourhood of a in X. Let P be the path-component
of U containing a. Then, by our supposition, P is open in X, and so P is a path-connected
open neighbourhood of a which is contained in U .

10.18 Theorem: Let X be a topological space. If X is locally path-connected then the
path-components of X are equal to the connected components of X.

Proof: Suppose that X is locally path-connected. Let C be a connected component of
X. We know that C is a union of path-components. Suppose, for a contradiction, that C
contains at least two distinct path-components, and let P be one of the path-components of
X which is contained in C. Since X is locally path-connected, each of its path-components
is open. In particular P is open and C \P (which is a union of path-components) is open.
But then P and C\P are nonempty disjoint open sets which cover C, which is not possible,
since C is connected.

10.19 Example: Every topological n-manifold is locally path-connected (since every
neighbourhood of a point contains an open neighbourhood of the point which is home-
omorphic to an open ball in Rn, and every open ball in Rn is convex, hence path-
connected). Consequently, in an n-manifold, the connected components are equal to the
path-components.
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The Classification of Covering Spaces

10.20 Definition: When (X̃, ã) and (X, a) are based topological spaces and p : X̃ → X is

a covering with p(ã) = a, we write p : (X̃, ã)→ (X, a) and say that p is a based covering.

For a continuous map f : (Y, b)→ (X, a), a based lift of f to (X̃, ã) is a continuous map

f̃ : (Y, b)→ (X̃, ã) such that p ◦ f̃ = f .

10.21 Theorem: let Y be path-connected and locally path-connected with b ∈ Y . Let
p : (X̃, ã) → (X, a) be a based covering, and let f : (Y, b) → (X, a) be a continuous

map of based spaces. Then there exists a based lift f̃ : (Y, b) → (X̃, ã) if and only if

f∗(π1((Y, b)) ⊆ p∗(π1(X̃, ã)). In this case, the based lift is unique

Proof: I may include a proof later.

10.22 Definition: Let X be a topological space. We say that X is locally path-
connected when for every a ∈ X, every open set V with a ∈ V contains an open set U
with a ∈ U ⊆ V such that π1(U, a) = 0. We say that X is semi-locally path-connected
when every point a ∈ X is contained in an open neighbourhood U with the property that
every loop at a in U is homotopic in X to the constant loop at a.

10.23 Example: The shrinking wedge of circles discussed in Example 6.8 is not locally
(or semi-locally) simply connected.

10.24 Definition: Let p1 : X̃ → X and p2 : X̃1 → X be coverings. A covering space
homomorphism from X̃1 to X̃2 is a continuous map f : X̃1 → X̃2 such that p2 ◦ f = p1.
In the case that f is a homeomorphism, it is called a covering space isomorphism.

When p1 : (X̃1, ã1)→ (X, a) and p2 : (X̃2, ã2)→ (X, a) are based coverings, a based

homomorphism (or isomorphism) from (X̃1, ã1) to (X̃2, ã2) is a homomorphism (or

isomorphism) f : X̃1 → X̃2 with f(ã1) = ã2.

10.25 Theorem: (The Classification of Covering Spaces) Let X be path-connected, lo-
cally path-connected, and semi-locally simply connected, and let a ∈ X. There is a bijective
correspondence between the set of path-connected based coverings p : (X̃, ã)→ (X, a) and
the set of subgroups H ⊆ π1(X, a). The correspondence associates the based covering

p : (X̃, ã) → (X, a) with the group H = p∗π1(X̃, ã). In particular, there exists a cover

p : (X̃, ã) → (X, a), unique up to isomorphism, with X̃ simply connected, and this cover
is called the universal cover of (X, a).

Proof: Step 1. First, let us construct a universal cover. Let X̃ be the set of homotopy
classes of paths in X which start at the point a, that is

X̃ =
{

[α]
∣∣α is a path in X with α(0) = a

}
,

let ã = [κ] where κ is the constant path at a, and define p : (X̃, ã) → (X, a) by p([α]) =
α(1). Note that p is well-defined because homotopic paths have the same endpoints.

We need to define a topology on X̃ under which p is a covering map. Let B be the set
of path-connected open sets U in X with the property that every loop in U is homotopic,
in X, to a constant loop. Note that B is a basis for the topology on X because X is locally
path-connected and semi-locally simply connected. Given U ∈ B and given a path α in X
with α(0) = a and α(1) ∈ U , define

Ũ[α] =
{

[αλ]
∣∣λ is a path in U with λ(0) = α(1)

}
.
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We claim that the sets Ũ[α], where U ∈ B and α is a path in X with α(0) = a and

α(1) ∈ U , form a basis for a topology on X̃. Note that when α is a path with α(0) = a

and α(1) ∈ U ∈ B, we have [α] ∈ Ũ[α]. It follows that the sets Ũ[α] cover X̃. Now suppose

that [γ] ∈ Ũ[α] ∩ Ṽ[β] where U, V ∈ B, say [γ] = [αλ] and [γ] = [βµ] where α(1) = λ(0) ∈ U
and β(1) = µ(0) ∈ V . Since αλ ∼ γ ∼ βµ, the paths λ, γ and µ have the same endpoint,
say b = λ(1) = γ(1) = µ(1). Since U, V ∈ B with b ∈ U ∩ V , we can choose W ∈ B with

b ∈ W ⊆ U ∩ V . Note that W̃[γ] ⊆ Ũ[α]: indeed a point in W̃[γ] is of the form [γν] where

ν is a path in W with ν(0) = γ(1), and we have γν ∼ αλν so that [γν] = [αλν] ∈ Ũ[α].

Similarly, W̃[γ] ⊆ Ṽ[β] and so we have [γ] ∈ W̃[γ] ⊆ Ũ[α]Ṽ[β], and this completes the proof

that the sets Ũ[α] form a basis for a topology on X̃.

We now have a topology on the space X̃. Using this topology, note that the map
p : (X̃, ã)→ (X, a) is continuous because, given a basic open set U ∈ B we have

p−1(U) =
{

[α]
∣∣α(1) ∈ U

}
=
⋃
α(1)∈U Ũ[α]

which is a union of basic open sets in X̃.
We claim that when U ∈ B and α and β are two paths starting at a with endpoints

in U , we have
Ũ[α] = Ũ[β] ⇐⇒ [β] ∈ Ũ[α].

One direction is immediate: if Ũ[α] = Ũ[β] then of course since [β] ∈ Ũ[β] we also have

[β] ∈ Ũ[α]. Suppose, conversely, that [β] ∈ Ũ[α], say [β] = [αλ], that is β ∼ αλ, where

λ is a path in U with λ(0) = α(1). An element in Ũ[α] is of the form [αµ] where µ is a

path in U with µ(0) = α(1), and we have αµ ∼ βλ−1µ so that [αµ] = [βλ−1µ] ∈ Ũ[β], and

this shows that Ũ[α] ⊆ Ũ[β]. A similar argument shows that Ũ[β] ⊆ Ũ[α], so that we have

Ũ[α] = Ũ[β], as required.

By the above claim, the distinct sets Ũ[α] in the inverse image p−1(U) =
⋃
α(1)∈U Ũ[α]

are disjoint. Let us verify that the restriction p : Ũ[α] → U is a homeomorphism. Note that
p is surjective because the set U is path-connected: given b ∈ U we can choose a path λ
in U from α(1) to b and then [αλ] ∈ Ũ[α] with p([αλ]) = λ(1) = b. Note that p is injective
because U has the property that every loop in U is homotopic, in X, to a constant loop:
indeed if p([αλ]) = p([αµ]) then we have λ(1) = µ(1) so that λµ−1 is a loop in U , and
hence λµ−1 is homotopic, in X, to a constant loop, so we have [αλ] = [αλµ−1µ] = [αµ].

Finally, note that the inverse p−1 : U → Ũ[α] is continuous because for a basic open set

Ṽ[β] ⊆ Ũ[α] we have V = p
(
Ṽ[β]) ⊆ p

(
Ũ[α]

)
= U with V open.

Let us verify that X̃ is simply connected. To show this, we find a formula for the lift
of a path in X. Let α : [0, 1]→ X be a path in X with α(0) = a. Define α̃ : [0, 1]→ X̃ by
α̃(s) = [αs] where αs : [0, 1]→ X is given by αs(t) = α(st). Note that α̃(0) = [α0] = ã and
α̃(1) = [α1] = [α]. Verify, as an exercise, that α̃ is continuous, and note that p(α̃(s)) =
p([αs]) = αs(1) = α(s), and so α̃ is the lift of α starting at α̃(0) = [α0] = ã. To see that

X̃ is path-connected, note that for any path α in X with α(0) = a, the lift α̃ is a path in

X̃ from ã to α̃(1) = [α1] = [α], so [α] is in the same path-component as ã. To see that

π1(X̃, ã) = 0, recall that the group homomorphism p∗ : π1(X̃, ã)→ (X, a) is injective, and
the image consists of elements of the form [α] where α is a loop at a in X whose lift α̃ is

a loop at ã in X̃. If [α] is in the image of p∗ then α̃(1) = ã, that is [α] = ã = [κ] where κ
is the constant loop at a, so that [α] = 0 ∈ π1(X, a). Thus p∗ is the zero map and hence

(since p∗ is injective) we have π1(X̃, ã) = 0.

7



Step 2. Let H ⊆ π1(X, a). We wish to construct a covering pH : (X̃H , ãH) → (X, a)

with pH∗π1(X̃H , ãH) = H. Define a relation on the universal cover X̃ by stipulating that
[α] ≡ [β] when α(1) = β(1) and [αβ−1] ∈ H. Note that this is an equivalence relation
because H is a subgroup of π1(X, a). Denote the equivalence class of [α] by [α]H , and let

X̃H be the quotient space of X̃ under this equivalence relation, that is

X̃H = X̃
/
≡ =

{
[α]H

∣∣α is a path with α(0) = a
}
,

and let q : X̃ → X̃H be the quotient map. The covering map p : X̃ → X, which is
given by p([α]) = α(1), is clearly constant on equivalence classes (since when [α] ≡ [β] we

have α(1) = β(1)) and so it induces a continuous map pH : X̃H → X which is given by
pH([α]H) = α(1). To see that pH is a covering map, we make the following observation. Let
U ∈ B and let α and β be two paths in X starting at a and ending at b ∈ U , with [α] ≡ [β],
that is with [αβ−1] ∈ H. Then for any path λ in U starting at b, we have [(αλ)(βλ)−1] =

[αβ−1] ∈ H so that [αλ] ≡ [βλ]. Thus every point [αλ] ∈ Ũ[α] is equivalent to the

corresponding point [βλ] ∈ Ũ[β]. It follows that the equivalence relation ≡ on X induces

an equivalence relation on the disjoint sets in the inverse image p−1(U) =
⋃
α(1)∈U Ũ[α], so

that the inverse image p−1H (U) is the disjoint union p−1H (U) =
⋃
α(1)∈U Ũ[α]H , where

Ũ[α]H =
{

[αλ]H
∣∣λ is a path in U starting at α(1)

}
= q−1

(
Ũ[α]

)
.

The restriction p : Ũ[α] → U is a homeomorphism, so the restriction pH : Ũ[α]H → U is
also a homeomorphism: we have p = pH ◦ q and the inverses of the restrictions are related
by p−1H = q ◦ p−1.

Step 3. It remains to show that for two based coverings p1 : (X̃1, ã1) → (X, a) and

p2 : (X̃, ã) → (X, a), we have (X̃1, ã1) ∼= (X̃2, ã2) ⇐⇒ p1∗π1(X̃1, ã1) ∼= p2∗π1(X̃2, ã2).

Suppose that (X̃1, ã1) ∼= (X̃2, ã2) and let f : (X̃1, ã1) → (X̃2, ã2) be a based isomorphism
of coverings, so f is a homeomorphism with p1 = p2 ◦ f . Since f is a homeomorphism, the
induced map f∗ : π1(X̃1, ã1) → π1(X̃2, ã2) is an isomorphism. Since p1 = p2 ◦ f we have

p1∗ = p2∗ ◦ f∗ and so π1∗π1(X̃1, ã1) = p2∗
(
f∗π1(X̃1, ã1)

)
= p2∗π1(X̃2, ã2), as required.

Suppose, conversely, that π1∗π1(X̃1, ã1) = p2∗π1(X̃2, ã2). By Theorem 10.9, there

exists a (unique) lift p̃1 : (X̃1, ã1)→ (X̃2, ã2) of the map p1 : (X̃1, ã1)→ (X, a), and there

exists a (unique) lift p̃2 : (X̃2, ã2) → (X̃1, ã1) of the map p2 : (X̃2, ã2) → (X, a), so we

have p1 = p2 ◦ p̃2 and p2 = p1 ◦ p̃2. Consider the map p̃2 ◦ p̃1 : (X̃1, ã1)→ (X̃1, ã1). Since

p1 ◦ p̃2 ◦ p̃1 = p2 ◦ p̃1 = p1 with p̃2(p̃1(ã1)) = (̃ã2) = a, it follows that p̃2 ◦ p̃1 is equal to

the unique lift of the map p1 : (X̃1, ã1)→ (X, a), so it must be equal to the identity map

id : (X̃1, ã1)→ (X̃1, ã1) (which is also a lift of p1). Thus we have p̃2 ◦ p̃1 = id, and similarly

p̃1 ◦ p̃2 = id so that p̃1 and p̃2 are inverses of one another. Thus (X̃1, ã1) ∼= (X̃2, ã2).
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