
Chapter 2. Surfaces

Surfaces in Rn

2.1 Definition: A (local parametrized) surface in Rn is a continuous map σ :U⊆ R2→ Rn
where U is an open set. We can write σ(u, v) =

(
x1(u, v), x2(u, v), · · · , xn(u, v)

)
where

each xk : U ⊆ R→ R is continuous. We say that σ is Ck when all of the kth order partial
derivatives exist and are continuous in U , and we say σ is smooth, or C∞, when σ is Ck
for every k ∈ Z+. Recall that when σ is C1, it is also differentiable and its derivative (or
Jacobian) matrix is

Dσ = (σu, σv ) = ( ∂σ∂u
∂σ
∂v ) =


∂x1

∂u
∂x1

∂v
...

...
∂xn

∂u
∂xn

∂v .


We say that σ is regular when σ is C1 and its derivative matrix is of rank 2, that is when
the two columns σu and σv are linearly independent. In this case, the tangent plane to
the surface at (u, v) = (a, b) is the plane through σ(a, b) parallel to σu(a, b) and σv(a, b).
Unless otherwise stated, we shall assume all surfaces are smooth and regular.

2.2 Example: When f : U ⊆ R2 → R is a C2 function, its graph z = f(x, y) is the image
of the local parametrized surface σ : U → R3 given by (x, y, z) = σ(u, v) =

(
u, v, f(u, v)

)
.

The derivative matrix is

Dσ =

 1 0
0 1
∂f
∂u

∂f
∂v


which has rank 2, and the tangent plane at (a, b) is the plane through

(
a, b, f(a, b)

)
parallel

to
(
1, 0, ∂f∂x (a, b)

)
and

(
0, 1, ∂f∂y (a, b)

)
.

2.3 Example: The paraboloid z = x2+y2 in R3 can be given parametrically in Cartesian
coordinates by σ(u, v) =

(
u, v, u2+v2

)
or it can be given parametrically in polar coordinates

by ρ(r, θ) =
(
r cos θ, r sin θ, r2

)
. Using polar coordinates, the derivative matrix is

Dρ =

xr xθ
yr yθ
zr zθ

 =

 cos θ −r sin θ
sin θ r cos θ
2r 0


which has rank 2 except when r = 0, so this parametrization is regular when r 6= 0.

2.4 Example: The top half of the sphere x2 + y2 + z2 = r2 of radius r > 0 is the
graph of the function f : U ⊆ R2 → R given by f(x, y) =

√
r2 − x2 − y2 where U is

the open disc x2 + y2 < r2, so it can be given parametrically in Cartesian coordinates
by σ(u, v) =

(
u, v,
√
r2 − u2 − v2

)
. The entire sphere can be given parametrically using

spherical coordinates by

ρ(φ, θ) =
(
r sinφ cos θ , r sinφ sin θ , r cosφ

)
.

The derivative matrix is

Dρ =

 r cosφ cos θ −r sinφ sin θ
r cosφ sin θ r sinφ cos θ
−r sinφ 0


which has rank 2 except when sinφ = 0, that is when φ = kπ for some k ∈ Z.
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2.5 Example: The torus obtained by revolving the circle (x − R)2 + z2 = r2 (in the
xz-plane) about the z-axis, where 0 < r < R, can be given parametrically by

σ(θ, φ) = R (cos θ, sin θ, 0) + r cosφ (cos θ, sin θ, 0) + r sinφ (0, 0, 1)

=
(
(R+ r cosφ) cos θ , (R+ r cosφ) sin θ , r sinφ

)
.

Verify, as an exercise, that the derivative matrix has rank 2 everywhere, so the surface is
regular everywhere.

2.6 Definition: A Riemannian metric on an open set U ⊆ Rn is a smooth map
g : U → Mn×n(R) such that g(p) is a positive-definite symmetric matrix for every p ∈ U ,
so that for each p ∈ U , g(p) defines an inner-product on Rn given by

I(A,B) = 〈A,B〉 = BTg(p)A .

Let σ : U ⊆ R2 → Rn be a smooth regular surface in Rn. The first fundamental form
of σ is the smooth map g = gσ : U ⊆ R2 →M2×2(R) given by

g = gσ = DσTDσ =

(
σu.σu σu.σv
σu.σv σv.σv

)
.

For each p ∈ U , g = g(p) = Dσ(p)TDσ(p) is a positive-definite symmetric matrix, so g is
a Riemannian metric on U . It is traditional to write

E = g1,1 = σu.σu , F = g1,2 = g2,1 = σu.σv , G = σv.σv .
2.7 Example: (The length of a curve on a surface) Let σ : U ⊆ R2 → Rn be a regular
surface in Rn and let α : [a, b] ⊆ R→ U ⊆ R2 be a regular curve which takes values in U .
Then the composite γ(t) = σ

(
α(t)

)
is a regular curve on the surface in Rn. Let us find a

formula for the length of γ on [a, b]. We have γ′(t) = Dσ
(
α(t)

)
α′(t) and so∣∣γ′∣∣2 =

(
Dσ α′

).(Dσ α′) =
(
Dσ · α′

)T (
Dσ α′

)
= (α′)Tg α′

hence

Lγ
(
[a, b]

)
=

∫ b

a

∣∣γ′(t)∣∣ dt =

∫ b

a

√
α′(t)T g

(
α(t)

)
α′(t) dt =

∫ b

a

∥∥α′(t)∥∥ dt ,
where we are using the Riemannian inner product 〈X,Y 〉 = Y T gX and its associated norm
‖X‖ =

√
〈X,X〉. We also consider this to be the length of the curve α on [a, b] in U with

respect to the Riemann metric g.

2.8 Example: (The angle between curves on a surface) Let σ : U ⊆ R2 → Rn be a
regular surface in Rn and let p ∈ U . Let α, β : I ⊆ R → U ⊆ R2 be two regular curves
with 0 ∈ I and α(0) = β(0) = p. Then γ(t) = σ

(
α(t)

)
and δ(t) = σ

(
β(t)

)
are two regular

curves on the surface in Rn which intersect at t = 0. Let us calculate the angle between
the two curves γ at δ at t = 0

(
that is the angle between γ′(0) and δ′(0)

)
. We have

γ′(t) = Dσ
(
α(t)

)
α′(t) so γ′(0) = Dσ(p)α′(0) and similarly δ′(0) = Dσ(p)β′(0), and so

γ′(0).δ′(0) =
(
Dσ(p)α′(0)

).(Dσ(p)β′(0)
)

= β′(0)Tg(p)α′(0).

Similarly, we have
∣∣γ′(0)

∣∣2 = α′(0)T g(p)α′(0) and
∣∣δ′(0)

∣∣2 = β′(0)T g(p)β′(0), and so the
angle θ ∈ [0, π] between γ′(0) and δ′(0) is given by

cos θ =
γ′(0).δ′(0)∣∣γ′(0)

∣∣ ∣∣δ′(0)
∣∣ =

β′(0)Tg(p)α′(0)√
α′(0)T g(p)α′(0)

√
β′(0)T g(p)β′(0)

=
〈α′(0), β′(0)〉
‖α′(0)‖ ‖β′(0)‖

.

This is also the angle between α′(0) and β′(0) in R2, with respect to the Riemannian
metric g.
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2.9 Remark: We shall define the area of a portion of a regular surface, but before stating
the definition let us provide some informal motivation for the definition. Recall that when
p, u, v ∈ Rn, the area of the parallelogram with vertices at p, p+u, p+v and p+u+v is
equal to A =

√
det(PTP ) where P = (u, v) ∈Mn×2(R). Indeed the angle θ between u and

v is given by θ = cos−1 u.v
|u| |v| and the parallelogram has base |u| and height |v| sin θ so its

area is A = |u| |v| sin θ and hence

A2 = |u|2|v|2
(
1− cos2 θ

)
= |u|2|v|2

(
1−

(
u.v
|u| |v|

)2)
= |u|2|v|2 − (u.v)2

= det

(
u.u u.v
u.v v.v

)
= det(PTP ).

Given a closed Jordan region R ⊆ U (that is a region with a well defined area), we
can approximate its area (arbitrarily closely) by covering it with finitely many closed
rectangles which are each contained in U . If the kth rectangle has vertices at p = (u, v),
(u+du, v), (u, v+dv) and (u+du, v+dv) (where du and dv are small positive real numbers)
then the image σ(Rk) can be approximated by the parallelogram in Rn with vertices
at σ(p), σ(p) + σu(p)du, σ(p) + σv(p)dv and σ(p) + σu(p)du + σv(p)dv whose area is
dAk =

√
det(PTP ) where P =

(
σu(p)du, σv(p)dv

)
, that is

dAk =

√
det

(
σu.σu du du σu.σv du dv
σu.σv du dv σv.σv dv dv

)
=
√

det g(p) dudv .

The total area of σ(R) is approximated by the sum of the areas of these parallelograms,
which is a Riemann sum for the function

√
det g, and the limit of these Riemann sums is∫∫

R

√
det g(u, v) du dv .

2.10 Definition: Let σ : U ⊆ R2 → Rn be a regular surface in Rn and let R ⊆ U be a
closed Jordan region (for example, a region of the form a≤u≤ b, f(u)≤v≤g(u) where f
and g are continuous). We write dA =

√
det g(u, v) du dv and we define the area of σ on

R to be

Aσ(R) =

∫∫
R

dA =

∫∫
R

√
det g(u, v) du dv.

More generally, for a continuous function f : U ⊆ R2 → R we define∫∫
R

f dA =

∫∫
R

f(u, v)
√

det g(u, v) du dv.

2.11 Definition: Let U, V ⊆ Rn be open sets. A regular change of coordinates
from U to V is a bijective map φ : U ⊆ Rn → V ⊆ Rn such that φ and its inverse
ψ = φ−1 : V → U are both C1. Note that by the Chain Rule, for all p ∈ U we have
Dψ(φ(p))Dφ(p) = I (so the derivative matrices of φ and ψ are invertible at all points).
We say φ is positive, or φ preserves orientation, when detDφ(p) > 0 for all p ∈ U .
Unless otherwise stated, we assume that any change of coordinates is smooth and regular.
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2.12 Theorem: (Change of Coordinates) Let U, V ⊆ R2 be open sets and let φ : U → V
be a smooth regular change of coordinates from U to V with inverse ψ = φ−1 : V → U .
Let σ : U ⊆ R2 → Rn be a smooth regular surface in Rn and let ρ : V ⊆ R2 → R3 be the
smooth regular surface given by ρ(q) = σ(ψ(q)). For points p ∈ U and q = φ(p) ∈ V and
for Jordan regions R ⊆ U and Q = φ(R) ⊆ V we have

(1) gρ(q) = Dψ(q)T gσ(p)Dψ(q) and
(2) Aρ(Q) = Aσ(R).

Proof: To prove Part 1, note that since ρ(q) = σ(ψ(q)) we have Dρ = DσDψ and so

gρ = DρTDρ =
(
DσDψ

)T (
DσDψ

)
= DψTDσTDσDψ = DψT gσDψ.

Let us prove Part 2. Since gρ = DψT gσDψ, we have det gρ = (detDψ)2 det gσ and so,
since detDψ 6= 0, we have √

det gρ =
∣∣detDψ

∣∣√det gσ.

If R ⊆ U and Q = φ(R) ⊆ V are Jordan regions then, writing (u, v) = ψ(s, t), the change
of variables formula for integration gives

Aσ(R) =

∫∫
R

√
det gσ(u, v) du dv =

∫∫
Q

√
det gσ(ψ(s, t))

∣∣detDψ(s, t)
∣∣ ds dt

=

∫∫
Q

√
det gρ(s, t) ds dt = Aρ(Q).

This proves Part 2 and confirms our intuitive expectation that the area of a surface does
not change when we use a change of coordinates to obtain an alternate parametrization.
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Surfaces in R3

2.13 Definition: Let σ : U ⊆ R2 → R3 be a smooth regular surface in R3. Since
Dσ = (σu, σv) has rank 2, it follows that σu×σv 6= 0. For p ∈ U , since the tangent plane
to σ at p is parallel to σu(p) and σv(p), it has normal vector σu×σv. We define the unit
normal vector to σ at p to be n = n(p) where

n = nσ =
σu×σv∣∣σu×σv∣∣ .

Notice that n : U ⊆ R2 → S2 ⊆ R3 where S2 is the unit sphere S2 =
{
x∈R3

∣∣ |x| = 1
}

,
and this map is called the Gauss map of σ on U .

Given a point p ∈ U and a nonzero vector 0 6= A ∈ R2, we define the (directional)
curvature k(p)(A) = kσ(p)(A) of σ in the direction of A at p as follows: choose any
smooth regular curve α : I ⊆ R → U ⊆ R2 with 0 ∈ I and α(0) = p and α′(0) = A,
let γ(t) = σ(α(t)) (so γ is a curve on the surface in R3), reparametrize by arcclength by

letting δ(s) = γ(t(s)) where s(t) =
∫ t

0
|γ′(r)| dr, let N(s) = n

(
α(t(s))

)
, and then define

kσ(p)(A) = δ′′(0).N(0).

The following theorem shows that this definition does not depend on the choice of α. It
only depends on σ and p and the direction of the vector A.

2.14 Theorem: (Directional Curvature) Let σ : U ⊆ R2 → R3 be a smooth regular
surface in R3. For p ∈ U and 0 6= A ∈ R2, the curvature of σ in the direction of A at p is

kσ(p)(A) =
ATh(p)A

AT g(p)A

where g = DσTDσ and

h = −DnTDσ = −
(
σu.nu σv.nu
σu.nv σv.nv

)
=

(
σuu.n σuv.n
σuv.n σvv.n

)
.

Proof: Let α, γ, δ, β and N be as in the definition. Since δ is a curve on the surface
so δ′ is tangent to the surface, we expect, intuitively, that δ′.N = 0. Let us verify this
algebraically. Since

N(s) = n(β(s)) =
σu(β(s))×σv(β(s))

|σu(β(s))×σv(β(s))| ,

it follows that N(s).σu(β(s)) = N(s).σv(β(s)) = 0 and so N(s)TDσ(β(s)) = 0. Since
δ(s) = γ(t(s)) = σ

(
α(t(s))

)
, we have δ′(s) = Dσ

(
α(t(s))

)
α′(t(s)) t′(s) and so

δ′(s).N(s) = N(s)T δ′(s) = N(s)TDσ
(
α(t(s))

)
α′(t(s)) t′(s) = 0,

as we expected. Differentiating gives 0 = d
ds

(
δ′(s).N(s)

)
= δ′′(s).N(s) + δ′(s).N ′(s), so

k(p,A) = δ′′(0).N(0) = −δ′(0).N ′(0).

Since γ(t) = σ(α(t)) we have γ′(t) = Dσ(α(t))α′(t). Since s(t) =
∫ t

0
|γ′(r)| dr we have

s′(t) = |γ′(t)| hence t′(s) = 1
|γ′(t(s))| . Since δ(s) = γ(t(s)) we have

δ′(s) = γ′(t(s)) t′(s) =
γ′(t(s))

|γ′(t(s))|
=

Dσ
(
α(t(s))

)
α′(t(s))

|Dσ
(
α(t(s))

)
α′(t(s))|

.

Since N(s) = n
(
α(t(s))

)
we have

N ′(s) = Dn
(
α(t(s))

)
α′(t(s)) t′(s) =

Dn
(
α(t(s))

)
α′(t(s))

|Dσ
(
α(t(s))

)
α′(t(s))|

.
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Thus we have

δ′.N ′ =
Dσ α′

|Dσ α′|
. Dnα′
|Dσ α′|

=
(α′)TDnTDσ α′

(α′)TDσTDσ α′

so, in particular,

kσ(p)(A) = −δ′(0).N(0) = −A
TDnT (p)Dσ(p)A

ATDσ(p)TDσ(p)A
=
ATh(p)A

AT g(p)A

where g = DσTDσ and h = −DnTDσ.
Finally, note that since σu.n = 0 and σv.n = 0, we can differentiate with respect

to u and v to get σuu.n + σu.nu = 0, σuv.n + σu.nv = 0, σvu.n + σv.nu = 0 and
σvv.n+ σv.nv = 0 and so

h = −DnTDσ = −
(
σu.nu σv.nu
σu.nv σv.nv

)
=

(
σuu.n σuv.n
σuv.n σvv.n

)
.

2.15 Definition: For a smooth regular surface σ : U ⊆ R2 → R3 in R3, the second
fundamental form of σ is the smooth map h = hσ : U ⊆ R2 →M2×2(R) given by

h = −DnTDσ = −
(
σu.nu σv.nu
σu.nv σv.nv

)
=

(
σuu.n σuv.n
σuv.n σvv.n

)
.

For each p ∈ U , h(p) = Dn(p)TDσ(p) is a symmetric matrix so it defines a symmetric
bilinear form on R2 given by II(A,B) = BTh(p)A. It is traditional to write

L = h1,1 , M = h1,2 = h2,1 , N = h2,2.

2.16 Theorem: (Change of Coordinates) Let U, V ⊆ R2 be open, and let φ : U → V be a
smooth regular positive change of coordinates. Let σ : U ⊆ R2 → R3 be a smooth regular
surface, and let ρ : V ⊆ R2 → R3 be the corresponding surface given by ρ(q) = σ(ψ(q)).
Then for points p ∈ U and q = φ(p) ∈ V and nonzero vectors 0 6= A ∈ R2 and B = Dφ(p)A
we have
(1) nρ(q) = nσ(p),
(2) hρ(q) = Dψ(q)Thσ(p)Dψ(q), and
(3) kρ(q)(B) = kσ(p)(A).

Proof: Write p = (u, v) and q = (s, t) = φ(u, v). Then ρ(s, t) = σ
(
ψ(s, t)

)
so we have

ρs = σu us + σv vs and ρt = σu ut + σv vt, hence

ρs×ρt = (σu us + σv vs)×(σu ut + σv vt) = (σu×σv)(usvt − utvs) = detDψ (σu×σv),
that is ρs(q)×ρt(q) = detψ(q)(σu(p)×σv(p)). Since detDψ(p) > 0 for all p, we have

nρ(q) =
ρ(p)×ρ(p)

|ρ(p)×ρ(p)|
=

detDψ(q)(σu(p)×σv(p))
|detDψ(q)(σu(p)×σv(p))|

=
σu(p)×σv(p)
|σu(p)×σv(p)|

= nσ(p).

This proves Part 1.
Since ρ(q) = σ(ψ(q)) so that Dρ(q) = Dσ(p)Dψ(q), and nρ(q) = nσ(ψ(q)) so that

Dnρ(q) = Dnσ(p)Dψ(q), we have

hρ(q) = Dnρ(q)
TDρ(q) = Dψ(q)TDnσ(p)TDσ(p)Dψ(q) = Dψ(q)Thσ(p)Dψ(q).

This proves Part 2.
To prove Part 3, let α : I ∈ R → U ⊆ R2 be a regular C2 curve with α(0) = p and

α′(0) = A, and let β : I ⊆ R → V ⊆ R2 be the corresponding curve β(t) = φ(α(t)), and
note that β(0) = φ(α(0)) = φ(p) = q. Since β(t) = φ(α(t)) we have β′(t) = Dφ(α(t))α′(t)
so that β′(0) = Dφ(p)A = B. Let γσ(t) = σ(α(t)), let δσ(s) = γσ(t(s)) where we have
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s(t) =
∫ t

0
|γ′(r)| dr, and let Nσ(s) = nσ(α(t(s)) so that kσ(p)(A) = δσ

′′(0).Nσ(0). Also, let

γρ(t) = ρ(β(t)) = σ(α(t)) = γσ(t), δρ(s) = γρ(t(s)) = δσ(s), and let Nρ(s) = nρ
(
β(t(s))

)
so that kρ(q)(B) = δρ

′′(0).Nρ(0). Since φ and ψ are inverses we have

γρ(t) = ρ(β(t)) = ρ
(
φ(α(t))

)
= σ

(
ψ
(
φ(α(t))

))
= σ(α(t)) = γσ(t)

for all t, hence δρ(s) = γρ(t(s)) = γσ(t(s)) = δσ(s) for all s, so δρ
′′(0) = δσ

′′(0). Also, we
have Nρ(0) = nρ(β(0)) = nρ(q) = nσ(p) = nσ(α(0)) = Nσ(0), and so

kρ(q)(B) = δρ
′′(0).Nρ(0) = δσ

′′(0).Nσ(0) = kσ(p)(A).

2.17 Remark: When σ : U ⊆ R2 → R3 is a smooth regular surface, for each p ∈ U the
directional curvature kσ(p) is a smooth function kσ(p) : R2 \ {0} → R with the property
that kσ(p)(tA) = kσ(p)(A) for all 0 6= t ∈ R and all 0 6= A ∈ R2. Thus we can consider
kσ(p) to be a function kσ(p) : P1(R)→ R where P1(R) is the real projective space, which
is the set of 1-dimensional subspaces of R2.

2.18 Theorem: (Principal Curvature Directions) Let σ : U ⊆ R2 → R3 be a smooth
regular surface in R3, and let p ∈ U .

(1) The directional curvature kσ(p)(A) attains its maximum and minimum values in two
directions which are orthogonal with respect to the inner product 〈X,Y 〉 = Y Tgσ(p)X.
(2) The maximum and minimum values k1 and k2 of kσ(p)(A) for 0 6= A ∈ R2 are the
eigenvalues of gσ(p)−1hσ(p), and the directions A1, A2 ∈ R2 in which they occur are the
corresponding eigenvectors.
(3) The maximum and minimum values k1 and k2 are roots of the quadratic polynomial

0 = f(k) = det
(
hσ(p)− k gσ(p)

)
and the directions A1 = (x1, y1) and A2 = (x2, y2) in which they occur are roots of the
quadratic form

0 = f(x, y) = det
(
hσ(p)

(
x
y

)
, gσ(p)

(
x
y

))
.

Proof: Let p = (a, b). We begin by changing coordinates so that, in the new coordinates,
at the point q corresponding to p, the inner product becomes the standard dot product.
We do this as follows: Apply the Gram-Schmidt procedure to the standard basis for R2

to obtain a positive ordered basis {A,B} for R2 which is orthonormal with respect to the
inner product 〈X,Y 〉 = Y Tg(p)X. Let P = (A,B) ∈M2×2(R) and define ψ : R2 → R2 by

ψ(s, t) =

(
a
b

)
+ P

(
s
t

)
.

Note that ψ(0) = p and Dψ(s, t) = P for all s, t. Let V = φ(U) where φ = ψ−1, and let
ρ : V ⊆ R2 → R3 be the corresponding surface given by ρ(s, t) = σ

(
ψ(s, t)

)
. Then at q = 0

gρ = DψT gσDψ = PTgσP =

(
ATgσA ATgσB
BTgσA BTgσB

)
= I,

so in the new coordinates, at the point q = φ(p) = 0, the inner product is the standard
inner product. We have

kσ(p)(A) = kρ(q)(B) =
BThρB

BT gρB
= B̂Thρ B̂

where B = Dφ(p)A = P−1A and B̂ is the unit vector B
|B| . Recall from linear algebra (or

verify using the fact that symmetric matrices are orthogonally diagonalizable) that hρ has
real eigenvalues k1, k2 ∈ R with k1 ≥ k2, with orthogonal unit eigenvectors B1, B2 ∈ R2,
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and the maximum and minimum values of the quadratic form given by Q(X) = XThρX,
over all unit vectors X ∈ R2, are Q(B1) = k1 and Q(B2) = k2. Note that the unit
vectors B1 and B2 are orthogonal with respect to the standard inner product, and the
corresponding vectors A1 = Dψ(0)B1 = PB1 and A2 = Dψ(0)B2 = PB2 are orthogonal
unit vectors with respect to the inner product given by gσ(p). This proves Part 1.

For k ∈ R and 0 6= B ∈ R2, recall that k is an eigenvalue of hρ with eigenvector B if
and only if (hρ − kI)B = 0. For A = PB, we have

(hρ − kI)B = 0 ⇐⇒
(
PThσP − k PTgσP )B = 0 ⇐⇒ PT (hσ − kgσ)PB = 0

⇐⇒ PT (hσ − kgσ)A = 0 ⇐⇒ (hσ − kgσ)A = 0

⇐⇒ gσ
−1(hσ − kgσ)A = 0 ⇐⇒

(
gσ
−1hσ − kI)A = 0.

Thus k1 and k2 are the eigenvalues of hρ with eigenvecors B1 and B2 if and only if k1 and
k2 are eigenvalues of gσ

−1hσ with eigenvectors A1 and A2. This proves Part 2.
For k ∈ R, k is an eigenvalue of hρ if and only if there exists 0 6= A ∈ R2 such that

(hσ − kgσ)A = 0, if and only if det(hσ − kgσ) = 0. This gives the first formula in Part 3.
For 0 6= A ∈ R2 we have A = PB where B is an eigenvector of hρ if and only if there exists
k ∈ R such that 0 = (hσ− kgσ)A =

(
hσA, gσA

)(
1
−k
)

if and only if det
(
hσA, gσA

)
= 0.

This gives the second formula in Part 3.

2.19 Definition: For a smooth regular surface σ : U ⊆ R2 → R3 in R3, the maximum
and minimum values k1 and k2 of the directional curvature kσ(p)(A) where 0 6= A ∈ R2,
are called the principal curvatures of σ at p, and the directions 0 6= A1, A2 ∈ R2 in
which the maximum and minimum values occur are called the principal directions for
σ at p. The mean curvature H(p) = Hσ(p) of σ at p and the Gaussian curvature
K(p) = Kσ(p) of σ at p are define by

H(p) = Hσ(p) = 1
2 (k1 + k2) ,

K(p) = Kσ(p) = k1k2 .

By Part 2 of the above theorem, k1 and k2 are the roots of the characteristic polynomial
of g−1h, so we have

(x− k1)(x− k2) = det(g−1h− xI) = x2 − trace(g−1h)x+ det(g−1h).

Comparing coefficients gives

H(p) = 1
2 (k1 + k2) = 1

2 trace
(
g(p)−1h(p)

)
,

K(p) = k1k2 = det
(
g(p)−1h(p)

)
=

deth(p)

det g(p)
.
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2.20 Theorem: (The Gauss-Weingarten Equations) For a smooth regular surface σ in R3,
we have 

σuu
σuv
σvv
nu
nv

 =


Γ1

11 Γ2
11 h11

Γ1
12 Γ2

12 h12

Γ1
22 Γ2

22 h22

b11 b21 0

b12 b22 0


σu
σv
n


where

b =

(
b11 b12
b21 b22

)
= −g−1h , and

Γ =

(
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

)
= 1

2 g
−1

(
(g11)u (g11)v 2(g12)v− (g22)u

2(g12)u− (g11)v (g22)u (g22)v

)
.

Proof: First we note that since {σu, σv, n} is a basis for R3, such a 5×3 matrix exists, and
we just need to determine the entries. We do not yet know the entries in the final column,
so let us let us say the final column is (a1, a2, · · · , a5)T . We shall calculate the entries on
the first and last rows (the other calculations are similar). To find the entries on the first
row, we shall need a formula for σuu.σu and σuu.σv in terms of the entries of g. Since
g11 = σu.σu, we can differentiate with respect to u and v to get (g11)u = 2σuu.σu and
(g11)v = 2σuv.σu. Since g12 = σu.σv, we have (g12)u = σuu.σv+σu.σvu. Thus we obtain
the formulas

σuu.σu = 1
2 (g11)u , σuu.σv = (g12)u − 1

2 (g11)u .

The first row gives the equation Γ1
11σu + Γ2

11σv + a1n = σuu. Take the dot product with n
on both sides to get a1 = σuu.n = h11. Take the dot product with σu and with σv to get

Γ1
11g11 + Γ2

11g12 = σuu.σu = 1
2 (g11)u

Γ1
11g12 + Γ2

11g22 = σuu.σv = (g12)u − 1
2 (g22)u.

These two equations can be written as g
(

Γ1
22

Γ2
11

)
= 1

2

(
(g11)u

(2(g12)2−(g11)v

)
, and so we obtain(

Γ1
11

Γ2
11

)
= 1

2g
−1

(
(g11)u

2(g12)2 − (g11)v

)
.

Now consider the final row. By differentiating 1 = n.n with respect to v we see that nv is
orthogonal to n, and hence nv is in the span of σu and σv, so a5 = 0 and the final row gives
the equation b12σu + b22σv = nv. Taking the dotproduct on both sides with σu and with σv
gives the equations b12g11 + b22g12 = −h12, and σv gives b12g12 + b22g22 = −h22. These can

be written as g
( b12
b22

)
= −

(
h12

h22

)
, and so we obtain(

b12
b22

)
= −g−1

(
h12

h22

)
.

2.21 Definition: For a smooth regular surface σ : U ⊆ R2 → R3, the functions Γjkl which
appear in the above theorem are called the Christoffel symbols of σ on U .
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2.22 Theorem: (The Gauss-Codazzi Equations) Let σ : U ⊆ R2 → R3 be a smooth
regular surface in R3. Then the entries of g and h satisfy the Codazzi equations

(1) (h11)v − (h12)u = h11Γ1
12 + h12(Γ2

12 − Γ1
11)− h22Γ2

11

(2) (h12)v − (h22)u = h11Γ1
22 + h12(Γ2

22 − Γ1
12)− h22Γ2

12

and the Gauss equations

(1) g11K = (Γ2
11)v − (Γ2

12)u + Γ2
11Γ2

22 + Γ1
11Γ2

12 − Γ1
12Γ2

11 − Γ2
12Γ2

12

(2) g12K = (Γ1
12)u − (Γ1

11)v + Γ1
12Γ2

12 − Γ1
22Γ2

11

= (Γ2
12)v − (Γ2

22)u + Γ1
12Γ2

12 − Γ1
22Γ2

11

(3) g22K =
(
Γ1

22)u − (Γ1
12)v + Γ1

11Γ1
22 + Γ1

12Γ2
22 − Γ1

12Γ1
12 − Γ1

22Γ2
12 .

Proof: Let us use the fact that σuuv = σuvu. Using the Gauss-Weingarten equations, we
have

σuuv = (Γ1
11σu + Γ2

11σv + h11n)v

= (Γ1
11)vσu + Γ1

11σuv + (Γ2
11)vσv + Γ2

11σvv + (h11)vn+ h11nv,

σuvu = (Γ1
12σu + Γ2

12σv + h12n)u

= (Γ1
12)uσu + Γ1

12σuu + (Γ2
12)uσv + Γ2

12σvu + (h12)nn+ h12nu.

In the above expressions for σuuv and σuvu, use the Gauss-Weingarten equations again to
write σuu, σuv, σvv, nu and nv as linear combinations of σu, σv and n, then expand and
equate coefficients. Equating the coefficient of n gives

Γ1
11h12 + Γ2

11h22 + (h11)v = Γ1
12h11 + Γ2

12h12 + (h12)u

hence
(h11)v − (h12)u = Γ1

12h11 + (Γ2
12 − Γ1

11)h12 − Γ2
11h22,

which is the first Codazzi equation. Equating the coefficient of σu gives

(Γ1
11)v + Γ1

11Γ1
12 + Γ2

11Γ1
22 + h11b

1
2 = (Γ1

12)u + Γ1
12Γ1

11 + Γ2
12Γ1

12 + h12b
1
1

so we have
h11b

1
2 − h12b

1
1 = (Γ1

12)u − (Γ1
11)v + Γ2

12Γ1
12 − Γ2

11Γ1
22.

Notice that h11b
1
2 − h12b

1
1 is equal to the (1, 2)-entry of the matrix(

b11 b12
b21 b22

)(
h22 −h12

h21 h11

)
= deth bh−1 = deth(−g−1h)h−1 = −deth g−1,

that is h11b
1
2 − h12b

1
1 = −deth

(
g−1

)
1,2

= g12
deth
det g , and so we have

g12
deth
det g = (Γ1

12)u − (Γ1
11)v + Γ2

12Γ1
12 − Γ2

11Γ1
22,

which is one of the second Gauss equations. Equating the coefficient of σv and performing
a similar calculation gives

g11
deth
det g = (Γ2

11)v − (Γ2
12)u + Γ2

11Γ2
22 + Γ1

11Γ2
12 − Γ1

12Γ2
11 − Γ2

12Γ2
12,

which is the first Gauss equation.
Similar calculations, using the fact that σvvu = σvuv, produce similar formulas, but

with u and v interchanged, and with the indices 1 and 2 interchanged. In this way we
obtain the second Codazzi equation, and the other Gauss equations.

10



2.23 Theorem: (Gauss’ Theorema Egregium) For a smooth regular surface in R3, the
Gausian curvature K = deth

det g can be expressed only in terms of g (without using h).

Proof: We can express K in terms of g using either the first and second, or the second
and third, Gauss equations. For example, using the first, and one of the second Gauss
equations, we have

(det g)K = g11(g22K)− g12(g12K)

= g11

((
Γ1

22)u − (Γ1
12)v + Γ1

11Γ1
22 + Γ1

12Γ2
22 − Γ1

12Γ1
12 − Γ1

22Γ2
12

)
− g12

(
(Γ1

12)u − (Γ1
11)v + Γ1

12Γ2
12 − Γ1

22Γ2
11

)
.

Note that the Christoffel symbols are all expressed in terms of g.

2.24 Theorem: (The Fundamental Theorem for Surfaces in R3, or the Bonnet Theorem)
Given a connected open set U ⊆ R2 with 0 ∈ U , given a point p ∈ R3 and orthogonal unit
vectors A,B ∈ R3, and given smooth functions g11, g12, g22, h11, h12, h22 : U ⊆ R2 → R
with g11 > 0 and g11g22 − g2

12 > 0 such that all of the Gauss-Codazi equations hold for
the given functions, there exists a unique smooth surface σ : U ⊆ R2 → R3 which has the
given functions as the entries of its first and second fundamental forms such that σ(0) = p,
σu(0) ∈ Span{A} and σv(0) ∈ Span{A,B}.

Proof: We shall not supply the proof, but we make some remarks. The idea of the proof
is similar to the proof of the fundamental theorem for curves in R3. In the proof of
the fundamental theorem for curves, we used the fact that there exists a solution to the
system of ordinary differential equations which is obtained by requiring that the Frenet-
Seret formulas hold. To prove Bennet’s theorem, we obtain a system a partial differential
equations by requiring that the Gauss-Weingarten equations hold. But such a system of
partial differential equations does not always admit a solution. In order for a solution to
exist, the coefficients of the partial differential equations must satisfy certain compatibility
requirements. In the case of the system which comes from the Gauss-Weingarten equations,
it so happens that the compatibility requirements are satisfied when the Gauss-Codazzi
equations hold.

2.25 Remark: The fundamental theorem for surfaces tells us that, up to isometry, a
surface is determined from its first and second fundamental forms g and h. So all geometric
properties of a surface should be expressible in terms of g and h. We say that a geometric
property is intrinsic when it can be expressed only in term of g which, we recall is a
Riemannian metric (that is an inner product at each point), otherwise we say the property
is extrinsic. Properties such as the length of a curve on a surface, or the angle between
two curves on a surface, or the area of a portion of the surface are intrinsic. Gauss’
Theorema Egregium (which is Latin for Gauss’ Remarkable Theorem) states that the
Gaussian curvature K is an intrinsic property. By contrast, the mean curvature H is
extrinsic.

2.26 Example: When a flat rectangle is bent to form a cylinder of radius r, you can
verify that the Riemannian metric at each point does not change so the intrinsic geometry
does not change. For the rectangle, the maximum and minimum directional curvatures at
each point are k1 = k2 = 0 so that K = k1k2 = 0 and H = 1

2 (k1 + k2) = 0, and for the
cylinder the maximum and minimum curvatures at each point are k1 = 1

r and k2 = 0 so
that K = 0 and H = 1

2r .

11


