Chapter 1. Topological Spaces and Continuous Maps

Topological Spaces

1.1 Note: Recall that, given an inner product on a real vector space V', we can define a
norm on V' by defining ||u|| = \/(u, u) and that, given a norm on a vector space V', we can
define a metric on V' by defining d(u,v) = ||[v — u||. Recall also that, given a metric on a
set X, we define the open balls in X as follows: given a € X and r > 0 we define the open
ball centred at a of radius r to be the set B(a,r) = {z € X ’ d(a,xz) < r}, and then we
define the open subsets of X by stipulating that A C X is open when it has the property
that for every a € A there exists r > 0 such that B(a,r) C A. Finally, recall that when X
is a metric space, the open sets in X satisfy the following basic properties:

(1) @ and X are both open,
(2) the union of any set of open sets in X is also open, and
(3) the intersection of any finite set of open sets in X is open.

We take the above three basic properties as the defining properties for what we call a
topological space.

1.2 Notation: When § is a set of sets, the union of S is the set

US = U A= {x|x€A for some AGS}
AeS

and, in the case that S is nonempty, the intersection of S is the set
(S=(AcSA={z|zcAforal AcS}

When § = {Ai |k € K}, where K is a set which we call the index set, we also write
US = Ukex Ar and, in the case that K is nonempty, we write (1S = [, cx Ak-

We remark that the empty union is empty, that is | JO = @ and |J,cy Ax = 0 but that,
in general, there is no standard way of defining the empty intersection. In the case that all
of the elements in S, or all of the sets A, are known to live in a specific set X, sometimes
called the universal set, it is natural to define the empty intersection to be equal to X,
that is (0 = X and [,y Ax = X.

1.3 Definition: Let X be a set. A topology on X is a set T of subsets of X such that

(1)DeT and X € T.
(2) If K is a nonempty set and Ay € T for all k € K, then J, oy Ax € T.
(3) If K is a nonempty finite set and Ay € T for all k € K, then (o Axr € T.

Note that, by induction, in order to verify that Property 3 holds, it suffices to show that if
A, B €T then ANB € T. We say that T is closed under arbitrary union to mean that
() € T and T satisfies Property 2. We say that 7 is closed under finite intersection to
mean that X € 7 and 7T satisfies Property 3.

A topological space is a set X together with a topology 7. The sets in T are called
the open subsets of X, and their complements are called the closed subsets of X. When
a € X, an open neighbourhood of a in X is an open set U € T with a € U.

When § and T are two topologies on the same set X with & C 7 we say that S
is coarser than 7 and that 7 is finer than S. When S % T we say that S is strictly

coarser than 7 and that 7 is strictly finer than S.



1.4 Definition: When X is a metric space, the set T of all open sets in X (defined using
open balls as in Note 1.1) is a topology, which we call the metric topology on X.

1.5 Definition: When X is any set, the set {(), X} is a topology on X, which we call the
trivial topology, and the power set P(X) = {A| A C X} is a topology on X which we
call the discrete topology.

1.6 Example: Let X = {1,2,3}, R = {0,{1},{1,2,3}}, S = {0,{1},{1,2},{1,2,3}},
T = {0,{1},{1,2},{1,3},{1,2,3}}, and B = {0,{1},{2},{1,2,3}}. Than, as you can
verify, R, § and T are all topologies on X, but B is not.

1.7 Theorem: Let F be the set of all closed sets in a topological space. Then

(1)) € F and X € F.
(2) If K is a nonempty set and Ay € F for every k € K then (), Ax € F.
(3) If K is a nonempty finite set and Ay € F for every k € K then |, Ar € F.

Proof: This follows from Definition 1.3 by taking complements in X, noting that (¢ = X,
X¢=0, (Urex Ak)c = Mier A° and (Njex Ak)c = Urer A%

1.8 Definition: Let X be a topological space and let A C X be a subset. The interior
of A in X, denoted by A° or by Int(A) or by Intx(A), is the union of the set of all
open sets in X which are contained in A. The closure of A in X, denoted by A or by
C1(A) or by Clx(A), is the intersection of the set of all closed sets in X which contain X.
The boundary of A in X, denoted by A or by Bound(A) or by Boundx (A) is the set
OA = A\ A°. Note that A is the disjoint union A = A° U JA.

1.9 Theorem: Let X be a topological space and let A C X. Then

(1) A° is the largest open set in X which is contained in A, and A is the smallest closed
set in X which contains A.

(2) A is open if and only if A = A°, and A is closed if and only if A = A.

(3) (A°)° = A° and A = A.

Proof: We prove the properties involving A°. Note that A° is open because it is a union of
open sets, and A° is contained in A because it is a union of sets each of which is contained
in A, and it is the largest open set contained in A because, by its definition, it contains
every open set which contains A. This proves Part 1. If A is open then clearly A is the
largest open set contained in itself, so A° = A. Conversely, if A = A° then it is open
(because A° is open). This proves Part 2. Finally, note that since A° is open, we have
(A°)° = A° by Part 2. This proves Part 3.

1.10 Definition: Let X be a topological space and let A C X. A limit point of A in X
is a point a € X with the property that for every open set U in X with a € U we have
(U\ {a}) N A # 0. The set of all limit points of A in X is denoted by A’ or by Lim(A) or
by Limx (a).

1.11 Theorem: Let X be a topological space, let A C X, and let a € X.

(1) a € A° if and only if there exists an open set U in X witha € U C A.

(2) a € A if and only if for every open set U in X with a € U we have U N A # ().
(3) A=AUA.

(4) A is closed in X if and only if A’ C A.

Proof: We leave the proof as an exercise.



Bases for Topologies

1.12 Theorem: The intersection of any set of topologies on X is a topology on X.

Proof: We remark that since every topology on X is a subset of the power set of X, we
consider the empty intersection to be the power set of X, which is the discrete topology.
Let R be any nonempty sey of topologies on X and let S = (|R. We need to show that
S is a topology on X. Since () € T for every T € R, we also have ) € S. Likewise, since
X € T for every T € R, we also have X € S§. This shows that S satisfies Property 1 in
the definition of a topological space.

To show that S satisfies Property 2, let K be a nonempty set and let Ux € S for each
k € K. We need to show that | J, . Ur € S. For each index k € K, since U, € S =R
we have Uy € T for every 7 € R. It follows that for every 7 € R, we have U, € T for
every k € K, so that | J,cx Ur € T. Since J,cx Ur € T for every T € R, it follows that
Ukex Ur € NR = S, as required.

To show that S satisfies Property 3, let U,V € §. We need to show that UNV € S.
Since U € § = (R, we have U € T for every 7 € R. Likewise, since V € S =R, we
have V € T for every 7 € R. Thus for every T € R we have U € 7 and V € T, and
hence UNV € T. Since UNV € T for every T € R, it follows that UNV € (R = S, as
required.

1.13 Corollary: Given any set S of subsets of X, there exists a unique smallest (or
coarsest) topology T on X which contains S.

Proof: The unique smallest topology 7 which contains S is the intersection of the set of all
topologies on X which contain S (noting that the set of all topologies on X which contain
X is not empty since the discrete topology contains S).

1.14 Definition: Given a set S of subsets of X, the unique smallest topology 7 which
contains S is called the topology on X generated by S.

1.15 Definition: Let X be a set. A basis of sets in X is a set B of subsets of X such
that

(1) for all @ € X there exists B € B such that a € B, and
(2) for all a€ X and all C, D€ B with a€ C N D, there exists B€ B witha € BC CND.

When B is a basis of sets in X and 7T is the topology on X generated by B, we say that
B is a basis for the topology 7, and the elements in B are called basic open sets.

1.16 Example: Any topology on a set is a basis for itself.
1.17 Example: On any set X, the set {X} is a basis for the trivial topology.

1.18 Example: On any set X, the set of all one-point subsets of X is a basis for the
discrete topology on X (this follows easily from the Theorem 1.20 below).

1.19 Example: The set of open balls in a metric space X is a basis for the metric topology
(this follows from Theorem 1.21 below).



1.20 Theorem: Let B be a basis for the topology T on X.

(1) T is the set of all U C X such that for every a € U there exists B € B witha € B C U.
(2) T is the set of all unions of (sets of) elements in B.

Proof: Let R be the set of all unions of (sets of) elements in B, that is the set of all sets of
the form U = |, . Br where K is an index set and each By € B (with the empty union
giving the empty set), and let S be the set of all sets U C X with the property that for
every a € U there exists B € B with a € B C U. We need to show that R =8 =7. We
do this by showing that T CSCR CT.

Since 7 is the intersection of the set of all topologies which contain B, in order to
show that & C T, it suffices to show that S is a topology which contains B. It is easy to
see that S contains B: indeed given U € B and given a € U, we can choose B = U to get
B € B with a € B C U, showing that U € S§. It remains to show that § is a topology. To
see that S satisfies Property 1 in the definition of a topology, note that ) € S vacuously,
and note that given a € X, since B is a basis of sets we can choose B € B such that a € B
and then we have a € B C X showing that X € §. To show that Property 2 holds, let
K be an index set and let Uy € S for each k € K. Let a € |J,cx Ur. Choose an index
¢ € K such that a € Uy. Since U, € § we can choose B € B such that ¢« € B C U,. Since
Ur € Upex Uk, we also have a € B C |J,cx Ur, and hence |J,cx Ux € S, showing that
Property 2 holds. To show that Property 3 holds, let U,V € S. Let a € U N V. Since
UeSand V €S8 we can choose sets C, D € B such that a € C CU andae D CV, and
then we have a € C N D C UNYV. Since B is a basis of sets, we can choose B € B such
that a € BC CND CUNV, showing that U NV € § so that Property 3 holds. This
completes the proof that S is a topolgy on X which contains B, and hence that 7 C S.

To show that S C R, let U € S. For each a € U, choose B, € Bsuchthata € B, CU.
Then we have U = |J, .y Ba € R. This shows that S C R.

Finally, to show that R C T, let U € R, say U = |, jc Br. Note that every topology
on X which contains B must contain the set U by Property 2 in the definition of a topology,
and hence U lies in the intersection of the set of all such topologies, that is U € 7. This
shows that R C T.

1.21 Theorem: Let T be a topology on X and let BCT. Then B is a basis for T if and
only if for every a€ X and every U €T with a€ U, there exists B € B such that a€ BCU.

Proof: Suppose that B is a basis for 7. Let a € X and let U € T with a € U. By Property
1 of the above theorem, we can choose B € B with a € B C U.

Suppose, conversely, that for every U € T and every a € U there exists B € B with
a € B CU. We need to show that B is a basis of sets in X and that the topology T is
generated by B. Property 1 in the definition of a basis of sets holds because given a € X
and taking U = X so that U € T with a € U, we can choose B € B with a € B C U.
Property 2 holds because given a € X and given C, D € B with a € C' N D, and taking
U=CnND, wehave U € T with a € U so we can choose B € Bwithae BCU =CnND.
This shows that B is a basis of sets in X. To see that 7 is generated by B, we use Part
2 of the previous theorem: Since B C T, every union of elements in B is also a union of
elements in 7, and hence is an element of 7 (since 7 is a topology so it is closed under
unions). On the other hand, given U € T, for each a € U we can choose B, € B with

a € B, CU and then we have U = |J, .y Ba (which is a union of elements of B).



Hausdorff Spaces

1.22 Definition: A topological space X is said to be Hausdorff when for all a,b € X
with a # b, there exist open sets U,V C X such that a e U, be Vand UNV = ().

1.23 Example: Every metric space X is a Hausdorff space because, given a,b € X, we
canlet U = B(a,r) and V = B(b,r) with r = 1 d(a,b) toget a € U, b€ V and UNV = 0.

The Subspace Topology

1.24 Theorem: Let S be a topology on Y, let X C Y, and let T = {V NnxX ‘ Ve S}.
Then T is a topology on X.

Proof: Note that T satisfies Property 1 (in the definition of a topology) because () € S so
that ) =P N X € T and because Y € Ssothat X =Y NX € T.

To show that Property 2 holds, let Uy € T for each k € K. For each k € K, choose
Vi € S such that U, = V;, N X. Since S is a topology, we have (J, ., Vi € S, and hence
Uker Uk = Upex (Vi N X) = (UkeK Vk) nxXeT.

To show that Property 3 holds, let Uy,Us € T. Choose V;,Vo € S with U; = Vi N X
and Us = Vo N X. Since S is a topology, we have V; NV, € S, and hence we have
UNU; = (Vl ﬂX)ﬂ(VQﬂX) = (Vlﬂ‘/g)ﬁX eS.

1.25 Definition: When § is a topology on Y and X C Y, the set T = {V NnX | Ve S}
is called the subspace topology on X, and when X uses this topology we say that X is
a subspace of Y. When Y is a topological space and X C Y, unless otherwise indicated
we shall assume that X uses the subspace topology.

1.26 Theorem: Let X be a subspace of Y and let A C X. Then A is closed in X if and
only if A= BN X for some closed set B in Y.

Proof: The proof is left as an exercise.

1.27 Theorem: Let C be a basis for a topology on Y, and let X C Y. Then the set
B = {C’ NnX ‘ Ce C} is a basis for the subspace topology on X.

Proof: Let S be the topology on Y generated by C and let 7 be the subspace topology
on X. By Theorem 1.21, it suffices to show that for every a € X and U € T, there
exists B € Bwitha € BCU. Let a € X and U € 7. Choose V € S such that
U=VnNX. Choose C € C such that a € C C V. Let B=CnNX. Then B € B with
ae B=CNXCVNX =U, as required.

1.28 Theorem: When Y is a metric space and X C Y and we give X the metric obtained
from Y, the metric topology on X is equal to the subspace topology on X.

Proof: Let R be the metric topology on Y, let 7 be the metric topology on X, and
let § = {V NnxX ‘ Ve R} be the subspace topology on X. The set B of all open balls
Bx(a,r) with a € X and r > 0 is a basis for 7. By Theorem 1.21, in order to show
that B is also a basis for S, it suffices to show that VU € S Ve e U 3 BeB ac BCU.
Let U € S and let a € U. Choose V € R such that U = VN X. Since V € R with
a € V, we can choose r > 0 such that By (a,r) C V. Then for B = Bx/(a,r) € B we have
B = Bx(a,r) = By(a,r)N X CVNX =U, as required.



Continuous Maps

1.29 Definition: Let X and Y be topological spaces. For a map f : X — Y and an
element a € X, we say that f is continuous at a when for every open set V in Y, with
f(a) € V, there exists an open set U in X witha € U C f~1(V). Amap f: X — Y is
said to be continuous (on X) when f~1(V) is open in X for every open set V in Y. A
homeomorphism from X to Y is an invertible map f : X — Y such that both f and
its inverse f~! are continuous. We say that X and Y are homeomorphic, and we write
X 2Y, when there exists a homeomorphism f: X — Y.

1.30 Theorem: Let f : X — Y be a map between topological spaces. Then f is
continuous (on X ) if and only if f is continuous at every point a € X.

Proof: The proof is left as an exercise.

1.31 Theorem: Let X andY be topological spaces. Then a map f : X — Y is continuous
if and only if f~1(B) is closed in X for every closed set B in'Y .

Proof: Note that when B C Y we have f~1(B¢) = f~1(B)¢ (where B¢ is the complement
of Bin Y and f~!(B) is the complement of f~!(B) in X): indeed for z € X we have

x€ f(B) <= z¢ f(B) < f(x)¢ B < f(z) € B° < =z € f(B°).

Suppose that f is continuous. Let B C Y be closed in Y. Then B¢ is open in Y so, since
f is continuous, f~1(B¢) is open in X, that is f~1(B)¢ is open in X, and hence f~(B) is
closed in X.

Suppose, conversely, that f~!(B) is closed in X for every closed set B in Y. Let
V CY be open in Y. Then V¢ is closed in Y, so f~1(V¢) is closed in X, that is f~1(V)¢
is closed in X, and hence f~1(V) is open in X. Thus f is continuous.

1.32 Theorem: Let X and Y be topological spaces, and let C be a basis for the topology
onY. Amap f: X — Y is continuous if and only if f~1(C) is open in X for every C € C.

Proof: If f is continuous then of course f~1(C) is open in X for every C € C (because the
elements in C are open in Y). Suppose, conversely, that f~1(C) is open in X for every
CeC. Let VCY beopeninY. For each b € V, choose Cy, € C with b € C,, C V so that
V = Uper Cb. Note that f~H(V) = f~(Uper Cb) = Upey fH(Ch): indeed for z € X we
have
€ [T (Upey Cb) <= f(z) € Upey Cpr = eV f(z) € G,
— JbeV e fTHCy) <= x€Upey fTHh).

Since each Cj, € C, it follows that each of the sets f~!(C}) is open in X, and hence the
union [~ (V) = Upey f71(Ch) is open in X, as required.

1.33 Theorem: Let X and Y be topological spaces. If b € Y, then the constant map
f(z) = b is continuous. If X C Y is a subspace, then the inclusion map f(x) = x is
continuous.

Proof: Let b € Y and let f: X — Y be the constant map given by f(x) = b for all z. Let
V CY beopeninY. If b€ V then f~1(V) = X and if b ¢ V then f~1(V) = 0 and, in
either case, f~1(V) is open in X.

Now suppose that X C Y is a subspace (with X using the subspace topology) and let
f X — Y be the inclusion map given by f(z) = = for all x. Let V C Y be open in Y.
Then f~1(V) =V N X, which is open in X (since X is using the subspace topology).



1.34 Theorem: The composite of two continuous maps is continuous.

Proof: Let f: X — Y and g: Y — Z be continuous and let A : X — Z be the composite,
given by h(z) = g(f(z)) for all z. Let W C Z be open in Z. Since g is continuous, g~ (W)
is open in Y and hence, since f is continuous, f~1(g~1(W)) is open in X. To complete
the proof, we note that h=1(W) = f~1(¢g~1(W)) because for z € X

z€h™H (W) <= h(z)eW = g(f(2)) €W = f(x)€g (W) <= z€ [ (g~ (W)).

1.35 Theorem: Let X, Y and Z be topological spaces and let f : X — Y be continuous.
Then

(1) If A C X is a subspace then the restriction f : A — Y is continuous.
(2) If Y C Z is a subspace then f : X — Z is continuous, and if B C Y is a subspace with
f(X) C B then f: X — B is continuous.

Proof: The proof is left as an exercise.

1.36 Theorem: Let X and Y be topological spaces and let f: X — Y. Then

(1) If X = Uycx Ar where K is a set and each Ay, is open in X, and if each restriction
f : Ax — Y is continuous, then f : X — Y is continuous.

(2) If X = AyUA;U---UA,, where each Ay, closed in X, and if each restriction f : Ay =Y
is continuous, then f : X — Y is continuous.

Proof: We shall prove Part 1 and leave the proof of Part 2 as an exercise. Suppose that
X = Upex Ar where each Ay is open in X. For each k, let f : Ay — Y be the restriction
of f to Ag. Suppose that each fx is continuous (with the understanding that Ay is using
the subspace topology in X). Let V CY be open in Y. Let Uy = f,,~*(V), which is open
in Ay since fi is continuous. Note that since Uy is open in Ay, which is using the subspace
topology, we can choose an open set W in X such that Uy = Wy N Ag. Since Uy is the
intersection of two open sets in X, it follows that Uy is open in X. Note that

V) ={zeX | f(@)eV} =Uex {z€Us | f(2) €V} = Uper /i (V) = Urer Us
which is open in X.
1.37 Example: Recall, from calculus, that if X CR™ and Y C R (where X and Y use
the standard metric topology) then every elementary function f : X — Y is continuous.
1.38 Example: Let a,b > 0. Then the circle 22 + y?> = 1 is homeomorphic to the
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ellipse £z + ¥z = 1. Indeed, a homeomorphism from the circle to the ellipse is given by
f(z,y) = (az,ay) and its inverse is g(u,v) = (¥, 2).
1.39 Example: The real line R is homeomorphic to the open interval (0,1). Indeed
a homeomorphism f : R — (0,1) is given by f(z) = 3 + %tan_lx and its inverse is
g(y) = tan (7 (y - 3))-
1.40 Example: Let S” be the unit sphere S” = {z € R""!|||lz|| = 1} and let p be the
north pole p = (0,0,---,0,1) € S™. Then we have S™\ {p} = R". Indeed a homeomorphism
is given by the stereographic projection f : S™\ {p} — R™, which is defined by

f(:l:’) - (1—§i+1 ’ 1—f3i+1 T 1—I$7:L+1) ’

Its inverse is the map g : R™ — S™ \ {p} given by

_ 2y1 2y2 2y, lylP-1
9(y) = (Hy\|2+1’ lyll2+1° 2 lyll?+1° ||y||2+1) :
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