Chapter 6. Tensor Algebras and Differential Forms

Multilinear Maps

6.1 Definition: Recall that for a vector space U over a field F', we define the dual space
of U to be the vector space

U* = {linear maps L : U — F}

Recall also, that when U is finite dimensional and B = {uy,uz, -, u,} is a basis for U, we
can define linear maps f; : U — F for ¢ = 1,2,---,n by requiring that f;(u;) = J;;, and
then F = {f1, fo, -+, fn} is a basis for U* which is called the dual basis to 5. We shall
sometimes identify the double dual U** = (U*)* with U by identifying the element u € U
with the linear map u : U* — F' given by u(f) = f(u).

6.2 Definition: Let Uy,Us,---, U, and V be vector spaces over a field F. A map
L:U xUyx---xU,—V
is called k-linear when
L(uy, - tu;, - ug) =t L(uy, -, u;, -+, u) , and
L(ui, -, v+w, - ug) = L(ug, v, up) + L(ug, - w, -, ug)

for all indices 7, all vectors uq, - - -, ug, v, w in the appropriate vector spaces, and all t € F'.
When Uy, Us, - - -, Uy are finite dimensional, the tensor product of Uy, Us, -, Uy is the
vector space

U1®U2®---®Uk:{k—linearmapsL:Ul* x U3 ><---><U;§_>F},
For wy,us, -+, u, with each u; € U;, we define (u1 Qua ® -+ Q@ug) € U1 QUa ® -+ - @ Uy, by

(w1 @uz ® -+~ @ur)(g1, 92, k) = g1(u1)g2(u2) - - - g (i),
where each g; € U;".

T

6.3 Example: The dot product « : (F™)? — F given by u-v = vTu is a 2-linear map.

6.4 Example: An inner product (, ) : U? — R on a vector space U over R is 2-linear.

6.5 Example: The determinant D : (F™)" — F given by D(uy,us,---,u,) = det(A),
where A = (uy,ug, -, un) € Myxn(F),is an n-linear map (indeed, it is the unique n-linear
map D : (F™)" — F with D(I) =1).

6.6 Example: The generalized cross product X : (F")"~! — F (defined in Appendix 2)
is (n — 1)-linear.



6.7 Theorem: Let Uy,Us,---,Uy be finite dimensional vector spaces. For each index i,
let B; be a basis for U;. Then the set

{u1 ®u2®---®uk’ each u; EBi}
k
is a basis for Uy @ Uy ® - -+ ® Uy. In particular dim(U; @ Us @ -+ - @ Uy) = [] dim(U;).
i=1

Proof: Let B; = {wi1, w2, -+, uin, } be a basis for U; and let F; = {fi1, fiz, -+, fin, } be
the dual basis for U;. Then for appropriate indices 41,2, - -, i and ji,j2,- -, jr (that is
for 1 <43 <ny,1<is<ng,- -, 1<i, <ng and similarly for ji, jo, -, jx) we have

(1,6, @ U2y @ - @ Ui, ) (f1505 f250> s frin) = Sr0 (Wain) fo,jo (U2,60) -+ fry, (Uk, k)
1if 41 = j1,%2 = Jo, -+, ik = Jk
= 51’1,]'1 6i2,j2 o '5ik,jk - 0 otherwise.

It follows that the set of elements of the form (u; ;; ® ug ;, ®- - - ®@uy i, ) is linearly indepen-

dent because if 0 =a = > @iyipeif (U1, U2, ® - -+, Quyg 4, ) then for all appropriate
i17i27"'7ik
choices of indices j1, j2, - - -, jr We have

0= 2 ) Qiydg--dg, (ul,il Q- ® uk,ik)(ijN Ty fk,jk) = Qjyjoj

11,82, ",k

More generally, for g; € U with say g; = ) ¢;; fi; we have
(u1,iy ® Uziy @ -+ @ Uk, ) (91,925 5 Gk)
= (U5, @ Uziy @ -+ @ Uky) ( Do L 20 C2ga f2 g0 D0 C2 g f2,j2)
J1 J2 Jk

- Z €1,51C2,52 " " Ck,ji (u17i1 Qugip @+ @ uk:jk)(f]-»jl ) f2,j27 T ?fk»jk)

jlana"'vjk
= E C1,1€C2,55 " Chyj Oin g1 0in o = Qi i = C1,61 C2in *** Chyiy, -
J1:925 0k

It follows that the set of elements of the form (u; ;, ®usg ;, ®- - -®@uy, 4, ) spans U1 @Uz®- - -@Uy,
because given L € U; ® Uy ® --- ® Uy, for g1,92, -+, g, with each g; € U}, with say

g; = Zcijfij7 we have
L(g1,92," "+, 9k) = L(ch,ilfl,n,z@,izfziz, . 'azck,ikfk,ik>
i1 12 (27

= > iy i (i frin s frin)

11,82, ik
= Y L(fris foins o Jrin) (Ui, ® iy, © -+ @ Ui ) (91,92, i)
11,82, 1k
S0 L = ) Z ) a’ilig-“ik (ul,il ® UQ,Z'Q ® te ® U/k;7ik) With a/ill'Q...Z'k = L(fl’il, f2,i27 LR 7f]€,ik)'
11,22, ",k



6.8 Example: For finite dimensional vector spaces U and V, there is a natural isomor-
phism U* ® V' = Lin(U, V') obtained by identifying the element f ® v € U* ® V with the
linear map f®v: U — V given by (f ® v)(u) = f(u)v.

6.9 Remark: For finite dimensional vector spaces Uy, Us, - - -, Uy and V', there is a natural
isomorphism between the space of k-linear maps L : Uy x Uy X --- X U, — V and the space
of linear maps M : Uy ® Uy ® --- ® U, — V. This isomorphism sends the k-linear map
L:Uy xU;x...xUp — V tothe liner map M : Uy ® Uy ® --- ® U, — V given by
M(u; @ug ® -+ - @ug) = L(uy, ug, -, ug) for all u; € U;.

6.10 Remark: When some of the vector spaces Uy, Us, -, Uy are infinite dimensional,
for vectors uy,uso, - - -, ur with each u; € U;, we can still define the k-linear map
U Quo ® - Qug : Uy xUy X --- x U - F
by
(U1 @ug @ -+ @ uk)(g1,92, > gr) = g1(u1)ga(ua) - - gr(ur).
When B; is a basis for U; for each i, the set of k-linear maps
S = {(u1 ®u2®~--®uk)‘ each u; Eui}

is linearly independent (but does not span the vector space of all k-linear maps). In this
case we define the tensor product U; ® Uy ® - -- ® Uy, to be the span of S.

6.11 Example: We have natural isomorphisms F|z] ® F|x] = Fz] ® Fy] = Flz,y]. The
element f(z) ® g(x) € Flz] ® F[x] corresponds to the element f(z) ® g(y) € Flz] ® F|y]
which corresponds to the element f(z)g(y) € F[z,y].

6.12 Definition: For k € Z* we let Sy denote the set of all permutations of {1,2,---, k},
that is the set of all bijective maps m : {1,2,---,k} — {1,2,---,k}. Recall that for a
permutation m € Sy we denote the sign of m by (—1)7, in other words (—1)™ = det(FP;)
where Py is the k& X k permutation matrix Pr = (ex(1),€x(2);" " " €n(k))

6.13 Definition: Let U and V be vector spaces over a field F. Let L : U*¥ — V be
k-linear. We say that L is symmetric when

L(u17...,ui,...’uj7...,uk) — L<u1;'"7“]’,"'7“1’;"'7“]@)
for all indices 4, j and all vectors uy, ug, -+, ur € U. Equivalently L is symmetric when
L(uy,ug, - up) = L(Ur1y, Ur(2),* Un(k))
for all vectors uy,us,---,ur € U and for every permutation w € Si. We say that L is

alternating (or skew-symmetric) when

L(ug, - gy, ug) = —L(tg, - g, o g, -+ Uk )
for all indices ¢,j and all vectors uyi,us,---,ur € U. Equivalently, L is skew-symmetric
when
L(uy,ug, - ugp) = (=1)" L(tr(1), Un(2), "+ 5 Un (k)
for all vectors uy,us,---,ur € U and all permutations m € Sk.



k-Forms and Tensor Algebras

6.14 Definition: Let U be a finite dimensional vector space over a field F. For k € Z™,
a k-form (or a k-tensor) on U is a k-linear map L : U* — F. We define the space of
k-forms on U, the space of symmetric k-forms on U, and the space of alternating
k-forms on U to be

k
T"U=QU=U®U®-- ®U = {k-linear maps L : (U*)* — F},

i=1
SkU = {S € TkU|S is symmetric},
AU = {A € TkU|A is alternating}.
We also let 70U = S°U = A°U = F.

6.15 Example: We have T'U = S'U = A'U = {linear maps L : U* — F} = U**, which
we identify with U.

6.16 Definition: Let U be a finite dimensional vector space. For uy,us, -+, ur € U, we
defined the tensor product (u; ® us ® --- ® uy) € T*U by

(ul RUa Q-+ & uk)(917927 T 7gk) = gl(ul)QQ(UQ) o gk(uk)
where each g; € U*. We also define the symmetric product u; Qus ®---Qug € SkU by

(ul ®u2®"'®uk>(917927"'agk) = Z (ul ®U2®"'®Uk)(91792,"',gk)
TESkK

= e (u1)gr2)(2) - G (k).

TESK

and we define the exterior product (or wedge product) u; Aus A--- Auy € A*U by

(ur Aug A=+ ANug)(g1, 92,5 Gk) = Z (=)™ (u1 @ u2 ® - @ Ug ) (G (1)Gn(2) ** > I (k)

TESE
= Z (=1)" g1y (w1)gm(2)(u2) =+ * G (k) (k)
TESE
g1(u1)  g1(u2) g1(uk)
g2(u1)  ga(uz) ga(us)
= det .
ge(ur)  ge(uz) -+ gr(uk)
6.17 Theorem: Let U be a finite dimensional vector space. Let B = {uy,us,- -, u,} be
a basis for U. Then
(1) {(m1 ® Uiy, @+ @ Uy, T,09, 0k < n} is a basis for T*U,

1<
1<iy <ip <+ <y <n} is a basis for S*U, and
(3) {(Uzl ANty NN ) |1 <

i1<i2<~~~<ik§n} is a basis for A*U.

(::\_/\_/\_/

|
|
|
In particular we have dim (T*U) = n*, dim (S*U) = (”le_l) and dim (A*U) = (7).



Proof: Part (1) follows immediately from Theorem 6.7. We shall prove Part (3) and leave
the proof of Part (2) as an exercise. Let F = {fl, fo, oo ,fn} be the dual basis for U*.
Note that

Fin(uay) i (uag) - i (uay)
(uil/\ui2/\"'/\uik)(fjl’szv"'vfjk):det :
Fin(wi)  fi(uip) - fy(ua,)
Oivji Oinga = Oirjy
= det ; : ;
Oivji  Oingi " Oigji
0 if for some [ we have i; # j,, for all m
= 0 if i =1, for some [ £ m
(=1)™ if 4 = jr() for all [ and some 7 € Sj.

In particular, when I = (1,42, ,ix) and J = (j1, o, -, Jk) are increasing (that is when
i1 <ig < -+ <iand j; < jo <--- < ji ) we have

0ifr=J
(wiy Awig A Awi) (Fivs Fins oo fi) :{lifl;«éj.
It follows that the set
S = {us = (ui, ANugy A Auy,) | I = (31,42, - ,i)) is increasing }

is linearly independent because if Z arur = 0 then for all increasing J = (j1,j2, -, jk)

I incr

0= ( > awr) (Firs Fizs s Fia) = au

I incr

we have

Given L € A*U, for each increasing I = (i1, 1o, --,i1), let af = L(f1,i1, f2,i00 s fryin)-
Then for g1, g2, -, gr € U* with say g; = > ¢;;fi, we have

L(g1,92, "+, 9k) = L(ch,ilfil,zcz,izfizw",ch,ikfik>
11 12 (23
=) (12,05 Chii ) L(frins fosias s Frin)

all 1

= Z Z (Cl,iﬂ(l)CQ,iﬂ.(g) e Ck,iﬂ.(k))(_]-)ﬂL(fl,il ’ f2,i27 ) fk,’bk)

I incr w€ Sk

- Z ar Z (_1)7rclal7r(l)c277'7r(2) e ckﬂ'ﬂ'(k)

I incr T€Sk
Cliy  Clix " Clyi,
= Z ar det
[ iner Chyr  Chis “° Chyy
= Z arur(gi, 92, gr)-
I incr
Thus we have L = Y. aju; € Span(S) and so S spans A*U.
I incr



6.18 Example: Let B = {uq,ug, -, u,} and C = {vjva,---,v,} be two bases for U. Let

a € A*U. Say a = Y ajur = Y byvy. Determine how a; and b; are related.
I incr J incr

Solution: Let F = {f1,f2, -+, fu} and G = {g1,92, -, gn} be the bases for U* which
are dual to B and C. Let P be the change of basis matrix P = [I]§ so that we have
v; = piju;. Note that

fi(vj) = fi(zkjpkjuk) = > prjfilug) = %:ij&k = Dij -

We have
ar = a(fimfiza T 7f2k) = Z bJUJ(filafi27' afzk)
J incr
fi1(vj1) fh(vjz) fh(vjk)
= > by det : : :
J iner flk (vjl) f’Lk (sz) f'Lk (Ujk)
pil,jl pil,jz e pil,jk
= > by det
J iner Dingi  Pirga *°° Dingn
= Z bJ det PIJ,
J incr
where P is the matrix obtained from P by selecting rows iy, - - - , iy, and columns 7y, - - -, jk.

6.19 Definition: Given an n-dimensional vector space U, we define vector spaces

oo oo n

TU = @ TFU , SU = @ S*U , AU = @ A*U.

k=0 k=0 k=0
The operations ®, ® and A, which are defined on basis vectors, determine products on
each of the above vector spaces. A vector space with a compatible multiplication operation
is called an algebra, so the above three vector spaces, together with their products, are
called the tensor algebra, the symmetric algebra, and the exterior algebra.

6.20 Example: If o € A*U and 8 € AU then we have a A f € AFU. Indeed if

B = {ui,ug,---,uy} is a basis for U and we have « = > ajuy and = > byuy, then
I incr J incr

alp= Z Z arby ur ANuy

I incr J incr

where
ur Aug = (wiy Ao A ) A (uj, A Aug,)

=y N ANug, ANugy N A,

6.21 Remark: Notice the similarity between the formula in Example 6.18 for the coeffi-
cients of an alternating k-form under a change of basis, and the formula in Definition 5.33
for the pullback of a smooth k-form by a smooth map f, which is used in Definition 5.36
to define smooth k-forms on a manifold. We can exploit this similarity to give an alternate
algebraic definition for smooth k-forms on manifolds.



An algebraic Definition of Smooth k-forms

6.22 Notation: Let us introduce some notation for tangent vectors, which is commonly
used in differential geometry, when we think of the vectors as being differential operators.
Let M C R™ be a smooth regular submanifold. Let ¢ : U C R™ — V C M be a chart
on M at p with o(a) = p. A tangent vector X € T,M determines, and is determined
by, the tangent vector A = (¢71),X € T,U = R™, and we have X = Do(a)A. The
vector A € T,U = R™ acts (as a differential operator) on a smooth map ¢g : U — R by
A(g) = Dg(a)A. For the vector A =", A;e; (where e; is the i'" standard basis vector)
we have

A(g) = Dg(a)A = > Ai 2 (a)

=1

so that (as a differential operator) we have A = > ", Aiaiui' The corresponding vector
X = Do(a)A € TyM acts (as a differential operator) on a smooth map f: M — R by

X(f) = A(fo) = Z 4,209 (q).

When working with the vector A € T,U = R™, we write % simply as an alternate

notation for the " standard basis vector in R™, that is % = e;. When working with

the vector X = Do(a)A € T, M, we write 8%1 as an alternate notation for the i column
of the Jacobian matrix Do(a), that is a%i = Do(a)e;. Using this notation, every vector
A € T,U = R™ can be written uniquely as A = > 7" | Aiaiui (where 6% =e € T,U=R")
and the corresponding vector X = Do(a)A € T,M is then given by X = > | A; 82

(where now é%i = Do(a)e; € T,M C R™).

This notation can be used for any point a € U and any point p € V, and so it is also
used for vector fields. For a smooth vector field X : M — |, ), TpM, the restriction of
X to V determines and is determined by the smooth vector field A : U — R™ given by
A= (071),X so that X(o(u)) = Do(u)A(u) for all u € U. When Workinag with the vector

field A on U, we write 52 to denote the constant vector field 52~ = Ja; (W) = € for all

u € U, and when Worklng with the (restriction of the) vector ﬁeld X on V, we write 6 - to
denote the vector field given by 81M_( o(u)) = Do(u)e; for all u € U. Using this notatlon,
every smooth vector field A : U — R can be written (uniquely) as

A=A()=Z i(W) g s0 Alg)(u) = A(u)(g) = ZA()aul()

where 8%2_ = %(u) = ¢; for all w € U and each A4; : U — R is a smooth map, and the

corresponding vector field X = X (p) on V with X (o(u)) = Do(u)A(u) is given by
X = X(p) = § Xi(p) 2 so X(f)p) = X(p)(f) = § X, (p) 242 (6= ()

where 52— = 5%-(p) = Do (o' (p))e; for all p € V and X;(p) = A;(0*(p)).




6.23 Definition: Let M C R™ be a smooth regular submanifold, let p € M, and let
oc:UCR™ —V C M be achart on M at p. The dual space oM = (T,M)* of T,M
is called the cotangent space of M at p. The basis for T; M which is dual to the basis

{8%1, cee aui is denoted by {dul, e ,dum}, so duy, is the linear map duy : T,M — R
given by duk(aiw) = Jry¢. An element w € A’“TZ;k M is an alternating k-linear map

w: (T,M)*™* x - x(T,M)** — R. We identify (T, M )** with T, M (by identifying the vec-
tor X € T, M with the linear map X : T; M — R given by X(a) = a(X) for all a € Ty M)
so that an element w € Alegk M is an alternating k-linear map w : T, M x --- xT,M — R.
The space AkT;‘M has basis {dul = du;, N+ N\ du;, |1 < <tg << < m}, SO

each element w € Ak’T;‘M can be written uniquely in the form w = > wjdujy.
I incr
Somewhat confusingly, we use the same notation when working in 7T,U = R™. In this
case, {6%1, cee %} is another notation for the standard basis for R™ and {du, - -, du,, }

is the dual basis for T;U = (R™)* (so that in fact we have % = ¢; and du; = e;), and
AT>U = A(R™)* is the space of alternating k-linear maps o : R™ x --- xR — R, so each
element o € A*T*U = A¥(R™)* can be written uniquely in the form o = > as duj.

I incr
Note that the notation used in T, U is consistent with the notation used in 7}, M when

we consider U C R™ to be a smooth regular submanifold of R™ and use the identity map
o0 :U — U (given by o(u) = u) as the chart.

6.24 Note: By Definition 6.16, keeping in mind that for X € T, M and « € Ty M we have
X(a) =a(X), when aq, -+, af € M and X1, -+, Xy € T,M we have

ar(X1) - o (Xp)
(a1 A ANag) (X1, -+, Xi) = det : :
ap(X1) o ar(Xk)
In particular,
dui, (X1) -+ dug, (Xk)
(dugy A+ Adug, ) (Xq,- -+, Xi) = det ,
du;, (X1) -+ du; (Xg)

and if we write X; = 3 X; ;52> then we have du,(X;) = X, and hence
i=1 ‘

Xy 0 Xk
(duil/\---/\duik)(Xl,---,Xk):det :
X 0 Xk,
Also, as in the proof of Theorem 6.17, we have (du;, A --- A duik)(%, e %) =0
unless the indices i1, - - -, 7; are all distinct, and the indices ji,-- -, jx are a permutation of
the indices i1, -, ix, and when m € Sy and j1 = ir(1),J2 = in(2)," " *»Jk = ix(k) We have
(dug, N+ A duik)(%, e %) =(-1)".



6.25 Theorem: Let M C R"™ be a smooth regular submanifold, and let o : U — V be a
chart on M at p. Let o« = > ajduy € AkT;M and let 8 = > byduy € AZT;M S0

I incr J incr
that a N = >, arbyduy Nduy € AkMT};‘M, Then for X1, Xo, -, Xpye € T, M,
I,J incr

(O{ N 6) (X17 ) Xk-l—@) = Z (_1)7— a(XT(1)7 H) X‘r(k)) /B(XT(]C+1)5 T 7XT(k+Z))7

TET, ¢

where T}, ¢ is the set of all permutations T € Sk, such that 7(1) < 7(2) < --- < 7(k) and
Tk+1)<1(k+2)<---<7(k+10).

Proof: By linearity, it suffices to prove the formula in the case that o = duy and 8 = du .

By Note 6.24, if we write X; = 3. X, ;72 then we have
i=1

ou;
Xlzil e Xk+€,11
Xy o Xkei
dur Nduy)(Xq,---, X = det sk ik
( ! J)( ! k+£) Xl,jl to Xk+€’j1
Xije o Xereg,
— Z (—]_)ﬂ- Xﬂ'(l),il Xﬂ'(k),lkXﬂ'(k-f-l),_]l ..'Xﬂ'(k-i-g),jg

WESk+g

= > 2 2 (D)D) X (u))in X)) in Xr(hrv(1)),g1 0 Xr (kv (0),e

TET}CJ ,uESk veSy

Xeyi o Xek)i Xeor1)gs 0 Xr(k+o),n
= > (=1)7 det : : det : :
ey : : : :
Xeyin 0 Xr(k)in Xok+1)ge 0 Xr(k40).j
= 2 (D)7 dur(Xey, - Xey) dug (Xrrgr), -+ Xe(esro)) -
T€ET)L ¢

6.26 Definition: Let M C R” and N C R® be smooth regular submanifolds and let
[+ M — N be asmooth map with f(p) = ¢q. Recall that the pushforward f. : T,M — T,N
is given by f.(7/(0)) = ¢’(0) where v(0) = p and 6(¢) = f(v(t)). We define the pullback
f*: AFTIN = ARTS M by

(FB)(Xn, -+, X)) = B(fuXa,- -, fuXy)
where 8 € AkT;N and each X; € T, M.
6.27 Theorem: Let M C R" and N C R® be smooth regular submanifolds and let
f: M — N be a smooth map with f(p) =q. Let 0 : U CR™ — o(U) C M be a chart

on M at p with o(a) = p, and let p : V C R™ — p(V) C N be a chart on N at q. Let
B = Z deUJEAkT;N. Then

J incr

f«B= >_ ardu; where ar= > by det%(a)

I incr J incr
for v(u) = (p~" o) (u) = (1 (), -, va(u)) so that 3(a) = D(p~ fo)(a)}.

9



Proof: Let « = f*B = > arduy. For I = (iy,---,1iy), the coefficient a; is given by

I incr

<f ﬁ)(aul ’ 61?%)
= B(f*m’.“’f*%)

n
Oy avék
- JZ by d?U(gZ 3%1 aw Z au% 6“%)
incr 1
81.)@ 8’[)[ o o
= b L. 2% g
J%cr a?[, Jauil iy, J(awl ’ ? Ougy, )
Since dvj(%, cee %) = 0 unless ¢1, - -, is a permutation of 71, - - -, 7%, in which case
1 k

it is equal to the sign of the permutation, we have

ov; ov;
ay = Z Z (—1)7er 831::1” 831;(:)

J incr w€Sy
= 3 by det 5%L.
J incr

6.28 Definition: Let M C R" be a smooth regular submanifold. A smooth k-form on

Misamapw: M — (J AkT;M such that for each chart 0 : U CR™ — V C M on M,
peEM
when we write w (restricted to V') in the form w(p) = > w(p)duy, each of the coefficient
I incr
functions wy : V. C M — R is smooth (as a map between manifolds), or equivalently,

when we write the pullback o = (671)*w, which is a map o : U — (R™)*, in the form
a(u) = > ar(u)dur, each of the coefficient functions a; : U C R™ — R is smooth.

I incr
6.29 Note: When A is an atlas on M, a smooth k-form w on M determines, and is
determined by, the smooth k-forms o*w where o € A: when o : U C R™ — V C M, the
restriction of w to V, given by w(p) = > w;j(p)dus, and the pullback a = o*w, given by

I incr
a(u) = Y. aj(u)dur, are related by the formula a;(u) = wr(o(u)). This is in agreement
I incr
with our previous Definition 5.36.

6.30 Definition: Let M C R"™ be a smooth regular submanifold. When w is a smooth
k-form on M and Xy, - -, X} are smooth vector fields on M, w(Xy,---, Xx) is the smooth
function on M given by w(X1, -, Xi)(p) = w(p) (X1 (p), - ,Xk(p)). When w is a smooth
k-form on M and 7 is a smooth /-form on M, the exterior product (or the wedge
product) w A 7 is the smooth (k+¢)-form on M given by (w A 7)(p) = w(p) A 7(p). When
f: M — N is a smooth map between manifolds and 7 is a smooth k-form on N, the
pullback of 7 by f is the smooth k-form f*3 on M given by (f*7)(p) = f*(7(f(p))). We
note that Theorem 6.27 shows that the pullback is given by the same formula which we
used earlier to define the pullback in Definition 5.33. When w is a smooth k-form on M,
we define the exterior derivative of w to be the smooth (k+1)-form dw on M such that,
for each chart o : U CR™ — V C M, if we write c*w = > as(u)du; then we have

I incr

o (dw) = >, zg‘”dul/\du[

I incr i=

(in agreement with our earlier Definition 5.15). Note that these definitions are all consistent
with our previous definitions, from Chapter 5, and so Stokes’ Theorem still holds using
these new definitions.
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