Chapter 5. Integration of Differential Forms

5.1 Remark: There are a number of ways of using integration in differential geometry,
some of which we have already encountered. For example, in Definition 4.45, when M C R"
is a smooth regular submanifold of R™ and f : M — R is a continuous map, we defined
the integral f7 fdL = f[a,b] fdL of f along a smooth curve 7 : [a,b] = M C R", and we
defined the integral fo fdv = | rJdV of f on a closed Jordan region R C U, under a
chart 0 : U, C R™ — V, C M. In physics, when f represents density (mass per unit
length or mass per unit volume), these integrals calculate the mass of a curve or surface.
In this chapter, we wish to discuss integration of differential forms, which is related to the
integral of a vector field along a curve or across a surface.

5.2 Definition: Let m =2 or 3, let U C R™ be open, let F': U C R™ — R" be a smooth
vector field on U, and let v : [a,b] C R — U C R™ be a smooth regular map. Write

T(t) = hlg §| and dL = |y/(t)| dt, and define the integral of F' along v to be

/ Ferdb= [ Fly(t)o/(t) d.

=a

When m = 2 and F(z,y) = (P(z, )) and (t) = (z(t),y(t)), we also write

/F-T dL = / Pdz+Qdy = /t_ P(z(t),y(t)) 2’ (t) + Q(z(t),y(t)) ¥/ (t) dt.
When m = 3, F(x,y,z) = (P(:U,y, 2),Q(z,y, z), R(x,y, z)) and y(t) = (x(t),y(t),z(t)),
we also use the notation

/F-TdL:/Pdm—l-Qdy-i—Rdz
gl el

In physics, when ~(t) represents the position of an object which moves along a curve, and
the vector field F' represents the force at each point on the curve, the integral of F' along
~ measures the work done by the force on the object as it moves along the curve.

5.3 Definition: Let U C R3 be open, let F: U C R? — R? be a smooth vector field on U,
let R be a closed Jordan region in R?, let o : R C R? - U C R? be a map which extends
to a smooth map defined on some open set W C R? with R C W. Write N = ZuX% and

T Jou x|
dA = |o, X 0y| dudv, and define the integral (or flux) of F' across o to be

/UF-N dA = /RF(J(s,t))-(as x oy) dsdt.

When F(z,y,z) = (P(:c,y,z),Q(x,y,z),R(x,y,z)) and o(s,t) = (ac(sj),y(s,t),z(s,t))

we also write

/F-NdA:/deAdz+deAd:c+Rd:cAdy

9y 9y oz Oz oz Oz
:/P(U(u,v)) det( Ju %) — Q(o(u,v)) det( Ju %) + R(o(u,v)) det( Gu %) du dv.
R ou Ov ou Ov ou Ov

In physics, when o represents the shape of a surface in space, and F' represents the velocity
field of a fluid which moves through the surface o, the integral of F' across o measures
the rate (the volume per unit time) at which the fluid flows across the surface o, with the
sign of the integral indicating whether the fluid flows in the direction of the normal vector
N or in the opposite direction.



5.4 Definition: Let U C R™ be open and let R C R* be the closure of an open Jordan
region in R*. A smooth k-surface on R in U is a map ® : R — U which extends to a
smooth map ® : W C R* — U for some open set W C R¥ with R C W (we do not require
that ® is regular or injective). A O-surface in U is a map from {0} to U, which we can
identify with a point in U.

Let U C R™ be open. A smooth k-form on U is an expression of the form
a=> ardus
T

where the sum is taken over all multi-indices I = (i1, 12, - -, i) with each i; € {1, -, m},
and each a; = ay(u) is a smooth function a; : U C R™ — R, and we write

du; = duil A duiQ VANEREIVAY duzk

(at this stage, we have not ascribed a meaning to this expression, it is merely notation).
We also use the convention that a smooth 0-form on U is a smooth function from U to R.

When o = ) ajduy is a smooth k-form on U C R™ and ¢ : R C R - U C R™ is
a smooth k-surface on R in U given by ®(¢) = u(t) = (u1(t), -, um(t)), we define the
integral of a on ® to be

[Da:;éa[(u)du] :Z[:/Ral(u(t))det(%(t)) dty dty - - dty

where

Buil Buil 8ui1
ty Aty T Oty
Our Oy, Uiy, -+, Ug, ) ' _
- - . . 3
O U
ot Oto U Oty
which is the matrix obtained from Du = D® by selecting rows 1,15, - -, i, that is the

matrix % = Duy = D®; where ®(t) = ur(t) = (us (¢), -+, u;, (¢)). When « is a 0-form,
that is a smooth function o : U — R, and @ is a O-surface, that is a point p € U, we take
the convention that the integral of o on ® is «(p).

Notice that if two of the indices in I are equal, that is ¢; = 4, for some j # ¢, then two
of the rows of the matrix % are equal so that the determinant is zero. Also, notice that
if a multi-index .J is obtained from I by interchanging two indices, then two of the rows in
the matrix % are interchanged so the integral is multiplied by —1. For this reason, we
make the convention that

dui A de = —de A\ duz

so that when J is obtained from [ by interchanging two indices, we have du; = —du;.
More generally, when 7 is a permutation of {1,2, - -k} (that is when 7 is a bijective map
I {1, e -,k’} — {1, e ',k}), if I = (il,ig,'”,ik) and J = W(I) = (iﬂ(l),iﬂ(g),'“ ,iﬂ(k)),
then we have

dUJ = (—1)”du1

where (—1)™ is the sign of the permutation 7, that is (—=1)™ = 1 when 7 is an even

permutation, and (—1)™ = —1 when 7 is an odd permutation. With this convention, every
smooth k-form on U can be written uniquely in the form

a= > ardug
I incr
where the sum is taken over all strictly increasing multi-indices I = (iy,1g,- -, i) with

1< <o < - <t <M.



m

5.5 Example: A smooth 1-form on U C R™ is of the form a = a(u) = Y a;(u) du; where
i=1

each a; : U — R is a smooth map. In particular, writing v = (x,y, z), a smooth 1-form on

U C R3 is of the form

a=a(z,y,2)dr +b(z,y,2) dy + c(z,y, 2) dz.

When & = v : [r,s] = U is a smooth 1-surface (that is a smooth curve) on U, and « is the
smooth 1-form in U given by o = adz + bdy + cdz and F : U — R3? is the smooth vector
field in U given by F' = (a,b, c), we have

[b o= / FTdL = / T (1) (1) + DY) (1) + ey (8))2'(2) .

A smooth 2-form on U C R™ is of the form o = a(u) = Y a; ;(u) du; Adu;. In particular,
i<j
a smooth 2-form on U C R3 is of the form

a=a(x,y,z)dy Ndz + b(x,y,z)dz Ndx + c(x,y, z) de A dy.

When ® =0 : RC W C R? —» U C R3 is a smooth 2-surface in U, and « is the smooth
2-form on U given by @ = ady A dz + bdz N\ dx + cdx A dy, and F is the smooth vector
field in U given by F' = (a, b, c), we have

/a—/FNdA

= /Ra( (u,v))det géyii)) b(o(u,v)) det géx’zg + c(o(u,v)) det gg ’y; du dv.

A smooth 3-form in U C R™ is of the form a = a(u) = > a;r(uw) du; A duj A dug. In
i<j<k
particular, a smooth 3-form on U C R3 is of the form
a=a(x,y,z) de ANdy A dz.

When ® = ¢: RC W C R?® — U C R? is a smooth 3-surface (for example, if ¢ is a smooth
regular change of coordinates from W to U) and « is the smooth 3-form o« = a dz AdyAdz,
we have

/ o —/ (u,v,w))det Dop(u, v, w) dudv dw,
and we note that this is similar to the change of coordinates formula for integration, but
using det D¢ rather than ‘ det D¢|.
5.6 Exercise: Let F(z,y) = (—y,x), let y(t) = (cost,sint) for 0 < ¢t < 3% and let

At) =(2—1t,1+2t) for 0 <t <2. Find the integrals /F-T dL and / F.T dL.
o A

5.7 Exercise: Let F(z,y) = (xz_—fyz, mngyQ> and let y(t) = (r(t) cos6(t), r(t)sin6(t))

for a <t <b. Find /F-T dL. In particular, find / F T dL when A is the line segment
A

from (2,1) to (1,3).

5.8 Exercise: Let F(x,y,2) = (—xy, 2,2%). Find the flux of F across the portion of the
paraboloid z = 22 + y2 which lies above the square given by —1 <z <1 and —1 <y < 1.



The Exterior Derivative

5.9 Definition: Let U be an open set in R3, let ¢ : U C R3® — R be a function and let
F :U CR3 — R3 be a vector field given by F = (P,Q, R). We write

) 99 OR _ 9Q

i %

- | & — | 29 . 9R oP _ OR
V= Oy , Vg = oy , Vo F = 8x+8y+82’VXF_ 0z oz
9 99 9Q _ opr

0z 0z ox oy

Vg is called the gradient of g, V.« F' is called the divergence of F', and V x F' is called
the curl of F'.

5.10 Remark: We state four theorems from vector calculus, informally and without proof,
and in the next section we shall formulate and prove Stokes’ Theorem for Chains, which
includes all four of these theorems as special cases.

5.11 Theorem: (The Conservative Field Theorem) Let U C R? be open, let 7y : [a,b] — U
be a C! (or piecewise C1) curve in U, let f : U CR3 — R be a C! function on U. Then

/ VST dL = f((b)) — f(3(a)).

5.12 Theorem: (Green’s Theorem) Let U C R? be open, let R C U be the closure of an
open Jordan region in R?, let F' = (P,Q) : U C R? — R? be a C! vector field on U, and
let v be a Ct (or piecewise C') curve in R? which goes once, counterclockwise, around the
boundary of R. Then

Q _op dA:/F-TdL.
z y

R Y

5.13 Theorem: (The Divergence Theorem, or Gauss’ Theorem) Let U C R? be open, let
R C U be the closure of an open Jordan region in R3, let F : U C R?> — R3 be a C! vector
field on U, let o be a C' (or piecewise C!) surface in R® which envelops the boundary of
R, wrapping once around, with the normal vector N pointing outwards. Then

/VOFdV:/F-NdA.
R o

5.14 Theorem: (Stokes’ Theorem for a Surface in R?) Let U C R3 be an open set, let
F:U CR3 — R3 be aC! vector field in U, let o be a C* surface in U, let vy be a C! (or
piecewise C') curve in U which wraps once around the boundary of (the image of) o in
the direction compatible with the right hand rule (when the fingers of the right hand point
in the direction of the tangent vector T' to the curve, the thumb points in the direction of
the normal vector N to the surface). Then

/(VXF)-N dA:/F-T dL.
o 0

5.15 Definition: Let U C R™ be open. When k € Z" and « is the smooth k-form on U

given by o = > aj duy, the exterior derivative of « is the smooth (k+1)-form
T

da:d(zajdul) ZZ 8‘” du; Nduy = ZZ dar clm/\du21 < N dug,
T

When a : U — R is a smooth function and « is the O-form «a(u) = a(u), the exterior
derivative of «a is

da—da—zaa du;.



5.16 Note: When « is a smooth k-form in an open set U C R3, the exterior derivative
da is related to the gradient of a function or the divergence or the curl of a vector field.
Let U C R? be open, let a,b,c: U — R be smooth functions and write u = (z,y, z) € U.

When « is the smooth O-form o = a, and f is the smooth function f = a, we have

doa = da = dac—i— dy—i— ga dz,
Vf =Va = (%,g—g,%).
When « is the 1-form o = adz + bdy + cdz and F is the vector field F' = (a, b, c) we have
da = (85— ) dy ndz+ (82 — 52) dz Nda + (G — G2) dw A dy,

_(dc _ b da_ 0c b _ da
VXF_<8y Ox ' Oz Oz ' Oz 8y>'

When « is the smooth 2-form o = ady A dz + bdz N\ dx + cdx A dy and F' is the smooth
vector field F' = (a, b, c), we have
da = (%-&—g—g-l—%)dx/\dy/\dz,
__ Oa ob dc
V.F = 5z T oy +35; -
5.17 Note: By comparing the formulas in the above note to the statements of the four

theorems from vector calculus, one sees that the conclusions of all four vector calculus
theorems can be written in the form

/da:/ «
® P

where ® is a curve, or a surface, or a region in R? or R?, and 9® denotes the boundary of
® (which we have not yet formally defined), and « is an appropriately chosen k-form. For

example, for Green’s Theorem we use a = Pdzx + Q dy with da = (g—fg — 8—P) dx N dy.
5.18 Exercise: Let v be a curve which goes once around the circle 22 + 32 = 1, let R

be the disc R = {(z,y)|2? + y* < 1}, and let F(z,y) = (z%y, —ay?). Verify that the
conclusion of Green’s Theorem holds.

5.19 Exercise: Let R be the tetrahedron with vertices at (0,0,0), (1,0,0), (0,2,0) and
(0,0,2), let o be the boundary surface of R (which consists of four triangles), and let
f(x,y,2) = vy + 22. Verify the conclusion of Gauss’ Theorem.

5.20 Exercise: Let vy be a curve whose image is given by z = 2% and 22 +y? = 1, let ¢ be
a surface whose image is given by z = 22 with 22 +y? < 1, and let F(z,y, 2) = (y, —z, 22).
Verify the conclusion of Stokes” Theorem.

5.21 Exercise: Find the integral of F' along v when F(z,y) = (z y x +¢°®) and 7 is
the boundary curve of the quarter-disc given by > 0, y > 0 and 22 + y <1

5.22 Exercise: Find the flux of F' across o when F(x,y,z) = (xy , 22y, (22 +y2)z2) and
o is the boundary surface of the cylinder given by (x,y, z) = (Sin t,0, cos t) for 0 <t < 2.

5.23 Exercise: Find the integral of F' along v when F' is the vector field given by
F(z,y,z) = (2?2 + Va® + 22 + 2, 2y, vy + V23 + 22 + 2) and 7 goes once around the

circle given by y = 0 and 22 + 22 = 1.



Stoke’s Theorem for Smooth Chains in R™

5.24 Definition: Let ag,aq,---,ar € R™. The convex hull of {ag, a1, -, ax} is the set
k k
[ao,al,...,ak]:{Zsiai eaChSi207Zsi:1}_
1=0 i=0

Note that if we let u; = a; — ag for 1 <7 < k then

k
eacht; >0, Y t; < 1}.
i=1

k
lap, a1, -+, ax] = ag + Span{uy, -, ux} = {ao + > tiu;
i=1

We say that the ordered (k+1)-tuple (ag, a1, -,ar) is affinely independent when the
k-tuple (uy,ug,---,uy) is linearly independent. In this case, verify that the coefficients s;
(or the coefficients ¢;) for an element u € [ag, a1, - -, a] are uniquely determined.

An affine map from R* to R? is a map F : R¥ — R’ of the form F(z) = p + Ax for
some p € R’ and some £ x k matrix A. Verify, as an exercise, that when (ag, a1, -, ax) is
affinely independent in R and by, by, - - -, by, € R?, there is a unique affine map F : R¥ — R¢
with F'(a;) = b; for all 4, namely the map given by F( Z?:o siai) = Z,’;Zl s;b; where each
s; > 0 with Zf:o s; = 1.

A k-simplex in R™ is a set of the form [ag, a1, - -, ax] for some affinely independent
(k+1)-tuple (ag,ay,---,ax) of elements a; € R™. The standard k-simplex in R* is the
simplex

AF =[eg,eq,---,ex] CRF

where eg = 0 and e; is the 4t standard basis vector in R* for 1 < j < k.

5.25 Definition: Let U C R™ be an open set. A smooth k-simplex in U is a smooth
k-surface on A¥ in U, that is a smooth map ® : A¥ C R¥ — U C R™ which extends to
a smooth map ® : W C RF — U C R™ for some open set W C R* with A¥ C W. A
smooth k-chain in U is a formal finite sum

l
U = Z Ci(I)z'
1=1

where each ¢; € Z and each ®; is a smooth k-simplex. If two of the k-simplices are equal, say
if ®; =®; =& with i# j, we can write ¢;®; +¢; P, as (¢;+¢;)®. If the smooth k-simplices ®;
are all distinct, then the coefficients ¢; in the sum are uniquely determined. We add smooth

¢ ¢ ¢
k-chains in the natural way: if U=>" ¢;®; and © = > d;®; then V4+0 = > (¢;+d;) P,
; = i=1

=1 =1
(where, if the set of smooth k-chains ®; which occur in the sum which represents ¥ is

not the same as the set of smooth k-chains which occurs in ©, we simply take the union
of the two sets of k-chains and represent both W and © in terms of the k-chains in the
union, with some of the coefficients being zero). We remark that students familiar with
free abelian groups will recognize that the set of all smooth k-chains is the free abelian
group generated by the set of smooth k-simplices.

5.26 Definition: When a = ) ajdzy is a smooth k-form on an open set U € R™ and
U= Zle ¢;®; is a smooth k-chain in U (where each ®; is a smooth k-simplex in U), we
define the integral of o on ¥ to be

¢
/a:Zci a.
7 =1 Jo,



5.27 Definition: For 0<j<k+1, the j*! face map on A* (or in A¥*+1) is the affine map
Fj: AF CRF — AMFL C REFY
with Fj(e;) = e; for ¢ < j and Fj(e;) = e;41 for i > j. Note that F; sends the standard
simplex AF = [eg, e1,---,ex] € R¥ to the simplex
Fi(A") = leo, -+, &, enr1] = [eo,er, - ejot, €1, epn] © AV CRMFL
where the hat symbol in the term é; indicates that the entry e; is omitted.

For k > 0, the boundary of the smooth (k+1)-simplex ® : A¥*1 — U C R™ is the

smooth k-chain
k+1

0 = 5 (—1) O F;
j=0

¢ ¢
and the boundary of the smooth (k+1)-chain ¥ = > ¢;®; is the k-chain 0¥ = > ¢; 09;.
=1 i=1

5.28 Lemma: Let U C R™ be open, let ® : AF+1 — U C R™ be a smooth (k+1)-simplex,
write ®(t) = u(t) = (u1(t), -+, un(t)), and let I = (iy,---,i)) be a multi-index. Then

k+1
i 0wy, oyui
Z(—l)”l%(det (g i) ) —0.
j=1 J O(t1,tj, s tpt1)
a(uila“‘fuik)
O(t1,t5, tht1)
Buil BuiQ Buik
87577(1) 8157‘.(2) 8t7r(k)

Proof: The determinant det is a sum of terms of the form

where 7 is a bijective map from {1,2,--- k} to {1,--- ,3, -+, k+1}, and so the derivative
i d a(uilz'”,uik)
atj 8(t17"'y{;a"'7tk+1)

is a sum of terms of the form

0t ; Oty 8tﬂ.(1) 8t7,(n) 6t7,(k>

k41

where m(n) = £. When the sum > (—1)7+ 2 det Oluiovin) g expanded, the terms
= T TO SR

Ol ) ()10 g - M)
O(t1,,tj,,thy1) Oty O(t1, -~ te,,tet1)

Fix j,¢ with j < £. Since j < ¢, the (/—1)* column of — 2“2 0)  jnvolves 2%n and
a(tl,"',tj7"',tk+1) 8t£

involving O uin ocour in (—1)7+12 det
D1, 0ts o1,

by expanding the derivative along this column gives

k. —
(_1)3'—1-11 det B(uil,...,uik) — (_1)j+1i(2(_1)n+€—1 ou,,, det 8(“i17"'»“z‘n:"'»uik) )
Ot A(t1,sti,stpa1) ot; = Oty A1, sty stey st

k 2 —
SR ()i O, Outiy iy oo,
- Z( 1) Ot Oty detat e Er ety et +E
n=1 J (t1, sUjyenyle, 7k+1)

k —
i Ou; O(Wiq sty Uigy 5w Us . . 92w,
where B = 37 (=1)7H+nSn 2 det (uiy o tin i) rhich does not involve A
n=1 te Ot O(t1,stj,ste,ster1) tj Oty

Oy, uiy)

a8 along the j'" column shows that
O(t1,ste,stht1)

Similarly, expanding the determinant det

k —
a Uiq s Ug ] 82 i 8 Uiq Uiy 5 Ug
(~1) 1 det A tn) - yn ()it D qop Ol in ) -y g
Vi a(tlv"'vtéf"vtk%f»l) el jO0le 8(t1,-~-,tj,~-~,tz,~--,tk+1)
. 82u¢n . . 82u¢n
where F' does not involve 32, and so all the terms which involve 552 cancel.
J 4 7 L



5.29 Theorem: (Stoke’s Theorem for Chains in R™) Let a be a smooth k-form on
U CR™ and let ¥ be a smooth (k+1)-chain in U. Then

o= f

Proof: By linearity, it suffices to consider a k-form of the form o = a(u) = a(u) duy for
some fixed multi-index I = (41,42, --,4x) and a (k+1)-chain of the form ¥ = & where ¢
is a single smooth (k+1)- simplex. Writing ®(t) = u(t) = (u1(t),- -, um(t)), expanding
the determinant along the top row, and making use of the above lemma, we have

/da = cluZ Adug, A A dug,
- iaa@()) det 20t ) (4 gy gy, g
N Ak+1 §=1 Fui O(t1,ta,tk+1) 1at2 k41
= 5o 2o (‘I’(t))-kil(—l)j“%(t) det — 200 %i) 4y gty - - d
— Ak+1 =1 Ou; = Ot 8(t1,~-~£,-~-,tk+1) 1at2 k41
= kil(—l)“1 S 00 (g (1)) 2 (1) . det —2 ) (4t iy - - dt
B =1 Ak+1 i—1 Ou; ot; Aty gy stiit) 162 k+1

Il
xS
+
[a
—~~
|
—_
N~—
S
+
—
[>\
o
+
[=
2
B
\”_9‘,

Il
xS
Il +
— —
—~
|
—_
N—r
<
+
[u
l>\
o
+
(s
Q

a(uila"'yui ) .
7 ( ) det 8(t1,~~~,tj,~~~,ti+1)(t) dtldtg dtk+1

%((aqa) det 20 ty) )(t) dtydts - dtgr (by the lemma)

Ot stj,stk+1)

J
k41 , Awiy s yui,) l_i;Eéjti —
= (—l)J'H / {((a@) - det R >(t):| dty---dtj- - dtgq

8(t17"'atj,"'atk+l) t.=0
§=

(tly"',tjy"',tk-}—l)eAk

=A+B

where
k+1 1 iy, us,,)

A= > (-1) <(a<I>)-det6 Sk )(rl,---,rj_l,l—Eri,rj---,rk) dry---dry
j:l TEAk (t1,~~-,t],~-~,tk+1)
k+1 1 O(wiy i)

= > (1) ((afb)-det YOS )(1—Zsi, S1,82,"++,8k) dsy - - - dsg,

= CAK Loty teg)

since for r = ¢(s) = (1 — XS5, S1ySj—2, 851,55, -,sk) we have det D¢ = £1, and

k+1 . A(wiy o eyui,)
B=3 (-1) ((acb)-det ST )(sl,--~,sj_1,o,sj.--,sk) dsy- - dsp.
= SEAK 8(t1,---,tj,-~~,tk+1)
Auiy o ui,)
) 8(t1,~~-,tj,~--,tk+1)
the m x (k+1) matrix D® by selecting the rows iy, io, - - -, i, and removing the ;" column.

denotes the k x k matrix obtained from

Note that in the above integrals

On the other hand, we have

k—|—1 k1
/ / a —/ a+ > (- / a.
oW ; DF; F, j=1 OF;

k41
To complete the proof, we shall show that / a=Aand ) a=B.



Writing ®Fy(s) = v(s) ,Um(8)), we have

O(Viq ,Vig s y0;
/ / (OFo)(5)) - det 202 () g . g
PF, ezxk

The map Fy is the affine map which sends [eq, - - -, ex] to [e1,ea,- -, ext1], which is given
by
k
Fo(Sl, e, S ) —=e1 + Z Sj(€j+1 — 61) = (1 — ESZ', 81,89, ',Sk),

and its Jacobian matrix is DFy = (_1"'_1) where [ is the kxk identity matrix. The
matrix H is obtained from the matrix D(®Fy) by selecting rows iy, 9, -, ik, SO
it is equal to the matrix D(®;Fy) where write ®;(t) = ur(t) = (us (£), - u;, (¢)). Thus,

denoting the columns of the matrix D®; by %f’ , and using the fact that the determinant
J

is a linear function of the columns, we have

det 20V (o) = det D(®; Fy)(s) = det <D<I>1(Fos) : DFO(S))

9(s1,",5k)
_det oP; 0P; 0Py (F S)- —1 _]_
= 8t17 8t27 7tk+1 0 _[
— o0 _ 9®r ., O0®r _
( Btl Bt oty T 8t1 )(F s)
k+1
_ L 0% —idet 00, . 9d; 0%, 9B, .. 9%
7 8t3 ) 8tk+1 5 Otg ? ’ atj_17 oty 8tj+17 ) tk+1
J:
R +1 o 8%, 8%
J o921 .. I ... I
Z( ) det < ty Bt ’ 8tk+1>(FOS)
Jj=
k+1

= (1 det ) ()
( ) det 8(t17"'atj""7tk+1)( OS)

<.
I
—

Thus we have

k+1 . . s
/ o :/ (a®)(Fps) - S (—1)7+ det —2Mi) (Fog) dsy - - dsy, = A
DF, SEAk Oty it

tiy s tht1)

Fix j with 1 < j <k + 1 and write ®F;(s) = v(s) = (v1(s), -+, vm(s)). Then we have

/ a_/ a(@Fy(s)) - det D) () d, - - dy,
DF; ceAk

The map Fj is the affine map which sends [eq,- -, ex] to [eg, -, €}, -+, €kt1], which is
given by

Fj(sla"'ask) = (Sla"'78j—17075j7"'75k)7
and its Jacobian matrix DFj(s) is the matrix obtained from the (k+1)x (k+1) identity
matrix by removing the j*" column. Multiplying a matrix on the right by DF;(s) removes

the 5™ column from the matrix and so, writing ®;(t) = (u;, (¢), -, u;,(t)), we have
O(viy,y0iy ) _ ) — g . ) O(wiy» sty )
8(517...’5k) - D((PIF])(S> —D@I(F}S) DFJ( ) 8(t1, e 7tk+l)(F 8)
Thus
k+1 k+1 O(us, i, )
> a= > (a®)(F}s) - det Lk —(Fs) dsy -+ -dsy = B.
y — @F] ]:1 SeAk a(t17"'atj7"'atk+1)



Differential Forms on Smooth Submanifolds of R™

5.30 Notation: For an nxm matrix A € M, x »(R) and for multi-indices I = (i1, - -, ix)
and J = (j1,---,J¢), write Ay for the k x m matrix obtained from A by selecting the rows
i1,-- -, i, and write A7 for the nx¢ matrix obtained from A by selecting the columns
g1, ,je, and let A be the kx ¢ matrix A7 = (A;)) = (A7);. We remark that if
Rr = (eiy, ,ei,)T € Miyn(R) and C; = (ej,,-++,€j,) € Mpyxe(R), then we have
A[ = R[A, A‘] = AOJ and A{ = R[ACJ.

5.31 Theorem: (The Cauchy-Binet Determinant Formula) Let k,m € Z* with k < m,
let A € Myxm(R) and let B € M, «x(R). Then

det(AB) = Y det A7 -det B;

J incr

where the sum is taken over all stricly increasing multi-indices J = (j1,--+, jk)-

Proof: Let P be the set of bijective maps 7 : {1,2,---,k} — {1,2,---,k}, and for 7 € P
let (—1)™ be the sign of m. Then

det(AB) = Y (=1)"(AB)1,x(1)(AB)2 x(2) - - - (AB) g r (k)

TEP
= > (X AaBi ) (X A2i,Bisr2) - (Y Ak Bign (i)
TeP 11=1 io=1 ir=1
= > (Avn Az, Ariy) 2 (=)™ (B, 2(1)Bisr2) *+ Bin()
all T meP
= Z <A17Z‘1A27Z’2 e Ak,zk) - det B[
all
When two of the entries of a multi-index I are equal, we have det By = 0, so the sum can be
taken over all mult-indices with distict entries. And each multi-index I = (i1, - -, i) with
distinct entries, is (uniquely) of the form I = m(J) = (jr1), ", Jr(x)) for some strictly
increasing multi-index J = (ji, -+, jx) and some permutation = € P. Thus
det(AB) = Z <A1’i1A2,i2 s Ak,zk) - det B[
all 1
= Z Z (_1)7F(A17j7r(1)A27j7r(2) e 'Alﬁjw(k)) -det By
J incr m€P
= > detA’-det By.
J incr

5.32 Remark: In the case k = m, the above theorem gives det(AB) = det A - det B.

5.33 Definition: Let U C R™ and V C R™ be open, let f : U — V be smooth, and let
B =pw) = > byj(v)dvy; be a smooth k-form on V. We define the pullback of g by f

J incr

to be the smooth k-form o = f*f on U given by
a=cou)= > ar(u)du; where aj(u)= >, by(v(u))-det gLui(u)

I incr J incr
where v(u) = f(u) = (vi(u),- -, v,(u)) so that giu‘;(u) = Df (u)L.

5.34 Remark: The three properties of the pullback proven below in the following theorem
are precisely the properties that we need to use in order to define smooth k-forms on
manifolds and extend Stokes’ Theorem so that it applies in this more general situation.
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5.35 Theorem: (Pullback Formulas) Let U C R™, V C R™ and W C R¢ be open, and
let f:U —V and g:V — W be smooth.

(1) When « is a smooth k-form on W, we have (gf)*y = f*(g*7).
(2) When B is a smooth k-form on V and ® : A¥ — U is a smooth k-surface in U, we have

/f@ﬁz[pf*ﬂ.

(3) When [ is a smooth k-form on V' we have df* = f*d.
Proof: To prove Part 1,let v = >  ¢g dwg be a smooth k-form on W. Then we have

K incr
f*(g*,y) :f*(JKZ CK(g’U) det %}TI;(,U) dUJ)
= . sz(:incr ck(gfu) det gngj(fu) det g”T‘;(u) dur
= Y ck(gfu) > det Dg(fu)i, det Df(u)} duy
I,K incr J incr
= > ex(gfu) det Dg(fu)x Df(u)! du; (by Theorem 5.31)
I,K incr
= ¥ exlgfu) det D(gf)fedur = 32 ex(gfu) det PG (u) dus
I,K incr I,K incr
= (9f)"y
To prove Part 2, let 3= . bs(v)dvs be a smooth k-form on V and let ® : A¥ — U be
J incr
a smooth k-surface in U. Then f*S(u) = > 0bs(fu) det giu‘;(u) duy and so

I1,J incr

/f /5—” N by(f®t) det 3oL (Dt) det FiL (t) dty - - - diy

= ¥ [ by(fon( X det DF(N)] det DD(L); ) dty -+ diy

J incr J Ak I incr
= ) by (f®t) det (Df (®t) yDP(t)) dty - - - dt, (by Theorem 5.31)
J incr J A
= 2 ka(f<I>t) det D(f®@),(t)dty---dty = > ka(f‘I’t) det T8 () dty - - - dty,
J incr J A J incr J A
- [ 3.
Fd
To prove Part 3, let 6 = Y. by(v)dvy be asmooth k-form on V. Write L = ({1, -+, l41).
J incr
Expanding the determinant along the first row, we have
f*dﬁ — f*( g%‘;(v) de /\dUJ)
j=1
n O(Vj Wiy "3V, )
= ZLj Zlgivj(fu) det g 2T (u) dug,
j:
n k+1
i (9’Uj 8(”'17"'71}' )
=32 G (fu) 32 (1) 5 (u) det = (u) dug.
L j=17" i=1 i O(ugy, e, ,ungrl)
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Note that the proof of Lemma 5.28 (with small alterations) shows that

k1l N
Z (_1)1—1—1 e det a( Ji s Jk) = 0.

= auzi 8(uel"“’u[i"“’uek+1)

Writing I = (i1,---,4x) and L = (€1, -+, lk11), we have
T

=¥ %(bj(f’d) det gLuj(u)) dug N\ dug

I g1
S 1 vy 03, ) ; .
B ; Z;. W< J(fU) et 8(”@1 s U, ’“”uék{»l (U)> ugz /\ u(£17"'7a7"'7‘€k+1)
k+1 . P vy, vj,)
=5 30 (~1) 52 (by (fu) det i) () duy
L =1 8u£i 8(u£17...7uli7.“7uzk+l)
k+1 11 6b vy, vj,)
=3 > (=) S (fu) det e (u) dur, (by Lemma 5.28)
T i=1 u 8(u517"'7“4w"'7“4k+1)
k+1

(—1)1+1 252 () 200 (y) det — 2L (y)

Ov; Ouy, GICTRRERTNRER Y.

Il
§M
NE

@
Il
—
<.
Il
H

5.36 Definition: Let M C R" be a smooth regular submanifold with atlas A. A smooth
k-form w on M consists of a smooth k-form w, on U, C R" for each chart o : U, — V, in
A such that whenever o, p € A are two charts with V, NV, # 0, we have w, = (p™10)*w,;
to be precise, if we let a be the restriction of w, to o='(V, NV,) and we let 3 be the
restriction of w, to p~*(V, NV,) and we let f be the smooth change of coordinates map

f=pto:o7(V,NV,) = p~1(V,NV,) then we have a = f*8.

5.37 Example: An open set U C R™ is a submanifold of R™ with an atlas consisting of a
single chart, namely the inclusion map ¢ : U — R™. In this trivial case, a smooth k-form
on the manifold M = U is the same thing as a smooth k-form on the open set U C R™.

5.38 Definition: Let N C R®* and M C R” be two (smooth regular) submanifolds, let
f: N — M be a smooth map, and let w be a smooth k-form on M. The pullback of w
by f is the smooth k-form A\ = f*w on N defined as follows: given a chart v : U, — V,
on N, for ¢ € U, and ¢ = v(c) € N, we choose a chart 0 on M at p = f(q) and define \,
in a neighbourhood of ¢ by A\, = (67} fv)*w,. By Part 1 of Theorem 5.35, this does not
depend on the choice of chart: if p is another chart on M at p then since w, = (p~'o)*w,,

we have (0= fu)*wy = (6= f1)*(p™"0) w, = (00 fu)*w, = (p~ fv)"w,.

5.39 Example: Let M C R™ be a smooth regular submanifold and let w be a smooth
k-form on M. When o : U, C R™ — V, C M is a chart on M, the k-form w, on U, is
the same thing as the pullback A = o*w. Indeed, in the formula A\, = (67! fv)*w,, we use
f = o and we take v to be the trivial chart so that o~! fv = o~ 'ov is the identity map.
For this reason, it is common to write w, as o*w.

5.40 Definition: Let M C R™ be a smooth regular submanifold and let w be a smooth
k-form on M. We define the exterior derivative of w to be the smooth (k+1)-form dw
on M defined by (dw), = d(w,) for each chart o on M. By Part 3 of Theorem 5.35: this
does define a (k+1)-form on M because when o and p are two charts with V, NV, # 0,
we have (p~1o)*(dw), = (p'0)* (dw,) = d((p™'0)*w,) = d(ws) = (dw),-

12



5.41 Definition: Let M C R™ be a smooth regular submanifold. A smooth k-simplex

on M is a map © : A¥ — M which extends to a smooth map © : W — M for some open
¢
set W C R* with A* C W. A smooth k-chain on M is a formal finite sum y = > ¢

j=1

where each ¢; € Z and each ©; is a smooth k-simplex on M. When © is a smooth
k41 ,

(k+1)-simplex on M, the boundary of © is the smooth k-chain x = > (—1)’©OF} where
j=0

¢
Fj : AF — ARl g the j'™ face map. When Y is the smooth (k+1)-chain y = Y ¢;0;,
j=1
¢
the boundary of x is the smooth k-chain Oy = ) ¢;00;.
j=1

5.42 Definition: When O is a smooth k-simplex on M and w is a smooth k-form on M,
we define the integral of w on © to be

/w: @*w:/@*w
e Ak J

¢ ¢
where J : A* — R¥ is the inclusion. When y = >_ ¢;0;, we define / w= Yy cj/ w.
J=1 X Jj=1 O;
5.43 Theorem: (Stoke’s Theorem for Smooth Chains on Submanifolds of R™) Let M C
R"™ be a regular smooth submanifold, let w be a smooth k-form on M, and let x be a

smooth (k+1)-chain on M. Then
/ dw = / w.
X x

Proof: By linearity, we may assume that y = © where O is a single smooth (k+1)-simplex
on M. Say © extends to a smooth map © : W — M where W is open in R**! with
AF+L C . Assume that the image ©(W) is contained in the range V, of a single chart
o:U, CR™ — V, C M (in general, we can subdivide that standard simplex AF+1
into small subsimplices A; contained in open sets W; with each image ©(W;) contained
in the range of a single chart ;). Since o : U, — V, is a diffeomorphism, the map
® = 0710 is smooth, so ® : AF*1 C W — U, C R™ is a smooth (k+1)-simplex in U,.
As in Definition 5.38 and Example 5.39, the smooth (k+1)-form ©*dw on W C RF+!
given by ©*dw = (¢710)*(dw), = ®*dw,, and the smooth k-form ©*w on W is given by
O*w = (6710)*w, = ®*w,. By Stokes’ Theorem for Chains in R™, and by Parts 1 and 2
of Theorem 5.35, we have

k+1 ,
/w:/ @*w:/ Cb*dwaz/dwaz/ Wy = Z(—l)ﬂ/ We
o Ak+1 Ak+1 P oD Jj= J

0 OF
k+1 , k+1 . k+1
= Z(—l)ﬂ/ Fjfd*w, = Z(—l)ﬂ/ FO'w= Z/ w:/ w.
Ak AP =0Jer; 00

5=0 5=0 i=
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