
Chapter 6. Tensor Algebras and Differential Forms

Multilinear Maps

6.1 Definition: Recall that for a vector space U over a field F , we define the dual space
of U to be the vector space

U∗ =
{

linear maps L : U → F
}
.

Recall also, that when U is finite dimensional and B = {u1, u2, · · · , un} is a basis for U , we
can define linear maps fi : U → F for i = 1, 2, · · · , n by requiring that fi(uj) = δij , and
then F = {f1, f2, · · · , fn} is a basis for U∗ which is called the dual basis to B. We shall
sometimes identify the double dual U∗∗ = (U∗)∗ with U by identifying the element u ∈ U
with the linear map u : U∗ → F given by u(f) = f(u).

6.2 Definition: Let U1, U2, · · · , Uk and V be vector spaces over a field F . A map

L : U1 × U2 × · · · × Uk → V

is called k-linear when

L(u1, · · · , t ui, · · · , uk) = t L(u1, · · · , ui, · · · , uk) , and

L(u1, · · · , v + w, · · · , uk) = L(u1, · · · , v, · · · , uk) + L(u1, · · · , w, · · · , uk)

for all indices i, all vectors u1, · · · , uk, v, w in the appropriate vector spaces, and all t ∈ F .
When U1, U2, · · · , Uk are finite dimensional, the tensor product of U1, U2, · · · , Uk is the
vector space

U1 ⊗ U2 ⊗ · · · ⊗ Uk =
{
k-linear maps L : U∗1 × U∗2 × · · · × U∗k → F

}
.

For u1, u2, · · · , uk with each ui ∈ Ui, we define (u1⊗u2⊗ · · ·⊗uk) ∈ U1⊗U2⊗ · · ·⊗Uk by

(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk) = g1(u1)g2(u2) · · · gk(uk),

where each gi ∈ U∗i .

6.3 Example: The dot product . : (Fn)2 → F given by u.v = vTu is a 2-linear map.

6.4 Example: An inner product 〈 , 〉 : U2 → R on a vector space U over R is 2-linear.

6.5 Example: The determinant D : (Fn)n → F given by D(u1, u2, · · · , un) = det(A),
where A = (u1, u2, · · · , un) ∈Mn×n(F ), is an n-linear map (indeed, it is the unique n-linear
map D : (Fn)n → F with D(I) = 1).

6.6 Example: The generalized cross product X : (Fn)n−1 → F (defined in Appendix 2)
is (n− 1)-linear.
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6.7 Theorem: Let U1, U2, · · · , Uk be finite dimensional vector spaces. For each index i,
let Bi be a basis for Ui. Then the set{

u1 ⊗ u2 ⊗ · · · ⊗ uk
∣∣ each ui ∈ Bi

}
is a basis for U1 ⊗ U2 ⊗ · · · ⊗ Uk. In particular dim(U1 ⊗ U2 ⊗ · · · ⊗ Uk) =

k∏
i=1

dim(Ui).

Proof: Let Bi = {ui1, ui2, · · · , ui,ni} be a basis for Ui and let Fi = {fi1, fi2, · · · , fi,ni} be
the dual basis for U∗i . Then for appropriate indices i1, i2, · · · , ik and j1, j2, · · · , jk (that is
for 1 ≤ i1 ≤ n1 , 1 ≤ i2 ≤ n2 , · · · , 1 ≤ ik ≤ nk and similarly for j1, j2, · · · , jk) we have

(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)(f1,j1 , f2,j2 , · · · , fk,jk) = f1,j1(u1,i1)f2,j2(u2,i2) · · · fk,ik(uk, ik)

= δi1,j1δi2,j2 · · · δik,jk =

{
1 if i1 = j1, i2 = j2, · · · , ik = jk

0 otherwise.

It follows that the set of elements of the form (u1,i1⊗u2,i2⊗· · ·⊗uk,ik) is linearly indepen-
dent because if 0 = α =

∑
i1,i2,···,ik

ai1i2···ik(u1,i1⊗u2,i2⊗· · · ,⊗uk,ik) then for all appropriate

choices of indices j1, j2, · · · , jk we have

0 =
∑

i1,i2,···,ik
ai1i2···ik(u1,i1 ⊗ · · · ⊗ uk,ik)(f1,j1 , · · · , fk,jk) = aj1j2···jk

More generally, for gi ∈ U∗i with say gi =
∑
cijfij we have

(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)(g1, g2, · · · , gk)

= (u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)
(∑
j1

c1,j1f1,j1 ,
∑
j2

c2,j2f2,j2 , · · · ,
∑
jk

c2,j2f2,j2

)
=

∑
j1,j2,···,jk

c1,j1c2,j2 · · · ck,jk(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,jk)(f1,j1 , f2,j2 , · · · , fk,jk)

=
∑

j1,j2,···,jk

c1,j1c2,j2 · · · ck,jkδi1,j1δi2,j2 · · · δik,jk = c1,i1c2,i2 · · · ck,ik .

It follows that the set of elements of the form (u1,i1⊗u2,i2⊗· · ·⊗uk,ik) spans U1⊗U2⊗· · ·⊗Uk
because given L ∈ U1 ⊗ U2 ⊗ · · · ⊗ Uk, for g1, g2, · · · , gk with each gi ∈ U∗i , with say
gi =

∑
cijfij , we have

L(g1, g2, · · · , gk) = L
(∑
i1

c1,i1f1,i1 ,
∑
i2

c2,i2f2,i2 , · · · ,
∑
ik

ck,ikfk,ik

)
=

∑
i1,i2,···,ik

c1,i1c2,i2 · · · ck,ikL(f1,i1 , f2,i2 , · · · , fk,ik)

=
∑

i1,i2,···,ik

L(f1,i1 , f2,i2 , · · · , fk,ik)(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik)(g1, g2, · · · , gk)

so L =
∑

i1,i2,···,ik
ai1i2···ik(u1,i1 ⊗ u2,i2 ⊗ · · · ⊗ uk,ik) with ai1i2···ik = L(f1,i1 , f2,i2 , · · · , fk,ik).
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6.8 Example: For finite dimensional vector spaces U and V , there is a natural isomor-
phism U∗ ⊗ V ∼= Lin(U, V ) obtained by identifying the element f ⊗ v ∈ U∗ ⊗ V with the
linear map f ⊗ v : U → V given by (f ⊗ v)(u) = f(u)v.

6.9 Remark: For finite dimensional vector spaces U1, U2, · · · , Uk and V , there is a natural
isomorphism between the space of k-linear maps L : U1×U2×· · ·×Uk → V and the space
of linear maps M : U1 ⊗ U2 ⊗ · · · ⊗ Uk → V . This isomorphism sends the k-linear map
L : U1 × U2 × . . . × Uk → V to the liner map M : U1 ⊗ U2 ⊗ · · · ⊗ Uk → V given by
M(u1 ⊗ u2 ⊗ · · · ⊗ uk) = L(u1, u2, · · · , uk) for all ui ∈ Ui.

6.10 Remark: When some of the vector spaces U1, U2, · · · , Uk are infinite dimensional,
for vectors u1, u2, · · · , uk with each ui ∈ Ui, we can still define the k-linear map

u1 ⊗ u2 ⊗ · · · ⊗ uk : U∗1 × U∗2 × · · · × U∗k → F

by
(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk) = g1(u1)g2(u2) · · · gk(uk).

When Bi is a basis for Ui for each i, the set of k-linear maps

S =
{

(u1 ⊗ u2 ⊗ · · · ⊗ uk)
∣∣ each ui ∈ Ui

}
is linearly independent (but does not span the vector space of all k-linear maps). In this
case we define the tensor product U1 ⊗ U2 ⊗ · · · ⊗ Uk to be the span of S.

6.11 Example: We have natural isomorphisms F [x]⊗F [x] ∼= F [x]⊗F [y] ∼= F [x, y]. The
element f(x) ⊗ g(x) ∈ F [x] ⊗ F [x] corresponds to the element f(x) ⊗ g(y) ∈ F [x] ⊗ F [y]
which corresponds to the element f(x)g(y) ∈ F [x, y].

6.12 Definition: For k ∈ Z+ we let Sk denote the set of all permutations of {1, 2, · · · , k},
that is the set of all bijective maps π : {1, 2, · · · , k} → {1, 2, · · · , k}. Recall that for a
permutation π ∈ Sk we denote the sign of π by (−1)π, in other words (−1)π = det(Pπ)
where Pπ is the k × k permutation matrix Pπ = (eπ(1), eπ(2), · · · eπ(k))

6.13 Definition: Let U and V be vector spaces over a field F . Let L : Uk → V be
k-linear. We say that L is symmetric when

L(u1, · · · , ui, · · · , uj , · · · , uk) = L(u1, · · · , uj , · · · , ui, · · · , uk)

for all indices i, j and all vectors u1, u2, · · · , uk ∈ U . Equivalently L is symmetric when

L(u1, u2, · · · , uk) = L(uπ(1), uπ(2), · · · , uπ(k))
for all vectors u1, u2, · · · , uk ∈ U and for every permutation π ∈ Sk. We say that L is
alternating (or skew-symmetric) when

L(u1, · · · , ui, · · · , uj , · · · , uk) = −L(u1, · · · , uj , · · · , ui, · · · , uk)

for all indices i, j and all vectors u1, u2, · · · , uk ∈ U . Equivalently, L is skew-symmetric
when

L(u1, u2, · · · , uk) = (−1)πL(uπ(1), uπ(2), · · · , uπ(k))

for all vectors u1, u2, · · · , uk ∈ U and all permutations π ∈ Sk.
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k-Forms and Tensor Algebras

6.14 Definition: Let U be a finite dimensional vector space over a field F . For k ∈ Z+,
a k-form (or a k-tensor) on U is a k-linear map L : Uk → F . We define the space of
k-forms on U , the space of symmetric k-forms on U , and the space of alternating
k-forms on U to be

T kU =
k⊗
i=1

U = U ⊗ U ⊗ · · · ⊗ U =
{
k-linear maps L : (U∗)k → F

}
,

SkU =
{
S ∈ T kU

∣∣S is symmetric
}
,

ΛkU =
{
A ∈ T kU

∣∣A is alternating
}
.

We also let T 0U = S0U = Λ0U = F .

6.15 Example: We have T 1U = S1U = Λ1U =
{

linear maps L : U∗ → F
}

= U∗∗, which
we identify with U .

6.16 Definition: Let U be a finite dimensional vector space. For u1, u2, · · · , uk ∈ U , we
defined the tensor product (u1 ⊗ u2 ⊗ · · · ⊗ uk) ∈ T kU by

(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk) = g1(u1)g2(u2) · · · gk(uk)

where each gi ∈ U∗. We also define the symmetric product u1�u2�· · ·�uk ∈ SkU by

(u1 � u2 � · · · � uk)(g1, g2, · · · , gk) =
∑
π∈Sk

(u1 ⊗ u2 ⊗ · · · ⊗ uk)(g1, g2, · · · , gk)

=
∑
π∈Sk

gπ(1)(u1)gπ(2)(u2) · · · gπ(k)(uk).

and we define the exterior product (or wedge product) u1 ∧ u2 ∧ · · · ∧ uk ∈ ΛkU by

(u1 ∧ u2 ∧ · · · ∧ uk)(g1, g2, · · · , gk) =
∑
π∈Sk

(−1)π(u1 ⊗ u2 ⊗ · · · ⊗ uk)(gπ(1)gπ(2) · · · , gπ(k))

=
∑
π∈Sk

(−1)πgπ(1)(u1)gπ(2)(u2) · · · gπ(k)(uk)

= det


g1(u1) g1(u2) · · · g1(uk)
g2(u1) g2(u2) · · · g2(uk)

...
...

...
gk(u1) gk(u2) · · · gk(uk)


6.17 Theorem: Let U be a finite dimensional vector space. Let B = {u1, u2, · · · , un} be
a basis for U . Then

(1)
{

(ui1 ⊗ ui2 ⊗ · · · ⊗ uik)
∣∣ 1 ≤ i1, i2, · · · , ik ≤ n} is a basis for T kU ,

(2)
{

(ui1 ⊗ ui2 ⊗ · · · ⊗ uik)
∣∣ 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n} is a basis for SkU , and

(3)
{

(ui1 ∧ ui2 ∧ · · · ∧ uik)
∣∣ 1 ≤ i1 < i2 < · · · < ik ≤ n

}
is a basis for ΛkU .

In particular we have dim
(
T kU

)
= nk, dim

(
SkU

)
=
(
n+k−1

k

)
and dim

(
ΛkU

)
=
(
n
k

)
.
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Proof: Part (1) follows immediately from Theorem 6.7. We shall prove Part (3) and leave
the proof of Part (2) as an exercise. Let F =

{
f1, f2, · · · , fn

}
be the dual basis for U∗.

Note that

(
ui1 ∧ ui2 ∧ · · · ∧ uik

)(
fj1 , fj2 , · · · , fjk

)
= det

 fj1(ui1) fj1(ui2) · · · fj1(uik)
...

...
...

fjk(ui1) fjk(ui2) · · · fjk(uik)



= det

 δi1,j1 δi1,j2 · · · δi1,jk
...

...
...

δi1,jk δi2,jk · · · δik,jk



=


0 if for some l we have il 6= jm for all m

0 if il = im for some l 6= m

(−1)π if il = jπ(l) for all l and some π ∈ Sk.
In particular, when I = (i1, i2, · · · , ik) and J = (j1, j2, · · · , jk) are increasing (that is when
i1 < i2 < · · · < ik and j1 < j2 < · · · < jk ) we have(

ui1 ∧ ui2 ∧ · · · ∧ uik
)(
fj1 , fj2 , · · · , fjk

)
=

{
0 if I = J

1 if I 6= J.

It follows that the set

S =
{
uI = (ui1 ∧ ui2 ∧ · · · ∧ uik)

∣∣ I = (i1, i2, · · · , ik) is increasing
}

is linearly independent because if
∑
I incr

aIuI = 0 then for all increasing J = (j1, j2, · · · , jk)

we have
0 =

( ∑
I incr

aIuI

)(
fj1 , fj2 , · · · , fjk

)
= aJ .

Given L ∈ ΛkU , for each increasing I = (i1, i2, · · · , ik), let aI = L(f1,i1 , f2,i2 , · · · , fk,ik).
Then for g1, g2, · · · , gk ∈ U∗ with say gj =

∑
i

cj,ifi, we have

L(g1, g2, · · · , gk) = L
(∑
i1

c1,i1fi1 ,
∑
i2

c2,i2fi2 , · · · ,
∑
ik

ck,ikfik

)
=
∑
all I

(
c1,i1c2,i2 · · · ck,ik

)
L
(
f1,i1 , f2,i2 , · · · , fk,ik

)
=
∑
I incr

∑
π∈Sk

(
c1,iπ(1)

c2,iπ(2)
· · · ck,iπ(k)

)
(−1)πL

(
f1,i1 , f2,i2 , · · · , fk,ik

)
=
∑
I incr

aI
∑
π∈Sk

(−1)πc1,iπ(1)
c2,iπ(2) · · · ck,iπ(k)

=
∑
I incr

aI det

 c1,i1 c1,i2 · · · c1,ik
...

...
...

ck,i1 ck,i2 · · · ck,ik


=
∑
I incr

aI uI(g1, g2, · · · , gk).

Thus we have L =
∑
I incr

aIuI ∈ Span(S) and so S spans ΛkU .

5



6.18 Example: Let B = {u1, u2, · · · , un} and C = {v1v2, · · · , vn} be two bases for U . Let
α ∈ ΛkU . Say α =

∑
I incr

aIuI =
∑

J incr

bJvJ . Determine how aI and bJ are related.

Solution: Let F = {f1, f2, · · · , fn} and G = {g1, g2, · · · , gn} be the bases for U∗ which
are dual to B and C. Let P be the change of basis matrix P = [I]CB so that we have
vj =

∑
i

pijui. Note that

fi(vj) = fi
(∑
k

pkjuk
)

=
∑
pkjfi(uk) =

∑
k

pkjδik = pij .

We have
aI = α(fi1 , fi2 , · · · , fik) =

∑
J incr

bJvJ(fi1 , fi2 , · · · , fik)

=
∑
J incr

bJ det

 fi1(vj1) fi1(vj2) · · · fi1(vjk)
...

...
...

fik(vj1) fik(vj2) · · · fik(vjk)



=
∑
J incr

bJ det

 pi1,j1 pi1,j2 · · · pi1,jk
...

...
...

pik,j1 pik,j2 · · · pik,jk


=

∑
J incr

bJ detP JI ,

where P JI is the matrix obtained from P by selecting rows i1, · · · , ik and columns j1, · · · , jk.

6.19 Definition: Given an n-dimensional vector space U , we define vector spaces

TU =
∞⊕
k=0

T kU , SU =
∞⊕
k=0

SkU , ΛU =
n⊕
k=0

ΛkU.

The operations ⊗, � and ∧, which are defined on basis vectors, determine products on
each of the above vector spaces. A vector space with a compatible multiplication operation
is called an algebra, so the above three vector spaces, together with their products, are
called the tensor algebra, the symmetric algebra, and the exterior algebra.

6.20 Example: If α ∈ ΛkU and β ∈ Λ`U then we have α ∧ β ∈ Λk+`U . Indeed if
B = {u1, u2, · · · , un} is a basis for U and we have α =

∑
I incr

aIuI and β =
∑

J incr

bJuJ , then

α ∧ β =
∑
I incr

∑
J incr

aIbJ uI ∧ uJ

where
uI ∧ uJ = (ui1 ∧ · · · ∧ uik) ∧ (uj1 ∧ · · · ∧ uj`)

= ui1 ∧ · · · ∧ uik ∧ uj1 ∧ · · · ∧ uj` .

6.21 Remark: Notice the similarity between the formula in Example 6.18 for the coeffi-
cients of an alternating k-form under a change of basis, and the formula in Definition 5.33
for the pullback of a smooth k-form by a smooth map f , which is used in Definition 5.36
to define smooth k-forms on a manifold. We can exploit this similarity to give an alternate
algebraic definition for smooth k-forms on manifolds.
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An algebraic Definition of Smooth k-forms

6.22 Notation: Let us introduce some notation for tangent vectors, which is commonly
used in differential geometry, when we think of the vectors as being differential operators.
Let M ⊆ Rn be a smooth regular submanifold. Let σ : U ⊆ Rm → V ⊆ M be a chart
on M at p with σ(a) = p. A tangent vector X ∈ TpM determines, and is determined
by, the tangent vector A = (σ−1)∗X ∈ TaU = Rm, and we have X = Dσ(a)A. The
vector A ∈ TaU = Rm acts (as a differential operator) on a smooth map g : U → R by
A(g) = Dg(a)A. For the vector A =

∑m
i=1Aiei (where ei is the ith standard basis vector)

we have

A(g) = Dg(a)A =
m∑
i=1

Ai
∂g
∂ui

(a)

so that (as a differential operator) we have A =
∑m
i=1Ai

∂
∂ui

. The corresponding vector
X = Dσ(a)A ∈ TpM acts (as a differential operator) on a smooth map f : M → R by

X(f) = A(fσ) =
m∑
i=1

Ai
∂(fσ)
∂ui

(a).

When working with the vector A ∈ TaU = Rm, we write ∂
∂ui

simply as an alternate

notation for the ith standard basis vector in Rm, that is ∂
∂ui

= ei. When working with

the vector X = Dσ(a)A ∈ TpM , we write ∂
∂ui

as an alternate notation for the ith column

of the Jacobian matrix Dσ(a), that is ∂
∂ui

= Dσ(a)ei. Using this notation, every vector

A ∈ TaU = Rm can be written uniquely as A =
∑m
i=1Ai

∂
∂ui

(where ∂
∂ui

= ei ∈ TaU = Rm)

and the corresponding vector X = Dσ(a)A ∈ TpM is then given by X =
∑n
i=1Ai

∂
∂ui

(where now ∂
∂ui

= Dσ(a)ei ∈ TpM ⊆ Rn).

This notation can be used for any point a ∈ U and any point p ∈ V , and so it is also
used for vector fields. For a smooth vector field X : M →

⋃
p∈M TpM , the restriction of

X to V determines and is determined by the smooth vector field A : U → Rm given by
A = (σ−1)∗X so that X(σ(u)) = Dσ(u)A(u) for all u ∈ U . When working with the vector
field A on U , we write ∂

∂ui
to denote the constant vector field ∂

∂ui
= ∂

∂ui
(u) = ei for all

u ∈ U , and when working with the (restriction of the) vector field X on V , we write ∂
∂ui

to

denote the vector field given by ∂
∂ui

(σ(u)) = Dσ(u)ei for all u ∈ U . Using this notation,
every smooth vector field A : U → Rm can be written (uniquely) as

A = A(u) =
m∑
i=1

Ai(u) ∂
∂ui

so A(g)(u) = A(u)(g) =
m∑
i=1

Ai(u) ∂g∂ui (u)

where ∂
∂ui

= ∂
∂ui

(u) = ei for all u ∈ U and each Ai : U → R is a smooth map, and the
corresponding vector field X = X(p) on V with X(σ(u)) = Dσ(u)A(u) is given by

X = X(p) =
m∑
i=1

Xi(p)
∂
∂ui

so X(f)(p) = X(p)(f) =
m∑
i=1

Xi(p)
∂(fσ)
∂ui

(σ−1(p))

where ∂
∂ui

= ∂
∂ui

(p) = Dσ(σ−1(p))ei for all p ∈ V and Xi(p) = Ai(σ
−1(p)).
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6.23 Definition: Let M ⊆ Rn be a smooth regular submanifold, let p ∈ M , and let
σ : U ⊆ Rm → V ⊆ M be a chart on M at p. The dual space T ∗pM = (TpM)∗ of TpM
is called the cotangent space of M at p. The basis for T ∗pM which is dual to the basis{

∂
∂u1

, · · · , ∂
∂um

}
is denoted by

{
du1, · · · , dum

}
, so duk is the linear map duk : TpM → R

given by duk
(
∂
∂u`

)
= δk,`. An element ω ∈ ΛkT ∗pM is an alternating k-linear map

ω : (TpM)∗∗× · · · ×(TpM)∗∗ → R. We identify (TpM)∗∗ with TpM (by identifying the vec-
tor X ∈ TpM with the linear map X : T ∗pM → R given by X(α) = α(X) for all α ∈ T ∗pM)

so that an element ω ∈ ΛkT ∗pM is an alternating k-linear map ω : TpM× · · · ×TpM → R.

The space ΛkT ∗pM has basis
{
duI = dui1 ∧ · · · ∧ duik

∣∣ 1 ≤ i1 < i2 < · · · < ik ≤ m
}

, so

each element ω ∈ ΛkT ∗pM can be written uniquely in the form ω =
∑
I incr

wI duI .

Somewhat confusingly, we use the same notation when working in TaU = Rm. In this
case,

{
∂
∂u1

, · · · , ∂
∂um

}
is another notation for the standard basis for Rm and {du1, · · · , dum}

is the dual basis for T ∗aU = (Rm)∗ (so that in fact we have ∂
∂ui

= ei and duj = ej
T ), and

ΛT ∗aU = Λ(Rm)∗ is the space of alternating k-linear maps α : Rm× · · · ×Rm → R, so each
element α ∈ ΛkT ∗aU = Λk(Rm)∗ can be written uniquely in the form α =

∑
I incr

aI duI .

Note that the notation used in TaU is consistent with the notation used in TpM when
we consider U ⊆ Rm to be a smooth regular submanifold of Rm and use the identity map
σ : U → U (given by σ(u) = u) as the chart.

6.24 Note: By Definition 6.16, keeping in mind that for X ∈ TpM and α ∈ T ∗pM we have
X(α) = α(X), when α1, · · · , αk ∈ T ∗pM and X1, · · · , Xk ∈ TpM we have

(α1 ∧ · · · ∧ αk)
(
X1, · · · , Xk

)
= det

α1(X1) · · · α1(Xk)
...

...
αk(X1) · · · αk(Xk)

 .

In particular,

(dui1 ∧ · · · ∧ duik)
(
X1, · · · , Xk

)
= det

 dui1(X1) · · · dui1(Xk)
...

...
duik(X1) · · · duik(Xk)

 ,

and if we write Xj =
m∑
i=1

Xj,i
∂
∂ui

then we have du`(Xj) = Xj,` and hence

(dui1 ∧ · · · ∧ duik)
(
X1, · · · , Xk

)
= det

X1,i1 · · · Xk,i1
...

...
X1,ik · · · Xk,ik

 .

Also, as in the proof of Theorem 6.17, we have (dui1 ∧ · · · ∧ duik)
(

∂
∂uj1

, · · · , ∂
∂ujk

)
= 0

unless the indices i1, · · · , ik are all distinct, and the indices j1, · · · , jk are a permutation of
the indices i1, · · · , ik, and when π ∈ Sk and j1 = iπ(1), j2 = iπ(2), · · · , jk = iπ(k) we have

(dui1 ∧ · · · ∧ duik)
(

∂
∂uj1

, · · · , ∂
∂ujk

)
= (−1)π.
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6.25 Theorem: Let M ⊆ Rn be a smooth regular submanifold, and let σ : U → V be a
chart on M at p. Let α =

∑
I incr

aI duI ∈ ΛkT ∗pM and let β =
∑

J incr

bJ duJ ∈ Λ`T ∗pM so

that α ∧ β =
∑

I,J incr

aI bJ duI ∧ duJ ∈ Λk+`T ∗pM . Then for X1, X2, · · · , Xk+` ∈ TpM ,

(α ∧ β)
(
X1, · · · , Xk+`

)
=

∑
τ∈Tk,`

(−1)τ α(Xτ(1), · · · , Xτ(k))β(Xτ(k+1), · · · , Xτ(k+`)),

where Tk,` is the set of all permutations τ ∈ Sk+` such that τ(1) < τ(2) < · · · < τ(k) and
τ(k + 1) < τ(k + 2) < · · · < τ(k + `).

Proof: By linearity, it suffices to prove the formula in the case that α = duI and β = duJ .

By Note 6.24, if we write Xj =
m∑
i=1

Xj,i
∂
∂ui

then we have

(duI ∧ duJ)(X1, · · · , Xk+`) = det



X1,i1 · · · Xk+`,i1
...

...
X1,ik · · · Xk+`,ik

X1,j1 · · · Xk+`,j1
...

...
X1,j` · · · Xk+`,j`


=

∑
π∈Sk+`

(−1)πXπ(1),i1 · · ·Xπ(k),ikXπ(k+1),j1 · · ·Xπ(k+`),j`

=
∑

τ∈Tk,`

∑
µ∈Sk

∑
ν∈S`

(−1)τ (−1)µ(−1)νXτ(µ(1)),i1 · · ·Xτ(µ(k)),i1 Xτ(k+ν(1)),j1 · · ·Xτ(k+ν(`)),j`

=
∑

τ∈Tk,`
(−1)τ det

Xτ(1),ii · · · Xτ(k),i1

...
...

Xτ(1),ik · · · Xτ(k),ik

det

Xτ(k+1),j1 · · · Xτ(k+`),j1

...
...

Xτ(k+1),j` · · · Xτ(k+`),j`


=

∑
τ∈Tk,`

(−1)τ duI
(
Xτ(1), · · · , Xτ(k)

)
duJ

(
Xτ(k+1), · · · , Xτ(k+`)

)
.

6.26 Definition: Let M ⊆ Rr and N ⊆ Rs be smooth regular submanifolds and let
f : M → N be a smooth map with f(p) = q. Recall that the pushforward f∗ : TpM → TqN
is given by f∗(γ

′(0)) = δ′(0) where γ(0) = p and δ(t) = f(γ(t)). We define the pullback
f∗ : ΛkT ∗qN → ΛkT ∗pM by

(f∗β)(X1, · · · , Xk) = β
(
f∗X1, · · · , f∗Xk

)
where β ∈ ΛkT ∗qN and each Xj ∈ TpM .

6.27 Theorem: Let M ⊆ Rr and N ⊆ Rs be smooth regular submanifolds and let
f : M → N be a smooth map with f(p) = q. Let σ : U ⊆ Rm → σ(U) ⊆ M be a chart
on M at p with σ(a) = p, and let ρ : V ⊆ Rn → ρ(V ) ⊆ N be a chart on N at q. Let
β =

∑
J incr

bJ dvJ ∈ ΛkT ∗qN . Then

f∗β =
∑
I incr

aI duI where aI =
∑

J incr

bJ det ∂vJ∂xI
(a)

for v(u) = (ρ−1fσ)(u) = (v1(u), · · · , vn(u)) so that ∂vJ
∂uI

(a) = D(ρ−1fσ)(a)IJ .
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Proof: Let α = f∗β =
∑
I incr

aI duI . For I = (i1, · · · , ik), the coefficient aI is given by

aI = (f∗β)
(

∂
∂ui1

, · · · , ∂
∂uik

)
= β

(
f∗

∂
∂ui1

, · · · , f∗ ∂
∂uik

)
=

∑
J incr

bJ dvJ

( n∑
`1=1

∂v`1
∂ui1

∂
∂v`1

, · · · ,
n∑

`k=1

∂v`k
∂uik

∂
∂v`k

)
=

∑
J incr

∑
all L

bJ
∂v`1
∂ui1
· · · ∂v`k∂uik

dvJ
(

∂
∂v`1

, · · · , ∂
∂v`k

)
Since dvJ

(
∂

∂v`1
, · · · , ∂

∂v`k

)
= 0 unless `1, · · · , `k is a permutation of i1, · · · , ik, in which case

it is equal to the sign of the permutation, we have

aI =
∑

J incr

∑
π∈Sk

(−1)πbJ
∂vjπ(1)

∂ui1
· · ·

∂vjπ(k)

∂uik

=
∑

J incr

bJ det ∂vJ∂uI
.

6.28 Definition: Let M ⊆ Rn be a smooth regular submanifold. A smooth k-form on
M is a map ω : M →

⋃
p∈M

ΛkT ∗pM such that for each chart σ : U ⊆ Rm → V ⊆M on M ,

when we write ω (restricted to V ) in the form ω(p) =
∑
I incr

w(p) duI , each of the coefficient

functions wI : V ⊆ M → R is smooth (as a map between manifolds), or equivalently,
when we write the pullback α = (σ−1)∗ω, which is a map α : U → (Rm)∗, in the form
α(u) =

∑
I incr

aI(u) duI , each of the coefficient functions aI : U ⊆ Rm → R is smooth.

6.29 Note: When A is an atlas on M , a smooth k-form ω on M determines, and is
determined by, the smooth k-forms σ∗ω where σ ∈ A: when σ : U ⊆ Rm → V ⊆ M , the
restriction of ω to V , given by ω(p) =

∑
I incr

wI(p) duI , and the pullback α = σ∗ω, given by

α(u) =
∑
I incr

aI(u) duI , are related by the formula aI(u) = wI(σ(u)). This is in agreement

with our previous Definition 5.36.

6.30 Definition: Let M ⊆ Rn be a smooth regular submanifold. When ω is a smooth
k-form on M and X1, · · · , Xk are smooth vector fields on M , ω(X1, · · · , Xk) is the smooth
function on M given by ω(X1, · · · , Xk)(p) = ω(p)

(
X1(p), · · · , Xk(p)

)
. When ω is a smooth

k-form on M and τ is a smooth `-form on M , the exterior product (or the wedge
product) ω ∧ τ is the smooth (k+`)-form on M given by (ω ∧ τ)(p) = ω(p)∧ τ(p). When
f : M → N is a smooth map between manifolds and τ is a smooth k-form on N , the
pullback of τ by f is the smooth k-form f∗β on M given by (f∗τ)(p) = f∗(τ(f(p))). We
note that Theorem 6.27 shows that the pullback is given by the same formula which we
used earlier to define the pullback in Definition 5.33. When ω is a smooth k-form on M ,
we define the exterior derivative of ω to be the smooth (k+1)-form dω on M such that,
for each chart σ : U ⊆ Rm → V ⊆M , if we write σ∗ω =

∑
I incr

aI(u) duI then we have

σ∗(dω) =
∑
I incr

m∑
i=1

∂aI
∂ui

dui ∧ duI

(in agreement with our earlier Definition 5.15). Note that these definitions are all consistent
with our previous definitions, from Chapter 5, and so Stokes’ Theorem still holds using
these new definitions.
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