
Chapter 4. Submanifolds of Rn

4.1 Definition: We restate Definition 2.1 so that it applies to functions of m variables.
Let U ⊆ Rm be open, let f : U ⊆ Rm → Rn, and write u = (u1, · · · , um) ∈ U and
f(u) =

(
x1(u), · · · , xn(u)

)
∈ Rn. We say that f is Ck in U when all of the kth order partial

derivatives exist and are continuous, and we say that f is smooth (or that f is C∞) when
f is Ck for all k ∈ Z+. Recall that when f is C1 it is also differentiable, and its derivative
matrix (or its Jacobian matrix) is given by

Df =
(
∂f
∂u1

, · · · , ∂f
∂um

)
=


∂x1

∂u1
· · · ∂x1

∂um

...
...

∂xn

∂u1
· · · ∂xn

∂um


We say that f is regular (or f is an immersion) when f is C1 and its derivative matrix is
injective, that is when the columns of the derivative matrix are linearly independent. Recall
that a homeomorphism is a bijective continuous function whose inverse is continuous.

4.2 Definition: Let M ⊆ Rn and let p = (p1, p2, · · · , pn) ∈M . We say that M is locally
equal to the graph of a function of m variables, near the point p, when there exists
a choice of m of the variables x1, · · · , xn, say the variables xk with k ∈ K where K is the
index set K = (k1, k2, · · · , km) with 1 ≤ k1 < k2 < · · · < km ≤ n, with the remaining n−m
variables being x` with ` ∈ L where L is the complementary index set L = (`1, `2, · · · , `n−m)
with 1 ≤ `1 < `2 < · · · < `n−m ≤ n and with K∪L = {1, 2, · · · , n}, and there exist ε, δ > 0,
and there exists a function f : A → B where A =

{
(xk1 , · · · , xkm)

∣∣ |xki − pki | < δ
}

and

B =
{

(x`1 , · · · , x`n−m)
∣∣ |x`i − p`i | < ε

}
such that for the open rectangle R = A×B ⊆ Rn,

that is for R =
{
x ∈ Rn

∣∣(xk1 , · · · , xkm)∈A, (x`1 , · · · , x`n−m)∈B
}

we have

M ∩R = Graph (f) =
{

(x1, · · · , xn) ∈ R
∣∣ (x`1 , · · · , x`n−m

) = f(xk1 , · · · , xkm)
}
.

Note that the function g :A→Graph (f), given by g(u1, · · · , um) = (x1(u), · · · , xn(u)) with
xki(u) = ui and (x`1(u), · · · , x`n−m

(u)
)

= f(u), is a homeomorphism from A to Graph (f)
(the inverse of g is the projection p(x1, · · · , xn) = (xk1 , · · · , xkm), which is continuous).

4.3 Definition: An m-dimensional (smooth regular) submanifold of Rn is a set M⊆Rn
which is locally equal to the graph of a smooth function of m variables, near every p ∈M .

4.4 Example: For a smooth function f : U ⊆ Rm → R`, where U is open, the graph
Graph (f) =

{
(x, y)

∣∣x ∈ U ⊆ Rm, y ∈ R`, y = f(x)
}

is a smooth regular m-dimensional
submanifold of Rm+` (given p = (a, b) ∈ Graph (f) we have f(a) = b, and given ε > 0,
since f is continuous we can choose δ > 0 so that |x − a| < δ implies |f(x) − b| < ε, and
since U is open we can choose this δ to small enough so that the box given by |xi−ai| < δ
lies inside U). Any open set U ⊆ Rm can be considered as a smooth regular m-dimensional
submanifold of Rm (it is the graph of the zero function f : U ⊆ Rm → R0 = {0}).
4.5 Example: The unit sphere Sn−1 =

{
x∈Rn

∣∣ |x|= 1
}

is an (n−1)-dimensional sub-

manifold of Rn. Indeed, if we let U=
{
u∈Rn−1

∣∣ |u|<1
}

and define fk, gk : U→ Sn−1⊆ Rn
by

fk(u) =
(
u1, · · · , uk−1,

√
1− |u|2, uk, · · · , un

)
gk(u) =

(
u1, · · · , uk−1,−

√
1− |u|2, uk, · · · , un

)
then every point p ∈ Sn−1 is on the graph of one of the functions fk, gk (and if we want,
we can restrict the domain of fk or gk to an open rectangle in U as in definition 4.2).
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4.6 Theorem: (The Inverse Function Theorem) Let f : U ⊆ Rn → Rn where U ⊆ Rn
is open with a ∈ U . Suppose that f is C1 in U and that Df(a) is invertible. Then there
exists an open set U0 ⊆ U with a ∈ U0 such that the set V0 = f(U0) is open in Rn and the
restriction f : U0 → V0 is bijective, and its inverse g = f−1 : V0 → U0 is C1 in V0. In this
case we have Dg(f(a)

)
= Df(a)−1. If f is Ck (or C∞) then so is f−1.

Proof: This theorem is usually stated without proof in MATH 237 and a full proof is
usually given in MATH 147. The proof is not easy. A proof is included in Appendix 2.

4.7 Theorem: (The Implicit Function Theorem) Let f : U ⊆ Rn → R` where U is open
with p ∈ U . Suppose that f is C1 in U and that Df(p) has rank ` and let c = f(p). Then
the level set f−1(c) =

{
x ∈ U

∣∣ f(x) = c
}

is locally the graph of a C1 function h of n−`
variables near the point p. If f is Ck (or C∞) then so is h.

Proof: Since Df(p) has rank `, it follows that some `× ` submatrix of f is invertible. By
reordering the variables in Rn, if necessary, suppose that the last ` of the n columns ofDf(p)
form an invertible `×` matrix. Let m = n−`, write p = (a, b) with a = (p1, · · · , pm) ∈ Rm
and b = (pm+1, · · · , pn) ∈ R` and write z = f(x, y) with x ∈ Rm, y ∈ R` and z ∈ R`, and
write

Df(x, y) =
(
∂z
∂x (x, y), ∂z∂y (x, y)

)
with ∂z

∂y (a, b) invertible. Define F : U ⊆ Rn → Rn by F (x, y) =
(
x, f(x, y)

)
= (w, z). Then

we have

DF =

(
I O
∂z
∂x

∂z
∂y

)
with DF (a, b) invertible. By the Inverse Function Theorem, we can choose an open set U0

in Rn with p ∈ U0 ⊆ U such that V0 = F (U0) is open in Rn and the map F : U0 → V0 is
invertible and its inverse G : V0 → U0 is C1. Write (x, y) = G(w, z) =

(
w, g(w, z)

)
and let

h(x) = g(x, c). Then, locally, we have f−1(c) = Graph (h) because

f(x, y) = c ⇐⇒ F (x, y) = (x, c) ⇐⇒ (x, y) = G(x, c)

⇐⇒ (x, y) =
(
x, g(x, c)

)
⇐⇒ (x, y) ∈ Graph (h).

Since G(w, z) =
(
w, g(w, z)

)
we have DG(w, z) =

(
I O
∂g
∂w

∂g
∂z

)
. Since G = F−1 we also

have

DG(w, z) = DF (x, y)−1 =

(
I O

−
(
∂z
∂y

)−1 ∂z
∂x

(
∂z
∂y

)−1)
so, since h(x) = g(x, c), we have

Dh(x) = ∂g
∂w (x, c) = −

(
∂z
∂y (x, h(x))

)−1 ∂z
∂x (x, h(x)).

This formula shows that if f is Ck then so is h. Indeed when f is Ck, the entries of the

matrices ∂z
∂x and ∂z

∂y are all Ck−1, so the entries of the inverse matrix
(
∂z
∂y

)−1
are also Ck−1

(by the cofactor formula for the inverse of a matrix, which shows that the entries of the
inverse of a matrix are rational functions of the entries of the matrix), hence the entries of
Dh are all Ck−1 so that h is Ck.

4.8 Corollary: (Implicit Description of a Smooth Manifold) Let U ⊆ Rn be open and let
f : U ⊆ Rn → R` be smooth with rankDf(x) = ` for all x ∈ U . Then for all c ∈ Range(f),
f−1(c) =

{
x ∈ U

∣∣ f(x) = c
}

is a regular smooth (n−`)-dimensional submanifold of Rn.

2



4.9 Note: The above corollary often allows us to verify that a subset M ⊆ Rn is a smooth
regular submanifold of Rn without explicitly exhibiting functions whose graphs cover M .

For example, we can say that Sn−1 is a smooth regular (n−1)-dimensional submanifold
of Rn because Sn−1 =

{
x ∈Rn

∣∣ |x| = 1
}

= f−1(1) where f : Rn \ {0} → R is given by

f(x) = |x|2 = x1
2 + x2

2 + · · · + xn
2, and Df(x) =

(
2x1, · · · , 2xn

)
so that rankDf(x) = 1

for all 0 6= x ∈ Rn.

4.10 Theorem: (The Parametric Function Theorem) Let U ⊆ Rm be open with a ∈ U ,
let σ : U ⊆ Rm → Rn be C1, and suppose that Dσ(a) has rank m. Then there is an open
set U0⊆ U with a∈U0 such that the image σ(U0) is equal to the graph of a C1 function f
and the map σ : U0 → σ(U0) is a homeomorphism. If σ is Ck (or C∞) then so is f .

Proof: Since Dσ(a) has rank m, it follows that m ≤ n and some m × m submatrix of
Dσ(a) is invertible. By reordering the variables in Rn, if necessary, suppose that the top
m rows of Dσ(a) form an invertible m ×m submatrix. Write σ(u) =

(
x(u), y(u)

)
, where

x(u) =
(
x1(u), · · · , xm(u)

)
and y(u) =

(
y1(u), · · · , yn−m(u)

)
, so that we have

Dσ(u) =

(
Dx(u)
Dy(u)

)
with Dx(a) invertible. By the Inverse function Theorem, the map x = x(u) is locally
invertible: we can choose an open set U0 ⊆ U with a ∈ U0 such that the image V0 = x(U0)
is open, x : U0 → V0 is bijective, and the inverse u = u(x) is C1. Let f(x) = y

(
u(x)

)
.

Then σ(U0) = Graph (f) because if (x, y) ∈ Graph (f) and we choose u = u(x) then we
have (x, y) =

(
x, f(x)

)
=
(
x(u), f(x(u))

)
=
(
x(u), y(u)

)
∈ σ(U0) and if (x, y) ∈ σ(U0),

say (x, y) =
(
x(u), y(u)

)
, then u = u(x) so that y(u) = y

(
u(x)

)
= f(x) hence (x, y) =(

x(u), y(u)
)

=
(
x, f(x)

)
∈ Graph (f). Note that the map σ : U0 → f(U0) = Graph (f) is a

homeomorphim with the inverse σ−1 : Graph (f) → U0 given by σ−1(x, y) = u(x), which
is continuous.

Suppose σ(u) is Ck so x(u) and y(u) are Ck and also u(x) is Ck (by the Inverse Function
Theorem). Since f(x) = y(u(x)) we haveDf(x) = Dy(u(x))Du(x) = Dy(u(x))Dx(u(x))−1.
Since Dy(u) is Ck−1 and u(x) is Ck, it follows that the composite Dy(u(x)) is Ck−1.
Similarly Dx(u(x)) is Ck−1 and hence the inverse Dx(u(x))−1 is also Ck−1 (by the cofactor
formula for the inverse of a matrix, which shows that the entries of the inverse of a matrix
are rational functions of the entries of the matrix). Thus Df(x) = Dy(u(x))Dx(u(x))−1 is
Ck−1 and hence f(x) is Ck.

4.11 Corollary: (Parametric Description of a Smooth Manifold) An m-dimensional
smooth regular submanifold of Rn is a set M ⊆ Rn such that for each point p ∈ M
there is a smooth regular homeomorphism σ : U ⊆ Rm → V ⊆M ⊆ Rn, where U is open
in Rm and V is open in M with p ∈ V (V is open in M means that V = W ∩M for some
open set W ⊆ Rn).

4.12 Remark: One subtle aspect of the above corollary is that, it is necessary to include
the stipulation that the map σ is a homeomorphism onto its image (even though we
can restrict the domain of any regular map to make it become a homeomorphism onto its
image). For example (as mentioned in Example 1.5) the alpha curve α(t) =

(
t2−1, t(t2−1)

)
is a regular map, so it is locally injective, but it crosses its self at the origin when t = ±1,
and the image of the alpha curve is not a smooth manifold because it is not locally equal
to a graph near the origin. If we restrict the domain of the alpha curve to t > −1, then
α becomes injective (the curve no longer crosses itself) but the image is still not a smooth
manifold, because it is still not locally equal to a graph near the origin.
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4.13 Example: We saw in Example 4.5 that the sphere Sn−1 is an (n−1)-dimensional
submanifold of Rn which can be covered by the graphs of the 2n smooth functions fk, gk.
There are many alternative ways of describing the sphere parametrically and covering the
sphere by the images of smooth regular homeomorphisms. To give just one example, we can
cover the sphere by the images of two such maps using stereographic projection. The
north and south poles of Sn−1 are the points ±en = ±(0, 0, · · · , 0, 1). The stereographic
projections from the north and south poles are the maps φ : Sn−1 \ {en} → Rn−1 and
ψ : Sn−1 \ {−en} → Rn−1 defined as follows. Given x ∈ Sn−1 \ {en}, we define u = φ(x)
to be the point in Rn−1 such that

(
u, 0
)

lies on the line through en and x, and given

x ∈ Sn−1 \ {−en}, we define v = ψ(x) to be the point in Rn−1 such that
(
v, 0
)

lies on the
line through −en and x. Let us find explicit formulas for φ, σ = φ−1, ψ and ρ = ψ−1. The
line in Rn from en to x is given, parametrically, by

α(t) = en + t(x− en) =
(
tx1, tx2, · · · , txn−1, 1 + t(xn − 1)

)
.

Note that α(t) is of the form (u, 0) when t = 1
1−xn

and then

(u, 0) = α
(

1
1−xn

)
=
(

x1

1−xn
, x2

1−xn
, · · · , xn−1

1−xn
, 0
)

so we have
u = φ(x) =

(
x1

1−xn
, x2

1−xn
, · · · , xn−1

1−xn

)
.

The line in Rn through en and (u, 0) where u = φ(x) ∈ Rn−1 is given, parametrically, by

β(t) = en + t((u, 0)− en) =
(
tu1, tu2, · · · , tun−1, 1− t

)
.

This line meets the sphere at the points en and x. We have∣∣β(t)
∣∣2 = 1 ⇐⇒ t2|u|2 + (1− t)2 = 1 ⇐⇒ t2|u|2 − 2t+ t2 = 0 ⇐⇒ t = 0 or t = 2

|u|2+1 .

When t = 0 we have β(t) = en so we must have

x = σ(u) = φ−1(u) = β
(

2
|u|2+1

)
=
(

2u1

|u|2+1 ,
2u2

|u|2+1 , · · · ,
2un−1

|u|2+1 ,
|u|2−1
|u|2+1

)
.

The formulas for x = σ(u) and u = φ(x) = σ−1(x) show that σ and σ−1 are both
continuous, so σ : Rn−1 → Sn−1 \{en} is a homeomorphism. The formula for σ shows that
σ is smooth. The formula for φ shows that the map φ : Sn−1 \{en} → Rn−1 extends (using
the same formula) to a smooth map φ : V ⊆ Rn → Rn−1 where V =

{
x ∈ Rn

∣∣xn 6= 1
}

.
Since φ(σ(u)) = u for all u ∈ Rn−1, we have Dφ(σ(u))Dσ(u) = I for all u, and hence
Dσ(u) must be injective for all u so that σ is regular. As an optional exercise, you could
verify this by calculating Dσ explicitly.

A similar calculation shows that ψ and ρ = ψ−1 are given by

v = ψ(x) =
(

x1

1+xn
, x2

1+xn
, · · · , xn−1

1+xn

)
x = ρ(v) = ψ−1(v) =

(
2v1

1+|v|2 ,
2v2

1+|v|2 , · · · ,
2vn−1

1+|v|2 ,
1−|v|2
1+|v|2

)
,

and a similar argument shows that the map ρ : Rn−1 → Sn−1 \ {−en} is a smooth regular
homeomorphism.

4.14 Definition: By Corollary 4.11, an m-dimensional smooth regular submanifold of
Rn is a set M ⊆ Rn for which there exists a set A of smooth regular homeomorphisms
σ : Uσ ⊆ Rm → Vσ ⊆M , where Uσ is open in Rm and Vσ is open in M , with M =

⋃
σ∈A

Vσ.

Such a set of maps A is called an atlas for M , and the maps σ ∈ A are called (coordinate)
charts on M . When p ∈M is in the range of σ ∈ A, we say that σ is a chart at p.
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4.15 Theorem: Let A be an atlas on smooth regular submanifold M ⊆ Rn. When σ and
ρ are two charts whose images have non-empty intersection, the map ρ−1σ is a smooth
regular change of coordinates.

Proof: Let σ : Uσ⊆ Rm → Vσ⊆M and ρ : Uρ⊆ Rm → Vρ⊆M be charts with Vσ ∩Vρ 6= ∅.
Note that ρ−1σ : σ−1(Vσ ∩ Vρ)→ ρ−1(Vσ ∩ Vρ) and σ−1ρ : ρ−1(Vσ ∩ Vρ)→ σ−1(Vσ ∩ Vρ).
These two maps are continuous and they are inverses of each other, so they are homeo-
morphisms. We need to prove that they are smooth. Before giving a proof, let us remark
that we cannot simply say “since ρ is smooth and σ−1 is smooth, therefore the composite
σ−1ρ is smooth” because we do not know that σ−1 is smooth (indeed we have not yet even
defined what it means for a function of the form σ−1 : V0 ⊆M → U0 ⊆ Rm to be smooth).

Let us show that σ−1ρ is smooth in a neighbourhood of any point in ρ−1(Vσ ∩ Vρ).
Let b ∈ σ−1(Vσ ∩ Vρ), let p = ρ(b) and let a = σ−1(p). Using the notation of the proof
of the Parametric Function Theorem, after reordering the variables in Rn if necessary, we
can write σ(u) =

(
x(u), y(u)

)
and choose U0 ⊆ σ−1(Vσ ∩ Vρ) open with a ∈ U0 such that

x : U0 → V0 invertible with smooth inverse u = u(x), and then σ(U0) is equal to the graph
of the smooth function f(x) = y

(
u(x)

)
, and the inverse σ−1 : σ(U0) → U0 is given by

σ−1(x, y) = u(x). If we then write ρ(v) =
(
ρ1(v), ρ2(v)

)
, then the map σ−1ρ is given by

σ−1(ρ(v)) = u(ρ1(v)), which is a smooth function of v for v ∈ ρ1−1(V0), as required.

4.16 Remark: The above theorem shows that when we defined a 2-dimensional smooth
regular submanifold of Rn in Chapter 3, the requirement in Part 2 of Definition 3.22 (that
ρ−1σ and σ−1ρ are smooth) is superfluous.

4.17 Remark: The above theorem also shows that a smooth regular submanifold M ⊆ Rn
cannot have two different dimensions (it cannot be both m-dimensional and `-dimensional
when m 6= `). Indeed if σ : Uσ ⊆ Rm → Vσ ⊆M and ρ : Uρ ⊆ R` → Vρ ⊆M are two charts
whose images intersect, then since the maps ρ−1σ and σ−1ρ are smooth invertible maps,
for σ(a) = p = ρ(b) the matrices D(ρ−1σ)(a) and D(σ−1ρ)(b) are inverses of eachother, so
they must be square matrices, and D(ρ−1σ)(a) is an `×m matrix. Thus the dimension
of a smooth regular submanifold M ⊆ Rn is well-defined, and we denote it by dim(M).

4.18 Remark: The parametric description of a manifold given in Corollary 4.11, and
the definition of an atlas and charts given in Definition 4.14, and the result of the above
theorem (that the composite of one chart with the inverse of another is a smooth change
of coordinates), are combined together with some topology, to make a more general and
abstract definition of a smooth manifold (not necessarily contained in Euclidean space).

4.19 Remark: A smooth regular submanifold M ⊆ Rn can be given many different
atlases, but it has a unique maximal atlas which consists of all possible smooth regular
homeomorphisms σ : U ⊆ Rm → V ⊆M , where U is open in Rm and V is open in M .

4.20 Example: When M is an m-dimensional submanifold of Rk and N is an n-
dimensional submanifold of R`, the cartesian product M×N =

{
(x, y)

∣∣x ∈M,y ∈ N
}

is an (m+n)-dimensional submanifold of Rk+`. Indeed if A is an atlas for M and B is an
atlas for N , we can construct an atlas C for M×N as follows. Given σ ∈ A and ρ ∈ B,
say σ : Uσ ⊆ Rm → Vσ ⊆ M and ρ : Uρ ⊆ R` → Vρ ⊆ N , we let Uσ×ρ = Uσ×Uρ ⊆ Rm+`

and Vσ×ρ = Vσ×Vρ ⊆ M×N and define σ×ρ : Uσ×ρ ⊆ Rk+` → Vσ×ρ ⊆ M×N by

(σ×ρ)(u, v) =
(
σ(u), ρ(v)

)
. Note that D(σ×ρ) =

(
Dσ
0

0
Dρ

)
so σ×ρ is smooth and regular,

and the inverse of (σ×ρ) is given by (σ×ρ)(x, y) =
(
σ−1(x), ρ−1(y)

)
which is continuous,

hence σ×ρ is a homeomorphism. Thus the set C =
{
σ×ρ,

∣∣σ ∈ A, ρ ∈ B} is an atlas for
M×N . For example, the n-torus Tn = S1×S1× · · · ×S1 is a submaifold of R2n.
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Smooth Maps

4.21 Definition: Let M ⊆ Rk and N ⊆ R` be two (smooth regular) submanifolds, and let
f : M → N be continuous. We say that f is differentiable at p ∈M when the composite
ρ−1fσ is differentiable at σ−1(p) for every chart σ on M at p and every chart ρ on N at
f(p). Note that by Theorem 4.15, if ρ−1fσ is differentiable at σ−1(p) for one chart σ on M
at p and one chart ρ on N at f(p), then µ−1fτ is differentiable at τ−1(p) for every chart
τ on M at p and every chart µ on N at f(p) because µ−1fτ = (µ−1ρ)(ρ−1fσ)(σ−1τ).
We say that f is differentiable (on M) when f is differentiable at every point p ∈ M ,
equivalently when ρ−1fσ is differentiable (in its domain) for every chart σ on M and every
chart ρ on N (the empty function with the empty domain is differentiable, vacuously). We
say that f is smooth or C∞ (on M) when ρ−1fσ is smooth for every chart σ on M and
every chart ρ on N . We say that f is a (smooth) diffemorphism when f is bijective and
both f and f−1 are smooth.

4.22 Note: Let M ⊆ Rn be a (smooth, regular) submanifold and let σ be a chart on
M , say σ : U ⊆ Rm → V ⊆ M . Note that U ⊆ Rm is an m-dimensional submanifold of
Rm with an atlas consisting of one chart, namely the inclusion map I : U → Rm given
by I(u) = u. Also note that V ⊆ Rn is an m-dimensional submanifold of Rn with an
atlas consisting of one chart, namely the map σ : U → V . By Definition 4.21, the map
σ : U → V is smooth (rather trivially) because σ−1σI = I, which is smooth. Likewise, the
map σ−1 : V → U is smooth (again rather trivially) because I−1σ−1σ = I−1 = I, which
is smooth. Thus the chart σ is a diffeomorhism from U ⊆ Rm to V = σ(U) ⊆ Rn.

4.23 Note: Let M ⊆ Rn be a (smooth, regular) submanifold, and consider the inclusion
map J : M → Rn given by J(p) = p. Note that Rn is a submanifold of itself using an
atlas which consists of one chart, namely the identity map I : Rn → Rn. By Definition
4.21, the inclusion map J : M → Rn is smooth (rather trivially) because for every chart
σ : U ⊆ Rm → V ⊆M on M we have I−1Jσ = σ, which is smooth.

4.24 Note: When one of the two manifolds M ⊆ Rk and N ⊆ R` is equal to Rk or R`,
the definitions of differentiability and smoothness can be simplified a little. For example,
a map f : M ⊆ Rk → R` is smooth when fσ is smooth for every chart σ on M , and a map
f : Rk → N ⊆ R` is smooth when ρ−1f is smooth for every chart ρ on N .

4.25 Note: The composite of smooth maps between manifolds is smooth. Indeed, let
L, M and N be smooth manifolds (in various Euclidean spaces) and let f : L → M and
g : M → N be smooth maps, and consider the composite gf : L→ N . Let τ : Uτ → Vτ ⊆ L
be any chart on L and let ρ : Uρ → Vρ ⊆ N be any chart on N . We need to show that the
composite ρ−1gfτ is smooth (assuming its domain is not empty). Let a be in the domain,
that is let a ∈ τ−1

(
f−1(g−1(Vρ))

)
. Choose a chart σ on M at the point p = f(τ(a)). Then

in an open set containing a, we have ρ−1gfτ = (ρ−1gσ)(σ−1fτ), which is smooth.

4.26 Note: By Theorem 4.15, differentiability and smoothness do not depend on the
choice of atlas.
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4.27 Theorem: Let M ⊆ Rk and N ⊆ R` be smooth, regular submanifolds, and let
f : M → N be continuous.

(1) Define g : M → R` by g(p) = f(p) for all p ∈ M . Then f is smooth if and only if g is
smooth.
(2) Let W ⊆ Rk be an open set with M ⊆W and let g : W → R` be a continuous extension
of f to W (this means that g(p) = f(p) for all p ∈M). If g is smooth then so is f .

Proof: Let us prove Part 1. Note that if f is smooth then so is g, because g is the
composite g = Jf where J : N → R` is the inclusion (which is smooth, by Note 4.23).
Suppose that g is smooth. Let σ : Uσ ⊆ Rm → Vσ ⊆ M be a chart on M and let
ρ : Uρ ⊆ Rn → Vρ ⊆ N be a chart on N . We need to show that ρ−1fσ is smooth,
and it suffices to show that it is smooth in an open neighbourhood of any point. Say
a ∈ Uσ, p = σ(a) ∈ M , q = f(p) = g(p) ∈ N and b = ρ−1(q) ∈ Uρ. Using the
notation of the proof of the Parametric Function Theorem (applied to the chart ρ), after
reordering the variables in R` if necessary, we can write ρ(u) =

(
x(u), y(u)

)
with x ∈ Rn

and y ∈ R`−n, and choose U0 ⊆ Uρ open with b ∈ U0 such that x : U0 → V0 invertible
with smooth inverse u = u(x), and then ρ(U0) is equal to the graph of the smooth function
h : V0 → R`−n given by h(x) = y

(
u(x)

)
, and the inverse ρ−1 : ρ(U0) → U0 is given by

ρ−1(x, y) = u(x). We have ρ(U0) = Graph (h) =
{

(x, h(x))
∣∣x ∈ V0} ⊆ V0×R`−n Notice

that we can extend the map ρ−1 : ρ(U0) → U0 to a map ψ : V0×R`−n → U0 using the
same formula ψ(x, y) = u(x). Note that g−1

(
V0×R`−n

)
is an open subset of W which

contains p, and σ−1
(
g−1

(
V0×R`−n

))
is an open subset of Uσ which contains a. On this

set we have ρ−1fσ = ψgσ, which is smooth, as required.
Part 2 follows easily from Part 1. Indeed, suppose that g : W ⊆ Rk → R` is a smooth

extension of f to an open set W ⊆ Rk with M ⊆ W . By Part 1, the map g : W → N is
smooth, and given any chart σ on M and any chart ρ on N we have ρ−1fσ = ρ−1gσ.

4.28 Example: Define f : S2 → R by f(x, y, z) = z sin(x+y). Then f is smooth on S2,
by Part 2 of the above theorem

(
using W = R3 and g(x, y, z) = z sin(x+y)

)
.

4.29 Example: Define h : R3 → R by

h(x, y, z) =

{
x2+y2

1−z when z 6= 1

2 when z = 1.

Show that h is not smooth on R3 but the restriction of h to S2 is smooth.

Solution: The function h is not smooth on R3, indeed it is not even continuous at points
of the form (x, y, 1): for α(t) = (x, y, t) we have lim

t→1
α(t) = (x, y, 1), so if h was continuous

we would have lim
t→1

h(α(t)) = h(x, y, 1) = 2, but instead we have lim
t→1

h(α(t)) = lim
t→1

x2+y2

1−t2 ,

which does not exist when (x, y) 6= (0, 0) and which is equal to 0 when (x, y) = (0, 0).

But we claim that the restriction of h to S2 is smooth. Let f : S2 → R be the restriction
of h. For all (x, y, z) ∈ S2 we have x2 + y2 + z2 = 1 so that x2 + y2 = 1− z2. When z 6= 1

we have h(x, y, z) = x2+y2

1−z = 1−z2
1−z = 1 + z, and at the point (x, y, z) = (0, 0, 1) we have

h(x, y, z) = 2 = 1 + z, and so f(x, y, z) = h(x, y, z) = 1 + z for all (x, y, z) ∈ S2. Thus f is
smooth on S2, by Part 2 of the above theorem

(
using W = R3 and g(x, y, z) = 1 + z

)
.
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Tangent Vectors and Vector Fields

4.30 Definition: Let M ⊆ Rn be a smooth regular m-dimensional submanifold and let
p ∈ M . A tangent vector on M at p is a vector of the form Xp = γ′(0) ∈ Rn for some
smooth map γ : J ∈ R→ M ⊆ Rn with γ(0) = p where J is an open interval with 0 ∈ J .
Given a chart σ : Uσ ⊆ Rm → Vσ ⊆M at p, with say σ(a) = p, if we let α(t) = σ−1(γ(t))
so that γ(t) = σ(α(t)) for all t ∈ I where I is an open interval with 0 ∈ I, then we have
γ′(t) = Dσ(α(t))α′(t) so that γ′(0) = Dσ(a)α′(0). This shows that every tangent vector
Xp on M at p lies in the range of the linear map Dσ(a) (equivalently Xp lies in the column
space of the matrix Dσ(a)). On the other hand, given any vector A ∈ Rm, we can choose
a smooth curve α : I ⊆ R→ Uσ ⊆ Rm with α(0) = a and α′(0) = A (for example, we can
let α(t) = a + tA) and let γ(t) = σ(α(t)) for all t ∈ J where J is an open interval with
0 ∈ J , and then we have γ′(0) = Dσ(a)A. Thus the set of all tangent vectors on M at
p is equal to the range of the linear map Dσ(a), which is a vector space. We define the
tangent space of M at p, denoted by TpM , to be the vector space of all tangent vectors
on M at p. When σ is a chart on M at p with σ(a) = p we have

TpM = RangeDσ(a).

Since σ is regular so that Dσ(a) is injective, the linear map Dσ(a) is a bijective linear
map (that is a vector space isomorphism) from Rm to TpM . In particular, the dimension
of the tangent space TpM is equal to the dimension of M .

4.31 Example: When U ⊆ Rm is open, so U is an m-dimensional submanifold of Rm
with an atlas consisting of a single chart, namely the inclusion map σ : U → Rm given by
σ(a) = a, for all a ∈ U we have Dσ(a) = I, so that

TaU = Range Dσ(a) = Rm .

4.32 Example: For every smooth map γ : I ⊆ R → Sn−1 ⊆ Rn with γ(0) = p, we have
γ(t).γ(t) = 1 for all t, and differentiating gives γ′(t).γ(t) = 0 for all t. In particular,
γ′(0).p = 0. Thus TpSn−1 is the (n−1)-dimensional space in Rn orthogonal to p, that is

TpSn−1 = Span{p}⊥ = ker(pT ).

4.33 Remark: Let M ⊆ Rn be an m-dimensional smooth regular submanifold with
m < n. When σ : Uσ ⊆ Rm → Vσ ⊆ M is a chart on M at p with σ(a) = p, the map
σ : Uσ → Vσ is invertible with inverse σ−1 : Vσ → Uσ, but Vσ is not an open set in Rn
(it is only an open set in M) and so it does not have a Jacobian matrix (we do not write
Dσ−1). By the Parametric Function Theorem, as described in the proof of Theorem 4.27,
we can restrict σ to an open subset U0 ⊆ Uσ and extend the inverse σ−1 : σ(U0) → U0

to a smooth function φ : V0×Rn−m → U0. This extended map φ is a one-sided inverse
of σ (we have φσ = I but σφ 6= I) and it has a Jacobian matrix which is a one-sided
inverse of Dσ(a)

(
we have Dφ(p)Dσ(a) = I but Dσ(a)Dφ(p) 6= I

)
. The matrix Dσ(a) is

an n×m matrix and the matrix Dφ(p) is an m×n matrix with m < n. The linear map
Dσ(a) : Rm = TaU → TpM is a vector space isomorphism and its inverse is the linear map
Dφ(p) : TpM ⊆ Rn → Rm = TaU . We could, logically speaking, denote this inverse map
by Dσ(a)−1, but we avoid using this notation because it would give the impression that
Dσ(a) is an invertible matrix.
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4.34 Definition: Let M ⊆ Rn be a smooth regular submanifold, and let p ∈M . A vector
Xp ∈ TpM determines a differential operator on the space of all functions f : M → R which
are differentiable at the point p as follows: choose a smooth map γ : J ⊆ R → M ⊆ Rn
with γ(0) = p and γ′(0) = Xp, define g : I ⊆ R → R by g(t) = f(γ(t)), and define the
(directional) derivative of f at p with respect to Xp to be

Xp(f) = g′(0) .

Note that although we have g(t) = f(γ(t)), it does not make sense (in general) to write
Dg(t) = Df(γ(t))γ′(t) because the function f is not defined in an open set in Rn (it is only
defined on M ⊆ Rn). Let σ : Uσ ⊆ Rm → Vσ ⊆M be any chart on M at p, say σ(a) = p,
define α : I ⊆ R→ Uσ ⊆ Rm by α(t) = σ−1(γ(t)) so that we have γ(t) = σ(α(t)), and let
A = α′(0) ∈ TaU = Rm. Since f is differentiable at p ∈ M it follows (from the definition
of differentiability) that fσ is differentiable at a and we have g(t) = f(σ(α(t))) so that
g′(t) = D(fσ)(α(t))α′(t), hence

Xp(f) = g′(0) = D(fσ)(α(0))α′(0) = D(fσ)(a)A.

4.35 Note: Let M ⊆ Rn be a smooth regular submanifold. Let p ∈M and let Xp ∈ TpM .
Let γ : J ⊆ R → M ⊆ Rn be a smooth map with γ(0) = p and γ′(0) = Xp. Let
σ : Uσ ⊆ Rm → Vσ ⊆ M and ρ : Uρ ⊆ Rm → Vρ ⊆ M be two charts at p on M with say
σ(a)=p=ρ(b), and recall that ρ−1σ is a regular change of coordinates. Let α(t)=σ−1(γ(t))
and β(t) = ρ−1(γ(t)), and let A=α′(0)∈ TaUσ =Rm and B= β′(0)∈ TbUρ =Rm, so that
we have Xp = Dσ(a)A = Dρ(b)B. Then we have β(t) = ρ−1(γ(t)) = ρ−1(σ(α(t))) so that
β′(t) = D(ρ−1σ)(α(t))α′(t). Thus the vectors A and B are related by

B = β′(0) = D(ρ−1σ)(α(0))α′(0) = D(ρ−1σ)(a)A.

Thus a tangent vector Xp ∈ TpM determines, and is determined by, a tangent vector
A ∈ TaUσ = Rm for each chart σ on M at at p, and the vectors for different charts are
related by the above formula.

4.36 Definition: Let M ⊆ Rn be a smooth regular submanifold. A vector field on M
is a function X : M →

⋃
p∈M TpM such that Xp = X(p) ∈ TpM for all p ∈ M . When X

is a vector field on M , given a chart σ : Uσ ⊆ Rm → Vσ ⊆ M , for each u ∈ Uσ there is a
unique vector A = Aσ(u) ∈ TuUσ = Rm such that X(σ(u)) = Dσ(u)Aσ(u). We say that
X is continuous when the function Aσ : Uσ → Rm is continuous for every chart σ, and
we say that X is smooth when Aσ is smooth for every chart σ.

4.37 Example: When U ⊆ Rm is open, so U is an m-dimensional submanifold of Rm
with an atlas consisting of the inclusion map, a smooth (or continuous) vector field on U
is simply a smooth (or continuous) map X : U ⊆ Rm → Rm.

4.38 Remark: By the change of coordinates formula in Note 4.35, the definitions of
continuity and smoothness do not depend on a choice of atlas.

4.39 Definition: Let M ⊆ Rn be a smooth regular submanifold. A smooth vector field
on M determines a differential operator on the space of all smooth functions f : M → R
as follows: given a smooth vector field X : M →

⋃
p∈M

TpM and a smooth function f :

M → R, we define the (directional) derivative of f with respect to the vector field X
to be the map X(f) : M → R given by X(f)(p) = Xp(f). Note that this map X(f) is
smooth. Indeed by the definition of smoothness, the map X(f) is smooth provided that
the composite X(f)σ is smooth for every chart σ on M , and when σ is a chart we have
X(f)(σ(u)) = D(fσ)(u)Aσ(u), which is a smooth function of u.
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4.40 Definition: Let M ⊆ Rn be a smooth regular submanifold, and let X be a smooth
vector field on M . An integral curve of X on M at p is a smooth map γ : J ⊆ R→ M
with γ(0) = p (where J is an open interval with 0 ∈ J) such that

γ′(t) = X(γ(t)) for all t ∈ J.
Let σ : Uσ ⊆ Rm → Vσ ⊆M be a chart at p with σ(a) = p. Let α : I ⊆ R→ Uσ ⊆ Rm be
a smooth map with α(0) = a, and let γ(t) = σ(α(t)). Let Aσ be the smooth vector field
on Uσ such that X(σ(u)) = Dσ(u)Aσ(u) for all u ∈ Uσ. Note that γ′(t) = Dσ(α(t))α′(t)
and that X(γ(t)) = X(σ(α(t))) = Dσ(α(t))Aσ(α(t)). Since σ is regular so that Dσ(α(t))
is injective, we see that

γ is an integral curve of X on M at p ⇐⇒ γ′(t) = X(γ(t)) for all t ∈ I
⇐⇒ Dσ(α(t))α′(t) = Dσ(α(t))Aσ(α(t)) for all t ∈ I
⇐⇒ α′(t) = Aσ(α(t)) for all t ∈ I
⇐⇒ α is an integral curve of Aσ on Uσ at a.

4.41 Remark: When M ⊆ Rn is a smooth regular submanifold, X be a smooth vector
field on M and p ∈M , using existence and uniqueness theorems for differential equations
one can show that there is a unique integral curve γ : I ⊆ R→M of X on M at p defined
on a maximal open interval I ⊆ R with 0 ∈ I.

4.42 Definition: Let M ⊆ Rk and N ⊆ R` be smooth regular submanifolds, and let
f : M → N be a smooth map. When Xp ∈ TpM , the pushforward of the vector Xp

by the map f is the vector f∗Xp ∈ Tf(p)N defined as follows: choose a smooth curve
γ : I ⊆ R → M with 0 ∈ I, γ(0) = p and γ′(0) = Xp and define f∗Xp = δ′(0) ∈ Tf(p)N
where δ(t) = f(γ(t)). Let σ be a chart on M at p, say σ(a) = p, let Aσ ∈ TaU = Rm
be the unique vector such that Dσ(a)Aσ = Xp, and let α : I ⊆ R → Uσ be given by
α(t) = σ−1(γ(t)) so that we have γ(t) = σ(α(t)) for t ∈ I. Then Xp = γ′(0) = Dσ(a)α′(0)
so that α′(0) = Aσ, and since δ(t) = f(σ(α(t))), we have

f∗Xp = δ′(0) = D(fσ)(a)α′(0) = D(fσ)(a)Aσ.

This gives a formula for f∗Xp in terms of the local coordinates, and it shows that the
vector f∗Xp does not depend on the choice of the curve γ(t). In the case that f is a
diffeomorphism with inverse g : N → M , and X is a vector field on M (so the we have
a vector X(p) = Xp ∈ TpM for every point p ∈ M), the pushforward of X by f is the
vector field f∗X on N given by (f∗X)(f(p)) = f∗Xp ∈ Tf(p)N . Verify, as an exercise, that
if the vector field X is smooth (and the function f is smooth) then the vector field f∗X is
smooth.

4.43 Example: When U ⊆ Rm (so U is an m-dimensional submanifold of Rm with an
atlas consisting of the inclusion map) and f : U ⊆ Rm → N ⊆ R` is a smooth map, and
A ∈ TaU = Rm, we have f∗A = Df(a)A ∈ Tf(a)N ⊆ R`.

4.44 Example: Let M ⊆ Rn be a smooth regular submanifold and let σ : Uσ → Vσ ⊆M
be a chart on M at p with say σ(a) = p. Recall that σ is a diffeomorphism from Uσ ⊆ Rm
to Vσ ⊆ M . Let φ = σ−1 : Vσ → Uσ. Let X be a smooth vector field on M , and let
Xσ be the restriction of X to the open set Vσ ⊆ M . For each u ∈ Uσ, let Aσ(u) be the
unique vector in TuUσ = Rm such that Dσ(u)Aσ(u) = X(σ(u)) = Xσ(σ(u)). Then we
have Aσ = φ∗Xσ and Xσ = σ∗Aσ.
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The Riemannian Metric

4.45 Definition: Let M ⊆ Rn be a smooth regular m-dimensional submanifold of Rn.
Let σ : Uσ ⊆ Rm → Vσ ⊆M be a chart on M . The Riemannian metric on Uσ induced
by σ is the smooth map g = gσ : Uσ →Mm×m(R) given by

g(u) = Dσ(u)TDσ(u).

The Riemannian metric gives an inner product, hence also a norm, on TuUσ = Rm at each
point u ∈ Uσ: for u ∈ Uσ and A,B ∈ TuUσ = Rm we have

〈A,B〉 = BTg(u)A and ‖A‖ =
√
〈A,A〉 =

√
ATg(u)A.

When α : I ⊆ R → Uα ⊆ Rm is a differentiable curve and γ : I ⊆ R → M ⊆ Rn is given
by γ(t) = σ(α(t)), we have γ′(t) = Dσ(α(t))α′(t) hence

|γ′(t)| =
√
γ′(t)T γ′(t) =

√
α′(t)T g(α(t))α′(t) = ‖α′(t)‖.

When [a, b] ⊆ I, the length of α on [a, b] with respect to the metric g on Uσ is equal to
the length of γ on [a, b] with respect to the standard metric in Rn, that is

Lγ
(
[a, b]

)
=

∫
[a,b]

dL =

∫ b

a

|γ′(t)| dt =

∫ b

a

‖α′(t)‖ dt .

More generally, for a continuous function f : M → R, we define the integral f along γ on
[a, b] to be ∫

[a,b]

f dL =

∫ b

a

f(γ(t)) |γ′(t)| dt =

∫ b

a

(fσ)(α(t)) ‖α′(t)‖ dt.

When R ⊆ Uσ is a closed Jordan region, we define the volume of R with respect to the
metric gσ to be

Volσ(R) =

∫
R

dV =

∫
R

√
det g(u) du1 du2 · · · dum .

More generally, for a continuous function f : M → R we define the integral of f on R
under σ to be ∫

R

f dV =

∫
R

(fσ)(u)
√

det g(u) du1 du2 · · · dum .

For some motivation behind the above definition, review Remark 2.9 and have a look at
Theorem 1.2 in Appendix 1.

4.46 Note: Let M ⊆ Rn be a smooth regular submanifold. Let σ : Uσ ⊆ Rm → Vσ ⊆M
and ρ : Uρ ⊆ Rm → Vρ ⊆ M be two charts with intersecting images, and recall that the
map φ = ρ−1σ is a smooth regular change of coordinates with inverse ψ = σ−1ρ. Since
ρ = σσ−1ρ = σψ we have Dρ = DσDψ and so

gρ = DρTDρ = (DσDψ)T (DσDψ) = DψTDσTDσDψ = DψT gσDψ.

It follows that det dρ = det gσ(detDψ)2 and so if R is a closed Jordan region in Uσ and Q
is a closed Jordan region in Uρ) such that σ(R) = ρ(Q) then (by the change of variables
formula for integration) we have

Aσ(R) =

∫
R

√
det gσ(u) du1 · · · dum =

∫
Q

√
det gσ(ψ(v))

∣∣detDψ(v)
∣∣ dv1 · · · dvm

=

∫
Q

√
det gρ(v) dv1 · · · dvm = Aρ(Q).
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4.47 Remark: If γ : I ⊆ R→ M ⊆ Rn is a smooth curve and [a, b] ⊆ I, then the image
γ
(
[a, b]

)
might not be contained in the image of a single chart. In this case, we can choose

a partition a = a0 < a1 < · · · < a` = b such that the image under γ of each subinterval is
contained in the image of a chart, say γ

(
[xk−1, xk]

)
⊆ Vk where σk : Uk ⊆ Rm → Vk ⊆M

is a chart. Then for αk(t) = σ−1k (γ(t)), we can calculate the integral of f along γ in terms
of local coordinates∫

[a,b]

f dL =

∫ b

a

f(γ(t)) |γ′(t)| dt =
∑̀
k=1

∫ ak

ak−1

(fσk)(αk(t)) ‖αk′(t)‖ dt.

In the same way, we can calculate the integral of a continuous function f : M → R on a
region S ⊆ M which does not lie in the image of a single chart. It is difficult to explain
precisely how this can be done and to prove rigorously that the resulting integral is well-
defined, but let us give an informal description. Suppose that we can cut the region S into
` subregions of the form σk(Rk) where each σk : Uk ⊆ Rm → Vk ⊆M is a chart and Rk is
a closed Jordan region in Uk, and suppose that the subregions σk(Rk) only overlap along
their boundaries. Then the integral of f on S is the sum∫

S

f dA =
∑̀
k=1

∫
Rk

f dV =
n∑
k=1

∫
Rk

(fσk)(u)
√

det gσk
(u) du1 du2 · · · dum .

In particular, if the entire submanifold M ⊆ Rn can be cut into finitely many such regions
σk(Rk), then we can calculate the integral

∫
M
f dA of a continuous function f on the

manifold, and we can calculate the volume of the manifold V =
∫
M
dA.
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