Chapter 2. Surfaces

Surfaces in R™

2.1 Definition: A (local parametrized) surface in R" is a continuous map o:U C R? — R"
where U is an open set. We can write o(u,v) = (z1(u,v),z2(u,v), -+, z,(u,v)) where
each z;, : U C R — R is continuous. We say that o is C*¥ when all of the k" order partial
derivatives exist and are continuous in U, and we say o is smooth, or C*, when o is C*
for every k € ZT. Recall that when o is C!, it is also differentiable and its derivative (or
Jacobian) matrix is

Ory  Ory
ou ov
Do = (0oy,00) = (%2 2)=| :
Ozn  Ozn
ou ov

We say that o is regular when o is C! and its derivative matrix is of rank 2, that is when
the two columns o, and o, are linearly independent. In this case, the tangent plane to
the surface at (u,v) = (a,b) is the plane through o(a,b) parallel to o,(a,b) and o,(a,b).
Unless otherwise stated, we shall assume all surfaces are smooth and regular.

2.2 Example: When f : U C R? — R is a C? function, its graph z = f(z,y) is the image
of the local parametrized surface o : U — R? given by (z,y, 2) = o(u,v) = (u,v, f(u,v)).
The derivative matrix is

1 0

Do = 0 1
or  of

ou ov

which has rank 2, and the tangent plane at (a, b) is the plane through (a, b, f(a, b)) parallel

to (1,0, %(a, b)) and (0, 1, %(a,b)).

2.3 Example: The paraboloid z = 2?+y? in R3 can be given parametrically in Cartesian
coordinates by o(u,v) = (u, v, u2+02) or it can be given parametrically in polar coordinates
by p(r,0) = ('r cosf,rsinf, r2). Using polar coordinates, the derivative matrix is

T, Xp cosf —rsinf
Dp=1|vy- yo | = | sinf rcosé
Zr 29 2r 0

which has rank 2 except when r = 0, so this parametrization is regular when r # 0.

2.4 Example: The top half of the sphere 22 + 3% + 22 = 72 of radius » > 0 is the
graph of the function f : U C R? — R given by f(z,y) = /72 — 22 — y2 where U is
the open disc 2 + y? < 72, so it can be given parametrically in Cartesian coordinates
by o(u,v) = (u, v, V12 —u? — 112). The entire sphere can be given parametrically using
spherical coordinates by

p(¢,0) = (rsingcosf, rsingsind, rcos ).
The derivative matrix is

rcos ¢ cosf —rsin ¢sin
Dp = | rcos¢sinf rsin¢cosf
—rsin¢ 0

which has rank 2 except when sin ¢ = 0, that is when ¢ = kx for some k € Z.
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2.5 Example: The torus obtained by revolving the circle (z — R)? + 22 = 72 (in the
xz-plane) about the z-axis, where 0 < r < R, can be given parametrically by
o(0,¢9) = R (cosf,sinf,0) 4+ rcos ¢ (cosf,sind,0) + rsin¢ (0,0, 1)
= ((R+rcos¢)cost, (R+rcosg)sind, rsing).
Verify, as an exercise, that the derivative matrix has rank 2 everywhere, so the surface is

regular everywhere.

2.6 Definition: A Riemannian metric on an open set U C R” is a smooth map
g : U — M, «n(R) such that g(p) is a positive-definite symmetric matrix for every p € U,
so that for each p € U, g(p) defines an inner-product on R™ given by

I(4, B) = (4, B) = BTg(p) A.

Let 0 : U C R2 — R™ be a smooth regular surface in R". The first fundamental form
of o is the smooth map g = g, : U C R? — M, 5(R) given by

— —D TD — Oyu*0y Oy*0y )
9= 9 ? ’ ( Oy*0y Oy*0y
For each p € U, g = g(p) = Do(p)T Do(p) is a positive-definite symmetric matrix, so g is
a Riemannian metric on U. It is traditional to write

E =011 = 0y*0y , F =012 =021 =040y , G=0y+0y.
2.7 Example: (The length of a curve on a surface) Let o : U C R? — R" be a regular
surface in R™ and let v : [a, 0] CR — U C R? be a regular curve which takes values in U.

Then the composite ¥(t) = o(a(t)) is a regular curve on the surface in R”. Let us find a
formula for the length of v on [a,b]. We have 7/(t) = Do (a(t))a’(t) and so

|’y'|2 = (Dod')+ (Do) = (Do - o/)T(Daa') = () g o

(la,8]) /h )| dt = /¢ ) dt = /Ha )| dt

where we are using the Riemannian inner product (X,Y) = Y7 gX and its associated norm
| X || = v/ (X, X). We also consider this to be the length of the curve « on [a,b] in U with
respect to the Riemann metric g.

hence

2.8 Example: (The angle between curves on a surface) Let o : U C R? — R" be a
regular surface in R” and let p € U. Let a,6: I CR — U C R? be two regular curves
with 0 € I and «(0) = 8(0) = p. Then 7(t) = o((t)) and §(¢) = o(B(t)) are two regular
curves on the surface in R™ which intersect at t = 0. Let us calculate the angle between
the two curves v at 6 at t = 0 (that is the angle between +/ (O) and &'(0)). We have

v'(t) = Do (a(t))/(t) so v/ (0) = Do (p)a’(0) and similarly 6'(0) = Do (p)5'(0), and so
7'(0)+6'(0) = (Do (p)e’(0)) - (Da(p)B'(0)) = £'(0)"g(p) &/ (0).

Similarly, we have ‘7’(0)’2 = a/(0)Tg(p) &/ (0) and ‘5’(0)} = B'(0)Tg(p) B8'(0), and so the

angle 0 € [0, w| between ~/(0) and §’(0) is given by

7'(0)-0"(0) B'(0)"g(p) o’(0) _ ((0),5°(0))

1V (0)]]6'(0)] /@' (0)Tg(p) a’(0) /B (0)Tg(p) B7(0) Il (O)[[[|5(0)]

This is also the angle between o’(0) and 8’(0) in R?, with respect to the Riemannian
metric g.

cosf =




2.9 Remark: We shall define the area of a portion of a regular surface, but before stating
the definition let us provide some informal motivation for the definition. Recall that when
p,u,v € R™ the area of the parallelogram with vertices at p, p+u, p+v and p+u+v is
equal to A = /det(PTP) where P = (u,v) € M, x2(R). Indeed the angle 6 between u and
v is given by 6 = cos™! o7 and the parallelogram has base |u| and height [v[sin 6 so its
area is A = |u| |v|sin @ and hence

A% = [uf?|o]2(1 — cos? §) = \uy2yv|2(1 y L )2) — Jul2o]2 = (u-v)?

ul o]
= det (uu u-v) = det(PTP).

Uu*v VU

Given a closed Jordan region R C U (that is a region with a well defined area), we
can approximate its area (arbitrarily closely) by covering it with finitely many closed
rectangles which are each contained in U. If the k*® rectangle has vertices at p = (u,v),
(utdu,v), (u, v+dv) and (u+du, v+dv) (where du and dv are small positive real numbers)
then the image o(Ry) can be approximated by the parallelogram in R™ with vertices
at o(p), o(p) + ou(p)du, o(p) + o,(p)dv and o(p) + o, (p)du + o,(p)dv whose area is
dAy = \/det(PTP) where P = (o,(p)du, o, (p)dv), that is

dAy, = \/det (Uu.a“ dudu oy dudv) = y/det g(p) dudv .

ouopdudv o,e0,dvdv

The total area of o(R) is approximated by the sum of the areas of these parallelograms,
which is a Riemann sum for the function /det g, and the limit of these Riemann sums is

//R /det g(u, o) du do

2.10 Definition: Let 0 : U C R2 — R" be a regular surface in R™ and let R C U be a
closed Jordan region (for example, a region of the form a <u <b, f(u)<v<g(u) where f
and g are continuous). We write dA = y/det g(u,v) dudv and we define the area of o on
R to be

A,(R) = // dA = // Vvdet g(u,v) dudv.
R R
More generally, for a continuous function f : U C R? — R we define

J[ raa= [[ s Vaetgtum auan

2.11 Definition: Let U,V C R” be open sets. A regular change of coordinates
from U to V is a bijective map ¢ : U C R* — V C R™ such that ¢ and its inverse
W = ¢! : V — U are both C!. Note that by the Chain Rule, for all p € U we have
Dy(¢(p))Do(p) = I (so the derivative matrices of ¢ and 1 are invertible at all points).
We say ¢ is positive, or ¢ preserves orientation, when det D¢(p) > 0 for all p € U.
Unless otherwise stated, we assume that any change of coordinates is smooth and regular.



2.12 Theorem: (Change of Coordinates) Let U,V C R? be open sets and let ¢ : U — V
be a smooth regular change of coordinates from U to V with inverse 1) = ¢=':V — U.
Let o : U C R? — R"™ be a smooth regular surface in R"® and let p: V C R? — R? be the
smooth regular surface given by p(q) = o(¢(q)). For points p € U and q = ¢(p) € V and
for Jordan regions R C U and @ = ¢(R) C V we have

(1) 9,(q) = DY(q)" 9o (p) D¥(q) and
(2) A,(Q) = Ay (R).

Proof: To prove Part 1, note that since p(q) = o(¢(q)) we have Dp = Do D and so
9, = Dp"Dp = (Do D))" (Do DY) = DY Do™ Do Dy = DyT g, Di.
Let us prove Part 2. Since g, = DyT g, D1, we have det g, = (det Dt)? det g, and so,

since det Dy # 0, we have
Vdet g, = |det D[ \/det g,

If RCU and Q = ¢(R) C V are Jordan regions then, writing (u,v) = 9(s,t), the change
of variables formula for integration gives

AU(R)://R \/Wdudv://cg Vdet g (¢ (s, 1)) |det Dy (s, t)| ds dt
://Q\/detgp(s,t)dsdt:Ap(Q).

This proves Part 2 and confirms our intuitive expectation that the area of a surface does
not change when we use a change of coordinates to obtain an alternate parametrization.




Surfaces in R3

2.13 Definition: Let 0 : U C R? — R3 be a smooth regular surface in R3. Since
Do = (0y,0,) has rank 2, it follows that o, X0, # 0. For p € U, since the tangent plane
to o at p is parallel to o, (p) and o,(p), it has normal vector o, x o,. We define the unit

normal vector to o at p to be n = n(p) where
Oy X Oy
n=n,= ——-.
|owx o]

Notice that n : U C R? — S? C R? where S? is the unit sphere S? = {x cR3 | x| = 1},
and this map is called the Gauss map of o on U.

Given a point p € U and a nonzero vector 0 # A € R?, we define the (directional)
curvature k(p)(A) = k,(p)(A) of o in the direction of A at p as follows: choose any
smooth regular curve o : I C R — U C R? with 0 € I and a(0) = p and &/(0) = A,
let v(t) = o(a(t)) (so « is a curve on the surface in R3), reparametrize by arcclength by

letting d(s) = ~y(t(s)) where s(t fo 17/ (r)| dr, let N(s) = n(a(t(s))), and then define
ka(P)(A) = 6"(0)-N(0).

The following theorem shows that this definition does not depend on the choice of a. It
only depends on ¢ and p and the direction of the vector A.
2.14 Theorem: (Directional Curvature) Let o : U C R? — R3 be a smooth regular
surface in R3. Forp € U and 0 # A € R?, the curvature of o in the direction of A at p is
ATh(p) A
ko (P)(A) = 77
9(p)
where g = Do” Do and
hZ—D’nTDO'Z—(Uu.nu Uv'nu) _ (Uuu°n qu'n).
Oyu*Ny  Oy*Ty Oy OypT

Proof: Let «, v, 4, 8 and N be as in the definition. Since ¢§ is a curve on the surface
so ¢’ is tangent to the surface, we expect, intuitively, that §’« N = 0. Let us verify this
algebraically. Since

— _ ou(B(s)) x4 (B(s))
N(s) =n(B(s)) = low(B(s)) X 00 (B(s))]”

it follows that N(s).0,(B(s)) = N(s)-av(ﬁ( )) = 0 and so N(s)7
3(s) = (t(s)) = o(a(t(s))), we have &'(s) = Do (a(t(s))) o/ ((s)) (s
§'(s)+N(s) = N(s)"6'(s) = N(s) TDU(Oé ) o (t(5)) ' (s) =
as we expected. Differentiating gives 0 = <L (§(s)-N(s)) = §"(s)+ N(s) + 5'( )+ N'(s), so
k(p A)—5"()N() —0'(0)+ N'(0).

Since v(t) = o(a(t)) we have v/(t) = Do(a(t)) /' (t). Since s(t fo |7/ ()| dr we have
s'(t) = |7/ (t)| hence t'(s) = W(tl(s))' Since §(s) = v(t(s)) we have

V() _ Do(a(i(s))) «/(K(s))
T )] Do (al(s) o (s)]

Do (B(s)) = 0. Since
) and so
(s

Since N(s) = n(a(t(s))) we have

N'(s) = Dn(a(t(s))) &/ (t(s)) t'(s) =



Thus we have
Doo’  Dnd (YT DnT Do of

5/.N/ p— . =
|Doo'| |Doo/| (a/)TDoT Do o

so, in particular,
_ATDn"(p)Do(p) A _ ATh(p) A
ATDo(p)TDo(p) A~ ATg(p) A

ko (p)(A) = —0(0)-N(0) =

where g = Do” Do and h = —Dn” Do.

Finally, note that since o,+n = 0 and o,+n = 0, we can differentiate with respect
to u and v to get oyun + oyng = 0, oypen +oyen, =0, opyen + o,en, = 0 and
Oypp*M + 0y o1y, = 0 and so

he —DnT Do — — [ Owtu v\ _ (Ouurnt Oupen
Ou*Ny Oy Ny Ounr*N Oyt )
2.15 Definition: For a smooth regular surface ¢ : U C R? — R3 in R3, the second
fundamental form of o is the smooth map h = h, : U C R? — Msy2(R) given by

h = —DTLTDO': - (Uu'nu Uv'nu) _ (Uuu'n qu'n) .

Oy Ny Oy Ty Oy OypN

For each p € U, h(p) = Dn(p)T Do(p) is a symmetric matrix so it defines a symmetric
bilinear form on R? given by II(A, B) = BT h(p) A. 1t is traditional to write

L=hy1, M=hig=nhy1, N=hos.

2.16 Theorem: (Change of Coordinates) Let U,V C R? be open, and let ¢ : U — V be a
smooth regular positive change of coordinates. Let o : U C R? — R3 be a smooth regular
surface, and let p : V. C R? — R3 be the corresponding surface given by p(q) = o(1(q)).
Then for points p € U and q = ¢(p) € V and nonzero vectors 0 # A € R? and B = D¢(p)A
we have

(1) np(a) = no(p),

(2) ho(q) = Dp(q)"ho(p) DY(q), and

(3) kp(a)(B) = ko (p)(A).

Proof: Write p = (u,v) and q = (s,t) = ¢(u,v). Then p(s,t) = 0(¢(s,t)) so we have
Ps = Oy Us + 0, Vs and p; = 0y Ur + 0, V¢, hence

Ps X pr = (O s + 0y V) X (04 U + 04 V) = (04 X 0y) (usvy — ugvs) = det D (o X 0),
that is ps(q) X pt(q) = det ¥(q)(ow(p) X 0y(p)). Since det Dip(p) > 0 for all p, we have

n(q) = p(p)xp(p) _ det DY(q)(ou(p) X 0w(p)) _ oulp)xou(p)
g lp(p) xp(p)|  |det DY(q)(ou(p) xou(p))]  |ou(p)xow(p)l
This proves Part 1.

Since p(q) = o(¢(q)) so that Dp(q) = Do(p)D(q), and n,(q) = ns(1(q)) so that
Dn,(q) = Dng(p)Dy(q), we have

hy(q) = Dn,(q)" Dp(q) = Dp(q)" Dny(p)" Do(p)Dip(q) = D(q)" he(p)Dib(q).

This proves Part 2.

To prove Part 3, let o : [ € R — U C R? be a regular C? curve with a(0) = p and
a'(0) = A, and let 8: I CR — V C R? be the corresponding curve §(t) = ¢(a(t)), and
note that 5(0) = ¢(a(0)) = ¢(p) = q. Since S(t) = ¢(a(t)) we have §'(t) = Do(a(t)) o (t)
so that 8'(0) = D¢(p) A = B. Let v,(t) = o(a(t)), let d5(s) = v,(t(s)) where we have

= ng(p).
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s(t) = f |7/ ()| dr, and let N, (s )—na( (t(s)) so that k,(p)(A) = §,”(0)+ N,(0). Also, let
30() = 0] = o0(1) = 30(0), 356) = (1) = 5o, e et Ny (5) = my(310(5))
so that k,(q)(B) = 4,"(0)+N,(0). Slnce ¢ and v are inverses we have
(1) = p(B(1) = p(d(a(t)) = o(¥(d(a(t)))) = olalt)) = 1o(t)
for all ¢, hence 0,(s) = v,(t(s)) = V. (t(s)) = 6,(s) for all s, so &, (0) = 4, (0). Also, we
have N,(0) = n,(5(0)) = np(q) ne(p) = ne(a(0)) = N,(0), and so
kp(@)(B) = 6,7 (0)+ N (0) = 657 (0) + Ny (0) = ko (p) (A).

2.17 Remark: When o : U C R2 — R? is a smooth regular surface, for each p € U the
directional curvature k,(p) is a smooth function k,(p) : R? \ {0} — R with the property
that k,(p)(tA) = k,(p)(A) for all 0 # ¢ € R and all 0 # A € R%. Thus we can consider
ks (p) to be a function k, (p) : P!(R) — R where P! (R) is the real projective space, which
is the set of 1-dimensional subspaces of R2.

2.18 Theorem: (Principal Curvature Directions) Let o : U C R? — R3 be a smooth
regular surface in R3, and let p € U.

(1) The directional curvature k,(p)(A) attains its maximum and minimum values in two
directions which are orthogonal with respect to the inner product (X,Y) =Yg, (p) X.
(2) The maximum and minimum values ki and ky of k,(p)(A) for 0 # A € R? are the
eigenvalues of g, (p) ~*he(p), and the directions Ay, Ao € R? in which they occur are the
corresponding eigenvectors.

(3) The maximum and minimum values ki and ke are roots of the quadratic polynomial

0= f(k) = det (ho(p) — k go(p))

and the directions A1 = (z1,y1) and As = (x2,y2) in which they occur are roots of the

quadratic form
0= f(m,y) = det (hg(p)(i)yga(p)(iz»'

Proof: Let p = (a,b). We begin by changing coordinates so that, in the new coordinates,
at the point ¢ corresponding to p, the inner product becomes the standard dot product.
We do this as follows: Apply the Gram-Schmidt procedure to the standard basis for R?
to obtain a positive ordered basis {4, B} for R? which is orthonormal with respect to the
inner product (X,Y) = YZg(p) X. Let P = (A, B) € Msy>(R) and define ¢ : R? — R? by

o= (3)+2(;)

Note that 1(0) = p and D (s,t) = P for all s,t. Let V = ¢(U) where ¢ = ¢p~!, and let
p:V CR? — R3 be the corresponding surface given by p(s,t) = J(¢(s, t)) Then at ¢ =0

ATg, A AT¢.B
_ T _ pT _ o o _
gp_D¢ gaqu_P JP_(BTGA BTUB>_I’

so in the new coordinates, at the point ¢ = ¢(p) = 0, the inner product is the standard
inner product. We have

A

B'h,B .
= —+‘—==B"h,B

- BT4,B

where B = D¢(p)A = P~'A and B is the unit vector %
verify using the fact that symmetric matrices are orthogonally diagonalizable) that h, has

real eigenvalues ki, ks € R with k; > ko, with orthogonal unit eigenvectors By, By € R2,

Recall from linear algebra (or
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and the maximum and minimum values of the quadratic form given by Q(X) = X7h,X,
over all unit vectors X € R?, are Q(B1) = ki and Q(B3) = ks. Note that the unit
vectors By and Bs are orthogonal with respect to the standard inner product, and the
corresponding vectors Ay = Dy(0)B; = PBy and As = Dy(0)By = PB; are orthogonal
unit vectors with respect to the inner product given by g, (p). This proves Part 1.
For k € R and 0 # B € R?, recall that k is an eigenvalue of h, with eigenvector B if
and only if (h, — kI)B = 0. For A = PB, we have
(hy —kI)B=0 <= (PTheP —kP"g,P)B=0 < P"(hy —kg,)PB=0
— PT(h, —kgs)A=0 <= (hy —kgs)A=0
> g5 (ho —kgs)A=0 < (9, 'hoe —kI)A=0.
Thus k; and ks are the eigenvalues of h, with eigenvecors B, and B if and only if £; and
ko are eigenvalues of g, 'h, with eigenvectors A; and A,. This proves Part 2.
For k € R, k is an eigenvalue of h, if and only if there exists 0 # A € R? such that
(he — kgs)A = 0, if and only if det(h, — kgs) = 0. This gives the first formula in Part 3.
For 0 # A € R? we have A = PB where B is an eigenvector of h,, if and only if there exists
k € R such that 0 = (h, — kg,)A = (hoA,g,A) () if and only if det (ho 4, g, A) = 0.
This gives the second formula in Part 3.

2.19 Definition: For a smooth regular surface o : U C R? — R3 in R?, the maximum
and minimum values k1 and ks of the directional curvature k,(p)(A) where 0 # A € R2,
are called the principal curvatures of ¢ at p, and the directions 0 # A;, A, € R? in
which the maximum and minimum values occur are called the principal directions for
o at p. The mean curvature H(p) = H,(p) of o at p and the Gaussian curvature
K(p) = K,(p) of o at p are define by

H(p) = Ho(p) = 3(k1 + k2),

K(p) = Ko(p) = kiks.
By Part 2 of the above theorem, k; and ky are the roots of the characteristic polynomial
of g7'h, so we have

(x — k1) (z — ko) = det(g*h — xI) = 2® — trace(g~*h) z + det(g~'h).
Comparing coefficients gives
H(p) = 5(k1 + k) = 5 trace(g(p) " h(p)),

K(p) = k1ko = det (g(p)_lh(p)) — j:i Zéi; ‘




2.20 Theorem: (The Gauss-Weingarten Equations) For a smooth regular surface o in R3,

we have ) )
I'm Iy hn

O-U/U/
Tuv I, Ty hio Ou
Oy = 1—%2 F%2 h22 Oy
N bbb 0 n
Ty by b3 0
where

(b b3\

b_(b% b2 =—g "h,and

I — (Fh iy F%2) _ L < (911)u (911)v 2(g12)0— (922)u> _

r:, Tl I3 2 2(g12)u—(911)v  (922)u (922)v

Proof: First we note that since {0y, 0,,n} is a basis for R3, such a 5x 3 matrix exists, and
we just need to determine the entries. We do not yet know the entries in the final column,
so let us let us say the final column is (a1, as,---,a5)’. We shall calculate the entries on
the first and last rows (the other calculations are similar). To find the entries on the first
row, we shall need a formula for oy, 0, and oy, +0, in terms of the entries of g. Since
g11 = 0y 0y, we can differentiate with respect to u and v to get (g11)y = 204y +0, and
(g11)v = 204y * 0. Since g1o = 0y * 0y, We have (g12)y = Oy * Ty + 0y * 0yy. Thus we obtain
the formulas
Ouu*Ou = %(gll)u , Ouu Oy = (G12)u — %(911)u-

The first row gives the equation Fho’u + I‘%l 0y +a1n = oy,. Take the dot product with n
on both sides to get a1 = oy +n = h11. Take the dot product with o, and with o, to get

F%lgll + F%lQlZ =Oyu*0y = %(gll)u
Tig12 + 131922 = 0w+ 00 = (G12)u — %(922)u-

1
These two equations can be written as g <£32) = %<(2(g12g);1—)1(b911) ), and so we obtain
11 v

(11:%) A (2(912()311—)?911)11) '

Now consider the final row. By differentiating 1 = n+n with respect to v we see that n,, is
orthogonal to n, and hence n,, is in the span of o, and o, so a5 = 0 and the final row gives
the equation b%au + b%av = n,. Taking the dotproduct on both sides with ¢, and with o,

gives the equations bigy; + b3g12 = —hi2, and o, gives bigis + b3gas = —hao. These can
1
be written as g (Zé) = —(Z;i), and so we obtain

b3\ _ 1 hw2
()= ()

2.21 Definition: For a smooth regular surface o : U C R? — R3, the functions Fil which
appear in the above theorem are called the Christoffel symbols of ¢ on U.



2.22 Theorem: (The Gauss-Codazzi Equations) Let o : U C R? — R? be a smooth
regular surface in R3. Then the entries of g and h satisfy the Codazzi equations

(1) (h11)y = (h12)u = h1aTy + h1a(T3y — Tqy) — hool'F
(2) (h12)y = (ha2)u = h11T55 4 h12(T5y — T'iy) — hoal'gy
and the Gauss equations
(1) gnK = (T71)o — (TT)u + ho + Ty — Thl'yy — T
(2) g12K = (T]2)u (Fu) + F121112 F2211%1
= (F%Z) (ng) F%z F%QF%
(3) 922K = (Thy)u — (T'g)w + F 130 + T1oT5, — T, — IopI'3,

Proof: Let us use the fact that 0,4, = 0uww. Using the Gauss-Weingarten equations, we

have

(1
(Fll)vau + Fllauv + (Fll)vav + F%lo'vv + (hll)vn + hlln’va
Ouvu = (F%2O-u + F]_QO-U + thn)

= (T12)u0u + Tip0uu + T12)uow 4+ Tigoue + (hi2)an + hian,.

O-’I.L’U/U

In the above expressions for g, and g, use the Gauss-Weingarten equations again to
write Oy, Ouvs Ovw, Ny and n, as linear combinations of o, o, and n, then expand and
equate coefficients. Equating the coefficient of n gives

Ty hao 4+ T has + (ha1)e = Tighat 4+ Tiahis + (hi2)u
hence

(h11)o — (h12)y = Dishi1 + (T35 — Tiq)hi2 — I hoo,
which is the first Codazzi equation. Equating the coefficient of o, gives

(T11)w +T1iT s + T3 T9g + h11by = (Tig)u + Tial'1y + Tial1y + hiobi

so we have

hi1by — hiobt = (T1p)u — (T11)w + Tial1o — T TS
Notice that hqi1b3 — h12bl is equal to the (1,2)-entry of the matrix

bl bl haa  —hia
<b§ bé) (h21 By ) = det hbh™" = det h(—g~"h)h™" = —dethg™",

that is hnb% - hlgb% = —det h(g_ )1 2= 012 322’;, and so we have

g12 988 = (T},), — (T'1))0 + T3, — I3, T1,,

det g

which is one of the second Gauss equations. Equating the coefficient of o, and performing
a similar calculation gives

g1 332 (T31)o — (T3y)u + T35, + T} T3, —TTE —T1,T,,

which is the first Gauss equation.

Similar calculations, using the fact that oy, = 0yuv, produce similar formulas, but
with v and v interchanged, and with the indices 1 and 2 interchanged. In this way we
obtain the second Codazzi equation, and the other Gauss equations.
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2.23 Theorem: (Gauss’ Theorema Egregium) For a smooth regular surface in R3, the

Gausian curvature K = % can be expressed only in terms of g (without using h).

Proof: We can express K in terms of g using either the first and second, or the second
and third, Gauss equations. For example, using the first, and one of the second Gauss
equations, we have

(det 9) K = g11(g22K) — g12(912K)
=91 ((F%2)u — (Tl)o + T11 5y + T1ol5, — ToT )y — F%2F%2>

— g12 ((Fiz)u — (T1y)y + T, — F%ZF%)'
Note that the Christoffel symbols are all expressed in terms of g.

2.24 Theorem: (The Fundamental Theorem for Surfaces in R3, or the Bonnet Theorem)
Given a connected open set U C R? with 0 € U, given a point p € R? and orthogonal unit
vectors A, B € R3, and given smooth functions gi1, g12, 922, h11,h12,has : U C R? = R
with g1 > 0 and g11922 — gfz > 0 such that all of the Gauss-Codazi equations hold for
the given functions, there exists a unique smooth surface o : U C R? — R? which has the
given functions as the entries of its first and second fundamental forms such that o(0) = p,

0,(0) € Span{A} and 0,(0) € Span{ A, B}.

Proof: We shall not supply the proof, but we make some remarks. The idea of the proof
is similar to the proof of the fundamental theorem for curves in R3. In the proof of
the fundamental theorem for curves, we used the fact that there exists a solution to the
system of ordinary differential equations which is obtained by requiring that the Frenet-
Seret formulas hold. To prove Bennet’s theorem, we obtain a system a partial differential
equations by requiring that the Gauss-Weingarten equations hold. But such a system of
partial differential equations does not always admit a solution. In order for a solution to
exist, the coefficients of the partial differential equations must satisfy certain compatibility
requirements. In the case of the system which comes from the Gauss-Weingarten equations,
it so happens that the compatibility requirements are satisfied when the Gauss-Codazzi
equations hold.

2.25 Remark: The fundamental theorem for surfaces tells us that, up to isometry, a
surface is determined from its first and second fundamental forms g and h. So all geometric
properties of a surface should be expressible in terms of g and h. We say that a geometric
property is intrinsic when it can be expressed only in term of g which, we recall is a
Riemannian metric (that is an inner product at each point), otherwise we say the property
is extrinsic. Properties such as the length of a curve on a surface, or the angle between
two curves on a surface, or the area of a portion of the surface are intrinsic. Gauss’
Theorema Egregium (which is Latin for Gauss’ Remarkable Theorem) states that the
Gaussian curvature K is an intrinsic property. By contrast, the mean curvature H is
extrinsic.

2.26 Example: When a flat rectangle is bent to form a cylinder of radius r, you can
verify that the Riemannian metric at each point does not change so the intrinsic geometry
does not change. For the rectangle, the maximum and minimum directional curvatures at
each point are k1 = k9 = 0 so that K = k1ko = 0 and H = %(k:l + ko) = 0, and for the
cylinder the maximum and minimum curvatures at each point are k; = % and ko = 0 so
that K =0 and H = 5-.
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