

Chapter 2. Surfaces

Surfaces in \mathbb{R}^n

2.1 Definition: A (local parametrized) **surface** in \mathbb{R}^n is a continuous map $\sigma: U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^n$ where U is an open set. We can write $\sigma(u, v) = (x_1(u, v), x_2(u, v), \dots, x_n(u, v))$ where each $x_k: U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ is continuous. We say that σ is \mathcal{C}^k when all of the k^{th} order partial derivatives exist and are continuous in U , and we say σ is **smooth**, or \mathcal{C}^∞ , when σ is \mathcal{C}^k for every $k \in \mathbb{Z}^+$. Recall that when σ is \mathcal{C}^1 , it is also differentiable and its derivative (or Jacobian) matrix is

$$D\sigma = (\sigma_u, \sigma_v) = \left(\begin{array}{cc} \frac{\partial \sigma}{\partial u} & \frac{\partial \sigma}{\partial v} \end{array} \right) = \left(\begin{array}{cc} \frac{\partial x_1}{\partial u} & \frac{\partial x_1}{\partial v} \\ \vdots & \vdots \\ \frac{\partial x_n}{\partial u} & \frac{\partial x_n}{\partial v} \end{array} \right)$$

We say that σ is **regular** when σ is \mathcal{C}^1 and its derivative matrix is of rank 2, that is when the two columns σ_u and σ_v are linearly independent. In this case, the **tangent plane** to the surface at $(u, v) = (a, b)$ is the plane through $\sigma(a, b)$ parallel to $\sigma_u(a, b)$ and $\sigma_v(a, b)$. Unless otherwise stated, we shall assume all surfaces are smooth and regular.

2.2 Example: When $f: U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ is a \mathcal{C}^2 function, its **graph** $z = f(x, y)$ is the image of the local parametrized surface $\sigma: U \rightarrow \mathbb{R}^3$ given by $(x, y, z) = \sigma(u, v) = (u, v, f(u, v))$. The derivative matrix is

$$D\sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \end{pmatrix}$$

which has rank 2, and the tangent plane at (a, b) is the plane through $(a, b, f(a, b))$ parallel to $(1, 0, \frac{\partial f}{\partial x}(a, b))$ and $(0, 1, \frac{\partial f}{\partial y}(a, b))$.

2.3 Example: The **paraboloid** $z = x^2 + y^2$ in \mathbb{R}^3 can be given parametrically in Cartesian coordinates by $\sigma(u, v) = (u, v, u^2 + v^2)$ or it can be given parametrically in polar coordinates by $\rho(r, \theta) = (r \cos \theta, r \sin \theta, r^2)$. Using polar coordinates, the derivative matrix is

$$D\rho = \begin{pmatrix} x_r & x_\theta \\ y_r & y_\theta \\ z_r & z_\theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \\ 2r & 0 \end{pmatrix}$$

which has rank 2 except when $r = 0$, so this parametrization is regular when $r \neq 0$.

2.4 Example: The top half of the **sphere** $x^2 + y^2 + z^2 = r^2$ of radius $r > 0$ is the graph of the function $f: U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x, y) = \sqrt{r^2 - x^2 - y^2}$ where U is the open disc $x^2 + y^2 < r^2$, so it can be given parametrically in Cartesian coordinates by $\sigma(u, v) = (u, v, \sqrt{r^2 - u^2 - v^2})$. The entire sphere can be given parametrically using spherical coordinates by

$$\rho(\phi, \theta) = (r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi).$$

The derivative matrix is

$$D\rho = \begin{pmatrix} r \cos \phi \cos \theta & -r \sin \phi \sin \theta \\ r \cos \phi \sin \theta & r \sin \phi \cos \theta \\ -r \sin \phi & 0 \end{pmatrix}$$

which has rank 2 except when $\sin \phi = 0$, that is when $\phi = k\pi$ for some $k \in \mathbb{Z}$.

2.5 Example: The **torus** obtained by revolving the circle $(x - R)^2 + z^2 = r^2$ (in the xz -plane) about the z -axis, where $0 < r < R$, can be given parametrically by

$$\begin{aligned}\sigma(\theta, \phi) &= R(\cos \theta, \sin \theta, 0) + r \cos \phi (\cos \theta, \sin \theta, 0) + r \sin \phi (0, 0, 1) \\ &= ((R + r \cos \phi) \cos \theta, (R + r \cos \phi) \sin \theta, r \sin \phi).\end{aligned}$$

Verify, as an exercise, that the derivative matrix has rank 2 everywhere, so the surface is regular everywhere.

2.6 Definition: A **Riemannian metric** on an open set $U \subseteq \mathbb{R}^n$ is a smooth map $g : U \rightarrow M_{n \times n}(\mathbb{R})$ such that $g(p)$ is a positive-definite symmetric matrix for every $p \in U$, so that for each $p \in U$, $g(p)$ defines an inner-product on \mathbb{R}^n given by

$$I(A, B) = \langle A, B \rangle = B^T g(p) A.$$

Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^n$ be a smooth regular surface in \mathbb{R}^n . The **first fundamental form** of σ is the smooth map $g = g_\sigma : U \subseteq \mathbb{R}^2 \rightarrow M_{2 \times 2}(\mathbb{R})$ given by

$$g = g_\sigma = D\sigma^T D\sigma = \begin{pmatrix} \sigma_u \cdot \sigma_u & \sigma_u \cdot \sigma_v \\ \sigma_u \cdot \sigma_v & \sigma_v \cdot \sigma_v \end{pmatrix}.$$

For each $p \in U$, $g = g(p) = D\sigma(p)^T D\sigma(p)$ is a positive-definite symmetric matrix, so g is a Riemannian metric on U . It is traditional to write

$$E = g_{1,1} = \sigma_u \cdot \sigma_u, \quad F = g_{1,2} = g_{2,1} = \sigma_u \cdot \sigma_v, \quad G = \sigma_v \cdot \sigma_v.$$

2.7 Example: (The length of a curve on a surface) Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^n$ be a regular surface in \mathbb{R}^n and let $\alpha : [a, b] \subseteq \mathbb{R} \rightarrow U \subseteq \mathbb{R}^2$ be a regular curve which takes values in U . Then the composite $\gamma(t) = \sigma(\alpha(t))$ is a regular curve on the surface in \mathbb{R}^n . Let us find a formula for the length of γ on $[a, b]$. We have $\gamma'(t) = D\sigma(\alpha(t))\alpha'(t)$ and so

$$|\gamma'|^2 = (D\sigma \alpha') \cdot (D\sigma \alpha') = (D\sigma \cdot \alpha')^T (D\sigma \alpha') = (\alpha')^T g \alpha'$$

hence

$$L_\gamma([a, b]) = \int_a^b |\gamma'(t)| dt = \int_a^b \sqrt{\alpha'(t)^T g(\alpha(t)) \alpha'(t)} dt = \int_a^b \|\alpha'(t)\| dt,$$

where we are using the Riemannian inner product $\langle X, Y \rangle = Y^T g X$ and its associated norm $\|X\| = \sqrt{\langle X, X \rangle}$. We also consider this to be the length of the curve α on $[a, b]$ in U with respect to the Riemann metric g .

2.8 Example: (The angle between curves on a surface) Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^n$ be a regular surface in \mathbb{R}^n and let $p \in U$. Let $\alpha, \beta : I \subseteq \mathbb{R} \rightarrow U \subseteq \mathbb{R}^2$ be two regular curves with $0 \in I$ and $\alpha(0) = \beta(0) = p$. Then $\gamma(t) = \sigma(\alpha(t))$ and $\delta(t) = \sigma(\beta(t))$ are two regular curves on the surface in \mathbb{R}^n which intersect at $t = 0$. Let us calculate the angle between the two curves γ at δ at $t = 0$ (that is the angle between $\gamma'(0)$ and $\delta'(0)$). We have $\gamma'(t) = D\sigma(\alpha(t))\alpha'(t)$ so $\gamma'(0) = D\sigma(p)\alpha'(0)$ and similarly $\delta'(0) = D\sigma(p)\beta'(0)$, and so

$$\gamma'(0) \cdot \delta'(0) = (D\sigma(p)\alpha'(0)) \cdot (D\sigma(p)\beta'(0)) = \beta'(0)^T g(p) \alpha'(0).$$

Similarly, we have $|\gamma'(0)|^2 = \alpha'(0)^T g(p) \alpha'(0)$ and $|\delta'(0)|^2 = \beta'(0)^T g(p) \beta'(0)$, and so the angle $\theta \in [0, \pi]$ between $\gamma'(0)$ and $\delta'(0)$ is given by

$$\cos \theta = \frac{\gamma'(0) \cdot \delta'(0)}{|\gamma'(0)| |\delta'(0)|} = \frac{\beta'(0)^T g(p) \alpha'(0)}{\sqrt{\alpha'(0)^T g(p) \alpha'(0)} \sqrt{\beta'(0)^T g(p) \beta'(0)}} = \frac{\langle \alpha'(0), \beta'(0) \rangle}{\|\alpha'(0)\| \|\beta'(0)\|}.$$

This is also the angle between $\alpha'(0)$ and $\beta'(0)$ in \mathbb{R}^2 , with respect to the Riemannian metric g .

2.9 Remark: We shall define the area of a portion of a regular surface, but before stating the definition let us provide some informal motivation for the definition. Recall that when $p, u, v \in \mathbb{R}^n$, the area of the parallelogram with vertices at $p, p+u, p+v$ and $p+u+v$ is equal to $A = \sqrt{\det(P^T P)}$ where $P = (u, v) \in M_{n \times 2}(\mathbb{R})$. Indeed the angle θ between u and v is given by $\theta = \cos^{-1} \frac{u \cdot v}{|u||v|}$ and the parallelogram has base $|u|$ and height $|v| \sin \theta$ so its area is $A = |u||v| \sin \theta$ and hence

$$\begin{aligned} A^2 &= |u|^2 |v|^2 (1 - \cos^2 \theta) = |u|^2 |v|^2 \left(1 - \left(\frac{u \cdot v}{|u||v|}\right)^2\right) = |u|^2 |v|^2 - (u \cdot v)^2 \\ &= \det \begin{pmatrix} u \cdot u & u \cdot v \\ u \cdot v & v \cdot v \end{pmatrix} = \det(P^T P). \end{aligned}$$

Given a closed Jordan region $R \subseteq U$ (that is a region with a well defined area), we can approximate its area (arbitrarily closely) by covering it with finitely many closed rectangles which are each contained in U . If the k^{th} rectangle has vertices at $p = (u, v)$, $(u+du, v)$, $(u, v+dv)$ and $(u+du, v+dv)$ (where du and dv are small positive real numbers) then the image $\sigma(R_k)$ can be approximated by the parallelogram in \mathbb{R}^n with vertices at $\sigma(p)$, $\sigma(p) + \sigma_u(p)du$, $\sigma(p) + \sigma_v(p)dv$ and $\sigma(p) + \sigma_u(p)du + \sigma_v(p)dv$ whose area is $dA_k = \sqrt{\det(P^T P)}$ where $P = (\sigma_u(p)du, \sigma_v(p)dv)$, that is

$$dA_k = \sqrt{\det \begin{pmatrix} \sigma_u \cdot \sigma_u du du & \sigma_u \cdot \sigma_v du dv \\ \sigma_u \cdot \sigma_v du dv & \sigma_v \cdot \sigma_v dv dv \end{pmatrix}} = \sqrt{\det g(p)} du dv.$$

The total area of $\sigma(R)$ is approximated by the sum of the areas of these parallelograms, which is a Riemann sum for the function $\sqrt{\det g}$, and the limit of these Riemann sums is

$$\iint_R \sqrt{\det g(u, v)} du dv.$$

2.10 Definition: Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^n$ be a regular surface in \mathbb{R}^n and let $R \subseteq U$ be a closed Jordan region (for example, a region of the form $a \leq u \leq b$, $f(u) \leq v \leq g(u)$ where f and g are continuous). We write $dA = \sqrt{\det g(u, v)} du dv$ and we define the area of σ on R to be

$$A_\sigma(R) = \iint_R dA = \iint_R \sqrt{\det g(u, v)} du dv.$$

More generally, for a continuous function $f : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ we define

$$\iint_R f dA = \iint_R f(u, v) \sqrt{\det g(u, v)} du dv.$$

2.11 Definition: Let $U, V \subseteq \mathbb{R}^n$ be open sets. A **regular change of coordinates** from U to V is a bijective map $\phi : U \subseteq \mathbb{R}^n \rightarrow V \subseteq \mathbb{R}^n$ such that ϕ and its inverse $\psi = \phi^{-1} : V \rightarrow U$ are both \mathcal{C}^1 . Note that by the Chain Rule, for all $p \in U$ we have $D\psi(\phi(p))D\phi(p) = I$ (so the derivative matrices of ϕ and ψ are invertible at all points). We say ϕ is **positive**, or ϕ **preserves orientation**, when $\det D\phi(p) > 0$ for all $p \in U$. Unless otherwise stated, we assume that any change of coordinates is smooth and regular.

2.12 Theorem: (Change of Coordinates) Let $U, V \subseteq \mathbb{R}^2$ be open sets and let $\phi : U \rightarrow V$ be a smooth regular change of coordinates from U to V with inverse $\psi = \phi^{-1} : V \rightarrow U$. Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^n$ be a smooth regular surface in \mathbb{R}^n and let $\rho : V \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be the smooth regular surface given by $\rho(q) = \sigma(\psi(q))$. For points $p \in U$ and $q = \phi(p) \in V$ and for Jordan regions $R \subseteq U$ and $Q = \phi(R) \subseteq V$ we have

- (1) $g_\rho(q) = D\psi(q)^T g_\sigma(p) D\psi(q)$ and
- (2) $A_\rho(Q) = A_\sigma(R)$.

Proof: To prove Part 1, note that since $\rho(q) = \sigma(\psi(q))$ we have $D\rho = D\sigma D\psi$ and so

$$g_\rho = D\rho^T D\rho = (D\sigma D\psi)^T (D\sigma D\psi) = D\psi^T D\sigma^T D\sigma D\psi = D\psi^T g_\sigma D\psi.$$

Let us prove Part 2. Since $g_\rho = D\psi^T g_\sigma D\psi$, we have $\det g_\rho = (\det D\psi)^2 \det g_\sigma$ and so, since $\det D\psi \neq 0$, we have

$$\sqrt{\det g_\rho} = |\det D\psi| \sqrt{\det g_\sigma}.$$

If $R \subseteq U$ and $Q = \phi(R) \subseteq V$ are Jordan regions then, writing $(u, v) = \psi(s, t)$, the change of variables formula for integration gives

$$\begin{aligned} A_\sigma(R) &= \iint_R \sqrt{\det g_\sigma(u, v)} \, du \, dv = \iint_Q \sqrt{\det g_\sigma(\psi(s, t))} |\det D\psi(s, t)| \, ds \, dt \\ &= \iint_Q \sqrt{\det g_\rho(s, t)} \, ds \, dt = A_\rho(Q). \end{aligned}$$

This proves Part 2 and confirms our intuitive expectation that the area of a surface does not change when we use a change of coordinates to obtain an alternate parametrization.

Surfaces in \mathbb{R}^3

2.13 Definition: Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a smooth regular surface in \mathbb{R}^3 . Since $D\sigma = (\sigma_u, \sigma_v)$ has rank 2, it follows that $\sigma_u \times \sigma_v \neq 0$. For $p \in U$, since the tangent plane to σ at p is parallel to $\sigma_u(p)$ and $\sigma_v(p)$, it has normal vector $\sigma_u \times \sigma_v$. We define the **unit normal vector** to σ at p to be $n = n(p)$ where

$$n = n_\sigma = \frac{\sigma_u \times \sigma_v}{|\sigma_u \times \sigma_v|}.$$

Notice that $n : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{S}^2 \subseteq \mathbb{R}^3$ where \mathbb{S}^2 is the unit sphere $\mathbb{S}^2 = \{x \in \mathbb{R}^3 \mid |x| = 1\}$, and this map is called the **Gauss map** of σ on U .

Given a point $p \in U$ and a nonzero vector $0 \neq A \in \mathbb{R}^2$, we define the (directional) **curvature** $k_\sigma(p)(A) = k_\sigma(p)(A)$ of σ in the direction of A at p as follows: choose any smooth regular curve $\alpha : I \subseteq \mathbb{R} \rightarrow U \subseteq \mathbb{R}^2$ with $0 \in I$ and $\alpha(0) = p$ and $\alpha'(0) = A$, let $\gamma(t) = \sigma(\alpha(t))$ (so γ is a curve on the surface in \mathbb{R}^3), reparametrize by arclength by letting $\delta(s) = \gamma(t(s))$ where $s(t) = \int_0^t |\gamma'(r)| dr$, let $N(s) = n(\alpha(t(s)))$, and then define

$$k_\sigma(p)(A) = \delta''(0) \cdot N(0).$$

The following theorem shows that this definition does not depend on the choice of α . It only depends on σ and p and the direction of the vector A .

2.14 Theorem: (Directional Curvature) Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a smooth regular surface in \mathbb{R}^3 . For $p \in U$ and $0 \neq A \in \mathbb{R}^2$, the curvature of σ in the direction of A at p is

$$k_\sigma(p)(A) = \frac{A^T h(p) A}{A^T g(p) A}$$

where $g = D\sigma^T D\sigma$ and

$$h = -Dn^T D\sigma = -\begin{pmatrix} \sigma_u \cdot n_u & \sigma_v \cdot n_u \\ \sigma_u \cdot n_v & \sigma_v \cdot n_v \end{pmatrix} = \begin{pmatrix} \sigma_{uu} \cdot n & \sigma_{uv} \cdot n \\ \sigma_{uv} \cdot n & \sigma_{vv} \cdot n \end{pmatrix}.$$

Proof: Let $\alpha, \gamma, \delta, \beta$ and N be as in the definition. Since δ is a curve on the surface so δ' is tangent to the surface, we expect, intuitively, that $\delta' \cdot N = 0$. Let us verify this algebraically. Since

$$N(s) = n(\beta(s)) = \frac{\sigma_u(\beta(s)) \times \sigma_v(\beta(s))}{|\sigma_u(\beta(s)) \times \sigma_v(\beta(s))|},$$

it follows that $N(s) \cdot \sigma_u(\beta(s)) = N(s) \cdot \sigma_v(\beta(s)) = 0$ and so $N(s)^T D\sigma(\beta(s)) = 0$. Since $\delta(s) = \gamma(t(s)) = \sigma(\alpha(t(s)))$, we have $\delta'(s) = D\sigma(\alpha(t(s))) \alpha'(t(s)) t'(s)$ and so

$$\delta'(s) \cdot N(s) = N(s)^T \delta'(s) = N(s)^T D\sigma(\alpha(t(s))) \alpha'(t(s)) t'(s) = 0,$$

as we expected. Differentiating gives $0 = \frac{d}{ds}(\delta'(s) \cdot N(s)) = \delta''(s) \cdot N(s) + \delta'(s) \cdot N'(s)$, so

$$k(p, A) = \delta''(0) \cdot N(0) = -\delta'(0) \cdot N'(0).$$

Since $\gamma(t) = \sigma(\alpha(t))$ we have $\gamma'(t) = D\sigma(\alpha(t)) \alpha'(t)$. Since $s(t) = \int_0^t |\gamma'(r)| dr$ we have $s'(t) = |\gamma'(t)|$ hence $t'(s) = \frac{1}{|\gamma'(t(s))|}$. Since $\delta(s) = \gamma(t(s))$ we have

$$\delta'(s) = \gamma'(t(s)) t'(s) = \frac{\gamma'(t(s))}{|\gamma'(t(s))|} = \frac{D\sigma(\alpha(t(s))) \alpha'(t(s))}{|D\sigma(\alpha(t(s))) \alpha'(t(s))|}.$$

Since $N(s) = n(\alpha(t(s)))$ we have

$$N'(s) = Dn(\alpha(t(s))) \alpha'(t(s)) t'(s) = \frac{Dn(\alpha(t(s))) \alpha'(t(s))}{|D\sigma(\alpha(t(s))) \alpha'(t(s))|}.$$

Thus we have

$$\delta' \cdot N' = \frac{D\sigma \alpha'}{|D\sigma \alpha'|} \cdot \frac{Dn \alpha'}{|D\sigma \alpha'|} = \frac{(\alpha')^T Dn^T D\sigma \alpha'}{(\alpha')^T D\sigma^T D\sigma \alpha'}$$

so, in particular,

$$k_\sigma(p)(A) = -\delta'(0) \cdot N(0) = -\frac{A^T Dn^T(p) D\sigma(p) A}{A^T D\sigma(p)^T D\sigma(p) A} = \frac{A^T h(p) A}{A^T g(p) A}$$

where $g = D\sigma^T D\sigma$ and $h = -Dn^T D\sigma$.

Finally, note that since $\sigma_u \cdot n = 0$ and $\sigma_v \cdot n = 0$, we can differentiate with respect to u and v to get $\sigma_{uu} \cdot n + \sigma_u \cdot n_u = 0$, $\sigma_{uv} \cdot n + \sigma_u \cdot n_v = 0$, $\sigma_{vu} \cdot n + \sigma_v \cdot n_u = 0$ and $\sigma_{vv} \cdot n + \sigma_v \cdot n_v = 0$ and so

$$h = -Dn^T D\sigma = -\begin{pmatrix} \sigma_u \cdot n_u & \sigma_v \cdot n_u \\ \sigma_u \cdot n_v & \sigma_v \cdot n_v \end{pmatrix} = \begin{pmatrix} \sigma_{uu} \cdot n & \sigma_{uv} \cdot n \\ \sigma_{uv} \cdot n & \sigma_{vv} \cdot n \end{pmatrix}.$$

2.15 Definition: For a smooth regular surface $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ in \mathbb{R}^3 , the **second fundamental form** of σ is the smooth map $h = h_\sigma : U \subseteq \mathbb{R}^2 \rightarrow M_{2 \times 2}(\mathbb{R})$ given by

$$h = -Dn^T D\sigma = -\begin{pmatrix} \sigma_u \cdot n_u & \sigma_v \cdot n_u \\ \sigma_u \cdot n_v & \sigma_v \cdot n_v \end{pmatrix} = \begin{pmatrix} \sigma_{uu} \cdot n & \sigma_{uv} \cdot n \\ \sigma_{uv} \cdot n & \sigma_{vv} \cdot n \end{pmatrix}.$$

For each $p \in U$, $h(p) = Dn(p)^T D\sigma(p)$ is a symmetric matrix so it defines a symmetric bilinear form on \mathbb{R}^2 given by $\text{II}(A, B) = B^T h(p) A$. It is traditional to write

$$L = h_{1,1}, \quad M = h_{1,2} = h_{2,1}, \quad N = h_{2,2}.$$

2.16 Theorem: (Change of Coordinates) Let $U, V \subseteq \mathbb{R}^2$ be open, and let $\phi : U \rightarrow V$ be a smooth regular positive change of coordinates. Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a smooth regular surface, and let $\rho : V \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be the corresponding surface given by $\rho(q) = \sigma(\phi(q))$. Then for points $p \in U$ and $q = \phi(p) \in V$ and nonzero vectors $0 \neq A \in \mathbb{R}^2$ and $B = D\phi(p)A$ we have

- (1) $n_\rho(q) = n_\sigma(p)$,
- (2) $h_\rho(q) = D\psi(q)^T h_\sigma(p) D\psi(q)$, and
- (3) $k_\rho(q)(B) = k_\sigma(p)(A)$.

Proof: Write $p = (u, v)$ and $q = (s, t) = \phi(u, v)$. Then $\rho(s, t) = \sigma(\psi(s, t))$ so we have $\rho_s = \sigma_u u_s + \sigma_v v_s$ and $\rho_t = \sigma_u u_t + \sigma_v v_t$, hence

$$\rho_s \times \rho_t = (\sigma_u u_s + \sigma_v v_s) \times (\sigma_u u_t + \sigma_v v_t) = (\sigma_u \times \sigma_v)(u_s v_t - u_t v_s) = \det D\psi(\sigma_u \times \sigma_v),$$

that is $\rho_s(q) \times \rho_t(q) = \det \psi(q)(\sigma_u(p) \times \sigma_v(p))$. Since $\det D\psi(p) > 0$ for all p , we have

$$n_\rho(q) = \frac{\rho(p) \times \rho(p)}{|\rho(p) \times \rho(p)|} = \frac{\det D\psi(q)(\sigma_u(p) \times \sigma_v(p))}{|\det D\psi(q)(\sigma_u(p) \times \sigma_v(p))|} = \frac{\sigma_u(p) \times \sigma_v(p)}{|\sigma_u(p) \times \sigma_v(p)|} = n_\sigma(p).$$

This proves Part 1.

Since $\rho(q) = \sigma(\psi(q))$ so that $D\rho(q) = D\sigma(p)D\psi(q)$, and $n_\rho(q) = n_\sigma(\psi(q))$ so that $Dn_\rho(q) = Dn_\sigma(p)D\psi(q)$, we have

$$h_\rho(q) = Dn_\rho(q)^T D\rho(q) = D\psi(q)^T Dn_\sigma(p)^T D\sigma(p) D\psi(q) = D\psi(q)^T h_\sigma(p) D\psi(q).$$

This proves Part 2.

To prove Part 3, let $\alpha : I \in \mathbb{R} \rightarrow U \subseteq \mathbb{R}^2$ be a regular \mathcal{C}^2 curve with $\alpha(0) = p$ and $\alpha'(0) = A$, and let $\beta : I \subseteq \mathbb{R} \rightarrow V \subseteq \mathbb{R}^2$ be the corresponding curve $\beta(t) = \phi(\alpha(t))$, and note that $\beta(0) = \phi(\alpha(0)) = \phi(p) = q$. Since $\beta(t) = \phi(\alpha(t))$ we have $\beta'(t) = D\phi(\alpha(t)) \alpha'(t)$ so that $\beta'(0) = D\phi(p) A = B$. Let $\gamma_\sigma(t) = \sigma(\alpha(t))$, let $\delta_\sigma(s) = \gamma_\sigma(t(s))$ where we have

$s(t) = \int_0^t |\gamma'(r)| dr$, and let $N_\sigma(s) = n_\sigma(\alpha(t(s)))$ so that $k_\sigma(p)(A) = \delta_\sigma''(0) \cdot N_\sigma(0)$. Also, let $\gamma_\rho(t) = \rho(\beta(t)) = \sigma(\alpha(t)) = \gamma_\sigma(t)$, $\delta_\rho(s) = \gamma_\rho(t(s)) = \delta_\sigma(s)$, and let $N_\rho(s) = n_\rho(\beta(t(s)))$ so that $k_\rho(q)(B) = \delta_\rho''(0) \cdot N_\rho(0)$. Since ϕ and ψ are inverses we have

$$\gamma_\rho(t) = \rho(\beta(t)) = \rho(\phi(\alpha(t))) = \sigma(\psi(\phi(\alpha(t)))) = \sigma(\alpha(t)) = \gamma_\sigma(t)$$

for all t , hence $\delta_\rho(s) = \gamma_\rho(t(s)) = \gamma_\sigma(t(s)) = \delta_\sigma(s)$ for all s , so $\delta_\rho''(0) = \delta_\sigma''(0)$. Also, we have $N_\rho(0) = n_\rho(\beta(0)) = n_\rho(q) = n_\sigma(p) = n_\sigma(\alpha(0)) = N_\sigma(0)$, and so

$$k_\rho(q)(B) = \delta_\rho''(0) \cdot N_\rho(0) = \delta_\sigma''(0) \cdot N_\sigma(0) = k_\sigma(p)(A).$$

2.17 Remark: When $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is a smooth regular surface, for each $p \in U$ the directional curvature $k_\sigma(p)$ is a smooth function $k_\sigma(p) : \mathbb{R}^2 \setminus \{0\} \rightarrow \mathbb{R}$ with the property that $k_\sigma(p)(tA) = k_\sigma(p)(A)$ for all $0 \neq t \in \mathbb{R}$ and all $0 \neq A \in \mathbb{R}^2$. Thus we can consider $k_\sigma(p)$ to be a function $k_\sigma(p) : \mathbb{P}^1(\mathbb{R}) \rightarrow \mathbb{R}$ where $\mathbb{P}^1(\mathbb{R})$ is the real **projective space**, which is the set of 1-dimensional subspaces of \mathbb{R}^2 .

2.18 Theorem: (Principal Curvature Directions) Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a smooth regular surface in \mathbb{R}^3 , and let $p \in U$.

- (1) The directional curvature $k_\sigma(p)(A)$ attains its maximum and minimum values in two directions which are orthogonal with respect to the inner product $\langle X, Y \rangle = Y^T g_\sigma(p) X$.
- (2) The maximum and minimum values k_1 and k_2 of $k_\sigma(p)(A)$ for $0 \neq A \in \mathbb{R}^2$ are the eigenvalues of $g_\sigma(p)^{-1} h_\sigma(p)$, and the directions $A_1, A_2 \in \mathbb{R}^2$ in which they occur are the corresponding eigenvectors.
- (3) The maximum and minimum values k_1 and k_2 are roots of the quadratic polynomial

$$0 = f(k) = \det(h_\sigma(p) - k g_\sigma(p))$$

and the directions $A_1 = (x_1, y_1)$ and $A_2 = (x_2, y_2)$ in which they occur are roots of the quadratic form

$$0 = f(x, y) = \det(h_\sigma(p)\begin{pmatrix} x \\ y \end{pmatrix}, g_\sigma(p)\begin{pmatrix} x \\ y \end{pmatrix}).$$

Proof: Let $p = (a, b)$. We begin by changing coordinates so that, in the new coordinates, at the point q corresponding to p , the inner product becomes the standard dot product. We do this as follows: Apply the Gram-Schmidt procedure to the standard basis for \mathbb{R}^2 to obtain a positive ordered basis $\{A, B\}$ for \mathbb{R}^2 which is orthonormal with respect to the inner product $\langle X, Y \rangle = Y^T g(p) X$. Let $P = (A, B) \in M_{2 \times 2}(\mathbb{R})$ and define $\psi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by

$$\psi(s, t) = \begin{pmatrix} a \\ b \end{pmatrix} + P \begin{pmatrix} s \\ t \end{pmatrix}.$$

Note that $\psi(0) = p$ and $D\psi(s, t) = P$ for all s, t . Let $V = \phi(U)$ where $\phi = \psi^{-1}$, and let $\rho : V \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be the corresponding surface given by $\rho(s, t) = \sigma(\psi(s, t))$. Then at $q = 0$

$$g_\rho = D\psi^T g_\sigma D\psi = P^T g_\sigma P = \begin{pmatrix} A^T g_\sigma A & A^T g_\sigma B \\ B^T g_\sigma A & B^T g_\sigma B \end{pmatrix} = I,$$

so in the new coordinates, at the point $q = \phi(p) = 0$, the inner product is the standard inner product. We have

$$k_\sigma(p)(A) = k_\rho(q)(B) = \frac{B^T h_\rho B}{B^T g_\rho B} = \hat{B}^T h_\rho \hat{B}$$

where $B = D\phi(p)A = P^{-1}A$ and \hat{B} is the unit vector $\frac{B}{|B|}$. Recall from linear algebra (or verify using the fact that symmetric matrices are orthogonally diagonalizable) that h_ρ has real eigenvalues $k_1, k_2 \in \mathbb{R}$ with $k_1 \geq k_2$, with orthogonal unit eigenvectors $B_1, B_2 \in \mathbb{R}^2$,

and the maximum and minimum values of the quadratic form given by $Q(X) = X^T h_\rho X$, over all unit vectors $X \in \mathbb{R}^2$, are $Q(B_1) = k_1$ and $Q(B_2) = k_2$. Note that the unit vectors B_1 and B_2 are orthogonal with respect to the standard inner product, and the corresponding vectors $A_1 = D\psi(0)B_1 = PB_1$ and $A_2 = D\psi(0)B_2 = PB_2$ are orthogonal unit vectors with respect to the inner product given by $g_\sigma(p)$. This proves Part 1.

For $k \in \mathbb{R}$ and $0 \neq B \in \mathbb{R}^2$, recall that k is an eigenvalue of h_ρ with eigenvector B if and only if $(h_\rho - kI)B = 0$. For $A = PB$, we have

$$\begin{aligned} (h_\rho - kI)B = 0 &\iff (P^T h_\sigma P - k P^T g_\sigma P)B = 0 \iff P^T (h_\sigma - kg_\sigma)PB = 0 \\ &\iff P^T (h_\sigma - kg_\sigma)A = 0 \iff (h_\sigma - kg_\sigma)A = 0 \\ &\iff g_\sigma^{-1} (h_\sigma - kg_\sigma)A = 0 \iff (g_\sigma^{-1} h_\sigma - kI)A = 0. \end{aligned}$$

Thus k_1 and k_2 are the eigenvalues of h_ρ with eigenvectors B_1 and B_2 if and only if k_1 and k_2 are eigenvalues of $g_\sigma^{-1} h_\sigma$ with eigenvectors A_1 and A_2 . This proves Part 2.

For $k \in \mathbb{R}$, k is an eigenvalue of h_ρ if and only if there exists $0 \neq A \in \mathbb{R}^2$ such that $(h_\sigma - kg_\sigma)A = 0$, if and only if $\det(h_\sigma - kg_\sigma) = 0$. This gives the first formula in Part 3. For $0 \neq A \in \mathbb{R}^2$ we have $A = PB$ where B is an eigenvector of h_ρ if and only if there exists $k \in \mathbb{R}$ such that $0 = (h_\sigma - kg_\sigma)A = (h_\sigma A, g_\sigma A) \begin{pmatrix} 1 \\ -k \end{pmatrix}$ if and only if $\det(h_\sigma A, g_\sigma A) = 0$. This gives the second formula in Part 3.

2.19 Definition: For a smooth regular surface $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ in \mathbb{R}^3 , the maximum and minimum values k_1 and k_2 of the directional curvature $k_\sigma(p)(A)$ where $0 \neq A \in \mathbb{R}^2$, are called the **principal curvatures** of σ at p , and the directions $0 \neq A_1, A_2 \in \mathbb{R}^2$ in which the maximum and minimum values occur are called the **principal directions** for σ at p . The **mean curvature** $H(p) = H_\sigma(p)$ of σ at p and the **Gaussian curvature** $K(p) = K_\sigma(p)$ of σ at p are defined by

$$\begin{aligned} H(p) &= H_\sigma(p) = \frac{1}{2}(k_1 + k_2), \\ K(p) &= K_\sigma(p) = k_1 k_2. \end{aligned}$$

By Part 2 of the above theorem, k_1 and k_2 are the roots of the characteristic polynomial of $g^{-1}h$, so we have

$$(x - k_1)(x - k_2) = \det(g^{-1}h - xI) = x^2 - \text{trace}(g^{-1}h)x + \det(g^{-1}h).$$

Comparing coefficients gives

$$\begin{aligned} H(p) &= \frac{1}{2}(k_1 + k_2) = \frac{1}{2} \text{trace}(g(p)^{-1}h(p)), \\ K(p) &= k_1 k_2 = \det(g(p)^{-1}h(p)) = \frac{\det h(p)}{\det g(p)}. \end{aligned}$$

2.20 Theorem: (*The Gauss-Weingarten Equations*) For a smooth regular surface σ in \mathbb{R}^3 , we have

$$\begin{pmatrix} \sigma_{uu} \\ \sigma_{uv} \\ \sigma_{vv} \\ n_u \\ n_v \end{pmatrix} = \begin{pmatrix} \Gamma_{11}^1 & \Gamma_{11}^2 & h_{11} \\ \Gamma_{12}^1 & \Gamma_{12}^2 & h_{12} \\ \Gamma_{22}^1 & \Gamma_{22}^2 & h_{22} \\ b_1^1 & b_1^2 & 0 \\ b_2^1 & b_2^2 & 0 \end{pmatrix} \begin{pmatrix} \sigma_u \\ \sigma_v \\ n \end{pmatrix}$$

where

$$b = \begin{pmatrix} b_1^1 & b_2^1 \\ b_1^2 & b_2^2 \end{pmatrix} = -g^{-1}h, \text{ and}$$

$$\Gamma = \begin{pmatrix} \Gamma_{11}^1 & \Gamma_{12}^1 & \Gamma_{22}^1 \\ \Gamma_{11}^2 & \Gamma_{12}^2 & \Gamma_{22}^2 \end{pmatrix} = \frac{1}{2}g^{-1} \begin{pmatrix} (g_{11})_u & (g_{11})_v & 2(g_{12})_v - (g_{22})_u \\ 2(g_{12})_u - (g_{11})_v & (g_{22})_u & (g_{22})_v \end{pmatrix}.$$

Proof: First we note that since $\{\sigma_u, \sigma_v, n\}$ is a basis for \mathbb{R}^3 , such a 5×3 matrix exists, and we just need to determine the entries. We do not yet know the entries in the final column, so let us say the final column is $(a_1, a_2, \dots, a_5)^T$. We shall calculate the entries on the first and last rows (the other calculations are similar). To find the entries on the first row, we shall need a formula for $\sigma_{uu} \cdot \sigma_u$ and $\sigma_{uu} \cdot \sigma_v$ in terms of the entries of g . Since $g_{11} = \sigma_u \cdot \sigma_u$, we can differentiate with respect to u and v to get $(g_{11})_u = 2\sigma_{uu} \cdot \sigma_u$ and $(g_{11})_v = 2\sigma_{uv} \cdot \sigma_u$. Since $g_{12} = \sigma_u \cdot \sigma_v$, we have $(g_{12})_u = \sigma_{uu} \cdot \sigma_v + \sigma_u \cdot \sigma_{vu}$. Thus we obtain the formulas

$$\sigma_{uu} \cdot \sigma_u = \frac{1}{2}(g_{11})_u, \quad \sigma_{uu} \cdot \sigma_v = (g_{12})_u - \frac{1}{2}(g_{11})_u.$$

The first row gives the equation $\Gamma_{11}^1 \sigma_u + \Gamma_{11}^2 \sigma_v + a_1 n = \sigma_{uu}$. Take the dot product with n on both sides to get $a_1 = \sigma_{uu} \cdot n = h_{11}$. Take the dot product with σ_u and with σ_v to get

$$\Gamma_{11}^1 g_{11} + \Gamma_{11}^2 g_{12} = \sigma_{uu} \cdot \sigma_u = \frac{1}{2}(g_{11})_u$$

$$\Gamma_{11}^1 g_{12} + \Gamma_{11}^2 g_{22} = \sigma_{uu} \cdot \sigma_v = (g_{12})_u - \frac{1}{2}(g_{22})_u.$$

These two equations can be written as $g \begin{pmatrix} \Gamma_{11}^1 \\ \Gamma_{11}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} (g_{11})_u \\ 2(g_{12})_u - (g_{11})_v \end{pmatrix}$, and so we obtain

$$\begin{pmatrix} \Gamma_{11}^1 \\ \Gamma_{11}^2 \end{pmatrix} = \frac{1}{2}g^{-1} \begin{pmatrix} (g_{11})_u \\ 2(g_{12})_u - (g_{11})_v \end{pmatrix}.$$

Now consider the final row. By differentiating $1 = n \cdot n$ with respect to v we see that n_v is orthogonal to n , and hence n_v is in the span of σ_u and σ_v , so $a_5 = 0$ and the final row gives the equation $b_2^1 \sigma_u + b_2^2 \sigma_v = n_v$. Taking the dot product on both sides with σ_u and with σ_v gives the equations $b_2^1 g_{11} + b_2^2 g_{12} = -h_{12}$, and σ_v gives $b_2^1 g_{12} + b_2^2 g_{22} = -h_{22}$. These can be written as $g \begin{pmatrix} b_2^1 \\ b_2^2 \end{pmatrix} = - \begin{pmatrix} h_{12} \\ h_{22} \end{pmatrix}$, and so we obtain

$$\begin{pmatrix} b_2^1 \\ b_2^2 \end{pmatrix} = -g^{-1} \begin{pmatrix} h_{12} \\ h_{22} \end{pmatrix}.$$

2.21 Definition: For a smooth regular surface $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$, the functions Γ_{kl}^j which appear in the above theorem are called the **Christoffel symbols** of σ on U .

2.22 Theorem: (The Gauss-Codazzi Equations) Let $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a smooth regular surface in \mathbb{R}^3 . Then the entries of g and h satisfy the Codazzi equations

- (1) $(h_{11})_v - (h_{12})_u = h_{11}\Gamma_{12}^1 + h_{12}(\Gamma_{12}^2 - \Gamma_{11}^1) - h_{22}\Gamma_{11}^2$
- (2) $(h_{12})_v - (h_{22})_u = h_{11}\Gamma_{22}^1 + h_{12}(\Gamma_{22}^2 - \Gamma_{12}^1) - h_{22}\Gamma_{12}^2$

and the Gauss equations

- (1) $g_{11}K = (\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u + \Gamma_{11}^2\Gamma_{22}^2 + \Gamma_{11}^1\Gamma_{12}^2 - \Gamma_{12}^1\Gamma_{11}^2 - \Gamma_{12}^2\Gamma_{12}^2$
- (2) $g_{12}K = (\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^1\Gamma_{12}^2 - \Gamma_{22}^1\Gamma_{11}^2$
 $= (\Gamma_{12}^2)_v - (\Gamma_{22}^2)_u + \Gamma_{12}^1\Gamma_{12}^2 - \Gamma_{22}^1\Gamma_{11}^2$
- (3) $g_{22}K = (\Gamma_{22}^1)_u - (\Gamma_{12}^1)_v + \Gamma_{11}^1\Gamma_{22}^1 + \Gamma_{12}^1\Gamma_{22}^2 - \Gamma_{12}^1\Gamma_{12}^1 - \Gamma_{22}^1\Gamma_{12}^2$.

Proof: Let us use the fact that $\sigma_{uuv} = \sigma_{uvu}$. Using the Gauss-Weingarten equations, we have

$$\begin{aligned} \sigma_{uuv} &= (\Gamma_{11}^1\sigma_u + \Gamma_{11}^2\sigma_v + h_{11}n)_v \\ &= (\Gamma_{11}^1)_v\sigma_u + \Gamma_{11}^1\sigma_{uv} + (\Gamma_{11}^2)_v\sigma_v + \Gamma_{11}^2\sigma_{vv} + (h_{11})_vn + h_{11}n_v, \\ \sigma_{uvu} &= (\Gamma_{12}^1\sigma_u + \Gamma_{12}^2\sigma_v + h_{12}n)_u \\ &= (\Gamma_{12}^1)_u\sigma_u + \Gamma_{12}^1\sigma_{uu} + (\Gamma_{12}^2)_u\sigma_v + \Gamma_{12}^2\sigma_{vu} + (h_{12})_nn + h_{12}n_u. \end{aligned}$$

In the above expressions for σ_{uuv} and σ_{uvu} , use the Gauss-Weingarten equations again to write σ_{uu} , σ_{uv} , σ_{vv} , n_u and n_v as linear combinations of σ_u , σ_v and n , then expand and equate coefficients. Equating the coefficient of n gives

$$\Gamma_{11}^1 h_{12} + \Gamma_{11}^2 h_{22} + (h_{11})_v = \Gamma_{12}^1 h_{11} + \Gamma_{12}^2 h_{12} + (h_{12})_u$$

hence

$$(h_{11})_v - (h_{12})_u = \Gamma_{12}^1 h_{11} + (\Gamma_{12}^2 - \Gamma_{11}^1)h_{12} - \Gamma_{11}^2 h_{22},$$

which is the first Codazzi equation. Equating the coefficient of σ_u gives

$$(\Gamma_{11}^1)_v + \Gamma_{11}^1\Gamma_{12}^1 + \Gamma_{11}^2\Gamma_{22}^1 + h_{11}b_2^1 = (\Gamma_{12}^1)_u + \Gamma_{12}^1\Gamma_{11}^1 + \Gamma_{12}^2\Gamma_{12}^1 + h_{12}b_1^1$$

so we have

$$h_{11}b_2^1 - h_{12}b_1^1 = (\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^2\Gamma_{12}^1 - \Gamma_{11}^2\Gamma_{22}^1.$$

Notice that $h_{11}b_2^1 - h_{12}b_1^1$ is equal to the (1, 2)-entry of the matrix

$$\begin{pmatrix} b_1^1 & b_2^1 \\ b_1^2 & b_2^2 \end{pmatrix} \begin{pmatrix} h_{22} & -h_{12} \\ h_{21} & h_{11} \end{pmatrix} = \det h b h^{-1} = \det h (-g^{-1}h)h^{-1} = -\det h g^{-1},$$

that is $h_{11}b_2^1 - h_{12}b_1^1 = -\det h (g^{-1})_{1,2} = g_{12} \frac{\det h}{\det g}$, and so we have

$$g_{12} \frac{\det h}{\det g} = (\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^2\Gamma_{12}^1 - \Gamma_{11}^2\Gamma_{22}^1,$$

which is one of the second Gauss equations. Equating the coefficient of σ_v and performing a similar calculation gives

$$g_{11} \frac{\det h}{\det g} = (\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u + \Gamma_{11}^2\Gamma_{22}^2 + \Gamma_{11}^1\Gamma_{12}^2 - \Gamma_{12}^1\Gamma_{11}^2 - \Gamma_{12}^2\Gamma_{12}^2,$$

which is the first Gauss equation.

Similar calculations, using the fact that $\sigma_{vvu} = \sigma_{vuv}$, produce similar formulas, but with u and v interchanged, and with the indices 1 and 2 interchanged. In this way we obtain the second Codazzi equation, and the other Gauss equations.

2.23 Theorem: (Gauss' Theorema Egregium) For a smooth regular surface in \mathbb{R}^3 , the Gaussian curvature $K = \frac{\det h}{\det g}$ can be expressed only in terms of g (without using h).

Proof: We can express K in terms of g using either the first and second, or the second and third, Gauss equations. For example, using the first, and one of the second Gauss equations, we have

$$\begin{aligned} (\det g)K &= g_{11}(g_{22}K) - g_{12}(g_{12}K) \\ &= g_{11}\left((\Gamma_{22}^1)_u - (\Gamma_{12}^1)_v + \Gamma_{11}^1\Gamma_{22}^1 + \Gamma_{12}^1\Gamma_{22}^2 - \Gamma_{12}^1\Gamma_{12}^1 - \Gamma_{22}^1\Gamma_{12}^2\right) \\ &\quad - g_{12}\left((\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^1\Gamma_{12}^2 - \Gamma_{22}^1\Gamma_{11}^2\right). \end{aligned}$$

Note that the Christoffel symbols are all expressed in terms of g .

2.24 Theorem: (The Fundamental Theorem for Surfaces in \mathbb{R}^3 , or the Bonnet Theorem) Given a connected open set $U \subseteq \mathbb{R}^2$ with $0 \in U$, given a point $p \in \mathbb{R}^3$ and orthogonal unit vectors $A, B \in \mathbb{R}^3$, and given smooth functions $g_{11}, g_{12}, g_{22}, h_{11}, h_{12}, h_{22} : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ with $g_{11} > 0$ and $g_{11}g_{22} - g_{12}^2 > 0$ such that all of the Gauss-Codazzi equations hold for the given functions, there exists a unique smooth surface $\sigma : U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}^3$ which has the given functions as the entries of its first and second fundamental forms such that $\sigma(0) = p$, $\sigma_u(0) \in \text{Span}\{A\}$ and $\sigma_v(0) \in \text{Span}\{A, B\}$.

Proof: We shall not supply the proof, but we make some remarks. The idea of the proof is similar to the proof of the fundamental theorem for curves in \mathbb{R}^3 . In the proof of the fundamental theorem for curves, we used the fact that there exists a solution to the system of ordinary differential equations which is obtained by requiring that the Frenet-Serret formulas hold. To prove Bennet's theorem, we obtain a system of partial differential equations by requiring that the Gauss-Weingarten equations hold. But such a system of partial differential equations does not always admit a solution. In order for a solution to exist, the coefficients of the partial differential equations must satisfy certain compatibility requirements. In the case of the system which comes from the Gauss-Weingarten equations, it so happens that the compatibility requirements are satisfied when the Gauss-Codazzi equations hold.

2.25 Remark: The fundamental theorem for surfaces tells us that, up to isometry, a surface is determined from its first and second fundamental forms g and h . So all geometric properties of a surface should be expressible in terms of g and h . We say that a geometric property is **intrinsic** when it can be expressed only in terms of g which, we recall is a Riemannian metric (that is an inner product at each point), otherwise we say the property is **extrinsic**. Properties such as the length of a curve on a surface, or the angle between two curves on a surface, or the area of a portion of the surface are extrinsic. Gauss' Theorema Egregium (which is Latin for Gauss' Remarkable Theorem) states that the Gaussian curvature K is an intrinsic property. By contrast, the mean curvature H is extrinsic.

2.26 Example: When a flat rectangle is bent to form a cylinder of radius r , you can verify that the Riemannian metric at each point does not change so the intrinsic geometry does not change. For the rectangle, the maximum and minimum directional curvatures at each point are $k_1 = k_2 = 0$ so that $K = k_1k_2 = 0$ and $H = \frac{1}{2}(k_1 + k_2) = 0$, and for the cylinder the maximum and minimum curvatures at each point are $k_1 = \frac{1}{r}$ and $k_2 = 0$ so that $K = 0$ and $H = \frac{1}{2r}$.