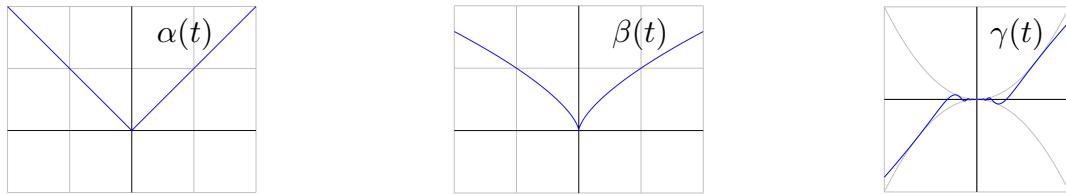


Chapter 1. Curves

Curves in \mathbb{R}^n

1.1 Definition: A (parametrized) **curve** in \mathbb{R}^n is a continuous map $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^n$ where I is a nonempty interval. We can write $\alpha(t) = (x_1(t), x_2(t), \dots, x_n(t))$ where each $x_k : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is continuous. When $a \in I$ and $\alpha'(a) = (x_1'(a), \dots, x_n'(a))$ exists, $\alpha'(a)$ is called the **tangent vector** to α at $t = a$. We say that α is \mathcal{C}^k when the k^{th} order derivative of α exists and is continuous on I , we say that α is **smooth** or \mathcal{C}^∞ when α is \mathcal{C}^k for all $k \in \mathbb{Z}^+$, and we say that α is **regular** when α is \mathcal{C}^1 with $\alpha'(t) \neq 0$ for all $t \in I$. Unless otherwise stated, we shall always assume curves are smooth and regular.

1.2 Example: The curve $\alpha : \mathbb{R} \rightarrow \mathbb{R}^2$ given by $\alpha(t) = (t, |t|)$ is not regular because $\alpha'(0)$ does not exist. The curve $\beta : \mathbb{R} \rightarrow \mathbb{R}^2$ given by $\beta(t) = (t^3, t^2)$ is not regular because $\beta'(0) = 0$. The curve $\gamma : \mathbb{R} \rightarrow \mathbb{R}^2$ given by $\gamma(0) = (0, 0)$ and $\gamma(t) = (t, t^2 \sin \frac{1}{t})$ for $t \neq 0$ is differentiable but not regular because γ' is not continuous at $t = 0$.

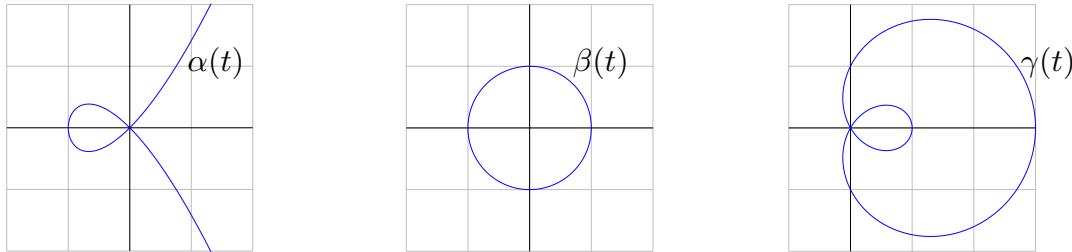


1.3 Theorem: Every regular curve in \mathbb{R}^n is locally injective.

Proof: Let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^n$ be a regular curve, write $\alpha(t) = (x_1(t), \dots, x_n(t))$, and let $a \in I$. Since $\alpha'(a) \neq 0$ we have $x_k'(a) \neq 0$ for some index k , say $x_k'(a) > 0$ (the case that $x_k'(a) < 0$ is similar). Since α' is continuous, x_k' is continuous. Since x_k' is continuous and $x_k'(a) > 0$ we can choose $\delta > 0$ so that $|t - a| < \delta \implies x_k'(t) > 0$. Then x_k is increasing, hence injective, in the interval $(a - \delta, a + \delta) \cap I$, and so α is injective in the same interval.

1.4 Example: The curves $\alpha, \beta, \gamma : \mathbb{R} \rightarrow \mathbb{R}^2$ from Example 1.2 are not regular, but they are all injective, so a curve does not necessarily need to be regular in order to be injective.

1.5 Example: The alpha curve $\alpha : \mathbb{R} \rightarrow \mathbb{R}^2$ which is given by $\alpha(t) = (t^2 - 1, t(t^2 - 1))$, the circle $\beta : \mathbb{R} \rightarrow \mathbb{R}^2$ which is given by $\beta(t) = (\cos t, \sin t)$, and the limacon $\gamma : \mathbb{R} \rightarrow \mathbb{R}^2$ which is given by $\gamma(t) = ((1 + 2 \cos t) \cos t, (1 + 2 \cos t) \sin t)$, are all regular, so they are all locally injective, but they are not (globally) injective (the alpha curve crosses itself with $\alpha(1) = \alpha(-1) = (0, 0)$, the circle is periodic with $\beta(t + 2\pi k) = \beta(t)$ for all $k \in \mathbb{Z}$, and the limacon is periodic and crosses itself).



1.6 Example: The curve $\alpha : \mathbb{R} \rightarrow \mathbb{R}^2$ given by $\alpha(0) = 0$ and $\alpha(t) = (t^2, t^2 \sin \frac{1}{t})$ for $t \neq 0$ is differentiable, but not regular since $\alpha'(0) = 0$, and (as you can verify) it is not locally injective at $t = 0$.

1.7 Definition: For a curve $\alpha : [a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}^n$, the **length** of α on $[a, b]$ is

$$L = L_\alpha([a, b]) = \sup \left\{ \sum_{j=1}^p |\alpha(t_j) - \alpha(t_{j-1})| \mid a = t_0 < t_1 < t_2 < \cdots < t_p = b \right\}$$

(which can be infinite) and we say that α is **rectifiable** on $[a, b]$ when $L_\alpha([a, b])$ is finite.

1.8 Theorem: Let $\alpha : [a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}^n$ be a regular curve. Then α is rectifiable with length

$$L = L_\alpha([a, b]) = \int_a^b |\alpha'(t)| dt.$$

Proof: For a partition $P = (t_0, t_1, \dots, t_p)$, where $a = t_0 < t_1 < \cdots < t_p = b$, let us write

$$L(\alpha, P) = \sum_{j=1}^p |\alpha(t_j) - \alpha(t_{j-1})| \quad \text{and} \quad S(\alpha, P) = \sum_{j=1}^p |\alpha'(t_j)|(t_j - t_{j-1})$$

so $L(\alpha, P)$ is the sum which approximates Length(α) and $S(\alpha, P)$ is the Riemann sum (using right endpoints) which approximates the integral $\int_a^b |\alpha'(t)| dt$. First note that

$$\begin{aligned} L(\alpha, P) &= \sum_{j=1}^p |\alpha(t_j) - \alpha(t_{j-1})| \leq \sum_{j=1}^p \sum_{k=1}^n |x_k(t_j) - x_k(t_{j-1})| = \sum_{j=1}^n \sum_{k=1}^p |x_k'(c_{j,k})(t_j - t_{j-1})| \\ &\leq \sum_{j=1}^n \sum_{k=1}^p M(t_j - t_{j-1}) = \sum_{j=1}^n M(b - a) = nM(b - a) \end{aligned}$$

where we used the Mean Value Theorem to choose points $c_{j,k}$ between t_{j-1} and t_j such that $(x_k(t_j) - x_k(t_{j-1})) = x_k'(c_{j,k})(t_j - t_{j-1})$ and we let $M = \max \{ |x_k'(t)| \mid 1 \leq k \leq n, t \in [a, b] \}$. This shows that $L = L_\alpha([a, b])$ is finite.

Note that if $P = (t_0, t_1, \dots, t_p)$ is a partition of $[a, b]$, and Q is a partition which is obtained by adding one more point, say $Q = (t_0, t_1, \dots, t_{j-1}, s, t_j, \dots, t_p)$, then we have $L(\alpha, P) \leq L(\alpha, Q)$ because $|\alpha(t_j) - \alpha(t_{j-1})| \leq |\alpha(t_j) - \alpha(s)| + |\alpha(s) - \alpha(t_{j-1})|$. It follows (by induction) that when Q is any partition with $P \subseteq Q$ we have

$$L(\alpha, P) \leq L(\alpha, Q) \leq L.$$

Also note that for any partition P , with $c_{j,k}$ chosen as above, we have

$$\begin{aligned} |L(\alpha, P) - S(\alpha, P)| &= \left| \sum_{j=1}^p |\alpha(t_j) - \alpha(t_{j-1})| - \sum_{j=1}^p |\alpha'(t_j)|(t_j - t_{j-1}) \right| \\ &= \left| \sum_{j=1}^p \left| (x_1(t_j) - x_1(t_{j-1}), \dots, x_n(t_j) - x_n(t_{j-1})) \right| - \sum_{j=1}^p |\alpha'(t_j)|(t_j - t_{j-1}) \right| \\ &= \left| \sum_{j=1}^p \left| (x_1'(c_{j,1}), \dots, x_n'(c_{j,n})) \right| (t_j - t_{j-1}) - \sum_{j=1}^p \left| (x_1'(t_j), \dots, x_n'(t_j)) \right| (t_j - t_{j-1}) \right| \\ &\leq \sum_{j=1}^p \left| \left| (x_1'(c_{j,1}), \dots, x_n'(c_{j,n})) \right| - \left| (x_1'(t_j), \dots, x_n'(t_j)) \right| \right| (t_j - t_{j-1}) \\ &\leq \sum_{j=1}^p \left| (x_1'(c_{j,1}) - x_1'(t_j), x_n'(c_{j,n}) - x_n'(t_j)) \right| (t_j - t_{j-1}) \\ &\leq \sum_{j=1}^p \sum_{k=1}^n |x_k'(c_{j,k}) - x_k'(t_j)|(t_j - t_{j-1}). \end{aligned}$$

Let $\epsilon > 0$. Since each x_k' is continuous (hence uniformly continuous) on $[a, b]$ and since $|\alpha'|$ is continuous (hence Riemann integrable) on $[a, b]$, we can choose $\delta > 0$ such that for

all $s, t \in [a, b]$ with $|s - t| < \delta$ we have $|x_k'(s) - x_k'(t)| < \frac{\epsilon}{3n(b-a)}$ for all k , and such that for every partition $P = (t_0, t_1, \dots, t_p)$ with $|P| < \delta$ we have $\left| \int_a^b |\alpha'(t)| dt - S(\alpha, P) \right| < \frac{\epsilon}{3}$ where $|P|$ is the size of the partition P , that is $|P| = \max \{t_j - t_{j-1} \mid 1 \leq j \leq p\}$. Choose a partition P_1 with $|P_1| < \delta$ and choose a partition P_2 such that $|L - L(\alpha, P_2)| < \frac{\epsilon}{3}$ then let $P = P_1 \cup P_2$. Since $P_2 \subseteq P$ we have $L(\alpha, P_2) \leq L(\alpha, P) \leq L$ so that $|L - L(\alpha, P)| \leq |L - L(\alpha, P_2)| < \frac{\epsilon}{3}$. Since $|P| \leq |P_1| < \delta$ we have $\left| \int_a^b |\alpha'(t)| dt - S(\alpha, P) \right| < \frac{\epsilon}{3}$. Also since $|P| < \delta$, for all of the points $c_{j,k}$ we have $|c_{j,k} - t_j| < \delta$ so that $|x_k'(c_{j,k}) - x_k'(t_j)| < \frac{\epsilon}{3n(b-a)}$ and hence (as shown above) $|L(\alpha, P) - S(\alpha, P)| \leq \sum_{j=1}^p \sum_{k=1}^n |x_k'(c_{j,k}) - x_k'(t_j)| (t_j - t_{j-1}) < \frac{\epsilon}{3}$. Thus

$$\begin{aligned} \left| L - \int_a^b |\alpha'(t)| dt \right| &\leq \left| L - L(\alpha, P) \right| + \left| L(\alpha, P) - S(\alpha, P) \right| + \left| S(\alpha, P) - \int_a^b |\alpha'(t)| dt \right| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned}$$

Since $\epsilon > 0$ was arbitrary, it follows that $L = \int_a^b |\alpha'(t)| dt$, as required.

1.9 Example: A curve which is differentiable, but not \mathcal{C}^1 , can have infinite length. For example, consider the curve $\alpha : [0, 1] \rightarrow \mathbb{R}^2$ given by $\alpha(t) = (x(t), y(t))$ where $x(t) = t$ $y(t) = t^2 \cos \frac{\pi}{t^2}$ when $t \neq 0$ with $y(0) = 0$. Note that $x(y)$ and $y(t)$ are both differentiable (with $y'(0) = 0$) but $y'(t)$ is not continuous at 0 (as you can check).

Let P be the partition $P = (t_0, t_1, \dots, t_p)$ with $t_0 = 0$ and $t_j = \frac{1}{\sqrt{p-j+1}}$, that is let $P = (0, \frac{1}{\sqrt{p}}, \frac{1}{\sqrt{p-1}}, \dots, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, 1)$. We have $y(t_j) = \frac{1}{p-j+1} \cos(p-j+1)\pi = \frac{(-1)^{p-j+1}}{p-j+1}$ for $1 \leq j \leq p$, and hence $|y(t_j) - y(t_{j-1})| = \left| \frac{1}{p-j+1} + \frac{1}{p-j+2} \right| \geq \frac{2}{p-j+2}$ for $2 \leq j \leq p$. Letting $\ell = p - j + 2$ we have

$$\sum_{j=1}^p |\alpha(t_j) - \alpha(t_{j-1})| \geq \sum_{j=2}^p |y(t_j) - y(t_{j-1})| \geq \sum_{j=2}^p \frac{2}{p-j+2} = \sum_{\ell=2}^p \frac{2}{\ell}.$$

Since $\sum \frac{2}{\ell}$ diverges, it follows that $L_\alpha([a, b]) = \infty$.

1.10 Definition: When $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^n$ is a continuous curve and $s : I \subseteq \mathbb{R} \rightarrow J \subseteq \mathbb{R}$ is a homeomorphism with inverse $t = t(s)$, the curve $\beta : J \subseteq \mathbb{R} \rightarrow \mathbb{R}^n$ defined by $\beta(s) = \alpha(t(s))$ is called a **reparameterisation** of α , and the map s is called a **change of parameter** (or a **change of coordinates**). When s is \mathcal{C}^1 with $s'(t) \neq 0$ for all t , we say that s is **regular**. By the Inverse Function Theorem, if $s = s(t)$ is smooth (or \mathcal{C}^k) and regular then so is its inverse $t = t(s)$. When $s'(t) > 0$ for all t we say s **preserves direction** and when $s'(t) < 0$ for all t we say s **reverses direction**. When α and s are both smooth (or \mathcal{C}^k) and regular, so is β , and for $t = t(s)$ we have $\beta'(s) = \alpha'(t(s))t'(s) = \frac{\alpha'(t)}{s'(t)}$. When $|\beta'(s)| = 1$ for all $s \in J$, we say that β is **parameterised by arclength**. Unless otherwise stated, we shall assume that any change of coordinates is smooth and regular.

1.11 Theorem: Every regular curve can be reparameterised by arclength, using a regular direction-preserving change of coordinates.

Proof: Let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^n$ be a regular curve. Let $a \in I$ and define $s(t) = \int_a^t |\alpha'(r)| dr$. Note that $s'(t) = |\alpha'(t)| > 0$ so $s(t)$ is regular and strictly increasing, and it maps the interval I to an interval J , and if α is \mathcal{C}^k then so is $s = s(t)$. By the inverse function $t = t(s)$ satisfies $t'(s) = \frac{1}{s'(t)} = \frac{1}{|\alpha'(t(s))|}$. The reparameterised curve $\beta : J \rightarrow \mathbb{R}^n$ given by $\beta(s) = \alpha(t(s))$ satisfies $\beta'(s) = \alpha'(t(s))t'(s) = \frac{\alpha'(t(s))}{|\alpha'(t(s))|}$ so that $|\beta'(s)| = 1$ for all $s \in J$.

Curves in \mathbb{R}^2

1.12 Definition: Let $\beta : J \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ be a smooth regular curve parameterised by arclength. For a vector $u = (x, y) \in \mathbb{R}^2$, write $u^\times = (-y, x)$ and note that $|u^\times| = |u|$. The **unit tangent vector** and the **unit normal vector** of β at s are the vectors

$$T(s) = T_\beta(s) = \beta'(s), \\ N(s) = N_\beta(s) = T(s)^\times.$$

Since β is parametrized by arclength, $|T(s)| = |\beta'(s)| = 1$ and $|N(s)| = |\beta'(s)^\times| = 1$ for all s . For all s we have $\beta'(s) \cdot \beta'(s) = |\beta'(s)|^2 = 1$. By differentiation both sides we obtain $\frac{d}{ds}(\beta'(s) \cdot \beta'(s)) = 0$, that is $2\beta'(s) \cdot \beta''(s) = 0$. Thus $\beta''(s)$ is orthogonal to $\beta'(s) = T(s)$, and so $\beta''(s)$ lies in the span of $T(s)^\times = N(s)$. We define the **signed curvature** of β at s to be the real number $k(s) = k_\beta(s)$ such that

$$\beta''(s) = k(s) N(s) = k_\beta(s) N_\beta(s).$$

Since $|N_\beta(s)| = 1$ we have $|\beta''(s)| = |k_\beta(s)|$. The **scalar curvature** of β at s is

$$\kappa(s) = \kappa_\beta(s) = |k(s)| = |\beta''(s)|.$$

When $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ is a smooth regular curve we first reparametrize by arclength by choosing $a \in I$ and letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$, and then we define $T(t) = T_\alpha(t) = T_\beta(s(t))$, $N(t) = N_\alpha(t) = N_\beta(s(t))$, $k(t) = k_\alpha(t) = k_\beta(s(t))$ and $\kappa(t) = \kappa_\alpha(t) = \kappa_\beta(s(t))$, and we call these the unit tangent vector, the unit normal vector, the signed curvature, and the scalar curvature, of α at t . The following theorem shows that these are well-defined, that is they do not depend on the choice of $a \in I$.

1.13 Theorem: For a smooth regular curve $\alpha = \alpha(t)$ we have

$$T = \frac{\alpha'}{|\alpha'|}, \quad N = \left(\frac{\alpha'}{|\alpha'|} \right)^\times \\ k = \frac{\det_2(\alpha', \alpha'')}{|\alpha'|^3} = \frac{(\alpha' \times \alpha'') \cdot e_3}{|\alpha'|^3} = \frac{\det_3(\alpha', \alpha'', e_3)}{|\alpha'|^3} \\ \kappa = \frac{|\det_2(\alpha', \alpha'')|}{|\alpha'|^3} = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}$$

where $\det_2(\alpha', \alpha'')$ is the determinant of the 2×2 matrix with columns $\alpha', \alpha'' \in \mathbb{R}^2$, and where we identify $\alpha', \alpha'' \in \mathbb{R}^2$ with $\begin{pmatrix} \alpha' \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha'' \\ 0 \end{pmatrix} \in \mathbb{R}^3$ so that $\alpha' \times \alpha''$ is the cross product of two vectors $\begin{pmatrix} \alpha' \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha'' \\ 0 \end{pmatrix} \in \mathbb{R}^3$ and $\det_3(\alpha', \alpha'', e_3)$ is the determinant of the 3×3 matrix whose first two columns are $\begin{pmatrix} \alpha' \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha'' \\ 0 \end{pmatrix} \in \mathbb{R}^3$ and whose last column is the 3rd standard basis vector e_3 .

Proof: First verify (easily) that when we identify $u, v \in \mathbb{R}^2$ with $\begin{pmatrix} u \\ 0 \end{pmatrix}, \begin{pmatrix} v \\ 0 \end{pmatrix} \in \mathbb{R}^3$ we have

$$u^\times \cdot v = \det_2(u, v) = (u \times v) \cdot e_3 = \det_3(u, v, e_3)$$

and $|\det_2(u, v)| = |u \times v|$.

Reparametrize by arclength by choosing $a \in I$ and letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$. We have $T_\beta(s) = \beta'(s)$ and $N_\beta(s) = \beta'(s)^\times$. Let us find formulas for $k_\beta(s)$ and $\kappa_\beta(s)$. By definition, $k_\beta(s) \beta'(s)^\times = k_\beta(s) N_\beta(s) = \beta''(s)$. Take the dot product of both sides with $\beta'(s)^\times$ to get

$$k_\beta(s) = \beta'(s)^\times \cdot \beta''(s) \\ \kappa_\beta(s) = |k_\beta(s)| = |\beta'(s) \times \beta''(s)|.$$

Now let us find formulas for $T(t) = T_\alpha(t) = T_\beta(s(t))$, $N(t) = N_\alpha(t) = N_\beta(s(t))$, $k(t) = k_\alpha(t) = k_\beta(s(t))$ and $\kappa(t) = \kappa_\alpha(t) = \kappa_\beta(s(t))$. We have $\alpha(t) = \beta(s(t))$ so that $\alpha'(t) = \beta'(s(t))s'(t)$. Since $|\beta'(s(t))| = 1$ and $s'(t) > 0$, it follows that $|\alpha'(t)| = s'(t)$. Since $\beta''(s) = k_\beta(s)N_\beta(s)$ and $|N_\beta(s)| = |T_\beta(s)| = 1$, we have $|\beta''(s)| = |k_\beta(s)| = \kappa_\beta(s)$. Since $\beta''(s)$ is orthogonal to $\beta'(s)$ (see Definition 1.12) we have $\kappa_\beta(s) = |\beta''(s)| = |\beta'(s) \times \beta''(s)|$. We have

$$\begin{aligned}\alpha(t) &= \beta(s(t)) , \quad \alpha'(t) = \beta'(s(t))s'(t) , \quad \alpha''(t) = \beta''(s(t))s'(t)^2 + \beta'(s(t))s''(t), \\ \alpha'(t) \times \alpha''(t) &= (\beta'(s(t)) \times \beta''(s(t)))(s')^3.\end{aligned}$$

Since $|\alpha'(t)| = s'(t)$ this gives

$$\begin{aligned}\frac{\alpha'(t)}{|\alpha'(t)|} &= \beta'(s(t)) = T_\beta(s(t)) = T(t) , \quad \left(\frac{\alpha'(t)}{|\alpha'(t)|}\right)^\times = T_\beta(s(t))^\times = N_\beta(s(t)) = N(t), \\ \frac{\alpha'(t) \times \alpha''(t)}{|\alpha'(t)|^3} &= \beta'(s(t)) \times \beta''(s(t)), \\ \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3} &= |\beta'(s(t)) \times \beta''(s(t))| = \kappa_\beta(s(t)) = \kappa(t) .\end{aligned}$$

Finally note that since $\beta'' = k_\beta N_\beta = k_\beta (\beta')^\times$ we have $\beta' \times \beta'' = k_\beta \beta' \times (\beta')^\times = k_\beta e_3$ and so $k_\beta = (\beta' \times \beta'') \cdot e_3$.

1.14 Theorem: *For a smooth regular curve α in \mathbb{R}^2 , the curvature of α is identically zero if and only if (the image of) α lies on a straight line.*

Proof: Let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ be a smooth regular curve. Choose $a \in I$ and reparametrize α by arclength by setting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(t)| dt$. Suppose that $\kappa(t) = 0$ for all t . Then we have $0 = \kappa(t(s)) = |\beta''(s)|$ for all s so that $\beta''(s) = 0$ for all s . By integrating once we obtain $\beta'(s) = u$ for some $u \in \mathbb{R}^2$ since $|\beta'(s)| = 1$, u is a unit vector) and by integrating again we obtain $\beta(s) = p + su$ for some $p \in \mathbb{R}^2$. Thus $\alpha(t) = p + s(t)u$ for all t so that α lies on the line through p in the direction of u .

Suppose, conversely, that (the image of) α lies on a straight line, say the line $p + su$ where $p, u \in \mathbb{R}^2$ and $|u| = 1$. Then for every $t \in I$ there is a (unique) $s = s(t)$ such that $\alpha(t) = p + s(t)u$. We remark that taking the dot product with u gives $s(t) = (\alpha(t) - p) \cdot u$ for all t so we see that $s(t)$ is smooth. Since $\alpha(t) = p + s(t)u$, we have $\alpha'(t) = s'(t)u$ and $\alpha''(t) = s''(t)u$ so that $\alpha(t) \times \alpha''(t) = s'(t)s''(t)u \times u = 0$ and hence $\kappa(t) = 0$ for all t .

1.15 Definition: Let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ be a smooth regular curve, let $a \in I$, and suppose that $\kappa(a) \neq 0$. We define the **osculating circle** (or the **best-fit circle**) of α at $t = a$ as follows. Let $p = \alpha(a)$, $T = T(a)$, $N = N(a)$, $k = k(a)$ and $\kappa = \kappa(a)$. Reparametrize by arclength, letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$ so that we have $\beta(0) = p$, $\beta'(0) = T$ and $\beta''(0) = kN$. The osculating circle at $t = a$ is the circle given by

$$\begin{aligned}\sigma(s) &= (p + \frac{1}{k} N) - \frac{1}{k} \cos(ks)N + \frac{1}{k} \sin(ks)T \\ \sigma'(s) &= \sin(ks)N + \cos(ks)T \\ \sigma''(s) &= k \cos(ks)N - k \sin(ks)T\end{aligned}$$

which is the circle of radius $R = \frac{1}{\kappa}$ centered at $p + \frac{1}{k}N$, parametrized by arclength (since $|\sigma'(s)| = 1$ for all s), such that $\sigma(0) = p = \beta(0)$, $\sigma'(0) = T = \beta'(0)$ and $\sigma''(0) = kN = \beta''(0)$.

1.16 Note: When α is a smooth regular curve, the scalar curvature at $t = a$ is equal to the reciprocal of the radius of the best-fit circle at $t = a$.

1.17 Theorem: (Polar Coordinates) Let $I \subseteq \mathbb{R}$ be an interval with $a \in I$, let $p \in \mathbb{R}^2$, and let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ be a continuous curve in \mathbb{R}^2 with $\alpha(t) \neq p$ for any $t \in I$. Let $r_0 = |\alpha(a) - p|$ and choose $\theta_0 \in \mathbb{R}$ such that $\alpha(a) - p = r_0(\cos \theta_0, \sin \theta_0)$ (θ_0 is unique up to an integer multiple of 2π). Then there exist unique continuous functions $r, \theta : I \rightarrow \mathbb{R}$ with $r(a) = r_0$ and $\theta(a) = \theta_0$ such that

$$\alpha(t) = p + r(t)(\cos \theta(t), \sin \theta(t))$$

for all $t \in I$. Moreover, if α is smooth (or \mathcal{C}^k) then so are the functions r and θ .

Proof: We omit the proof, but we remark that it is surprisingly involved.

1.18 Definition: For a continuous curve $\alpha : [a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ with $\alpha(t) \neq p$ for any t , we define the **winding number** $\text{Wind}(\alpha, p)$ of α about p as follows. We let $r_0 = |\alpha(a) - p|$ and choose $\theta_0 \in [0, 2\pi)$ so that $\alpha(a) = p + r_0(\cos \theta_0, \sin \theta_0)$, then we let $r, \theta : [a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be the unique continuous maps such that $\alpha(t) = p + r(t)(\cos \theta(t), \sin \theta(t))$ for all $t \in [a, b]$, and then we define

$$\text{Wind}(\alpha, p) = \frac{1}{2\pi}(\theta(b) - \theta(a)).$$

When α is regular, we define the **turning number** of α to be

$$\text{Turn}(\alpha) = \text{Wind}(\alpha', 0).$$

1.19 Theorem: Let $\alpha : [a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ be a curve in \mathbb{R}^2 and write $\alpha(t) = (x(t), y(t))$.

(1) If α is a \mathcal{C}^1 curve with $\alpha(t) \neq 0$ for any $t \in [a, b]$ then

$$\text{Wind}(\alpha, 0) = \frac{1}{2\pi} \int_a^b \frac{x(t)y'(t) - y(t)x'(t)}{x(t)^2 + y(t)^2} dt.$$

(2) If α is \mathcal{C}^2 regular curve then

$$\text{Turn}(\alpha) = \frac{1}{2\pi} \int_a^b k_\alpha(t) |\alpha'(t)| dt.$$

Proof: To prove Part 1, write α in polar coordinates as $\alpha(t) = r(t)(\cos \theta(t), \sin \theta(t))$, that is write $x = r \cos \theta$ and $y = r \sin \theta$ where $r = r(t)$ and $\theta = \theta(t)$ are continuous with $r(t) > 0$ for all $t \in [a, b]$ and $\theta(a) \in [0, 2\pi)$. Then

$$\begin{aligned} \int_a^b \frac{x y' - y x'}{x^2 + y^2} dt &= \int_a^b \frac{(r \cos \theta)(r' \sin \theta + r \cos \theta \theta') - (r \sin \theta)(r' \cos \theta - r \sin \theta \theta')}{r^2 \cos^2 \theta + r^2 \sin^2 \theta} dt \\ &= \int_a^b \frac{r^2 \cos^2 \theta \theta' + r^2 \sin^2 \theta \theta'}{r^2} dt = \int_a^b \theta' dt \\ &= \theta(b) - \theta(a) = 2\pi \text{Wind}(\alpha, 0). \end{aligned}$$

To prove Part 2, write $\alpha'(t)$ in polar coordinates as $\alpha'(t) = |\alpha'(t)|(\cos \theta(t), \sin \theta(t))$ with $\theta(a) \in [0, 2\pi)$. Since α is \mathcal{C}^2 and regular, we note that α' is \mathcal{C}^1 with $\alpha'(t) \neq 0$ for all $t \in [a, b]$. Reparametrize α by arclength letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(t)| dt$, then write $\beta'(s)$ in polar coordinates as $\beta'(s) = |\beta'(s)|(\cos \phi(s), \sin \phi(s))$ with $\phi(0) \in [0, 2\pi)$. Since $|\beta'(s)| = 1$ we have $(\cos \phi(s(t)), \sin \phi(s(t))) = \beta'(s(t)) = \frac{\alpha'(t)}{|\alpha'(t)|} = (\cos \theta(t), \sin \theta(t))$ for all $t \in [a, b]$, and hence $\phi(s(t)) = \theta(t)$ for all $t \in [a, b]$ (by the uniqueness of the polar representation). Since $\beta'(s) = (\cos \phi(s), \sin \phi(s))$, we have

$$\beta''(s) = (-\sin \phi(s) \phi'(s), \cos \phi(s) \phi'(s)) = \phi'(s)(-\sin \phi(s), \cos \phi(s)) = \phi'(s) \beta'(s)^\times$$

By the definition of $k_\beta(s)$ we see that $k_\beta(s) = \phi'(s)$. Thus

$$\begin{aligned} \int_a^b k_\alpha(t) |\alpha'(t)| dt &= \int_a^b k_\beta(s(t)) s'(t) dt = \int_{s(a)}^{s(b)} k_\beta(s) ds = \int_{s(a)}^{s(b)} \phi'(s) ds \\ &= \phi(s(b)) - \phi(s(a)) = \theta(b) - \theta(a) = 2\pi \text{Wind}(\alpha', 0) = 2\pi \text{Turn}(\alpha). \end{aligned}$$

1.20 Theorem: (The Fundamental Theorem for Plane Curves) Let $I \subseteq \mathbb{R}$ be an interval with $a \in I$, let $p, u \in \mathbb{R}^2$ with $|u| = 1$, and let $\ell : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function. Then there exists a unique smooth regular curve $\beta : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^2$ with $|\beta'(s)| = 1$ for all $s \in I$ such that $\beta(a) = p$ and $\beta'(a) = u$ and $k(s) = \ell(s)$ for all $s \in I$.

Proof: Suppose that such a curve β exists. Since $|\beta'(s)| = 1$ for all s , we can write β' in polar coordinates as $\beta'(s) = (\cos \theta(s), \sin \theta(s))$ with $\theta(a) \in [0, 2\pi)$. Then we have $\beta''(s) = (-\sin \theta(s)\theta'(s), \cos \theta(s)\theta'(s)) = \theta'(s)\beta'(s)^\times$ so that $\theta'(s) = k(s) = \ell(s)$. We can integrate to get $\theta(s) = \theta(a) + \int_a^s \ell(t) dt$. Since $\beta'(s) = (\cos \theta(s), \sin \theta(s))$ we can integrate again to get

$$\beta(s) = p + \left(\int_a^s \cos \theta(t) dt, \int_a^s \sin \theta(t) dt \right).$$

This shows that $\beta(s)$ is uniquely determined and gives us a formula for $\beta(s)$.

Conversely, we can choose $\theta_0 \in [0, 2\pi)$ so that $(\cos \theta_0, \sin \theta_0) = u$, and then define $\theta(s) = \theta_0 + \int_a^s \ell(t) dt$ so that $\theta(a) = \theta_0$ and $\theta'(s) = \ell(s)$ for all $s \in I$, and then define $\beta(s) = p + \left(\int_a^s \cos \theta(t) dt, \int_a^s \sin \theta(t) dt \right)$ so that $\beta'(s) = (\cos \theta(s), \sin \theta(s))$ for all $s \in I$. Then $|\beta'(s)| = 1$ for all s and $\beta(a) = p$ and $\beta'(a) = (\cos \theta(a), \sin \theta(a)) = (\cos \theta_0, \sin \theta_0) = u$ and $\beta''(s) = \theta'(s)\beta'(s)^\times$ so that $k(s) = \theta'(s) = \ell(s)$ for all $s \in I$, as required.

Curves in \mathbb{R}^3

1.21 Definition: Let $\beta : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^3$ be a smooth regular curve in \mathbb{R}^3 parametrized by arclength (so $|\beta'(s)| = 1$ for all $s \in I$). The **unit tangent vector** of β at s is the unit vector $T(s) = T_\beta(s) = \beta'(s)$. The vector $\beta''(s)$ is called the **curvature vector** of β at s . The **scalar curvature** of β at s is given by $\kappa(s) = \kappa_\beta(s) = |\beta''(s)|$.

If $\beta''(s) \neq 0$ then we define the **principal normal vector** of β at s to be the unit vector $P(s) = P_\beta(s) = \frac{\beta''(s)}{|\beta''(s)|}$, and we define the **binormal vector** of β at s to be the unit vector $B(s) = B_\beta(s) = T(s) \times P(s)$. Note that $\{T(s), P(s), B(s)\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 . Since $B = T \times P$ and $P = \frac{T'}{|T'|}$, we have

$$B' = T' \times P + T \times P' = |T'| P \times P + T \times P' = T \times P'.$$

Notice that B' is orthogonal to both T and B (it is orthogonal to T because $B' = T \times P'$ and it is orthogonal to B because we have $B(s) \cdot B(s) = |B(s)|^2 = 1$ for all s so taking the derivative on both sides gives $2 B' \cdot B = 0$). Since $\{T, P, B\}$ is an orthonormal basis for \mathbb{R}^3 and B' is orthogonal to both T and B , we have $B' = (B' \cdot P)P$. We define the **torsion** of β at s to be $\tau(s) = \tau_\beta(s) = -B'(s) \cdot P(s)$ so that $B'(s) = -\tau(s)P(s)$ for all s (the negative sign is included so that the torsion of the right-handed helix is positive).

To summarize the above definitions, when $\beta : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^3$ is a smooth regular curve, parametrized by arclength, with non-zero curvature vector $\beta''(s) \neq 0$, the **unit tangent vector**, the **principal normal vector**, the **binormal vector**, the **scalar curvature** and the **torsion** of β at s are given by

$$\begin{aligned} T(s) &= T_\beta(s) = \beta'(s), \\ P(s) &= P_\beta(s) = \frac{\beta''(s)}{|\beta''(s)|}, \\ B(s) &= B_\beta(s) = T(s) \times P(s), \\ \kappa(s) &= \kappa_\beta(s) = |\beta''(s)|, \\ \tau(s) &= \tau_\beta(s) = -B'(s) \cdot P(s). \end{aligned}$$

and $\{T, (s)P(s), B(s)\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 for every $s \in I$. From the definition of P and κ we have $T' = \kappa P$, and as explained above, we defined $\tau = -B' \cdot P$ so that $B' = -\tau P$. Since $P = B \times T$ we also have

$$P' = B' \times T + B \times T' = -\tau P \times T + \kappa B \times P = \tau B - \kappa T.$$

Thus the derivatives T' , P' and B' satisfy the following matrix identity which gives a system of three equations called the **Frenet-Serret Formulas**

$$\begin{pmatrix} T' \\ P' \\ B' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ P \\ B \end{pmatrix}.$$

When $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^3$ is a smooth regular curve in \mathbb{R}^3 , we reparametrize by arclength by choosing $a \in I$ and letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$, then we define the **unit tangent vector** of α at t to be $T(t) = T_\alpha(t) = T_\beta(s(t))$, and if $\beta''(s(t)) \neq 0$, we define the **principal normal vector**, the **binormal vector**, the **scalar curvature** and the **torsion** of α at t to be given by $P(t) = P_\alpha(t) = P_\beta(s(t))$, $B(t) = B_\alpha(t) = B_\beta(s(t))$, $\kappa(t) = \kappa_\alpha(t) = \kappa_\beta(s(t))$ and $\tau(t) = \tau_\alpha(t) = \tau_\beta(s(t))$. The following theorem shows that these are all well-defined, that is they do not depend on the choice of $a \in I$.

1.22 Theorem: Let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^3$ be a smooth regular curve. For all $t \in I$ for which $\alpha'(t) \times \alpha''(t) \neq 0$, we have

$$T = \frac{\alpha'}{|\alpha'|}, \quad P = \frac{T'}{|T'|}, \quad B = T \times P$$

$$\kappa = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}, \quad \tau = \frac{\det_3(\alpha', \alpha'', \alpha''')}{|\alpha' \times \alpha''|^2}.$$

Proof: Choose $a \in I$ and let $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$. Then $\alpha(t) = \beta(s(t))$ and so for all $t \in I$

$$\begin{aligned} \alpha'(t) &= \beta'(s(t))s'(t), \\ \alpha''(t) &= \beta''(s(t))s'(t)^2 + \beta'(t)s''(t), \\ \alpha'''(t) &= \beta'''(s(t))s'(t)^3 + 3\beta''(s(t))s'(t)s''(t) + \beta'(t)s'''(t), \\ \alpha'(t) \times \alpha''(t) &= (\beta'(s(t)) \times \beta''(s(t)))s'(t)^3, \\ (\alpha'(t) \times \alpha''(t)) \cdot \alpha'''(t) &= ((\beta'(s(t)) \times \beta''(s(t))) \cdot \beta'''(s(t)))s'(t)^6. \end{aligned}$$

Since $\alpha' \times \alpha'' = (\beta' \times \beta'')(s')^3$, we have $\alpha' \times \alpha'' = 0 \iff \beta' \times \beta'' = 0$. Since $|\beta'(s)| = 1$ for all s , it follows (by taking the derivative of $1 = \beta'(s) \cdot \beta'(s)$) that β' and β'' are orthogonal, and so we have $|\beta' \times \beta''| = |\beta'| |\beta''| = |\beta''|$ so that $\beta' \times \beta'' = 0 \iff \beta'' = 0$. Since $T_\alpha(t) = \beta'(s(t))$ we have $T_\alpha'(t) = \beta''(s(t))s'(t)$ so that $T_\alpha'(t) = 0 \iff \beta''(s(t)) = 0$. Thus

$$\alpha'(t) \times \alpha''(t) = 0 \iff \beta'(s(t)) \times \beta''(s(t)) = 0 \iff \beta''(s(t)) = 0 \iff T_\alpha'(t) = 0.$$

Suppose that $\alpha'(t) \times \alpha''(t) \neq 0$. Since $T_\alpha'(t) = \beta''(s(t))s'(t)$ and $s'(t) = |\alpha'(t)| > 0$ we have

$$\begin{aligned} \frac{T_\alpha'(t)}{|T_\alpha'(t)|} &= \frac{\beta''(s(t))s'(t)}{|\beta''(s(t))s'(t)|} = \frac{\beta''(s(t))}{|\beta''(s(t))|} = P_\beta(s(t)) = P_\alpha(t) \text{ and} \\ B_\alpha(t) &= B_\beta(s(t)) = T_\beta(s(t)) \times P_\beta(s(t)) = T_\alpha(t) \times P_\alpha(t). \end{aligned}$$

Since $\alpha' \times \alpha'' = (\beta' \times \beta'')(s')^3$ and $|\beta' \times \beta''| = |\beta''|$ and $s' = |\alpha'|$, we have

$$\frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3} = |\beta''(s(t))| = \kappa_\beta(s(t)) = \kappa_\alpha(t).$$

To simplify notation, write β for $\beta(s(t))$ and similarly for β' and β'' , and write T for $T_\beta(s(t)) = T_\alpha(t)$ and similarly for P and B , and write κ for $\kappa_\beta(s(t)) = \kappa_\alpha(t)$ and similarly for τ . Since $\beta' = T$, using the Frenet-Serre formulas and the fact that $\{T, P, B\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 , we have

$$\begin{aligned} (\beta' \times \beta'') \cdot \beta''' &= (T \times T') \cdot T'' = (T \times (\kappa P)) \cdot (\kappa P)' = (T \times (\kappa P)) \cdot (\kappa' P + \kappa P') \\ &= \kappa^2 (T \times P) \cdot P' = \kappa^2 (T \times P) \cdot (-\kappa T + \tau B) = \kappa^2 \tau. \end{aligned}$$

Since we have $\det_3(\alpha', \alpha'', \alpha''') = (\alpha' \times \alpha'') \cdot \alpha''' = ((\beta' \times \beta'') \cdot \beta''') (s')^6 = \kappa^2 \tau |\alpha'|^6$ and we have $|\alpha' \times \alpha''| = \kappa |\alpha'|^3$, it follows that

$$\frac{\det_3(\alpha'(t), \alpha''(t), \alpha'''(t))}{|\alpha'(t) \times \alpha''(t)|^2} = \frac{\kappa_\alpha(t)^2 \tau_\alpha(t) |\alpha'(t)|^6}{\kappa_\alpha(t)^2 |\alpha'(t)|^6} = \tau_\alpha(t).$$

1.23 Example: The curve $\alpha : \mathbb{R} \rightarrow \mathbb{R}^3$ given by $\alpha(t) = (a \cos t, a \sin t, bt)$ is called a (right-handed) **helix**. We have

$$\begin{aligned}\alpha'(t) &= (-s \sin t, a \cos t, b), \\ \alpha''(t) &= (-a \cos t, -a \sin t, 0), \\ \alpha'''(t) &= (a \sin t, -a \cos t, 0) \text{ and} \\ \alpha'(t) \times \alpha''(t) &= (ab \sin t, -ab \cos t, a^2,)\end{aligned}$$

and so

$$\begin{aligned}|\alpha'(t)| &= (a^2 + b^2)^{1/2}, \\ |\alpha'(t) \times \alpha''(t)| &= a(a^2 + b^2)^{1/2} \text{ and} \\ (\alpha'(t) \times \alpha''(t)) \cdot \alpha'''(t) &= a^2 b,\end{aligned}$$

and hence

$$\begin{aligned}\kappa(t) &= \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3} = \frac{a}{a^2 + b^2} \text{ and} \\ \tau(t) &= \frac{(\alpha'(t) \times \alpha''(t)) \cdot \alpha'''(t)}{|\alpha'(t)|^6} = \frac{b}{a^2 + b^2}.\end{aligned}$$

We note that the scalar curvature and the torsion of the helix are constant.

1.24 Theorem: Let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^3$ be a smooth regular curve in \mathbb{R}^3 .

- (1) The curvature of α is identically zero if and only if (the image of) α lies on a line.
- (2) If α has non-vanishing curvature (so its torsion is defined) then the torsion of α is identically zero if and only if (the image of) α lies in a plane.

Proof: The proof of Part 1 is the same as the proof of the analogous theorem for plane curves (Theorem 1.14). To prove part 2, suppose that $\kappa_\alpha(t) \neq 0$ for all $t \in I$. Choose $a \in I$ and let $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$.

Suppose $\tau_\alpha(t) = 0$ for all t . Then $\tau_\beta(s) = \tau_\alpha(t(s)) = 0$ for all s . Write $\tau(s) = \tau_\beta(s)$. We have $B'(s) = -\tau(s)P(s) = 0$ for all s , so $B(s)$ is constant, say $B(s) = b \in \mathbb{R}^3$ for all s and note that $|b| = |B(s)| = 1$. Note that $\frac{d}{ds}(\beta(s) \cdot b) = \beta'(s) \cdot b = T(s) \cdot B(s) = 0$ for all s , and so $\beta(s) \cdot b$ is constant, say $\beta(s) \cdot b = c \in \mathbb{R}$. Thus we have $\alpha(t) \cdot b = \beta(s(t)) \cdot b = c$ for all t and so (the image of) α lies on the plane in \mathbb{R}^3 given by $x \cdot b = c$.

Suppose, conversely, that (the image of) α lies on a plane in \mathbb{R}^3 , say $\alpha(t) \cdot b = c$ for all $t \in I$ where $b, c \in \mathbb{R}^3$ with $|b| = 1$. Then $\beta(s) \cdot b = \alpha(t(s)) \cdot b = c$ for all s . Take the derivative to get $\beta'(s) \cdot b = 0$ and $\beta''(s) \cdot b = 0$ for all s , that is $T(s) \cdot b = 0$ and $\kappa(s)P(s) \cdot b = 0$ for all s . Since we are assuming that $\kappa_\alpha(t) \neq 0$ for all t , hence $\kappa(s) = \kappa_\beta(s) \neq 0$ for all s , it follows that $P(s) \cdot b = 0$ for all s . Since $\{T(s), P(s), B(s)\}$ is orthonormal and $T(s) \cdot b = P(s) \cdot b = 0$ and $|b| = 1$, it follows that $B(s) = \pm b$ for all s . Since $B(s)$ is continuous, either we have $B(s) = b$ for all s or we have $B(s) = -b$ for all s and, in either case, $B'(s) = 0$ for all s . Since $0 = B'(s) = -\tau(s)P(s)$ with $|P(s)| = 1$, we have $\tau(s) = 0$, that is $\tau_\beta(s) = 0$, for all s , and hence $\tau_\alpha(t) = \tau_\beta(s(t)) = 0$ for all t .

1.25 Definition: Let $\alpha : I \subseteq \mathbb{R} \rightarrow \mathbb{R}^3$ be a smooth regular curve in \mathbb{R}^3 , let $a \in I$, and suppose that $\kappa(a) \neq 0$ (and hence $\tau(a)$ is defined). We define the **osculating plane** of α at $t = a$ to be the plane through $\alpha(a)$ parallel to $T(a)$ and $P(a)$, that is the plane $(x - \alpha(a)) \cdot B(a) = 0$. We define the **osculating circle** (or the **best-fit circle**) of α at $t = a$ as we did for a planar curve (in Definition 1.15). Let $p = \alpha(a)$, $T = T(a)$, $P = P(a)$, and $\kappa = \kappa(a)$. Reparametrize by arclength, letting $\beta(s) = \alpha(t(s))$ where $s(t) = \int_a^t |\alpha'(r)| dr$ so that we have $\beta(0) = p$, $\beta'(0) = T$ and $\beta''(0) = \kappa P$. The osculating circle at $t = a$ is the circle given by

$$\begin{aligned}\sigma(s) &= \left(p + \frac{1}{\kappa} P\right) - \frac{1}{\kappa} \cos(\kappa s) P + \frac{1}{\kappa} \sin(\kappa s) T \\ \sigma'(s) &= \sin(\kappa s) P + \cos(\kappa s) T \\ \sigma''(s) &= \kappa \cos(\kappa s) P - \kappa \sin(\kappa s) T\end{aligned}$$

which is the circle of radius $R = \frac{1}{\kappa}$ centered at $p + \frac{1}{\kappa} P$, parametrized by arclength (since $|\sigma'(s)| = 1$ for all s), such that $\sigma(0) = p = \beta(0)$, $\sigma'(0) = T = \beta'(0)$ and $\sigma''(0) = \kappa P = \beta''(0)$.

1.26 Note: When α is a smooth regular curve, the scalar curvature at $t = a$ is equal to the reciprocal of the radius of the osculating circle at $t = a$.

1.27 Theorem: (The Fundamental Theorem for Space Curves) Given $p, u, v \in \mathbb{R}^3$ with $|u| = |v| = 1$ and $u \cdot v = 0$, and given smooth functions $c, d : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ where I is an interval with $0 \in I$ and $c(s) > 0$ for all $s \in I$, there exists a unique smooth regular curve $\beta : I \rightarrow \mathbb{R}^3$ with $\beta(0) = p$, $T(0) = u$, $P(0) = v$ and $\kappa(s) = c(s)$ and $\tau(s) = d(s)$ for all $s \in I$.

Proof: We want to have $T' = \kappa P$, $P' = -\kappa T + \tau B$ and $B' = -\tau P$, so we solve the system of linear first order differential equations

$$\begin{aligned}X' &= cY \\ Y' &= -cX + dZ \\ Z' &= -dY\end{aligned}$$

with the initial conditions $X(0) = u$, $Y(0) = v$ and $Z(0) = u \times v$ (such a system always has a unique solution). We claim that $\{X(s), Y(s), Z(s)\}$ is a positive ordered orthonormal basis for \mathbb{R}^3 for all s (this is true when $s = 0$ from the initial conditions). Write $X_1 = X$, $X_2 = Y$ and $X_3 = Z$ and define $F_{k,\ell} : I \rightarrow \mathbb{R}$ by $F_{k,\ell}(s) = X_k(s) \cdot X_\ell(s)$ for $1 \leq k \leq \ell \leq 3$. Then the functions $F_{k,\ell}$ satisfy the system of differential equations

$$\begin{aligned}\frac{d}{ds} F_{1,1} &= \frac{d}{ds} (X \cdot X) = 2 X' \cdot X = 2(cY) \cdot X = 2c F_{1,2} \\ \frac{d}{ds} F_{1,2} &= \frac{d}{ds} (X \cdot Y) = X' \cdot Y + X \cdot Y' = c Y \cdot Y + X \cdot (-cX + dZ) = -c F_{1,1} + d F_{1,3} + c F_{2,2} \\ \frac{d}{ds} F_{1,3} &= \frac{d}{ds} (X \cdot Z) = X' \cdot Z + X \cdot Z' = c Y \cdot Z + X \cdot (-dY) = -d F_{1,2} + c F_{2,3} \\ \frac{d}{ds} F_{2,2} &= \frac{d}{ds} (Y \cdot Y) = 2 Y' \cdot Y = 2(-cX + dZ) \cdot Y = -2c F_{1,2} + 2d F_{2,3} \\ \frac{d}{ds} F_{2,3} &= \frac{d}{ds} (Y \cdot Z) = Y' \cdot Z + Y \cdot Z' = (-cX + dZ) \cdot Z + Y \cdot (-dY) = -c F_{1,3} - d F_{2,2} + d F_{3,3} \\ \frac{d}{ds} F_{3,3} &= \frac{d}{ds} (Z \cdot Z) = 2 Z' \cdot Z = 2(-dY) \cdot Z = -2 F_{2,3}\end{aligned}$$

with the initial conditions $F_{k,k}(0) = 1$ and $F_{k,\ell}(0) = 0$ when $k \neq \ell$. Again, such a system has a unique solution, and the unique solution to this system is easily seen to be given by the constant functions $F_{k,k}(s) = 1$ and $F_{k,\ell}(s) = 0$ for all $s \in I$ and all $k \neq \ell$. Thus $\{X(s), Y(s), Z(s)\}$ is an orthonormal system for all $s \in I$, as claimed. To get $\beta'(s) = T(s) = X(s)$ with $\beta(0) = p$ we must choose $\beta(s) = p + \int_0^s X(t) dt$. Then we have $T = X$ and $\kappa(s) = |\beta''(s)| = |T'| = |X'| = |cY| = c$ and $P = \frac{1}{\kappa} T' = \frac{1}{c} X' = \frac{1}{c}(cY) = Y$ and $B = T \times P = X \times Y = Z$ and $\tau = -B' \cdot P = -Z' \cdot Y = (dY) \cdot Y = d$, as required.