Chapter 10. Covering Spaces

Covering Spaces

10.1 Definition: A covering consists of two topological spaces X and X and a continuous
map p : X — X such that every point in X is contained in an open set U in X which has the
property that p~1(U) is a disjoint union of open sets in X, each of which is homeomorphic
to U under the map p. The space X is called the base space, the space X is called the
covering space and the map p: X — X is called the covering map. An open set U in
X with the above-stated property is called an elementary open set in X.

10.2 Example: For n € Z*, the map p : St — S! given by p(z) = 2" is a covering map.
The map ¢ : Rt — St given by ¢(t) = e'? is a covering map.

10.3 Example: For n € ZT, the map p : C* — C* given by p(z) = 2z". The map
q: C — C* given by ¢q(z) = €* is a covering map. A closely related covering map is the
polar coordinates map g : Rt x R — C* given by g(r,0) = re®®.

10.4 Example: When p : X — X and q : Y = Y are covering maps, the map g :
X xY — X xY given by g(z,y) = (p(z),q(y)) is a covering map.

10.5 Example: For n,m € ZT, the map p : T?> — T2 given by p(z,w) = (2™, w™) is a
covering map. The map ¢ : R! x St — T? given by q(s,w) = (eis,wm) is a covering map.
The map g : R? — T? given by g(s,t) = (e, e') is a covering map.

10.6 Example: In T? = S! x S, let A =S! x {1} and B = {1} x S'. Note that AU B is
homeomorphic to the wedge product of two circles. The three covering maps p, ¢ and g in
the previous example, restricted to the inverse image of A U B, give three covering maps
of the wedge product of two circles.

Path Lifting and Homotopy Lifting

10.7 Definition: Let p : X — X be a covering and let f:Y — X be a continuous map,
where Y is a topological space. A lift of f is a continuous map f : ¥ — X such that

pof=1/.

10.8 Example: Let p: RT xR — C* be the polar coordinates map p(r, §) = re?’. Given a
path a : [0,1] — C*, alift of «is a path & : [0,1] — RT xR, say given by a(t) = (r(t), Q(t)),
such that a(t) = r(t)e*?®) (giving a representation of a in polar coordinates).



10.9 Theorem: Let p: X — X be a covering.

(1) (Path Lifting) Given a path « in X with a(0) = a, and given a € p~!(a), there exists
a unique lift & of o with &(0) = a.

(2) (Homotopy Lifting) Given a continuous map F : [0,1] x Y — X, and given a lift
f:Y — X of the function f : Y — X given by f(y) = F(0,y), there exists a unique lift
F of F with F(0,y) = f(y) for all y.

Proof: To prove Part 1, let « : [0,1] — X with a(0) = a, and let @ € p~!(a). Since X is
covered by elementary sets, the sets =1 (U) with U elementary form an open cover of [0, 1],
which is compact. Choose a Lebesgue number A > 0 for this cover, and choose n € Z™
with £ < X. Then for each interval I; = [%, %}, the image «(I;) lies in an elementary

set, say Uj, in X. Let j > 1 and suppose, inductively, that we have constructed a lift
a : [0, J%] — X of the restriction « : [O, %} — X, with &(0) = a, and suppose this
lift is unique. We wish to extend the constructed lift to the interval [O, %} we have
constructed d(%), and we need to extend & to the rest of the interval I;. We know that
a(I;) C Uj, so in order to obtain p o & = «, we must have &(I;) C p~*(U;). Since Uj is
elementary, p~*(U;) is a disjoint union of open sets, each of which is homeomorphic to U;
under the (restriction of the) map p. Let ﬁj be the open set in p~!(U;) which contains
the point &(%), and let p; : (N]j — U; be the homeomorphism given by restricting p. In
order for & to be continuous, the image &(/;) must be connected, so since it contains the
point d(%), it must lie entirely in the set ﬁj (otherwise the disjoint open sets [7]- and
p 1 (U;)\ ﬁj would be nonempty, and they would separate &(I;)). Thus, in order to have
po & = a, the lift & must be given by a(t) = p; ~!(a(t)) for all ¢ € I;. Also note that by
defining & according to this formula for all ¢ € I;, we have uniquely extended the lift to
the interval [0, ] (the extension is continuous by the glueing lemma).

To prove Part 2, let F' : [0,1] x Y — X be continuous, define f : ¥ — X by

fly) = F(0,y), and let f:Y — X be alift of f. Let u € Y. For each s € [0, 1], the point
F(s,u) is contained in an open elementary set, say U, in X, and so (s,u) is contained
in the open set F'~}(U,). Choose an open neighbourhood J, of s in [0,1] and an open
neighbourhood Vy of u in Y so that J, x V, C F~1(U,). The sets Js with s € [0,1]
form an open cover of [0,1], which is compact. Choose a Lebesgue number A > 0 for
this open cover, and choose n € Z* with % < A. Then for each interval I; = [7%1, %},
we have I; C J, for some s € [0,1], say I; C J,, and hence I; x V,, C F~Y(U,,). Let
V = ﬂ?zl Vs, and simplify notation by writing U, simply as U;. Then for all indices j
we have I; x V C F~Y(U;), hence we have F(I; x V) C U; with U; elementary.

Let Wy = V and define ﬁ((),y) = fv(y) for all y € Wy. Let j > 1 and suppose,
inductively, that we have constructed an open set W;_; in Y with v € W;_; C V, and a lift
F: [ 7%1] X W;_1 — X of the restriction F : [0, 3%1] x W;_1 — X, with F(0,y) = f(y)
for all y € W,_1. Since W;_1 C Y we have F(I; x W;_;) C U;. To get po F =F we
need ﬁ'(lj x W;_1) C p~1(U;). Since Uj is elementary, p~*(U;) is a disjoint union of open
sets, each of which is homeomorphic to U; under the restriction of p. Let (N]]- be the one
which contains the point ﬁ(%, u), and let p; : U ;7 — Uj; be the homeomorphism obtained
by restricting p. We remark that we do not know that W;_; is connected so we cannot
deduce that the image F ({% X Wj_l) must be contained entirely in the set ﬁj, and so
we shall restrict the open neighbourhood W;_; of u.



Note that the restriction F : {j _1} xW;_1 — X is continuous, so the inverse image
ﬁ_l(Uj) is open in {J } x W;_1. Choose an open set W; with u € W; C W;_; such that

({J 1} x W ) - U Restrict the domain of the constructed lift £ from [O i= 1} x W;_1
to [O, %} x Wj, then we extend this to obtain a lift F: [0, %] x W; — X by defining

ﬁ(t,y) =p; HF(t,y)) € UJ for all ¢ € I; and all y € W;. This extension is continuous
by the glueing lemma. Thus, by induction, writing W = W,, we can construct a lift
F :[0,1] x W — X of the restriction F': [0,1] x W — X with F'(0,y) = f(y) for ally € W.

The above construction was carried out after selecting an arbitrary element u € Y,
so we have proven that for every u € Y there exists an open neighbourhood W, of u in
Y and a lift F}, : [0,1] x W,, — X of (the restriction of) F' with F,(0,y) = f(y) for all
y € W,. To finish the proof, we note that these lifts are unique, and they glue together by
the glueing lemma to form a well-defined and continuous lift F': [0,1] x Y — X because
for each u € Y and each y € W,,, the restriction of F, to the set [0,1] x {y} is uniquely
determined by the uniqueness of path liftings: indeed the path &(t) = F,(t,y) must be
equal to the unique lift of the path a(t) = F(t,y) with a&(0) = F,(0,y) = f(y).

10.10 Corollary: Let p : X =X be a covering. Let o and (3 be two paths from a to b
inX. Let a € p:l(a) and let & and 3 be the lifts of a and 3 starting at the point a (that
is with &(0) = B(0) = a). If a« ~ 8 in X then & and [ end at the same point.

Proof: Let F' be a homotopy from « to 8 in X. Note that the constant function f(s) =aisa
lift of the constant function f(s) = F(s,0) = a. Let F be the lift of F with F(0,t) = f(t) =
a. Then the unique lift of « starting at a is a(t) = F(0,t), the unique lift of 3 starting at
ais B(t) = F(1,t), the unique lift of the constant function a starting at @ is the constant
function F(s,0), and the unique lift of the constant function b starting at b=a(l) = F(0,1)
is the constant function F(s,1). Thus &(1) = F(0,1) = b= F(1,1) = 3(1), as required.

10.11 Corollary: Let p: X > X bea covering. Let a be a path from a to b in X. Let
a € p~1(a), let & be the lift of « starting at a, and let b = a(1).

(1) Let a1 be the lift of o~ starting at b. Then al=a".

(2) Let B be a path from b to ¢ in X. Let ozﬁ be the lift of a3 starting at @, and let 3 be
the lift of 3 starting at the point b. Then ozﬁ =ag.

Proof: Since p(a~ 1(t)) p(a (1 —t)) = a(l —t) = o !(t) with 07_1(1) =a(l) = b, it

follows that & ' is a lift of a~ ! starting at b. By the uniqueness of lifts, it must be equal

—_—

to a—1. Similarly, & 3 is a lift of a8 starting at @, so it must be equal to af.

10.12 Corollary: Let p : X = X be a covering. Let a € X and let a € p~1(a). Then
the induced map p, : m(X,a) — m(X,a) is injective. The image of p, consists of the
elements of the form [«] where « is a loop at a in X whose lift &, starting at a, is a loop.

Proof: Let & be a loop at a in X. Let a = poa, so that a is a loop at a in X and we have
p«(&] = [a]. Suppose that [@] € Ker¢. Then we have [a] = 0 € m(X,a), which means
that o ~ x in X where r is_the constant loop at a in X. The lift of x starting at a is
the constant loop k at @ in X. A homotopy from « to x in X lifts to a homotopy from &
to & in X, and so we have [a@] = 0 in 71 (X,a). This shows that Kerp, = 0 so that p, is
injective. We leave it as an exercise to prove the statement about the image of p..



10.13 Corollary: Let p: X = X bea covering with X path-connected. Then the sets
p~1(a), a € X, all have the same cardinality.

Proof: Suppose that X is path-connected. Let a,b € X. Let a be a path in X from a
to b, and let 8 = a~'. Define ¢ : p~*(a) — p~1(b) by ¢(a) = &(1) where & is the lift of
« starting at a, and define ¥ : p~1(b) — p~t(a) by ¥(b) = B(1) where 3 is the lift of 3
starting at b. We claim that ¢ and 1) are inverses of one another.

Let a € p~'(a), let b = ¢(a) = a&(1), let & be the lift of o starting at @, and let /3 be
the lift of 3 starting at b. We have a8 = aa~! ~ k in X, where & is the constant loop at
a in X. The lift of £ at a is the constant loop & at @ in X. Since aff ~ £ in X, the lifts
af and k have the same endpoints, and so

(@) = w(b) = 5(1) = (a5)(1) = aB(1) = (1) = &
This shows that ¢(¢(a)) = a for every a € p~*(a), and a similar argument shows that
d(1p(b)) = b for all b € p~*(b).

10.14 Corollary: Let p: X = X be a coverjng with X path-connected, and let a € X.
(1) Given a € p~1(a ) the index ofp*( ,a)) in m (X, a) is the cardinality of p~*(a).
(a)

(2) The set {p. (m( X, )) |@ € p~*(a)} is a conjugacy class of subgroups of w1 (X, a).

Proof: Let us write H = p, (m (X, a)). Define a map ¢ from the set of right cosets of H
in 71 (X, a) to p~'(a) by ¢(Hla]) = a(a), where a is a loop at a in X and & is the lift of
a starting at a. We claim that this map is well-defined. First, note that &(1) does lie in
p~1(a) because p(&(1)) = a(1) = a. Next note that if a and 3 are two loops at a in X with
[a] = [B] € m1(X,a), that is with & ~ 8 in X, then the lifts & and f, starting at @, have
the same endpoint, that is @(1) = & (1). Finally, suppose that « and § are two loops at a
in X such that H|ao] = H[B] Then we have [o][8]™! € H, hence [af~!] € H = p.(X,a).

By Corollary 2. 12) the lift aﬁ af-1 of aBf~t starting at a, is a loop. By Corollary 2.11), we

have a8~ af-1 = = af- 31 = & ", so the path 8 starts at a(1) and ends at &(0) = a, and
hence 3(1 ) = &(1). This completes the proof that ¢ is well-defined.

We claim ¢ is injective. Let o and 3 be loops at a in X such that ¢(H[a]) = ¢(H[3]),
that is such that &(1) = 8(1) where & and j are the lifts of o and 3 starting at a. Let

b = a(1) = B(1). Note that a8~ is a loop at a in X, and let o8~ be the lift at a
By Corollary 2.11, since & and are bo both paths from @ to b, we have af~1 = a,B

which is a loop at a in X. Since af~ af-1 is a loop, it follows from Corollary 2.12 that
af~! € p.(m(X,a)) = H. Thus we have [o][6~'] = [08~!] € H. This completes the
proof that ¢ is injective.

Finally, we note that ¢ is surjective because X is path-connected: indeed, given
bep ~!(a), we can choose a path & from a to bin X and let a be the loop at a in X given
by a = po @&, and then we have ¢(H[a]) = &(1) = b. This completes the proof of Part 1.

We leave the proof of Part 2 as an exercise.



Local Connectedness and Path-Connectedness

10.15 Definition: Let X be a topological space. We say that X is locally connected
at the point a € X when every open neighbourhood of a in X contains a connected
open neighbourhood of a in X. We say that X is locally connected when it is locally
connected at every point. Similarly, we say that X is locally path-connected at the
point a € X when every open neighbourhood of a in X contains a path-connected open
neighbourhood of a in X, and we say that X is locally path-connected when it is locally
path-connected at every point.

10.16 Example: The topologist’s sine curve is locally path-connected (hence locally
connected) at every point a € A = {(a:, sin% ‘x > 0}, but is not locally path-connected
(or locally connected) at any point b € B = {0} x [—1,1].

10.17 Theorem: Let X be a topological space.

(1) X is locally connected if and only if X has the property that for every open set U in
X, the connected components of U are open in X.

(2) X is locally path-connected if and only if X has the property that for every open set
U in X, the path-connected components of U are open in X.

Proof: We prove Part 2 (the proof of Part 1 is similar). Suppose that X is path-connected.
Let U be an open set in X. Let P be a path-component of U. For each a € P, since X
is locally path-connected and the open neighbourhood U of a contains a path-connected
open neighbourhood, say C,, of a in X. Since P is the path-component of ¢ in X and C,
is path-connected, we must have C, C P. Thus P = | J . p Cq, which is open.

Suppose, conversely, that every path-component, of every open set in X, is open in X.
Let a € X and let U be an open neighbourhood of a in X. Let P be the path-component
of U containing a. Then, by our supposition, P is open in X, and so P is a path-connected
open neighbourhood of a which is contained in U.

10.18 Theorem: Let X be a topological space. If X is locally path-connected then the
path-components of X are equal to the connected components of X.

Proof: Suppose that X is locally path-connected. Let C' be a connected component of
X. We know that C' is a union of path-components. Suppose, for a contradiction, that C'
contains at least two distinct path-components, and let P be one of the path-components of
X which is contained in C. Since X is locally path-connected, each of its path-components
is open. In particular P is open and C'\ P (which is a union of path-components) is open.
But then P and C'\ P are nonempty disjoint open sets which cover C', which is not possible,
since C' is connected.

10.19 Example: Every topological n-manifold is locally path-connected (since every
neighbourhood of a point contains an open neighbourhood of the point which is home-
omorphic to an open ball in R”, and every open ball in R™ is convex, hence path-
connected). Consequently, in an n-manifold, the connected components are equal to the
path-components.



The Classification of Covering Spaces

10.20 Definition: When (X, a) and (X, a) are based topological spaces and p : X — X is
a covering with p(a) = a, we write p : (X, @) — (X, a) and say that p is a based covering.
For a continuous map f : (Y,b) — (X, a), a based lift of f to (X,a) is a continuous map
f:(Y,b) = (X,a) such that po f = f.

10.21 Theorem: let Y be path-connected and locally path-connected with b € Y. Let
p: (X,a) — (X,a) be a based covering, and let f : (Y,b) — (X,a) be a continuous

map of based spaces. Then there exists a based lift f : (Y,b) — (X,a) if and only if
fe(m1((Y, b)) C pu(m1(X,a)). In this case, the based lift is unique

Proof: T may include a proof later.

10.22 Definition: Let X be a topological space. We say that X is locally path-
connected when for every a € X, every open set V with a € V contains an open set U
with @ € U C V such that 71 (U,a) = 0. We say that X is semi-locally path-connected
when every point a € X is contained in an open neighbourhood U with the property that
every loop at a in U is homotopic in X to the constant loop at a.

10.23 Example: The shrinking wedge of circles discussed in Example 6.8 is not locally
(or semi-locally) simply connected.

10.24 Definition: Let p; : X — X and P2 X; = X be coverings. A covering space
homomorphism from X, to X is a continuous map f : X; — X, such that p2o f =p1.
In the case that f is a homeomorphism, it is called a covering space isomorphism.

When py : (X1,ad1) — (X,a) and po : (X2, a2) — (X, a) are based coverings, a based
homomorphism (or isomorphism) from (X1,a;) to (Xs,as) is a homomorphism (or
isomorphism) f : X, — X, with f(ay) = as.

10.25 Theorem: (The Classification of Covering Spaces) Let X be path-connected, lo-
cally path-connected, and semi-locally simply connected, and let a € X . There is a bijective
correspondence between the set of path-connected based coverings p : (X,a) — (X, a) and
the set of subgroups H C m(X,a). The correspondence associates the based covering
p: ()N(,&) — (X, a) with the group H = p*m()?,&). In particular, there exists a cover
P ()N( ,a) — (X, a), unique up to isomorphism, with X simply connected, and this cover
is called the universal cover of (X, a).

Proof: Step 1. First, let us construct a universal cover. Let X be the set of homotopy
classes of paths in X which start at the point a, that is

X = {[a]| o is a path in X with a(0) = a},
let @ = [k] where & is the constant path at a, and define p : (X,a) — (X, a) by p([o]) =
a(1). Note that p is well-defined because homotopic paths have the same endpoints.

We need to define a topology on X under which p is a covering map. Let B be the set
of path-connected open sets U in X with the property that every loop in U is homotopic,
in X, to a constant loop. Note that B is a basis for the topology on X because X is locally
path-connected and semi-locally simply connected. Given U € B and given a path v in X
with «(0) = a and (1) € U, define

Ulag = {[eA] | X is a path in U with A\(0) = a(1)}.
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We claim that the sets ﬁ[a], where U € B and « is a path in X with «(0) = a and
a(l) € U, form a basis for a topology on X. Note that when « is a path with a(0) =a
and (1) € U € B, we have [a] € U[a] It follows that the sets U[ ] cover X. Now suppose
that [y] € Upa) N Vig) where U,V € B, say [7] = [a)] and [] = [B] where a(1) = A(0) € U
and B(1) = pu(0) € V. Since aX ~ v ~ Bpu, the paths A, 7 and p have the same endpoint,
say b = A(1) = v(1) = p(1). Since U,V € B with b € U NV, we can choose W € B with

be W CUNYV. Note that W[ ] € U[a] indeed a point in W[ ] is of the form [yr] where
vis a path in W with v(0) = (1), and we have W alv so that [yv] = [a\v] € ﬁ[a].
Similarly, W[,y] C V[ ) and so we have [y] € W[ ] € U[Q]V[ 3], and this completes the proof
that the sets U, (o] form a basis for a topology on X.

We now have a topology on the space X. Using this topology, note that the map
p: (X,a) — (X, a) is continuous because, given a basic open set U € B we have

pH(U) = {la]|a(1) €U} = Upyer Ul

which is a union of basic open sets in X.
We claim that when U € B and a and 8 are two paths starting at a with endpoints
in U, we have

Ul = Ujg) <= [B] € Upa-

One direction is immediate: if ﬁ[a] = (7[3} then of course since [3] € (7[5} we also have
8] € ﬁ[a]. Suppose, conversely, that [3] € (N][a], say [B] = [a)], that is 8 ~ a)\, where
A is a path in U with A\(0) = «(1). An element in (7[&] is of the form [apu| where p is a
path in U with u(O) ( ), and we have au ~ BA"tu so that [au] = [BA"1u] € U[B} and
this shows that U[ 1 € U[ﬁ} A similar argument shows that U[ 8 C U[a], so that we have
U[a] = U[ 3], as required.

By the above claim, the distinct sets (7[&] in the inverse image p Y U) = Ua(l)GU [7[&]
are disjoint. Let us verify that the restriction p : U}, — U is a homeomorphism. Note that
p is surjective because the set U is path-connected: given b € U we can choose a path A
in U from (1) to b and then [a)] € Uj,) with p([a)]) = A(1) = b. Note that p is injective
because U has the property that every loop in U is homotopic, in X, to a constant loop:
indeed if p([a)]) = p([ap]) then we have A\(1) = u(1) so that Au~?! is a loop in U, and
hence A\p~! is homotopic, in X, to a constant loop, so we have [a)\] = [aAp~ u] = [ap].
Finally, note that the inverse p~! : U — (N][a] is continuous because for a basic open set
‘7[5] C (7[&] we have V = p(v[m) - p(ﬁ[a]) = U with V open.

Let us verify that X is simply connected. To show this, we find a formula for the lift
of a path in X. Let o : [0,1] — X be a path in X with a(0) = a. Define & : [0, 1] — X by
a(s) = [as] where a; : [0,1] — X is given by a4(t) = a(st). Note that &(0) = [ag] = @ and
a(1) = [a1] = [a]. Verify, as an exercise, that & is continuous, and note that p(a(s)) =
p([as]) = as(1) = a(s), and so @ is the lift of « starting at @(0) = [ag] = a. To see that
X is path-connected, note that for any path a in X with «(0) = a, the lift & is a path in
X from @ to &(1) = [au] = [a], so [a] is in the same path-component as . To see that
T ()?, a) = 0, recall that the group homomorphism p, : m ()?, a) — (X, a) is injective, and
the image consists of elements of the form [o] where « is a loop at a in X whose lift & is
a loop at @ in X. If [o] is in the image of p, then &(1) = @, that is [a] = @ = [x] where &
is the constant loop at a, so that [a] = 0 € m1(X,a). Thus p, is the zero map and hence
(since p, is injective) we have m (X, a) = 0.



Step 2. Let H C 71(X,a). We wish to construct a covering py : ()A(:H,&H) — (X, a)
with pg,m1 (5(: ,am) = H. Define a relation on the universal cover X by stipulating that
[a] = [B] when (1) = 3(1) and [aS~1] € H. Note that this is an equivalence relation
because H is a subgroup of 71(X, a). Denote the equivalence class of [a] by o]y, and let
X g be the quotient space of X under this equivalence relation, that is

Xy :)?/E = {[o]mg | o is a path with a(0) = a},

and let ¢ : X — Xpg be the quotient map. The covering map p : X 5 X , which is
given by p([a]) = a(1), is clearly constant on equivalence classes (since when [a] = [3] we
have (1) = 4(1)) and so it induces a continuous map py : Xz — X which is given by
pu([a]g) = a(1). To see that py is a covering map, we make the following observation. Let
U € B and let o and 3 be two paths in X starting at ¢ and ending at b € U, with [a] = [],
that is with [a87!] € H. Then for any path X in U starting at b, we have [(a))(B\) 7] =
[af~1] € H so that [a)\] = [BA\]. Thus every point [a)] € [7[04 is equivalent to the
corresponding point [SA] € (N][m. It follows that the equivalence relation = on X induces

an equivalence relation on the disjoint sets in the inverse image p~1(U) = Ua(l) cU ﬁ[a], SO

that the inverse image py;' (U) is the disjoint union py' (U) = Ua(l)e v Ula]w » Where
ﬁ[a]H = {[@A]g | A is a path in U starting at (1)} = q_l(ﬁ[a]).

The restriction p : [7[04 — U is a homeomorphism, so the restriction py : ﬁ[a] , — Uis
also a homeomorphism: we have p = py o ¢ and the inverses of the restrictions are related

by p =qop~t.

Step 3. It remains to show that for two based coverings p; : (X1,d1) — (X, a) and
p2 - (X,d) — (2(, a), we hgve (Xl,dl) = (XZL&Q) e Ql*ﬂ'l(Xl,al) = pQ*Tfl(XQ,(NIQ).
Suppose that (X1,a1) = (Xo,a2) and let f: (X;1,a1) — (X2, a2) be a based isomorphism
of coverings, so f is a homeomorphism with p; = ps o f. Since f is a homeomorphism, the
induced map f, : m ()?1, ay) — m ()}27&2) is an isomorphism. Since p; = ps o f we have
P1, = P2, © f« and so 7r1*7r1()N(17c~L1) = p2*(f*7r1()21,dl)) = pg*m()N(g,dg), as required.

Suppose, conversely, that 7T1*7T1()N(1,5L1) = pg*m()N(g,&g). By Theorem 10.9, there
exists a (unique) lift Py : (X1,a1) — (Xa,az) of the map py : (X1,a1) — (X, a), and there
exists a (unique) lift Py : (Xa,d2) — (X1,a@1) of the map py : (X2,a2) — (X, a), so we
have p; = ps 0 ps and ps = py o po. Consider the map ps o p; : ()Nfl, ay) — ()21, ay). Since
p1oP2opr = pyopy = pp with pa(p1r(ay)) = Z&g) = a, it follows that ps o p7 is equal to
the unique lift of the map p; : ()?1, a1) — (X, a), so it must be equal to the identity map
id : ()Z'l, a) — ()Ai;l, ay) (which is also a lift of p;). Thus we have ps op; = id, and similarly
p1 o p2 = id so that p; and ps are inverses of one another. Thus ()Z'l, ay) = ()22, as).



