Chapter 4. Submanifolds of R"™

4.1 Definition: We restate Definition 2.1 so that it applies to functions of m variables.
Let U C R™ be open, let f : U C R™ — R", and write v = (u1, -, u,) € U and
flu) = (a:l(u), Cee X (u)) € R™. We say that f is C* in U when all of the k" order partial
derivatives exist and are continuous, and we say that f is smooth (or that f is C*°) when
f is C* for all k € Z*. Recall that when f is C! it is also differentiable, and its derivative
matrix (or its Jacobian matrix) is given by
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We say that f is regular (or f is an immersion) when f is C! and its derivative matrix is
injective, that is when the columns of the derivative matrix are linearly independent. Recall
that a homeomorphism is a bijective continuous function whose inverse is continuous.

4.2 Definition: Let M C R™ and let p = (p1,p2,---,pn) € M. We say that M is locally
equal to the graph of a function of m variables, near the point p, when there exists

a choice of m of the variables x1,- - -, x,, say the variables x; with k € K where K is the
index set K = (ky, ko, -+, k) with 1 < ky < ko < -+ < k;;, < n, with the remaining n—m
variables being z, with ¢ € L where L is the complementary index set L = ({1, 0, -+, lp_1)
with 1 </l </lyp < -+ <lp_p, <nand with KUL ={1,2,---,n}, and there exist €,J > 0,
and there exists a function f : A — B where A = {(zy,, -+, x,,)| |2k, — pr,| <} and
B={(xe,, -, 24, )| |we, — pe,| < €} such that for the open rectangle R = A x B C R",
that is for R = {z € R"|(wg,, -, 2k, ) €A, (Tey, **, Ton—m) € B} we have

M N R = Graph(f) = {(:1;1,~--,xn) ER‘ (Tey, -y xe,_,) :f(ajk17“'7ka)}'

Note that the function g: A— Graph (f), given by g(u1,- -, um) = (x1(w), -, z,(u)) with
2, (u) = w; and (zg, (u), -+, 20, . (u)) = f(u), is a homeomorphism from A to Graph (f)
(the inverse of g is the projection p(x1,---,2y) = (T, -+, Tk, ), Which is continuous).

4.3 Definition: An m-dimensional (smooth regular) submanifold of R™ is a set M CR"
which is locally equal to the graph of a smooth function of m variables, near every p € M.

4.4 Example: For a smooth function f : U C R™ — Rf, where U is open, the graph
Graph (f) = {(z,y) |z € U CR™,y € R,y = f(z)} is a smooth regular m-dimensional
submanifold of R™** (given p = (a,b) € Graph (f) we have f(a) = b, and given € > 0,
since f is continuous we can choose § > 0 so that |z — a| < ¢ implies |f(x) — b| < ¢, and
since U is open we can choose this § to small enough so that the box given by |z; —a;| < ¢
lies inside U). Any open set U C R™ can be considered as a smooth regular m-dimensional
submanifold of R™ (it is the graph of the zero function f: U C R™ — R" = {0}).

4.5 Example: The unit sphere S"~! = {# € R" | |z|=1} is an (n—1)-dimensional sub-
manifold of R™. Indeed, if we let U = {uER”fl ’ lu| < 1} and define fy, g, : U— S"" 1 C R"

b
y fk(u): (ula"'7uk—]—7V]‘_luP,Uk,"',un)
gk(u) = (UI; e Uk—1, —\/ 1— |u’2,Uk;, . 7un)

then every point p € S®~! is on the graph of one of the functions fi, gx (and if we want,
we can restrict the domain of fi or g to an open rectangle in U as in definition 4.2).



4.6 Theorem: (The Inverse Function Theorem) Let f : U C R™ — R™ where U C R"
is open with a € U. Suppose that f is C! in U and that Df(a) is invertible. Then there
exists an open set Uy C U with a € Uy such that the set Vo = f(Uy) is open in R™ and the
restriction f : Uy — Vj is bijective, and its inverse g = f~' : Vo — Uy is C* in Vj. In this
case we have Dg(f(a)) = Df(a)~'. If f is C* (or C*°) then so is f~'.

Proof: This theorem is usually stated without proof in MATH 237 and a full proof is
usually given in MATH 147. The proof is not easy. A proof is included in Appendix 2.

4.7 Theorem: (The Implicit Function Theorem) Let f : U C R"® — R® where U is open
with p € U. Suppose that f is C! in U and that Df(p) has rank ¢ and let ¢ = f(p). Then
the level set f~'(c) = {z € U| f(x) = ¢} is locally the graph of a C' function h of n—/¢
variables near the point p. If f is C* (or C*) then so is h.

Proof: Since Df(p) has rank /¢, it follows that some ¢ x ¢ submatrix of f is invertible. By
reordering the variables in R™, if necessary, suppose that the last £ of the n columns of Df (p)
form an invertible ¢ x ¢ matrix. Let m = n— ¢, write p = (a,b) with a = (p1,- -+, pm) € R™
and b = (ppms1,--+,pn) € RY and write z = f(z,y) with 2 € R™, y € R® and 2z € R, and
write

Df(z,y) = (52 (2,y), 5 (2, y))

with g—;(a, b) invertible. Define F': U C R™ — R" by F(z,y) = (=, f(z,y)) = (w, z). Then

we have I o
DF = <8z 82)

oxr Oy
with DF'(a,b) invertible. By the Inverse Function Theorem, we can choose an open set Uy
in R™ with p € Uy C U such that V = F(Up) is open in R™ and the map F : Uy — V} is
invertible and its inverse G : Vo — Uy is C*. Write (z,y) = G(w, z) = (w, g(w, z)) and let
h(z) = g(z,c). Then, locally, we have f~!(c) = Graph (h) because
flx,y) = ¢ = F(z,y) = (z,¢) < (,y) = G(z,¢)
— (2,y) = (z,9(z,¢)) < (,y) € Graph (h).

Since G(w, z) = (w,g(w, z)) we have DG(w,z) = ( 3Ig aog). Since G = F~! we also
dw 9z
have

I @)
DG(w,z) = DF(z,y)"! = (_(az)—l oz (%)—1>
Y
so, since h(z) = g(z, ¢), we have

Dh(z) = 32 (z,¢) = — (8 (x, h(2))) ' 82 (x, h(x)).

This formula shows that if f is C* then so is h. Indeed when f is C*, the entries of the

. _ . . . -1 _
matrices % and g—; are all C¥~!, so the entries of the inverse matrix (g—;) are also Ck—1

(by the cofactor formula for the inverse of a matrix, which shows that the entries of the

inverse of a matrix are rational functions of the entries of the matrix), hence the entries of
Dh are all Ck~1 so that h is C*.

4.8 Corollary: (Implicit Description of a Smooth Manifold) Let U C R™ be open and let
f:U CR" — R’ be smooth with rank Df (x) = £ for all z € U. Then for all c € Range(f),
f~He)={xz € U| f(z) = ¢} is a regular smooth (n—{)-dimensional submanifold of R™.



4.9 Note: The above corollary often allows us to verify that a subset M C R"™ is a smooth
regular submanifold of R™ without explicitly exhibiting functions whose graphs cover M.

For example, we can say that S"~1 is a smooth regular (n—1)-dimensional submanifold
of R™ because S"~! = {z € R" ||z] = 1} = f~!(1) where f : R"\ {0} — R is given by
f(@) =]z =212 + 222 + - + x,,%, and Df (z) = (221, -+, 2x,,) so that rank Df (z) =
for all 0 # z € R™.

4.10 Theorem: (The Parametric Function Theorem) Let U C R™ be open with a € U,
let o : U CR™ — R" be C!, and suppose that Do(a) has rank m. Then there is an open
set Uy C U with a €Uy such that the image o(Uy) is equal to the graph of a C* function f
and the map o : Uy — o(Uy) is a homeomorphism. If o is C* (or C*°) then so is f.

Proof: Since Do(a) has rank m, it follows that m < n and some m x m submatrix of
Do(a) is invertible. By reordering the variables in R"™, if necessary, suppose that the top
m rows of Do(a) form an invertible m x m submatrix. Write o(u) = (z(u), y(u)), where

z(u) = (z1(u), -+, 2m(u)) and y(u) = (y1(w), -, Yn—m(w)), so that we have
_ ( Dx(w)
Do (u) = (Dy(u))

with Dz(a) invertible. By the Inverse function Theorem, the map x = z(u) is locally
invertible: we can choose an open set Uy C U with a € Uy such that the image V) = z(Up)
is open, = : Uy — Vp is bijective, and the inverse u = u(z) is C*. Let f(z) = y(u(z)).
Then O'(Uo) Graph( ) because if (x,y) € Graph (f) and we choose u = u(x) then we
have (z,y) = (z, f(z)) = (z(v), f(z(w))) = (z(uv),y(u)) € o(U) and if (z,y) € o(Up),
say (z,y) = (z(uw),y(u)), then u = u(x) so that y(u) = y(u(z)) = f(z) hence (z,y) =
(z(u),y(v)) = (z, f(x)) € Graph (f). Note that the map o : Uy — f(Uy) = Graph (f) is a
homeomorphim with the inverse ¢=! : Graph (f) — Uy given by ¢~ !(z,y) = u(x), which
1s continuous.

Suppose o (u) is C* so z(u) and y(u) are C* and also u(z) is C* (by the Inverse Function
Theorem). Since f(z) = y(u(z)) we have Df (z) = Dy(u(x))Du(z) = Dy(u(x))Dx(u(z))~}
Since Dy(u) is Ck¥~1 and wu(x) is C*, it follows that the composite Dy(u(x)) is Ck~1L.
Similarly Dz (u(z)) is C*~! and hence the inverse Dz (u(z))~" is also C*~! (by the cofactor
formula for the inverse of a matrix, which shows that the entries of the inverse of a matrix

are rational functions of the entries of the matrix). Thus Df(z) = Dy(u(z))Dx(u(z))~! is
C*~1 and hence f(x) is C*.

4.11 Corollary: (Parametric Description of a Smooth Manifold) An m-dimensional
smooth regular submanifold of R™ is a set M C R™ such that for each point p € M
there is a smooth regular homeomorphism o : U C R™ — V C M C R", where U is open
in R™ and V' is open in M withp € V (V is open in M means that V.= W N M for some
open set W C R"™).

4.12 Remark: One subtle aspect of the above corollary is that, it is necessary to include
the stipulation that the map o is a homeomorphism onto its image (even though we
can restrict the domain of any regular map to make it become a homeomorphism onto its
image). For example (as mentioned in Example 1.5) the alpha curve a(t) = (t*—1,¢(t*~1))
is a regular map, so it is locally injective, but it crosses its self at the origin when ¢ = 41,
and the image of the alpha curve is not a smooth manifold because it is not locally equal
to a graph near the origin. If we restrict the domain of the alpha curve to t > —1, then
a becomes injective (the curve no longer crosses itself) but the image is still not a smooth
manifold, because it is still not locally equal to a graph near the origin.
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4.13 Example: We saw in Example 4.5 that the sphere S"~! is an (n—1)-dimensional
submanifold of R™ which can be covered by the graphs of the 2n smooth functions f, gx.
There are many alternative ways of describing the sphere parametrically and covering the
sphere by the images of smooth regular homeomorphisms. To give just one example, we can
cover the sphere by the images of two such maps using stereographic projection. The
north and south poles of S*~! are the points +e,, = £(0,0,---,0,1). The stereographic
projections from the north and south poles are the maps ¢ : S* 1\ {e,} — R""! and
Y : S\ {—e,} — R"! defined as follows. Given z € S"71\ {e,}, we define u = ¢(x)
to be the point in R™~! such that (u,O) lies on the line through e, and z, and given
z € S" '\ {—e,}, we define v = 9)(z) to be the point in R"~! such that (v,0) lies on the
line through —e,, and z. Let us find explicit formulas for ¢, 0 = ¢~!, ¥ and p = p~1. The
line in R™ from e, to x is given, parametrically, by

alt) =e, +t(z —e,) = (txl,ta:g, ceetepg g, L+ t(z, — 1))

Note that «(t) is of the form (u,0) when ¢t = 1_1% and then

(1,0) = () = (12, 22 ... = )

1—x, l—x,’ 1—x,’ Y 1l—x,?

so we have

u=g(x) = (2, 722, 25,

The line in R™ through e, and (u,0) where u = ¢(x) € R"~! is given, parametrically, by
B(t) =en +t((u,0) —e,) = (tul,tu2, sty 1,1 — t).
This line meets the sphere at the points e,, and x. We have
2
|8(1)]

When t = 0 we have §(t) = e,, so we must have

=1 = Cluf+(1-1)°=1 <= Pl -2t+t°=0 < t=00rt= 3.

_ _ 41 _ _ 2u1 2us 2unp_1 |ul®—1
v=0(w)=¢"" () = 8(mEr) = (R pidT > WEFD e
The formulas for z = o(u) and u = ¢(x) = o~ !(x) show that o and o~! are both

continuous, so o : R*~1 — §"71\ {¢,,} is a homeomorphism. The formula for o shows that
o is smooth. The formula for ¢ shows that the map ¢ : S*~ 1\ {e,,} — R"~! extends (using
the same formula) to a smooth map ¢ : V. C R® — R""! where V = {:U e R” | Ty F 1}.
Since ¢(o(u)) = u for all u € R we have D¢(o(u))Do(u) = I for all u, and hence
Do (u) must be injective for all u so that o is regular. As an optional exercise, you could
verify this by calculating Do explicitly.

A similar calculation shows that 1 and p = ¢! are given by

v=1(x) = (1_%”7 14:3,17"'7 f:;i)
_ 20,_1 1—|v|?
7= p(v) =¥ (0) = (g i TH s 1)

and a similar argument shows that the map p: R"™! — S*"~1\ {—¢,} is a smooth regular
homeomorphism.

4.14 Definition: By Corollary 4.11, an m-dimensional smooth regular submanifold of
R™ is a set M C R™ for which there exists a set A of smooth regular homeomorphisms
o:U; CR™ — V, C M, where U, is open in R™ and V,, is open in M, with M = |J V.
ocA
Such a set of maps A is called an atlas for M, and the maps o € A are called (coordinate)

charts on M. When p € M is in the range of o € A, we say that o is a chart at p.



4.15 Theorem: Let A be an atlas on smooth regular submanifold M C R™. When o and
p are two charts whose images have non-empty intersection, the map p~'o is a smooth
regular change of coordinates.

Proof: Let 0 : U, CR™ — V,C M and p: U,C R™ — V,C M be charts with V, NV, # 0.
Note that p~to: o7 (V,NV,) = p ! (VoNV,) and o~ lp: p~(V, NV,) = o= 1V, NV,).
These two maps are continuous and they are inverses of each other, so they are homeo-
morphisms. We need to prove that they are smooth. Before giving a proof, let us remark
that we cannot simply say “since p is smooth and o' is smooth, therefore the composite
o~ 1p is smooth” because we do not know that o~ is smooth (indeed we have not yet even
defined what it means for a function of the form o=1 : V) € M — Uy C R™ to be smooth).

Let us show that o~'p is smooth in a neighbourhood of any point in p~1(V, N'V,).
Let b € 07 *(V, NV,), let p = p(b) and let a = o~ (p). Using the notation of the proof
of the Parametric Function Theorem, after reordering the variables in R™ if necessary, we
can write o(u) = (x(u),y(u)) and choose Uy € o~ 1(V, NV,) open with a € Uy such that
x : Up — Vp invertible with smooth inverse u = u(z), and then o(Uy) is equal to the graph
of the smooth function f(z) = y(u(x)), and the inverse o' : o(Uy) — Uj is given by
o Y (z,y) = u(z). If we then write p(v) = (p1(v), p2(v)), then the map o~'p is given by
o Y(p(v)) = u(p1(v)), which is a smooth function of v for v € p;~1(Vp), as required.

4.16 Remark: The above theorem shows that when we defined a 2-dimensional smooth
regular submanifold of R™ in Chapter 3, the requirement in Part 2 of Definition 3.22 (that
p~to and o~ !p are smooth) is superfluous.

4.17 Remark: The above theorem also shows that a smooth regular submanifold M C R”
cannot have two different dimensions (it cannot be both m-dimensional and ¢-dimensional
when m # £). Indeedifo : U, CR™ =V, C Mandp:U, C R — V, € M are two charts
whose images intersect, then since the maps p~'o and o~ !p are smooth invertible maps,
for o(a) = p = p(b) the matrices D(p~'o)(a) and D(c~1p)(b) are inverses of eachother, so
they must be square matrices, and D(p~1c)(a) is an £ xm matrix. Thus the dimension
of a smooth regular submanifold M C R" is well-defined, and we denote it by dim(M).

4.18 Remark: The parametric description of a manifold given in Corollary 4.11, and
the definition of an atlas and charts given in Definition 4.14, and the result of the above
theorem (that the composite of one chart with the inverse of another is a smooth change
of coordinates), are combined together with some topology, to make a more general and
abstract definition of a smooth manifold (not necessarily contained in Euclidean space).

4.19 Remark: A smooth regular submanifold M C R™ can be given many different
atlases, but it has a unique maximal atlas which consists of all possible smooth regular
homeomorphisms ¢ : U CR™ — V C M, where U is open in R™ and V is open in M.

4.20 Example: When M is an m-dimensional submanifold of R¥ and N is an n-
dimensional submanifold of R, the cartesian product M xN = {(z,y) |z € M,y € N}
is an (m-+n)-dimensional submanifold of R¥*+¢. Indeed if A is an atlas for M and B is an
atlas for N, we can construct an atlas C for M x N as follows. Given ¢ € A and p € B,
say 0 : U, CR™ =V, CMand p:U, CR* -V, C N, welet Uy, = U, xU, C R™T*
and V,x, = VoxV, € MxN and define oxp : Usx, C RFHE Voxp € MxN by

(oxp)(u,v) = (o(u), p(v)). Note that D(o x p) = (DOU Dop) so 0 X p is smooth and regular,

and the inverse of (o x p) is given by (o xp)(z,y) = (¢! (), p~*(y)) which is continuous,
hence o x p is a homeomorphism. Thus the set C = {a><p, | ceApe B} is an atlas for
M x N. For example, the n-torus T" = S! xS! x --- xS! is a submaifold of R?",
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Smooth Maps

4.21 Definition: Let M C R*¥ and N C R’ be two (smooth regular) submanifolds, and let
f M — N be continuous. We say that f is differentiable at p € M when the composite
p~1fo is differentiable at o~1(p) for every chart ¢ on M at p and every chart p on N at
f(p). Note that by Theorem 4.15, if p~! fo is differentiable at o~1(p) for one chart o on M
at p and one chart p on N at f(p), then pu~!f7 is differentiable at 7=1(p) for every chart
7 on M at p and every chart g on N at f(p) because p~'fr = (u=p)(p~Lfo)(o17).
We say that f is differentiable (on M) when f is differentiable at every point p € M,
equivalently when p~! fo is differentiable (in its domain) for every chart ¢ on M and every
chart p on N (the empty function with the empty domain is differentiable, vacuously). We
say that f is smooth or C* (on M) when p~!fo is smooth for every chart ¢ on M and
every chart p on N. We say that f is a (smooth) diffemorphism when f is bijective and
both f and f~! are smooth.

4.22 Note: Let M C R™ be a (smooth, regular) submanifold and let o be a chart on
M,say o: U CR™ — V C M. Note that U C R™ is an m-dimensional submanifold of
R™ with an atlas consisting of one chart, namely the inclusion map I : U — R™ given
by I(u) = u. Also note that V' C R™ is an m-dimensional submanifold of R™ with an
atlas consisting of one chart, namely the map o : U — V. By Definition 4.21, the map
o : U — V is smooth (rather trivially) because 0 ~'oI = I, which is smooth. Likewise, the
map o~ ! : V — U is smooth (again rather trivially) because I "'c~tc = I~! = I, which
is smooth. Thus the chart ¢ is a diffeomorhism from U C R™ to V = ¢(U) C R™.

4.23 Note: Let M C R™ be a (smooth, regular) submanifold, and consider the inclusion
map J : M — R” given by J(p) = p. Note that R™ is a submanifold of itself using an
atlas which consists of one chart, namely the identity map I : R® — R”. By Definition
4.21, the inclusion map J : M — R™ is smooth (rather trivially) because for every chart
c:UCR™ -V CM on M we have ="' Jo = ¢, which is smooth.

4.24 Note: When one of the two manifolds M C R¥ and N C R? is equal to R¥ or R¢,
the definitions of differentiability and smoothness can be simplified a little. For example,
amap f: M CRF = R is smooth when fo is smooth for every chart o on M, and a map
f:R¥ - N C R’ is smooth when p~!f is smooth for every chart p on N.

4.25 Note: The composite of smooth maps between manifolds is smooth. Indeed, let
L, M and N be smooth manifolds (in various Euclidean spaces) and let f : L — M and
g : M — N be smooth maps, and consider the composite gf : L — N. Let7: U, — V. C L
be any chart on L and let p: U, — V, C N be any chart on N. We need to show that the
composite p~tgfT is smooth (assuming its domain is not empty). Let a be in the domain,
that islet a € 771 (f~!(g7*(V,))). Choose a chart o on M at the point p = f(7(a)). Then
in an open set containing a, we have p~lgfT = (p~1go)(c ! f7), which is smooth.

4.26 Note: By Theorem 4.15, differentiability and smoothness do not depend on the
choice of atlas.



4.27 Theorem: Let M C R* and N C R’ be smooth, regular submanifolds, and let
f:+ M — N be continuous.

(1) Define g : M — R® by g(p) = f(p) for all p € M. Then f is smooth if and only if g is
smooth.

(2) Let W C R* be an open set with M C W andletg: W — R’ be a continuous extension
of f to W (this means that g(p) = f(p) for all p € M). If g is smooth then so is f.

Proof: Let us prove Part 1. Note that if f is smooth then so is g, because g is the
composite g = Jf where J : N — R’ is the inclusion (which is smooth, by Note 4.23).
Suppose that ¢ is smooth. Let ¢ : U, C R™ — V, C M be a chart on M and let
p:U, CR" =V, C N be a chart on N. We need to show that p~1fo is smooth,
and it suffices to show that it is smooth in an open neighbourhood of any point. Say
a € Uy, p=oc(a) € M, ¢ = f(p) = glp) € Nand b = p~'(q) € U,. Using the
notation of the proof of the Parametric Function Theorem (applied to the chart p), after
reordering the variables in R* if necessary, we can write p(u) = (z(u),y(u)) with 2 € R"
and y € R, and choose Uy C U, open with b € Uy such that x : Uy — Vj invertible
with smooth inverse u = u(z), and then p(Up) is equal to the graph of the smooth function
h: Vo — R given by h(z) = y(u(z)), and the inverse p~! : p(Uy) — Up is given by
p~Hx,y) = u(z). We have p(Up) = Graph (k) = {(z, h(z)) ‘ z € Vo} C VoxR™ Notice
that we can extend the map p~! : p(Uy) — Uy to a map ¢ : Vo xR™™ — U, using the
same formula ¥ (z,y) = u(z). Note that g~ (Vo xR*™") is an open subset of W which
contains p, and ¢! (g_l(Vo XRE_”)) is an open subset of U, which contains a. On this
set we have p~! fo = 1)go, which is smooth, as required.

Part 2 follows easily from Part 1. Indeed, suppose that ¢ : W C RF — R¢ is a smooth
extension of f to an open set W C R* with M C W. By Part 1, the map g : W — N is
smooth, and given any chart ¢ on M and any chart p on N we have p~! fo = p~lgo.

4.28 Example: Define f : S — R by f(x,y,2) = z sin(zr+y). Then f is smooth on S2,
by Part 2 of the above theorem (using W = R? and g(,y, z) = z sin(z+y)).

4.29 Example: Define h: R? — R by

2 2
T 4Y" when z # 1
—z

hz,y,z) :{ '

Show that h is not smooth on R? but the restriction of h to S? is smooth.

2  when z = 1.

Solution: The function A is not smooth on R3, indeed it is not even continuous at points
of the form (z,y,1): for a(t) = (x,y,t) we have lin% a(t) = (x,y,1), so if h was continuous

. . . . . e x4y
we would have 711_111% h(a(t)) = h(z,y,1) = 2, but instead we have %Eﬁ h(a(t)) = %Eﬁ -,

which does not exist when (x,y) # (0,0) and which is equal to 0 when (x,y) = (0,0).

But we claim that the restriction of h to S? is smooth. Let f : S2 — R be the restriction
of h. For all (z,y,2) € S? we have 2% +y? + 22 = 1 so that 22 + y? = 1 — 2%2. When z # 1

we have h(z,y,z) = % = 11__'22 = 1+ z, and at the point (x,y,2) = (0,0,1) we have

h(z,y,z) =2 =14z, and so f(z,y,2) = h(z,y,2) = 1+ 2z for all (z,y,2) € S%. Thus f is
smooth on S?, by Part 2 of the above theorem (using W = R? and g(z,y,2) =1+ z).




Tangent Vectors and Vector Fields

4.30 Definition: Let M C R™ be a smooth regular m-dimensional submanifold and let
p € M. A tangent vector on M at p is a vector of the form X, = +/(0) € R™ for some
smooth map v: J € R - M C R™ with «(0) = p where J is an open interval with 0 € J.
Given a chart o : U, CR™ — V, C M at p, with say o(a) = p, if we let a(t) = o~ 1(y(t))
so that v(t) = o(a(t)) for all ¢ € I where I is an open interval with 0 € I, then we have
v (t) = Do(a(t))d’(t) so that 4'(0) = Do(a)a’(0). This shows that every tangent vector
Xp on M at p lies in the range of the linear map Do (a) (equivalently X, lies in the column
space of the matrix Do(a)). On the other hand, given any vector A € R™, we can choose
a smooth curve a: I CR — Uo C R™ with «(0) = a and o/(0) = A (for example, we can
let a(t) = a+tA) and let v(t) = o(a(t)) for all t € J where J is an open interval with
0 € J, and then we have 7/(0) = Do(a) A. Thus the set of all tangent vectors on M at
p is equal to the range of the linear map Do(a), which is a vector space. We define the
tangent space of M at p, denoted by T}, M, to be the vector space of all tangent vectors
on M at p. When o is a chart on M at p with o(a) = p we have

T,M = Range Do(a).

Since o is regular so that Do(a) is injective, the linear map Do(a) is a bijective linear
map (that is a vector space isomorphism) from R™ to 7, M. In particular, the dimension
of the tangent space T),M is equal to the dimension of M.

4.31 Example: When U C R™ is open, so U is an m-dimensional submanifold of R™
with an atlas consisting of a single chart, namely the inclusion map o : U — R™ given by
o(a) = a, for all a € U we have Do(a) = I, so that

T,U = Range Do(a) =R™.

4.32 Example: For every smooth map v : I C R — S"~! C R" with v(0) = p, we have
v(t)+y(t) = 1 for all ¢, and differentiating gives 7/(t)+~v(¢) = 0 for all t. In particular,
7' (0)+p = 0. Thus T,,S" ! is the (n—1)-dimensional space in R™ orthogonal to p, that is

T,S" ! = Span{p}* = ker(p").

4.33 Remark: Let M C R™ be an m-dimensional smooth regular submanifold with
m < n. When o : U, CR™ — V, C M is a chart on M at p with o(a) = p, the map
o : U, — V, is invertible with inverse ¢! : V, — U,, but V, is not an open set in R"
(it is only an open set in M) and so it does not have a Jacobian matrix (we do not write
Do~1). By the Parametric Function Theorem, as described in the proof of Theorem 4.27,
we can restrict o to an open subset Uy C U, and extend the inverse o~ : o(Up) — Uy
to a smooth function ¢ : Vo xR"™" — U,. This extended map ¢ is a one-sided inverse
of o (we have ¢po = I but o¢ # I) and it has a Jacobian matrix which is a one-sided
inverse of Do (a) (we have D¢(p)Da(a) = I but Do(a)Dé(p) # I). The matrix Do(a) is
an nxm matrix and the matrix D¢(p) is an m xn matrix with m < n. The linear map
Do(a) : R™ =T,U — T, M is a vector space isomorphism and its inverse is the linear map
D¢(p) : T,M C R* — R™ = T,U. We could, logically speaking, denote this inverse map
by Do (a)™!, but we avoid using this notation because it would give the impression that
Do(a) is an invertible matrix.



4.34 Definition: Let M C R" be a smooth regular submanifold, and let p € M. A vector
X, € T, M determines a differential operator on the space of all functions f : M — R which
are differentiable at the point p as follows: choose a smooth map v: J CR — M CR"”
with v(0) = p and 7/(0) = X,,, define g : I C R — R by ¢(t) = f(7(¢)), and define the
(directional) derivative of f at p with respect to X, to be

Xp(f) =4'(0).

Note that although we have g(t) = f(v(t)), it does not make sense (in general) to write
Dg(t) = Df(y(t))7'(t) because the function f is not defined in an open set in R™ (it is only
defined on M C R™). Let 0 : U, CR™ — V, C M be any chart on M at p, say o(a) = p,
define o : I CR — U, C R™ by a(t) = o~ 1(y(t)) so that we have v(t) = o(a(t)), and let
A=d(0) e T,U = R™. Since f is differentiable at p € M it follows (from the definition
of differentiability) that fo is differentiable at a and we have g(t) = f(o(a(t))) so that
g'(t) = D(fo)(a(t))e(t), hence

Xp(f) = ¢'(0) = D(fo)(a(0))a’(0) = D(fo)(a) A.
4.35 Note: Let M C R" be a smooth regular submanifold. Let p € M and let X, € T, M.
Let v: J C R - M C R” be a smooth map with y(0) = p and +/(0) = X,. Let
oc:U, CR™ -V, CMandp:U, CR™ =V, C M be two charts at p on M with say
o(a)=p=p(b), and recall that p~—'o is a regular change of coordinates. Let a(t)=0"1(y(t))
and B(t)=p~(y(t)), and let A=0a’(0) € T,U, =R™ and B=p'(0) € T,U,=R™, so that
we have X, = Do(a)A = Dp(b)B. Then we have 3(t) = p~'(7(t)) = p~ (o (a(t))) so that
B'(t) = D(p~to)(a(t))a/(t). Thus the vectors A and B are related by

B = 8(0) = D(p~'o)(a(0))a’(0) = D(p~"0)(a) A.

Thus a tangent vector X, € T,M determines, and is determined by, a tangent vector
A e T,U, = R™ for each chart ¢ on M at at p, and the vectors for different charts are
related by the above formula.

4.36 Definition: Let M C R™ be a smooth regular submanifold. A vector field on M
is a function X : M — U,cp, IpM such that X, = X(p) € T,M for all p € M. When X
is a vector field on M, given a chart o : U, C R™ — V,, C M, for each u € U, there is a
unique vector A = A, (u) € T,U, = R™ such that X(o(u)) = Do(u)A,(u). We say that
X is continuous when the function A, : U, — R™ is continuous for every chart o, and
we say that X is smooth when A, is smooth for every chart o.

4.37 Example: When U C R™ is open, so U is an m-dimensional submanifold of R™
with an atlas consisting of the inclusion map, a smooth (or continuous) vector field on U
is simply a smooth (or continuous) map X : U C R™ — R™.

4.38 Remark: By the change of coordinates formula in Note 4.35, the definitions of
continuity and smoothness do not depend on a choice of atlas.

4.39 Definition: Let M C R™ be a smooth regular submanifold. A smooth vector field
on M determines a differential operator on the space of all smooth functions f : M — R
as follows: given a smooth vector field X : M — |J T,M and a smooth function f :
peEM

M — R, we define the (directional) derivative of f with respect to the vector field X
to be the map X(f) : M — R given by X(f)(p) = X,(f). Note that this map X(f) is
smooth. Indeed by the definition of smoothness, the map X (f) is smooth provided that
the composite X (f)o is smooth for every chart ¢ on M, and when o is a chart we have
X(f)(o(u)) = D(fo)(u)As(u), which is a smooth function of w.



4.40 Definition: Let M C R™ be a smooth regular submanifold, and let X be a smooth
vector field on M. An integral curve of X on M at pis a smooth map~y:J CR — M
with 7(0) = p (where J is an open interval with 0 € J) such that

~(t) = X(y(t)) forall te.J.

Let 0 : U, CR™ — V, C M be a chart at p with o(a) =p. Let a: I CR — U, C R™ be
a smooth map with a(0) = a, and let v(t) = o(a(t)). Let A, be the smooth vector field
on U, such that X (o(u)) = Do(u)A,(u) for all u € U,. Note that v/(t) = Do(a(t))a/(t)
and that X (v(t)) = X(o(a(t))) = Do(a(t)) Ay (a(t)). Since o is regular so that Do (a(t))
is injective, we see that

7 is an integral curve of X on M at p <= +/(t) = X(y(t)) forall t € T
<= Do(a(t))d/(t) = Do(a(t)) Ay (a(t)) for all t € T
<~ d(t) = A,(a(t)) forall t € T
<= « is an integral curve of A, on U, at a.

4.41 Remark: When M C R" is a smooth regular submanifold, X be a smooth vector
field on M and p € M, using existence and uniqueness theorems for differential equations
one can show that there is a unique integral curve v : I CR — M of X on M at p defined
on a maximal open interval I C R with 0 € I.

4.42 Definition: Let M C R* and N C R’ be smooth regular submanifolds, and let
f+ M — N be a smooth map. When X, € T, M, the pushforward of the vector X,
by the map f is the vector f.X, € Ty N defined as follows: choose a smooth curve
v: I CR— M with 0 € I, 7(0) = p and 7/(0) = X, and define f.X, = 0'(0) € Ty N
where §(t) = f(y(t)). Let o be a chart on M at p, say o(a) = p, let A, € T,U = R™
be the unique vector such that Do(a)A, = X,, and let o : I C R — U, be given by
a(t) = o7 (y(t)) so that we have v(t) = o(a(t)) for t € I. Then X, = v/(0) = Do (a)c’(0)
so that o/(0) = A,, and since §(t) = f(o(a(t))), we have

foXp =0'(0) = D(fo)(a)a'(0) = D(fo)(a)A,.

This gives a formula for f,X, in terms of the local coordinates, and it shows that the
vector f,X, does not depend on the choice of the curve v(¢). In the case that f is a
diffeomorphism with inverse g : N — M, and X is a vector field on M (so the we have
a vector X(p) = X, € T,M for every point p € M), the pushforward of X by f is the
vector field f, X on N given by (f.X)(f(p)) = f«Xp € Tf)N. Verify, as an exercise, that
if the vector field X is smooth (and the function f is smooth) then the vector field f.X is
smooth.

4.43 Example: When U C R™ (so U is an m-dimensional submanifold of R™ with an
atlas consisting of the inclusion map) and f : U C R™ — N C R’ is a smooth map, and
A€ T,U=R™, we have f,A= Df(a)A € Tj,)N C R".

4.44 Example: Let M C R” be a smooth regular submanifold and let o : U, — V, C M
be a chart on M at p with say o(a) = p. Recall that o is a diffeomorphism from U, C R™
toV, C M. Let ¢ = o~ : V, = U,. Let X be a smooth vector field on M, and let
X, be the restriction of X to the open set V, C M. For each u € U,, let A,(u) be the
unique vector in T,U, = R™ such that Do(u)A,(u) = X(o(u)) = Xs(0o(u)). Then we
have A, = ¢. X, and X, = 0, A,.
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The Riemannian Metric

4.45 Definition: Let M C R™ be a smooth regular m-dimensional submanifold of R™.
Let 0 : Uy CR™ — V, C M be a chart on M. The Riemannian metric on U, induced
by o is the smooth map g = g, : Uy — My, xm(R) given by

g(v) = Do(u)' Do(u).

The Riemannian metric gives an inner product, hence also a norm, on 7;,U, = R™ at each
point u € U,: for u € U, and A, B € T, U, = R™ we have

(A,B) = Bg(u)A and [A|| = (4, A) = \/ATg(u)A.
When a: I CR — U, C R™ is a differentiable curve and v : I C R — M C R" is given
by v(t) = o(a(t)), we have v/(t) = Do(a(t))a’(t) hence

Y (0] = 70T (1) = ol () glalt)ar(r) = o (D]

When [a,b] C I, the length of a on [a,b] with respect to the metric g on U, is equal to
the length of v on [a, b] with respect to the standard metric in R™, that is

L, ([a.b]) = /[ = | ol = [ e

More generally, for a continuous function f : M — R, we define the integral f along v on
[a, b] to be

[a’b]f dL = /abf(v(t)) Y/ (8)] dt = /ab(fa)(a(t)) lo(£)1] .

When R C U, is a closed Jordan region, we define the volume of R with respect to the

metric g, to be
Vol, (R) = / dV = / Vdet g(u) duy dug - - - duyy, .
R R

More generally, for a continuous function f : M — R we define the integral of f on R

under o to be
/R fdv = /R(fa)(u)\/det g(u) duy dug -+ - diy, .

For some motivation behind the above definition, review Remark 2.9 and have a look at
Theorem 1.2 in Appendix 1.

4.46 Note: Let M C R™ be a smooth regular submanifold. Let ¢ : U, CR™ -V, C M
and p: U, C R™ — V, C M be two charts with intersecting images, and recall that the
map ¢ = p~ o is a smooth regular change of coordinates with inverse ¢y = 0~ !p. Since
p=o00"'p =01 we have Dp = Do D1 and so

g, = Dp" Dp = (Do D))" (Do D) = DyY* Do Do Dy = DT g, D
It follows that det d, = det g, (det D1))? and so if R is a closed Jordan region in U, and Q

is a closed Jordan region in U,) such that o(R) = p(Q) then (by the change of variables
formula for integration) we have

Ay (R) :/R\/detga(u) duy - - - du,, :/Q\/detgg(w(v))‘detDw(v)’ dvy - - - dv,,
Z/Q\/detgp(v) dvy -+ - dvpy, = A,(Q).
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4.47 Remark: If v: I CR — M C R" is a smooth curve and [a,b] C I, then the image
’y([a, b]) might not be contained in the image of a single chart. In this case, we can choose
a partition a = ag < a; < --- < ay = b such that the image under v of each subinterval is
contained in the image of a chart, say 7([xk_1,x;€]) C Vi, where o, : U, CR™ -V, C M
is a chart. Then for a(t) = o, ' ((t)), we can calculate the integral of f along 7 in terms
of local coordinates

[ab]de /f ) 1y ()] dt = Z/ak 1 (for) (o)) |lok (2)]| dt.

In the same way, we can calculate the integral of a continuous function f : M — R on a
region S C M which does not lie in the image of a single chart. It is difficult to explain
precisely how this can be done and to prove rigorously that the resulting integral is well-
defined, but let us give an informal description. Suppose that we can cut the region .S into
¢ subregions of the form oy (Ry) where each oy, : Uy, C R™ — V), C M is a chart and Ry, is
a closed Jordan region in Uy, and suppose that the subregions oy (Ry) only overlap along
their boundaries. Then the integral of f on S is the sum

£ n
dA = dV = or)(u)v/det go, (v) dug dug - - - du
/Sf E/Rf ;/ka)()\/  Gon () dus duy

In particular, if the entire submanifold M C R”™ can be cut into finitely many such regions
ok (Ry), then we can calculate the integral [ 1 [ dA of a continuous function f on the
manifold, and we can calculate the volume of the manifold V = [ 1 dA.
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