
Chapter 5. Integration of Differential Forms

5.1 Remark: There are a number of ways of using integration in differential geometry,
some of which we have already encountered. For example, in Definition 4.45, when M ⊆ Rn
is a smooth regular submanifold of Rn and f : M → R is a continuous map, we defined
the integral

∫
γ
f dL =

∫
[a,b]

f dL of f along a smooth curve γ : [a, b] → M ⊆ Rn, and we

defined the integral
∫
σ
f dV =

∫
R
f dV of f on a closed Jordan region R ⊆ Uσ under a

chart σ : Uσ ⊆ Rm → Vσ ⊆ M . In physics, when f represents density (mass per unit
length or mass per unit volume), these integrals calculate the mass of a curve or surface.
In this chapter, we wish to discuss integration of differential forms, which is related to the
integral of a vector field along a curve or across a surface.

5.2 Definition: Let m = 2 or 3, let U ⊆ Rm be open, let F : U ⊆ Rm → Rm be a smooth
vector field on U , and let γ : [a, b] ⊆ R → U ⊆ Rm be a smooth regular map. Write

T (t) = γ′(t)
|γ′(t)| and dL = |γ′(t)| dt, and define the integral of F along γ to be∫

γ

F.T dL =

∫ b

t=a

F (γ(t)).γ′(t) dt.
When m = 2 and F (x, y) =

(
P (x, y), Q(x, y)

)
and γ(t) =

(
x(t), y(t)

)
, we also write∫

γ

F.T dL =

∫
γ

P dx+Qdy =

∫ b

t=a

P
(
x(t), y(t)

)
x′(t) +Q

(
x(t), y(t)

)
y′(t) dt.

When m = 3, F (x, y, z) =
(
P (x, y, z), Q(x, y, z), R(x, y, z)

)
and γ(t) =

(
x(t), y(t), z(t)

)
,

we also use the notation ∫
γ

F.T dL =

∫
γ

P dx+Qdy +Rdz

In physics, when γ(t) represents the position of an object which moves along a curve, and
the vector field F represents the force at each point on the curve, the integral of F along
γ measures the work done by the force on the object as it moves along the curve.

5.3 Definition: Let U ⊆ R3 be open, let F : U ⊆ R3 → R3 be a smooth vector field on U ,
let R be a closed Jordan region in R2, let σ : R ⊆ R2 → U ⊆ R3 be a map which extends
to a smooth map defined on some open set W ⊆ R2 with R ⊆W . Write N = σu×σv

|σu×σv| and

dA = |σu×σv| du dv, and define the integral (or flux) of F across σ to be∫
σ

F.N dA =

∫
R

F
(
σ(s, t)

).(σs × σt) ds dt.

When F (x, y, z) =
(
P (x, y, z), Q(x, y, z), R(x, y, z)

)
and σ(s, t) =

(
x(s, t), y(s, t), z(s, t)

)
we also write ∫

σ

F.N dA =

∫
σ

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

=

∫
R

P (σ(u, v)) det

( ∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

)
−Q(σ(u, v)) det

(
∂x
∂u

∂x
∂v

∂z
∂u

∂z
∂v

)
+R(σ(u, v)) det

( ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
du dv.

In physics, when σ represents the shape of a surface in space, and F represents the velocity
field of a fluid which moves through the surface σ, the integral of F across σ measures
the rate (the volume per unit time) at which the fluid flows across the surface σ, with the
sign of the integral indicating whether the fluid flows in the direction of the normal vector
N or in the opposite direction.
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5.4 Definition: Let U ⊆ Rm be open and let R ⊆ Rk be the closure of an open Jordan
region in Rk. A smooth k-surface on R in U is a map Φ : R → U which extends to a
smooth map Φ : W ⊆ Rk → U for some open set W ⊆ Rk with R ⊆W (we do not require
that Φ is regular or injective). A 0-surface in U is a map from {0} to U , which we can
identify with a point in U .

Let U ⊆ Rm be open. A smooth k-form on U is an expression of the form

α =
∑
I

aI duI

where the sum is taken over all multi-indices I=(i1, i2, · · · , ik) with each ij ∈{1, · · · ,m},
and each aI = aI(u) is a smooth function aI : U ⊆ Rm → R, and we write

duI = dui1 ∧ dui2 ∧ · · · ∧ duik
(at this stage, we have not ascribed a meaning to this expression, it is merely notation).
We also use the convention that a smooth 0-form on U is a smooth function from U to R.

When α =
∑
aIduI is a smooth k-form on U ⊆ Rm and Φ : R ⊆ Rk → U ⊆ Rm is

a smooth k-surface on R in U given by Φ(t) = u(t) =
(
u1(t), · · · , um(t)

)
, we define the

integral of α on Φ to be∫
Φ

α =
∑
I

∫
Φ

aI(u)duI =
∑
I

∫
R

aI(u(t)) det
(
∂uI
∂t (t)

)
dt1 dt2 · · · dtk

where

∂uI
∂t

=
∂(ui1 , ui2 , · · · , uik)

∂(t1, t2, · · · , tk)
=


∂ui1
∂t1

∂ui1
∂t2

· · · ∂ui1
∂tk

...
...

∂uik
∂t1

∂uik
∂t2

· · · ∂uik
∂tk

 ,

which is the matrix obtained from Du = DΦ by selecting rows i1, i2, · · · , ik, that is the
matrix ∂uI

∂t = DuI = DΦI where ΦI(t) = uI(t) =
(
ui1(t), · · · , uik(t)

)
. When α is a 0-form,

that is a smooth function α : U → R, and Φ is a 0-surface, that is a point p ∈ U , we take
the convention that the integral of α on Φ is α(p).

Notice that if two of the indices in I are equal, that is ij = i` for some j 6= `, then two
of the rows of the matrix ∂uI

∂t are equal so that the determinant is zero. Also, notice that
if a multi-index J is obtained from I by interchanging two indices, then two of the rows in
the matrix ∂uI

∂t are interchanged so the integral is multiplied by −1. For this reason, we
make the convention that

dui ∧ duj = −duj ∧ dui
so that when J is obtained from I by interchanging two indices, we have duJ = −duI .
More generally, when π is a permutation of {1, 2, · · · , k} (that is when π is a bijective map
π : {1, · · · , k} → {1, · · · , k}), if I = (i1, i2, · · · , ik) and J = π(I) = (iπ(1), iπ(2), · · · , iπ(k)),
then we have

duJ = (−1)πduI

where (−1)π is the sign of the permutation π, that is (−1)π = 1 when π is an even
permutation, and (−1)π = −1 when π is an odd permutation. With this convention, every
smooth k-form on U can be written uniquely in the form

α =
∑
I incr

aI duI

where the sum is taken over all strictly increasing multi-indices I = (i1, i2, · · · , ik) with
1 ≤ i1 < i2 < · · · < ik ≤ m.
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5.5 Example: A smooth 1-form on U ⊆ Rm is of the form α = α(u) =
m∑
i=1

ai(u) dui where

each ai : U → R is a smooth map. In particular, writing u = (x, y, z), a smooth 1-form on
U ⊆ R3 is of the form

α = a(x, y, z) dx+ b(x, y, z) dy + c(x, y, z) dz.

When Φ = γ : [r, s]→ U is a smooth 1-surface (that is a smooth curve) on U , and α is the
smooth 1-form in U given by α = a dx+ b dy + c dz and F : U → R3 is the smooth vector
field in U given by F = (a, b, c), we have∫

Φ

α =

∫
γ

F.T dL =

∫ s

r

a(γ(t))x′(t) + b(γ(t))y′(t) + c(γ(t))z′(t) dt.

A smooth 2-form on U ⊆ Rm is of the form α = α(u) =
∑
i<j

ai,j(u) dui∧duj . In particular,

a smooth 2-form on U ⊆ R3 is of the form

α = a(x, y, z) dy ∧ dz + b(x, y, z) dz ∧ dx+ c(x, y, z) dx ∧ dy.
When Φ = σ : R ⊆ W ⊆ R2 → U ⊆ R3 is a smooth 2-surface in U , and α is the smooth
2-form on U given by α = a dy ∧ dz + b dz ∧ dx + c dx ∧ dy, and F is the smooth vector
field in U given by F = (a, b, c), we have∫

Φ

α =

∫
σ

F.N dA

=

∫
R

a(σ(u, v)) det ∂(y,z)
∂(u,v) − b(σ(u, v)) det ∂(x,z)

∂(u,v) + c(σ(u, v)) det ∂(x,y)
∂(u,v) du dv.

A smooth 3-form in U ⊆ Rm is of the form α = α(u) =
∑

i<j<k

ai,j,k(u) dui ∧ duj ∧ duk. In

particular, a smooth 3-form on U ⊆ R3 is of the form

α = a(x, y, z) dx ∧ dy ∧ dz.
When Φ = φ : R ⊆W ⊆ R3 → U ⊆ R3 is a smooth 3-surface (for example, if φ is a smooth
regular change of coordinates from W to U) and α is the smooth 3-form α = a dx∧dy∧dz,
we have ∫

Φ

α =

∫
R

a(φ(u, v, w)) detDφ(u, v, w) du dv dw,

and we note that this is similar to the change of coordinates formula for integration, but
using detDφ rather than

∣∣detDφ
∣∣.

5.6 Exercise: Let F (x, y) = (−y, x), let γ(t) = (cos t, sin t) for 0 ≤ t ≤ 3π
2 , and let

λ(t) = (2− t, 1 + 2t) for 0 ≤ t ≤ 2. Find the integrals

∫
γ

F.T dL and

∫
λ

F.T dL.

5.7 Exercise: Let F (x, y) =
(
−y

x2+y2 ,
x

x2+y2

)
and let γ(t) =

(
r(t) cos θ(t) , r(t) sin θ(t)

)
for a ≤ t ≤ b. Find

∫
γ

F.T dL. In particular, find

∫
λ

F.T dL when λ is the line segment

from (2, 1) to (1, 3).

5.8 Exercise: Let F (x, y, z) = (−xy, z, x2). Find the flux of F across the portion of the
paraboloid z = x2 + y2 which lies above the square given by −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.
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The Exterior Derivative

5.9 Definition: Let U be an open set in R3, let g : U ⊆ R3 → R be a function and let
F : U ⊆ R3 → R3 be a vector field given by F = (P,Q,R). We write

∇ =

 ∂
∂x
∂
∂y
∂
∂z

 , ∇g =

 ∂g
∂x
∂g
∂y
∂g
∂z

 , ∇.F = ∂P
∂x + ∂Q

∂y + ∂R
∂z , ∇×F =


∂R
∂y −

∂Q
∂z

∂P
∂z −

∂R
∂x

∂Q
∂x −

∂P
∂y

 .

∇g is called the gradient of g, ∇.F is called the divergence of F , and ∇×F is called
the curl of F .

5.10 Remark: We state four theorems from vector calculus, informally and without proof,
and in the next section we shall formulate and prove Stokes’ Theorem for Chains, which
includes all four of these theorems as special cases.

5.11 Theorem: (The Conservative Field Theorem) Let U ⊆ R3 be open, let γ : [a, b]→ U
be a C1 (or piecewise C1) curve in U , let f : U ⊆ R3 → R be a C1 function on U . Then∫

γ

∇f.T dL = f(γ(b))− f(γ(a)).

5.12 Theorem: (Green’s Theorem) Let U ⊆ R2 be open, let R ⊆ U be the closure of an
open Jordan region in R2, let F = (P,Q) : U ⊆ R2 → R2 be a C1 vector field on U , and
let γ be a C1 (or piecewise C1) curve in R2 which goes once, counterclockwise, around the
boundary of R. Then ∫

R

∂Q
∂x −

∂P
∂y dA =

∫
γ

F.T dL.

5.13 Theorem: (The Divergence Theorem, or Gauss’ Theorem) Let U ⊆ R3 be open, let
R ⊆ U be the closure of an open Jordan region in R3, let F : U ⊆ R3 → R3 be a C1 vector
field on U , let σ be a C1 (or piecewise C1) surface in R3 which envelops the boundary of
R, wrapping once around, with the normal vector N pointing outwards. Then∫

R

∇.F dV =

∫
σ

F.N dA.

5.14 Theorem: (Stokes’ Theorem for a Surface in R3) Let U ⊆ R3 be an open set, let
F : U ⊆ R3 → R3 be a C1 vector field in U , let σ be a C1 surface in U , let γ be a C1 (or
piecewise C1) curve in U which wraps once around the boundary of (the image of) σ in
the direction compatible with the right hand rule (when the fingers of the right hand point
in the direction of the tangent vector T to the curve, the thumb points in the direction of
the normal vector N to the surface). Then∫

σ

(∇×F ).N dA =

∫
γ

F.T dL.

5.15 Definition: Let U ⊆ Rm be open. When k ∈ Z+ and α is the smooth k-form on U
given by α =

∑
I

aI duI , the exterior derivative of α is the smooth (k+1)-form

dα = d
(∑
I

aI duI
)

=
∑
I

m∑
i=1

∂aI
∂ui

dui ∧ duI =
m∑
i=1

∑
I

∂aI
∂ui

dui ∧ dui1 ∧ · · · ∧ duik .

When a : U → R is a smooth function and α is the 0-form α(u) = a(u), the exterior
derivative of α is

dα = da =
m∑
i=1

∂a
∂ui

dui.
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5.16 Note: When α is a smooth k-form in an open set U ⊆ R3, the exterior derivative
dα is related to the gradient of a function or the divergence or the curl of a vector field.
Let U ⊆ R3 be open, let a, b, c : U → R be smooth functions and write u = (x, y, z) ∈ U .

When α is the smooth 0-form α = a, and f is the smooth function f = a, we have

dα = da = ∂a
∂x dx+ ∂a

∂y dy + ∂a
∂z , dz,

∇f = ∇a =
(
∂a
∂x ,

∂a
∂y ,

∂a
∂z

)
.

When α is the 1-form α = a dx+ b dy+ c dz and F is the vector field F = (a, b, c) we have

dα =
(
∂c
∂y −

∂b
∂z

)
dy ∧ dz +

(
∂a
∂z −

∂c
∂x

)
dz ∧ dx+

(
∂b
∂x −

∂a
∂y

)
dx ∧ dy,

∇×F =
(
∂c
∂y −

∂b
∂x ,

∂a
∂z −

∂c
∂x ,

∂b
∂x −

∂a
∂y

)
.

When α is the smooth 2-form α = a dy ∧ dz + b dz ∧ dx + c dx ∧ dy and F is the smooth
vector field F = (a, b, c), we have

dα =
(
∂a
∂x + ∂b

∂y + ∂c
∂z

)
dx ∧ dy ∧ dz,

∇.F = ∂a
∂x + ∂b

∂y + ∂c
∂z .

5.17 Note: By comparing the formulas in the above note to the statements of the four
theorems from vector calculus, one sees that the conclusions of all four vector calculus
theorems can be written in the form ∫

Φ

dα =

∫
∂Φ

α

where Φ is a curve, or a surface, or a region in R2 or R3, and ∂Φ denotes the boundary of
Φ (which we have not yet formally defined), and α is an appropriately chosen k-form. For
example, for Green’s Theorem we use α = P dx+Qdy with dα =

(
∂Q
∂x −

∂P
∂y

)
dx ∧ dy.

5.18 Exercise: Let γ be a curve which goes once around the circle x2 + y2 = 1, let R
be the disc R =

{
(x, y)

∣∣x2 + y2 ≤ 1
}

, and let F (x, y) = (x2y,−xy2). Verify that the
conclusion of Green’s Theorem holds.

5.19 Exercise: Let R be the tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 2, 0) and
(0, 0, 2), let σ be the boundary surface of R (which consists of four triangles), and let
f(x, y, z) = xy + z2. Verify the conclusion of Gauss’ Theorem.

5.20 Exercise: Let γ be a curve whose image is given by z = x2 and x2 +y2 = 1, let σ be
a surface whose image is given by z = x2 with x2 + y2 ≤ 1, and let F (x, y, z) = (y,−x, z2).
Verify the conclusion of Stokes’ Theorem.

5.21 Exercise: Find the integral of F along γ when F (x, y) =
(
x− y3 , x3 + y3

)
and γ is

the boundary curve of the quarter-disc given by x ≥ 0, y ≥ 0 and x2 + y2 ≤ 1.

5.22 Exercise: Find the flux of F across σ when F (x, y, z) =
(
xy2 , x2y , (x2 +y2)z2

)
and

σ is the boundary surface of the cylinder given by (x, y, z) =
(

sin t, 0, cos t
)

for 0 ≤ t ≤ 2π.

5.23 Exercise: Find the integral of F along γ when F is the vector field given by
F (x, y, z) =

(
x2z +

√
x3 + x2 + 2 , xy , xy +

√
z3 + z2 + 2

)
and γ goes once around the

circle given by y = 0 and x2 + z2 = 1.
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Stoke’s Theorem for Smooth Chains in Rm

5.24 Definition: Let a0, a1, · · · , ak ∈ Rm. The convex hull of {a0, a1, · · · , ak} is the set

[a0, a1, · · · , ak] =
{ k∑
i=0

siai

∣∣∣ each si ≥ 0 ,
k∑
i=0

si = 1
}
.

Note that if we let ui = ai − a0 for 1 ≤ i ≤ k then

[a0, a1, · · · , ak] = a0 + Span{u1, · · · , uk} =
{
a0 +

k∑
i=1

tiui

∣∣∣ each ti ≥ 0 ,
k∑
i=1

ti ≤ 1
}
.

We say that the ordered (k+1)-tuple (a0, a1, · · · , ak) is affinely independent when the
k-tuple (u1, u2, · · · , uk) is linearly independent. In this case, verify that the coefficients si
(or the coefficients ti) for an element u ∈ [a0, a1, · · · , ak] are uniquely determined.

An affine map from Rk to R` is a map F : Rk → R` of the form F (x) = p+ Ax for
some p ∈ R` and some `×k matrix A. Verify, as an exercise, that when (a0, a1, · · · , ak) is
affinely independent in Rk and b0, b1, · · · , bk ∈ R`, there is a unique affine map F : Rk → R`
with F (ai) = bi for all i, namely the map given by F

(∑k
i=0 siai

)
=
∑k
i=1 sibi where each

si ≥ 0 with
∑k
i=0 si = 1.

A k-simplex in Rm is a set of the form [a0, a1, · · · , ak] for some affinely independent
(k+1)-tuple (a0, a1, · · · , ak) of elements ai ∈ Rm. The standard k-simplex in Rk is the
simplex

∆k = [e0, e1, · · · , ek] ⊆ Rk

where e0 = 0 and ej is the jth standard basis vector in Rk for 1 ≤ j ≤ k.

5.25 Definition: Let U ⊆ Rm be an open set. A smooth k-simplex in U is a smooth
k-surface on ∆k in U , that is a smooth map Φ : ∆k ⊆ Rk → U ⊆ Rm which extends to
a smooth map Φ : W ⊆ Rk → U ⊆ Rm for some open set W ⊆ Rk with ∆k ⊆ W . A
smooth k-chain in U is a formal finite sum

Ψ =
∑̀
i=1

ciΦi

where each ci∈Z and each Φi is a smooth k-simplex. If two of the k-simplices are equal, say
if Φi=Φj=Φ with i 6=j, we can write ciΦi+cjΦj as (ci+cj)Φ. If the smooth k-simplices Φi
are all distinct, then the coefficients ci in the sum are uniquely determined. We add smooth

k-chains in the natural way: if Ψ =
∑̀
i=1

ciΦi and Θ =
∑̀
i=1

diΦi then Ψ+Θ =
∑̀
i=1

(ci+di) Φi

(where, if the set of smooth k-chains Φi which occur in the sum which represents Ψ is
not the same as the set of smooth k-chains which occurs in Θ, we simply take the union
of the two sets of k-chains and represent both Ψ and Θ in terms of the k-chains in the
union, with some of the coefficients being zero). We remark that students familiar with
free abelian groups will recognize that the set of all smooth k-chains is the free abelian
group generated by the set of smooth k-simplices.

5.26 Definition: When α =
∑
aI dxI is a smooth k-form on an open set U ∈ Rm and

Ψ =
∑`
i=1 ciΦi is a smooth k-chain in U (where each Φi is a smooth k-simplex in U), we

define the integral of α on Ψ to be∫
Ψ

α =
∑̀
i=1

ci

∫
Φi

α .
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5.27 Definition: For 0≤j≤k+1, the jth face map on ∆k (or in ∆k+1) is the affine map

Fj : ∆k ⊆ Rk → ∆k+1 ⊆ Rk+1

with Fj(ei) = ei for i < j and Fj(ei) = ei+1 for i ≥ j. Note that Fj sends the standard
simplex ∆k = [e0, e1, · · · , ek] ⊆ Rk to the simplex

Fj(∆
k) = [e0, · · · , êj , · · · , ek+1] = [e0, e1, · · · , ej−1, ej+1, · · · , ek+1] ⊆ ∆k+1 ⊆ Rk+1,

where the hat symbol in the term êj indicates that the entry ej is omitted.

For k ≥ 0, the boundary of the smooth (k+1)-simplex Φ : ∆k+1 → U ⊆ Rm is the
smooth k-chain

∂Φ =
k+1∑
j=0

(−1)jΦFj

and the boundary of the smooth (k+1)-chain Ψ =
∑̀
i=1

ciΦi is the k-chain ∂Ψ =
∑̀
i=1

ci ∂Φi.

5.28 Lemma: Let U ⊆ Rm be open, let Φ : ∆k+1 → U ⊆ Rm be a smooth (k+1)-simplex,
write Φ(t) = u(t) =

(
u1(t), · · · , um(t)

)
, and let I = (i1, · · · , ik) be a multi-index. Then

k+1∑
j=1

(−1)j+1 ∂
∂tj

(
det

∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)

)
= 0.

Proof: The determinant det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
is a sum of terms of the form

± ∂ui1
∂tπ(1)

∂ui2
∂tπ(2)

· · · ∂uik
∂tπ(k)

where π is a bijective map from {1, 2, · · · , k} to {1, · · · , ĵ, · · · , k+1}, and so the derivative
∂
∂tj

det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
is a sum of terms of the form

± ∂2uin
∂tj∂t`

· ∂ui1∂tπ(1)
· · · ∂̂uin∂tπ(n)

· · · ∂uik∂tπ(k)

where π(n) = `. When the sum
k+1∑
j=1

(−1)j+1 ∂
∂tj

det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
is expanded, the terms

involving
∂2uin
∂tj∂t`

occur in (−1)j+1 ∂
∂tj

det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
and (−1)`+1 ∂

∂t`
det

∂(ui1 ,···,ui` )
∂(t1,···,t̂`,···,tk+1)

.

Fix j, ` with j < `. Since j < `, the (`−1)st column of
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
involves

∂uin
∂t`

, and

by expanding the derivative along this column gives

(−1)j+1 ∂
∂tj

det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
= (−1)j+1 ∂

∂tj

( k∑
n=1

(−1)n+`−1 ∂uin
∂t`

det
∂(ui1 ,···,ûin ,···,uik )

∂(t1,···,t̂j ,···,t̂`,···,tk+1

)
=

k∑
n=1

(−1)j+`+n
∂2uin
∂tj∂t`

det
∂(ui1 ,···,ûin ,···,uik )

∂(t1,···,t̂j ,···,t̂`,···,tk+1)
+ E

where E =
k∑

n=1
(−1)j+`+n

∂uin
∂t`

∂
∂tj

det
∂(ui1 ,···,ûin ,···,uik )

∂(t1,···,t̂j ,···,t̂`,···,tk+1)
, which does not involve

∂2uin
∂tj∂t`

.

Similarly, expanding the determinant det
∂(ui1 ,···,ui` )

∂(t1,···,t̂`,···,tk+1)
along the jth column shows that

(−1)`+1 ∂
∂t`

det
∂(ui1 ,···,uik )

∂(t1,···,t̂`,···,tk+1)
=

k∑
n=1

(−1)j+`+n+1 ∂
2uin

∂tj∂t`
det

∂(ui1 ,···,ûin ,···,uik )

∂(t1,···,t̂j ,···,t̂`,···,tk+1)
+ F

where F does not involve
∂2uin
∂tj∂t`

, and so all the terms which involve
∂2uin
∂tj∂t`

cancel.
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5.29 Theorem: (Stoke’s Theorem for Chains in Rm) Let α be a smooth k-form on
U ⊆ Rm and let Ψ be a smooth (k+1)-chain in U . Then∫

Ψ

dα =

∫
∂Ψ

α.

Proof: By linearity, it suffices to consider a k-form of the form α = α(u) = a(u) duI for
some fixed multi-index I = (i1, i2, · · · , ik) and a (k+1)-chain of the form Ψ = Φ where Φ
is a single smooth (k+1)- simplex. Writing Φ(t) = u(t) = (u1(t), · · · , um(t)), expanding
the determinant along the top row, and making use of the above lemma, we have∫

Ψ

dα =

∫
Φ

m∑
i=1

∂a
∂ui

dui ∧ dui1 ∧ · · · ∧ duik

=

∫
∆k+1

m∑
i=1

∂a
∂ui

(Φ(t)) · det
∂(ui,ui1 ,···,uik )

∂(t1,t2,···,tk+1) (t) dt1dt2 · · · dtk+1

=

∫
∆k+1

m∑
i=1

∂a
∂ui

(Φ(t)) ·
k+1∑
j=1

(−1)j+1 ∂ui
∂tj

(t) det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
(t) dt1dt2 · · · dtk+1

=
k+1∑
j=1

(−1)j+1

∫
∆k+1

m∑
i=1

∂a
∂ui

(Φ(t)) ∂ui∂tj
(t) · det

∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
(t) dt1dt2 · · · dtk+1

=
k+1∑
j=1

(−1)j+1

∫
∆k+1

∂(aΦ)
∂tj

(t) · det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
(t) dt1dt2 · · · dtk+1

=
k+1∑
j=1

(−1)j+1

∫
∆k+1

∂
∂tj

(
(aΦ) · det

∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)

)
(t) dt1dt2 · · · dtk+1 (by the lemma)

=
k+1∑
j=1

(−1)j+1

∫
(t1,···,t̂j ,···,tk+1)∈∆k

[(
(aΦ) · det

∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)

)
(t)

]1−Σ
i6=j

ti

tj=0

dt1· · · d̂tj · · · dtk+1

= A+B

where

A =
k+1∑
j=1

(−1)j+1

∫
r∈∆k

(
(aΦ) · det

∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)

)
(r1, · · · , rj−1, 1−Σri , rj · · · , rk) dr1· · · drk

=
k+1∑
j=1

(−1)j+1

∫
s∈∆k

(
(aΦ) · det

∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)

)
(1−Σsi , s1, s2, · · · , sk) ds1 · · · dsk,

since for r = φ(s) =
(
1− Σsi , s1, · · · , sj−2, ŝj−1, sj , · · · , sk

)
we have detDφ = ±1, and

B =
k+1∑
j=1

(−1)j
∫
s∈∆k

(
(aΦ) · det

∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)

)
(s1, · · · , sj−1, 0, sj · · · , sk) ds1· · · dsk.

Note that in the above integrals,
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
denotes the k×k matrix obtained from

the m×(k+1) matrix DΦ by selecting the rows i1, i2, · · · , ik and removing the jth column.

On the other hand, we have∫
∂Ψ

α =
k+1∑
j=0

(−1)j
∫

ΦFj

α =

∫
ΦF0

α+
k+1∑
j=1

(−1)j
∫

ΦFj

α .

To complete the proof, we shall show that

∫
ΦF0

α = A and
k+1∑
j=1

∫
ΦFj

α = B.
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Writing ΦF0(s) = v(s) =
(
v1(s), · · · , vm(s)

)
, we have∫

ΦF0

α =

∫
s∈∆k

a((ΦF0)(s)) · det
∂(vi1 ,vi2 ,···,vik )

∂(s1,s2,···,sk) (s) ds1 · · · dsk.

The map F0 is the affine map which sends [e0, · · · , ek] to [e1, e2, · · · , ek+1], which is given
by

F0(s1, · · · , sk) = e1 +
k∑
j=1

sj(ej+1 − e1) =
(
1− Σsi , s1, s2, · · · , sk

)
,

and its Jacobian matrix is DF0 =
(−1···−1

I

)
where I is the k×k identity matrix. The

matrix
∂(vi1 ,···,vik )

∂(s1,···,sk) is obtained from the matrix D(ΦF0) by selecting rows i1, i2, · · · , ik, so

it is equal to the matrix D(ΦIF0) where write ΦI(t) = uI(t) =
(
ui1(t), · · ·uik(t)

)
. Thus,

denoting the columns of the matrix DΦI by ∂ΦI
∂tj

, and using the fact that the determinant

is a linear function of the columns, we have

det
∂(vi1 ,···,vik )

∂(s1,···,sk) (s) = detD(ΦIF0)(s) = det
(
DΦI(F0s) ·DF0(s)

)
= det

(
∂ΦI
∂t1

, ∂ΦI
∂t2

, · · · , ∂ΦI
tk+1

)
(F0s) ·

(
−1 · · · −1

I

)
= det

(
∂ΦI
∂t2
− ∂ΦI

∂t1
, ∂ΦI
∂t3
− ∂ΦI

∂t1
, · · · , ∂ΦI

∂tk+1
− ∂ΦI

∂t1

)
(F0s)

= det
(
∂ΦI
∂t2

, ∂ΦI
∂t3

, · · · , ∂ΦI
∂tk+1

)
−
k+1∑
j=2

det
(
∂ΦI
∂t2

, · · · , ∂ΦI
∂tj−1

, ∂ΦI
∂t1

, ∂ΦI
∂tj+1

, · · · , ∂ΦI
tk+1

)
=
k+1∑
j=1

(−1)j+1 det
(
∂ΦI
∂t1

, · · · , ∂̂ΦI
∂tj

, · · · , ∂ΦI
∂tk+1

)
(F0s)

=
k+1∑
j=1

(−1)j+1 det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
(F0s).

Thus we have∫
ΦF0

α =

∫
s∈∆k

(aΦ)(F0s) ·
k+1∑
j=1

(−1)j+1 det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
(F0s) ds1 · · · dsk = A.

Fix j with 1 ≤ j ≤ k + 1 and write ΦFj(s) = v(s) =
(
v1(s), · · · , vm(s)

)
. Then we have∫

ΦFj

α =

∫
s∈∆k

a(ΦFj(s)) · det
∂(vi1 ,···,vik )

∂(s1,···,sk) (s) ds1 · · · dsk.

The map Fj is the affine map which sends [e0, · · · , ek] to [e0, · · · , êj , · · · , ek+1], which is
given by

Fj(s1, · · · , sk) =
(
s1, · · · , sj−1, 0, sj , · · · , sk

)
,

and its Jacobian matrix DFj(s) is the matrix obtained from the (k+1)×(k+1) identity
matrix by removing the jth column. Multiplying a matrix on the right by DFj(s) removes
the jth column from the matrix and so, writing ΦI(t) =

(
ui1(t), · · · , uik(t)

)
, we have

∂(vi1 ,···,vik )

∂(s1,···,sk) = D(ΦIFj)(s) = DΦI(Fjs) ·DFj(s) =
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
(Fjs).

Thus
k+1∑
j=1

∫
ΦFj

α =
k+1∑
j=1

∫
s∈∆k

(aΦ)(Fjs) · det
∂(ui1 ,···,uik )

∂(t1,···,t̂j ,···,tk+1)
(Fjs) ds1 · · · dsk = B.
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Differential Forms on Smooth Submanifolds of Rn

5.30 Notation: For an n×m matrix A ∈Mn×m(R) and for multi-indices I = (i1, · · · , ik)
and J = (j1, · · · , j`), write AI for the k×m matrix obtained from A by selecting the rows
i1, · · · , ik, and write AJ for the n×` matrix obtained from A by selecting the columns
j1, · · · , j`, and let AJI be the k×` matrix AJI = (AI)

J = (AJ)I . We remark that if
RI = (ei1 , · · · , eik)T ∈ Mk×n(R) and CJ = (ej1 , · · · , ej`) ∈ Mm×`(R), then we have
AI = RIA, AJ = ACJ and AJI = RIAC

J .

5.31 Theorem: (The Cauchy-Binet Determinant Formula) Let k,m ∈ Z+ with k ≤ m,
let A ∈Mk×m(R) and let B ∈Mm×k(R). Then

det(AB) =
∑

J incr

detAJ · detBJ

where the sum is taken over all stricly increasing multi-indices J = (j1, · · · , jk).

Proof: Let P be the set of bijective maps π : {1, 2, · · · , k} → {1, 2, · · · , k}, and for π ∈ P
let (−1)π be the sign of π. Then

det(AB) =
∑
π∈P

(−1)π(AB)1,π(1)(AB)2,π(2) · · · (AB)k,π(k)

=
∑
π∈P

( m∑
i1=1

A1,i1Bi1,π(1)

)( m∑
i2=1

A2,i2Bi2,π(2)

)
· · ·
( m∑
ik=1

Ak,ikBik,π(k)

)
=
∑

all I

(
A1,i1A2,i2 · · ·Ak,ik

) ∑
π∈P

(−1)π
(
Bi1,π(1)Bi2,π(2) · · ·Bik,π(k)

)
=
∑

all I

(
A1,i1A2,i2 · · ·Ak,ik

)
· detBI

When two of the entries of a multi-index I are equal, we have detBI = 0, so the sum can be
taken over all mult-indices with distict entries. And each multi-index I = (i1, · · · , ik) with
distinct entries, is (uniquely) of the form I = π(J) = (jπ(1), · · · , jπ(k)) for some strictly
increasing multi-index J = (j1, · · · , jk) and some permutation π ∈ P . Thus

det(AB) =
∑

all I

(
A1,i1A2,i2 · · ·Ak,ik

)
· detBI

=
∑

J incr

∑
π∈P

(−1)π
(
A1,jπ(1)

A2,jπ(2)
· · ·Ak,jπ(k)

)
· detBJ

=
∑

J incr

detAJ · detBJ .

5.32 Remark: In the case k = m, the above theorem gives det(AB) = detA · detB.

5.33 Definition: Let U ⊆ Rm and V ⊆ Rn be open, let f : U → V be smooth, and let
β = β(v) =

∑
J incr

bJ(v) dvJ be a smooth k-form on V . We define the pullback of β by f

to be the smooth k-form α = f∗β on U given by

α = α(u) =
∑
I incr

aI(u) duI where aI(u) =
∑

J incr

bJ(v(u)) · det ∂vJ∂uI
(u)

where v(u) = f(u) =
(
v1(u), · · · , vn(u)

)
so that ∂vJ

∂uI
(u) = Df(u)IJ .

5.34 Remark: The three properties of the pullback proven below in the following theorem
are precisely the properties that we need to use in order to define smooth k-forms on
manifolds and extend Stokes’ Theorem so that it applies in this more general situation.
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5.35 Theorem: (Pullback Formulas) Let U ⊆ Rm, V ⊆ Rn and W ⊆ R` be open, and
let f : U → V and g : V →W be smooth.

(1) When γ is a smooth k-form on W , we have (gf)∗γ = f∗(g∗γ).
(2) When β is a smooth k-form on V and Φ : ∆k → U is a smooth k-surface in U , we have∫

fΦ

β =

∫
Φ

f∗β.

(3) When β is a smooth k-form on V we have df∗β = f∗dβ.

Proof: To prove Part 1, let γ =
∑

K incr

cK dwK be a smooth k-form on W . Then we have

f∗(g∗γ) = f∗
( ∑
J,K incr

cK(gv) det ∂gK∂vJ
(v) dvJ

)
=

∑
I,J,K incr

cK(gfu) det ∂gK∂vJ
(fu) det ∂vJ∂uI

(u) duI

=
∑

I,K incr

cK(gfu)
∑

J incr

detDg(fu)JK detDf(u)IJ duI

=
∑

I,K incr

cK(gfu) detDg(fu)KDf(u)I duI (by Theorem 5.31)

=
∑

I,K incr

cK(gfu) detD(gf)IK duI =
∑

I,K incr

cK(gfu) det ∂(gf)K
∂uI

(u) duI

= (gf)∗γ.

To prove Part 2, let β =
∑

J incr

bJ(v) dvJ be a smooth k-form on V and let Φ : ∆k → U be

a smooth k-surface in U . Then f∗β(u) =
∑

I,J incr

bJ(fu) det ∂vJ∂uI
(u) duI and so∫

Φ

f∗β =
∑

I,J incr

∫
∆k

bJ(fΦt) det ∂vJ∂uI
(Φt) det ∂uI∂t (t) dt1 · · · dtk

=
∑

J incr

∫
∆k

bJ(fΦt)
( ∑
I incr

detDf(Φt)IJ detDΦ(t)I

)
dt1 · · · dtk

=
∑

J incr

∫
∆k

bJ(fΦt) det
(
Df(Φt)JDΦ(t)

)
dt1 · · · dtk (by Theorem 5.31)

=
∑

J incr

∫
∆k

bJ(fΦt) detD(fΦ)J(t) dt1 · · · dtk =
∑

J incr

∫
∆k

bJ(fΦt) det ∂vJ∂t (t) dt1 · · · dtk

=

∫
fΦ

β .

To prove Part 3, let β =
∑

J incr

bJ(v) dvJ be a smooth k-form on V . Write L = (`1, · · · , `k+1).

Expanding the determinant along the first row, we have

f∗dβ = f∗
( n∑
j=1

∂bJ
∂vj

(v) dvj ∧ dvJ
)

=
∑
L

n∑
j=1

∂bJ
∂vj

(fu) det
∂(vj ,vj1 ,···,vvk )

∂(u`1 ,···,u`k+1
) (u) duL

=
∑
L

n∑
j=1

∂bJ
∂vj

(fu)
k+1∑
i=1

(−1)i+1 ∂vj
∂u`i

(u) det
∂(vj1 ,···,vjk )

∂(u`1 ,···,û`i ,···,u`k+1
)
(u) duL.
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Note that the proof of Lemma 5.28 (with small alterations) shows that

k+1∑
i=1

(−1)i+1 ∂
∂u`i

det
∂(vj1 ,···,vjk )

∂(u`1 ,···,û`i ,···,u`k+1
)

= 0.

Writing I = (i1, · · · , ik) and L = (`1, · · · , `k+1), we have

df∗β = d
(∑

I

bJ(fu) det ∂vJ∂uI
(u) duI

)
=
∑
I

∑̀
/∈I

∂
∂u`

(
bJ(fu) det ∂vJ∂uI

(u)
)
du` ∧ duI

=
∑
L

k+1∑
i=1

∂
∂u`i

(
bJ(fu) det

∂(vj1 ,···,vjk )

∂(u`1 ,···,û`i ,···,u`k+1
)
(u)
)
du`i ∧ du(`1,···,̂̀i,···,`k+1)

=
∑
L

k+1∑
i=1

(−1)i+1 ∂
∂u`i

(
bJ(fu) det

∂(vj1 ,···,vjk )

∂(u`1 ,···,û`i ,···,u`k+1
)
(u)
)
duL

=
∑
L

k+1∑
i=1

(−1)i+1 ∂bJ
∂u`i

(fu) det
∂(vj1 ,···,vjk )

∂(u`1 ,···,û`i ,···,u`k+1
)
(u) duL (by Lemma 5.28)

=
∑
L

k+1∑
i=1

n∑
j=1

(−1)i+1 ∂bJ
∂vj

(fu)
∂vj
∂u`i

(u) det
∂(vj1 ,···,vjk )

∂(u`1 ,···,û`i ,···,u`k+1
)
(u) duL .

5.36 Definition: Let M ⊆ Rr be a smooth regular submanifold with atlas A. A smooth
k-form ω on M consists of a smooth k-form ωσ on Uσ ⊆ Rm for each chart σ : Uσ → Vσ in
A such that whenever σ, ρ ∈ A are two charts with Vσ ∩ Vρ 6= 0, we have ωσ = (ρ−1σ)∗ωρ;
to be precise, if we let α be the restriction of ωσ to σ−1(Vσ ∩ Vρ) and we let β be the
restriction of ωρ to ρ−1(Vσ ∩ Vρ) and we let f be the smooth change of coordinates map
f = ρ−1σ : σ−1(Vσ ∩ Vρ)→ ρ−1(Vσ ∩ Vρ) then we have α = f∗β.

5.37 Example: An open set U ⊆ Rm is a submanifold of Rm with an atlas consisting of a
single chart, namely the inclusion map σ : U → Rm. In this trivial case, a smooth k-form
on the manifold M = U is the same thing as a smooth k-form on the open set U ⊆ Rm.

5.38 Definition: Let N ⊆ Rs and M ⊆ Rr be two (smooth regular) submanifolds, let
f : N → M be a smooth map, and let ω be a smooth k-form on M . The pullback of ω
by f is the smooth k-form λ = f∗ω on N defined as follows: given a chart ν : Uν → Vν
on N , for c ∈ Uν and q = ν(c) ∈ N , we choose a chart σ on M at p = f(q) and define λν
in a neighbourhood of c by λν = (σ−1fν)∗ωσ. By Part 1 of Theorem 5.35, this does not
depend on the choice of chart: if ρ is another chart on M at p then since ωσ = (ρ−1σ)∗ωρ,
we have (σ−1fν)∗ωσ = (σ−1fν)∗(ρ−1σ)∗ωρ = (ρ−1σσ−1fν)∗ωρ = (ρ−1fν)∗ωρ.

5.39 Example: Let M ⊆ Rm be a smooth regular submanifold and let ω be a smooth
k-form on M . When σ : Uσ ⊆ Rm → Vσ ⊆ M is a chart on M , the k-form ωσ on Uσ is
the same thing as the pullback λ = σ∗ω. Indeed, in the formula λν = (σ−1fν)∗ωσ, we use
f = σ and we take ν to be the trivial chart so that σ−1fν = σ−1σν is the identity map.
For this reason, it is common to write ωσ as σ∗ω.

5.40 Definition: Let M ⊆ Rn be a smooth regular submanifold and let ω be a smooth
k-form on M . We define the exterior derivative of ω to be the smooth (k+1)-form dω
on M defined by (dω)σ = d(ωσ) for each chart σ on M . By Part 3 of Theorem 5.35: this
does define a (k+1)-form on M because when σ and ρ are two charts with Vσ ∩ Vρ 6= ∅,
we have (ρ−1σ)∗(dω)ρ = (ρ−1σ)∗(dωρ) = d

(
(ρ−1σ)∗ωρ

)
= d(ωσ) = (dω)σ.
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5.41 Definition: Let M ⊆ Rn be a smooth regular submanifold. A smooth k-simplex
on M is a map Θ : ∆k → M which extends to a smooth map Θ : W → M for some open

set W ⊆ Rk with ∆k ⊆W . A smooth k-chain on M is a formal finite sum χ =
∑̀
j=1

cjΘj

where each cj ∈ Z and each Θj is a smooth k-simplex on M . When Θ is a smooth

(k+1)-simplex on M , the boundary of Θ is the smooth k-chain χ =
k+1∑
j=0

(−1)jΘFj where

Fj : ∆k → ∆k+1 is the jth face map. When χ is the smooth (k+1)-chain χ =
∑̀
j=1

cjΘj ,

the boundary of χ is the smooth k-chain ∂χ =
∑̀
j=1

cj∂Θj .

5.42 Definition: When Θ is a smooth k-simplex on M and ω is a smooth k-form on M ,
we define the integral of ω on Θ to be∫

Θ

ω =

∫
∆k

Θ∗ω =

∫
J

Θ∗ω

where J : ∆k → Rk is the inclusion. When χ =
∑̀
j=1

cjΘj , we define

∫
χ

ω =
∑̀
j=1

cj

∫
Θi

ω.

5.43 Theorem: (Stoke’s Theorem for Smooth Chains on Submanifolds of Rn) Let M ⊆
Rn be a regular smooth submanifold, let ω be a smooth k-form on M , and let χ be a
smooth (k+1)-chain on M . Then ∫

χ

dω =

∫
∂χ

ω .

Proof: By linearity, we may assume that χ = Θ where Θ is a single smooth (k+1)-simplex
on M . Say Θ extends to a smooth map Θ : W → M where W is open in Rk+1 with
∆k+1 ⊆ W . Assume that the image Θ(W ) is contained in the range Vσ of a single chart
σ : Uσ ⊆ Rm → Vσ ⊆ M (in general, we can subdivide that standard simplex ∆k+1

into small subsimplices ∆i contained in open sets Wi with each image Θ(Wi) contained
in the range of a single chart σi). Since σ : Uσ → Vσ is a diffeomorphism, the map
Φ = σ−1Θ is smooth, so Φ : ∆k+1 ⊆ W → Uσ ⊆ Rm is a smooth (k+1)-simplex in Uσ.
As in Definition 5.38 and Example 5.39, the smooth (k+1)-form Θ∗dω on W ⊆ Rk+1

given by Θ∗dω = (σ−1Θ)∗(dω)σ = Φ∗dωσ, and the smooth k-form Θ∗ω on W is given by
Θ∗ω = (σ−1Θ)∗ωσ = Φ∗ωσ. By Stokes’ Theorem for Chains in Rm, and by Parts 1 and 2
of Theorem 5.35, we have∫

Θ

ω =

∫
∆k+1

Θ∗ω =

∫
∆k+1

Φ∗dωσ =

∫
Φ

dωσ =

∫
∂Φ

ωσ =
k+1∑
j=0

(−1)j
∫

ΦFj

ωσ

=
k+1∑
j=0

(−1)j
∫

∆k

Fj
∗Φ∗ωσ =

k+1∑
j=0

(−1)j
∫

∆k

Fj
∗Θ∗ω =

k+1∑
j=0

∫
ΘFj

ω =

∫
∂Θ

ω.
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