
Chapter 1. Curves

Curves in Rn

1.1 Definition: A (parametrized) curve in Rn is a continuous map α : I ⊆ R → Rn
where I is a nonempty interval. We can write α(t) =

(
x1(t), x2(t), · · · , xn(t)

)
where each

xk : I ⊆ R → R is continuous. When a ∈ I and α′(a) =
(
x1
′(a), · · · , xn′(a)

)
exists, α′(a)

is called the tangent vector to α at t = a. We say that α is Ck when the kth order
derivative of α exists and is continuous on I, we say that α is smooth or C∞ when α is
Ck for all k ∈ Z+, and we say that α is regular when α is C1 with α′(t) 6= 0 for all t ∈ I.
Unless otherwise stated, we shall always assume curves are smooth and regular.

1.2 Example: The curve α : R→ R2 given by α(t) =
(
t, |t|

)
is not regular because α′(0)

does not exist. The curve β : R → R2 given by β(t) = (t3, t2) is not regular because
β′(0) = 0. The curve γ : R→ R2 given by γ(0) = (0, 0) and γ(t) =

(
t, t2 sin 1

t

)
for t 6= 0 is

differentiable but not regular because γ′ is not continuous at t = 0.

α(t) β(t) γ(t)

1.3 Theorem: Every regular curve in Rn is locally injective.

Proof: Let α : I ⊆ R → Rn be a regular curve, write α(t) =
(
x1(t), · · · , xn(t)

)
, and let

a ∈ I. Since α′(a) 6= 0 we have xk
′(a) 6= 0 for some index k, say xk

′(a) > 0 (the case that
xk
′(a) < 0 is similar). Since α′ is continuous, xk

′ is continuous. Since xk
′ is continuous and

xk
′(a) > 0 we can choose δ > 0 so that |t− a| < δ =⇒ xk

′(t) > 0. Then xk is increasing,
hence injective, in the interval (a−δ, a+δ) ∩ I, and so α is injective in the same interval.

1.4 Example: The curves α, β, γ : R → R2 from Example 1.2 are not regular, but they
are all injective, so a curve does not necessarily need to be regular in order to be injective.

1.5 Example: The alpha curve α : R → R2 which is given by α(t) =
(
t2−1, t(t2−1)

)
,

the circle β : R → R2 which is given by β(t) = (cos t, sin t), and the limçon γ : R → R2

which is given by γ(t) =
(
(1 + 2 cos t) cos t, (1 + 2 cos t) sin t

)
, are all regular, so they are all

locally injective, but they are not (globally) injective (the alpha curve crosses itself with
α(1) = α(−1) = (0, 0), the circle is periodic with β(t+ 2πk) = β(t) for all k ∈ Z, and the
limaçon is periodic and crosses itself).

α(t) β(t) γ(t)

1.6 Example: The curve α : R→ R2 given by α(0) = 0 and α(t) =
(
t2, t2 sin 1

t

)
for t 6= 0

is differentiable, but not regular since α′(0) = 0, and (as you can verify) it is not locally
injective at t = 0.
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1.7 Definition: For a curve α : [a, b] ⊆ R→ Rn, the length of α on [a, b] is

L = Lα
(
[a, b]

)
= sup

{ p∑
j=1

∣∣α(tj)− α(tj−1)
∣∣ ∣∣∣ a = t0 < t1 < t2 < · · · < tp = b

}
(which can be infinite) and we say that α is rectifiable on [a, b] when Lα

(
[a, b]

)
is finite.

1.8 Theorem: Let α : [a, b] ⊆ R → Rn be a regular curve. Then α is rectifiable with
length

L = Lα
(
[a, b]

)
=

∫ b

a

∣∣α′(t)∣∣ dt.
Proof: For a partition P = (t0, t1, · · · , tp), where a = t0 < t1 < · · · < tp = b, let us write

L(α, P ) =
p∑
j=1

∣∣α(tj)− α(tj−1)
∣∣ and S(α, P ) =

p∑
j=1

∣∣α′(tj)∣∣(tj − tj−1)

so L(α, P ) is the sum which approximates Length(α) and S(α, P ) is the Riemann sum

(using right endpoints) which approximates the integral
∫ b
a
|α′(t)| dt. First note that

L(α, P )=
p∑
j=1

∣∣α(tj)−α(tj−1)
∣∣ ≤ p∑

j=1

n∑
k=1

∣∣xk(tj)−xk(tj−1)
∣∣ =

n∑
j=1

p∑
k=1

∣∣xk′(cj,k)
(
tj−tj−1)

∣∣
≤

n∑
j=1

p∑
k=1

M(tj−tj−1) =
n∑
j=1

M(b− a) = nM(b− a)

where we used the Mean Value Theorem to choose points cj,k between tj−1 and tj such that(
xk(tj)−xk(tj−1)

)
= xk

′(cj,k)(tj−tj−1) and we let M =max
{
|xk′(t)|

∣∣1≤k≤n, t∈ [a, b]
}

.

This shows that L = Lα
(
[a, b]

)
is finite.

Note that if P = (t0, t1, · · · , tp) is a partition of [a, b], and Q is a partition which is
obtained by adding one more point, say Q = (t0, t1, · · · , tj−1, s, tj , · · · , tp), then we have
L(α, P ) ≤ L(α,Q) because

∣∣α(tj)− α(tj−1
)
≤
∣∣α(tj)− α(s)

∣∣+ ∣∣α(s)− α(tj−1)
∣∣. It follows

(by induction) that when Q is any partition with P ⊆ Q we have

L(α, P ) ≤ L(α,Q) ≤ L.
Also note that for any partition P , with cj,k chosen as above, we have∣∣∣∣L(α, P )−S(α, P )

∣∣∣ =
∣∣∣ p∑
j=1

∣∣α(tj)−α(tj−1)
∣∣− p∑

j=1

∣∣α′(tj)∣∣(tj−tj−1)

∣∣∣∣
=

∣∣∣∣ p∑
j=1

∣∣∣(x1(tj)−x1(tj−1), · · · , xn(tj)−xn(tj−1
)∣∣∣− p∑

j=1

∣∣α′(tj)∣∣(tj−tj−1)

∣∣∣∣
=

∣∣∣∣ p∑
j=1

∣∣∣(x1′(cj,1), · · · , xn′(cj,n)
)∣∣∣(tj− tj−1)−

p∑
j−1

∣∣(x1′(tj), · · · , xn′(tj))∣∣∣(tj−tj−1)

∣∣∣∣
≤

p∑
j=1

∣∣∣∣∣(x1′(cj,1), · · · , xn′(cj,n)
)∣∣− ∣∣(x1′(tj), · · · , xn′(tj))∣∣ ∣∣∣(tt−tj−1)

≤
p∑
j=1

∣∣∣(x1′(cj,1)−x1′(tj), xn′(cj,n)−xn′(tj)
)∣∣∣(tj−tj−1)

≤
p∑
j=1

n∑
k=1

∣∣xk′(cj,k)− xk′(tj)
∣∣∣(tj−tj−1).

Let ε > 0. Since each xk
′ is continuous (hence uniformly continuous) on [a, b] and since

|α′| is continuous (hence Riemann integrable) on [a, b], we can choose δ > 0 such that for
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all s, t ∈ [a, b] with |s− t| < δ we have
∣∣xk′(s)− xk′(t)∣∣ < ε

3n(b−a) for all k , and such that

for every partition P = (t0, t1, · · · , tp) with |P | < δ we have
∣∣ ∫ b
a
|α′(t)

∣∣ dt − S(α, P )
∣∣ < ε

3

where |P | is the size of the partition P , that is |P | = max
{
tj−tj−1

∣∣ 1≤ j≤ p
}

. Choose

a partition P1 with |P1| < δ and choose a partition P2 such that
∣∣L− L(α, P2)

∣∣ < ε
3 then

let P = P1 ∪ P2. Since P2 ⊆ P we have L(α, P2) ≤ L(α, P ) ≤ L so that
∣∣L − L(α, P )

∣∣ ≤∣∣L− L(α, P2)
∣∣ < ε

3 . Since |P | ≤ |P1| < δ we have
∣∣ ∫ b
a
|α′(t)| dt− S(α, P )

∣∣ < ε
3 . Also since

|P | < δ, for all of the points cj,k we have |cj,k−tj | < δ so that
∣∣xk′(cj,k)−xk′(tj)

∣∣ < ε
3n(b−a)

and hence (as shown above)
∣∣L(α, P )−S(α, P )

∣∣ ≤ p∑
j=1

n∑
k=1

∣∣xk′(cj,k)−xk′(tj)
∣∣(tj−tj−1) < ε

3 .

Thus∣∣∣L−∫ ba ∣∣α′(t)∣∣ dt∣∣∣ ≤ ∣∣∣L−L(α, P )
∣∣∣+
∣∣∣L(α, P )−S(α, P )

∣∣∣+
∣∣∣S(α, P )−

∫ b
a

∣∣α′(t)∣∣ dt∣∣∣
< ε

3 + ε
3 + ε

3 = ε.

Since ε > 0 was arbitrary, it follows that L =
∫ b
a
|α′(t)| dt, as required.

1.9 Example: A curve which is differentiable, but not C1, can have infinite length. For
example, consider the curve α : [0, 1] → R2 given by α(t) =

(
x(t), y(t)

)
where x(t) = t

y(t) = t2 cos π
t2 when t 6= 0 with y(0) = 0. Note that x(y) and y(t) are both differentiable

(with y′(0) = 0) but y′(t) is not continuous at 0 (as you can check).
Let P be the partition P = (t0, t1, · · · tp) with t0 = 0 and tj = 1√

p−j+1
, that is let

P =
(
0, 1√

p ,
1√
p−1 , · · · ,

1√
3
, 1√

2
, 1
)
. We have y(tj) = 1

p−j+1 cos(p − j + 1)π = (−1)p−j+1

p−j+1 for

1 ≤ j ≤ p, and hence
∣∣y(tj)− y(tj−1)

∣∣ =
∣∣ 1
p−j+1 + 1

p−j+2

∣∣ ≥ 2
p−j+2 for 2 ≤ j ≤ p. Letting

` = p− j + 2 we have
p∑
j=1

∣∣α(tj)− α(tj−1
∣∣ ≥ p∑

j=2

∣∣y(tj)− y(tj−1)
∣∣ ≥ p∑

j=2

2
p−j+2 =

p∑̀
=2

2
` .

Since
∑

2
` diverges, it follows that Lα

(
[a, b]

)
=∞.

1.10 Definition: When α : I ⊆ R→ Rn is a continuous curve and s : I ⊆ R→ J ⊆ R is a
homeomorphism with inverse t = t(s), the curve β : J ⊆ R→ Rn defined by β(s) = α

(
t(s)

)
is called a reparameterisation of α, and the map s is called a change of parameter
(or a change of coordinates). When s is C1 with s′(t) 6= 0 for all t, we say that s is
regular. By the Inverse Function Theorem, if s = s(t) is smooth (or Ck) and regular then
so is its inverse t = t(s). When s′(t) > 0 for all t we say s preserves direction and
when s′(t) < 0 for all t we say s reverses direction. When α and s are both smooth

(or Ck) and regular, so is β, and for t = t(s) we have β′(s) = α′
(
t(s)

)
t′(s) = α′(t)

s′(t) . When

|β′(s)| = 1 for all s ∈ J , we say that β is parameterised by arclength. Unless otherwise
stated, we shall assume that any change of coordinates is smooth and regular.

1.11 Theorem: Every regular curve can be reparameterised by arclength, using a regular
direction-preserving change of coordinates.

Proof: Let α : I ⊆ R → Rn be a regular curve. Let a ∈ I and define s(t) =
∫ t
a

∣∣α′(r)∣∣ dr.
Note that s′(t) =

∣∣α′(t)∣∣ > 0 so s(t) is regular and strictly increasing, and it maps the
interval I to an interval J , and if α is Ck then so is s = s(t). By the inverse function
t = t(s) satisfies t′(s) = 1

s′(t) = 1
|α′(t)| . The reparameterised curve β : J → Rn given by

β(s) = α
(
t(s)

)
satisfies β′(s) = α′

(
t(s)

)
t′(s) = α′(t(s))

|α′(t(s))| so that
∣∣β′(s)∣∣ = 1 for all s ∈ J .
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Curves in R2

1.12 Definition: Let β : J ⊆ R → R2 be a smooth regular curve parameterised by
arclength. For a vector u = (x, y) ∈ R2, write u× = (−y, x) and note that |u×| = |u|. The
unit tangent vector and the unit normal vector of β at s are the vectors

T (s) = Tβ(s) = β′(s),

N(s) = Nβ(s) = T (s)×.

Since β is parametrized by arclength, |T (s)| = |β′(s)| = 1 and |N(s)| = |β′(s)×| = 1 for

all s. For all s we have β′(s).β′(s) =
∣∣β′(s)∣∣2 = 1. By differentiation both sides we obtain

d
ds

(
β′(s).β′(s)) = 0, that is 2β′(t).β′′(t) = 0. Thus β′′(s) is orthogonal to β′(s) = T (s),

and so β′′(s) lies in the span of T (s)× = N(s). We define the signed curvature of β at
s to be the real number k(s) = kβ(s) such that

β′′(s) = k(s)N(s) = kβ(s)Nβ(s).

Since |Nβ(s)| = 1 we have |β′′(s)| =
∣∣kβ(s)

∣∣. The scalar curvature of β at s is

κ(s) = κβ(s) =
∣∣k(s)

∣∣ =
∣∣β′′(s)∣∣.

When α : I ⊆ R → R2 is a smooth regular curve we first reparametrize by arclength
by choosing a ∈ I and letting β(s) = α(t(s)) where s(t) =

∫ t
a
|α′(r)| dr, and then we

define T (t) = Tα(t) = Tβ(s(t)), N(t) = Nα(t) = Nβ(s(t)), k(t) = kα(t) = kβ(s(t)) and
κ(t) = κα(t) = κβ(s(t)), and we call these the unit tangent vector, the unit normal vector,
the signed curvature, and the scalar curvature, of α at t. The following theorem shows
that these are well-defined, that is they do not depend on the choice of a ∈ I.

1.13 Theorem: For a smooth regular curve α = α(t) we have

T =
α′

|α′|
, N =

( α′
|α′|

)×
k =

det2(α′, α′′)

|α′|3
=

(α′×α′′).e3
|α′|3

=
det3(α′, α′′, e3)

|α′|3

κ =

∣∣ det2(α′, α′′)
∣∣

|α′|3
=
|α′×α′′|
|α′|3

where det2(α′, α′′) is the determinant of the 2×2 matrix with columns α′, α′′ ∈ R2, and

where we identify α′, α′′ ∈ R2 with
(
α′

0

)
,
(
α′′

0

)
∈ R3 so that α′×α′′ is the cross product

of two vectors
(
α′

0

)
,
(
α′′

0

)
∈ R3 and det3(α′, α′′, e3) is the determinant of the 3×3 matrix

whose first two columns are
(
α′

0

)
,
(
α′′

0

)
∈ R3 and whose last column is the 3rd standard

basis vector e3.

Proof: First verify (easily) that when we identify u, v ∈ R2 with
(
u
0

)
,
(
v
0

)
∈ R3 we have

u×.v = det2(u, v) = (u×v).e3 = det3(u, v, e3)

and
∣∣det2(u, v)

∣∣ =
∣∣u×v∣∣.

Peparametrize by arclength by choosing a ∈ I and letting β(s) = α(t(s)) where

s(t) =
∫ t
a
|α′(r)| dr. We have Tβ(s) = β′(s) and Nβ(s) = β′(s)×. Let us find formulas for

kβ(s) and κβ(s). By definition, kβ(s)β′(s)× = kβ(s)Nβ(s) = β′′(s). Take the dot product
of both sides with β′(s)× to get

kβ(s) = β′(s)×.β′′(s)
κβ(s) =

∣∣kβ(s)
∣∣ =

∣∣β′(s)×β′′(s)∣∣.
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Now let us find formulas for T (t) = Tα(t) = Tβ(s(t)), N(t) = Nα(t) = Nβ(s(t)),
k(t) = kα(t) = kβ(s(t)) and κ(t) = κα(t) = κβ(s(t)). We have α(t) = β(s(t)) so that
α′(t) = β′(s(t))s′(t). Since |β′(s(t))| = 1 and s′(t) > 0, it follows that

∣∣α′(t)∣∣ = s′(t). Since

β′′(s) = kβ(s)Nβ(s) and |Nβ(s)| = |Tβ(s)| = 1, we have
∣∣β′′(s)∣∣ =

∣∣kβ(s)
∣∣ = κβ(s). Since

β′′(s) is orthogonal to β′(s) (see Definition 1.12) we have κβ(s) =
∣∣β′′(s)∣∣ =

∣∣β′(s)×β′′(s)∣∣.
We have

α(t) = β(s(t)) , α′(t) = β′(s(t))s′(t) , α′′(t) = β′′(s(t))s′(t)2 + β′(s(t))s′′(t),

α′(t)×α′′(t) =
(
β′(s(t))×β′′(s(t))

)
(s′)3.

Since
∣∣α′(t)∣∣ = s′(t) this gives

α′(t)

|α′(t)|
= β′(s(t)) = Tβ(s(t)) = T (t) ,

( α′(t)
|α′(t)|

)×
= Tβ(s(t))× = Nβ(s(t)) = N(t),

α′(t)×α′′(t)
|α′(t)|3

= β′(s(t))×β′′(s(t)),∣∣α′(t)×α′′(t)∣∣
|α′(t)|3

=
∣∣∣β′(s(t))×β′′(s(t))∣∣∣ = κβ(s(t)) = κ(t) .

Finally note that since β′′ = kβNβ = kβ(β′)× we have β′×β′′ = kβ β
′×(β′)× = kβ e3 and

so kβ = (β′×β′′).e3.

1.14 Theorem: For a smooth regular curve α in R2, the curvature of α is identically zero
if and only if (the image of) α lies on a straight line.

Proof: Let α : I ⊆ R → R2 be a smooth regular curve. Choose a ∈ I and reparametrize
α by arclength by setting β(s) = α(t(s)) where s(t) =

∫ t
a
|α′(t)| dt. Suppose that κ(t) = 0

for all t. Then we have 0 = κ(t(s)) =
∣∣β′′(s)∣∣ for all s so that β′′(s) = 0 for all s. By

integrating once we obtain β′(s) = u for some u ∈ R2 since |β′(s)| = 1, u is a unit vector)
and by integrating again we obtain β(s) = p+ su for some p ∈ R2. Thus α(t) = p+ s(t)u
for all t so that α lies on the line through p in the direction of u.

Suppose, conversely, that (the image of ) α lies on a straight line, say the line p+ su
where p, u ∈ R2 and |u| = 1. Then for every t ∈ I there is a (unique) s = s(t) such that
α(t) = p+ s(t)u. We remark that taking the dot product with u gives s(t) = (α(t)− p).u
for all t so we see that s(t) is smooth. Since α(t) = p+ s(t)u, we have α′(t) = s′(t)u and
α′′(t) = s′′(t)u so that α(t)× α′′(t) = s′(t)s′′(t)u×u = 0 and kence κ(t) = 0 for all t.

1.15 Definition: Let α : I ⊆ R→ R2 be a smooth regular curve, let a ∈ I, and suppose
that κ(a) 6= 0. We define the osculating circle (or the best-fit circle) of α at t = a
as follows. Let p = α(a), T = T (a), N = N(a), k = k(a) and κ = κ(a). Reparametrize

by arclength, letting β(s) = α(t(s) where s(t) =
∫ t
a
|α′(r)| dr so that we have β(0) = p.

β′(0) = T and β′′(0) = kN . The osculating circle at t = a is the circle given by

σ(s) =
(
p+ 1

k N
)
− 1

k cos(ks)N + 1
k sin(ks)T

σ′(s) = sin(ks)N + cos(ks)T

σ′′(s) = k cos(ks)N − k sin(ks)T

which is the circle of radius R = 1
κ centered at p+ 1

kN , parametrized by arclength (since
|σ′(s)| = 1 for all s), such that σ(0)=p=β(0), σ′(0)=T =β′(0) and σ′′(0)=kN=β′′(0).

1.16 Note: When α is a smooth regular curve, the scalar curvature at t = a is equal to
the reciprocal of the radius of the best-fit circle at t = a.
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1.17 Theorem: (Polar Coordinates) Let I ⊆ R be an interval with a ∈ I, let p ∈ R2,
and let α : I ⊆ R → R2 be a continuous curve in R2 with α(t) 6= p for any t ∈ I. Let
r0 =

∣∣α(a)− p
∣∣ and choose θ0 ∈ R such that α(a)− p = r0(cos θ0, sin θ0) (θ0 is unique up

to an integer multiple of 2π). Then there exist unique continuous functions r, θ : I → R
with r(a) = r0 and θ(a) = θ0 such that

α(t) = p+ r(t)
(

cos θ(t), sin θ(t)
)

for all t ∈ I. Moreover, if α is smooth (or Ck) then so are the functions r and θ.

Proof: We omit the proof, but we remark that it is surprisingly involved.

1.18 Definition: For a continuous curve α : [a, b] ⊆ R→ R2 with α(t) 6= p for any t, we
define the winding number Wind(α, p) of α about p as follows. We let r0 =

∣∣α(a) − p
∣∣

and choose θ0 ∈ [0, 2π) so that α(a) = p+r0(cos θ0, sin θ0), then we let r, θ : [a, b] ⊆ R→ R
be the unique continuous maps such that α(t) = p+ r(t)

(
cos θ(t), sin θ(t)

)
for all t ∈ [a, b],

and then we define

Wind(α, p) = 1
2π

(
θ(b)− θ(a)

)
.

When α is regular, we define the turning number of α to be

Turn(α) = Wind
(
α′, 0).

1.19 Theorem: Let α : [a, b] ⊆ R→ R2 be a curve in R2 and write α(t) =
(
x(t), y(t)

)
.

(1) If α is a C1 curve with α(t) 6= 0 for any t ∈ [a, b] then

Wind(α, 0) = 1
2π

∫ b

a

x(t)y′(t)− y(t)x′(t)

x(t)2 + y(t)2
dt.

(2) If α is C2 regular curve then

Turn(α) = 1
2π

∫ b

a

kα(t)
∣∣α′(t)∣∣ dt.

Proof: To prove Part 1, write α in polar coordinates as α(t) = r(t)
(

cos θ(t), sin θ(t)
)
, that

is write x = r cos θ and y = r sin θ where r = r(t) and θ = θ(t) are continuous with r(t) > 0
for all t ∈ [a, b] and θ(a) ∈ [0, 2π). Then∫ b

a

x y′ − y x′

x2 + y2
dt =

∫ b

a

(r cos θ)
(
r′ sin θ + r cos θ θ′

)
− (r sin θ)

(
r′ cos θ − r sin θ θ′

)
r2 cosθ +r2 sin2 θ

dt

=

∫ b

a

r2 cos2 θ θ′ + r2 sin2 θ θ′

r2
dt =

∫ b

a

θ′ dt

= θ(b)− θ(a) = 2πWind(α, 0).

To prove Part 2, write α′(t) in polar coordinates as α′(t) = |α′(t)|
(

cos θ(t), sin θ(t)
)

with
θ(a) ∈ [0, 2π). Since α is C2 and regular, we note that α′ is C1 with α′(t) 6= 0 for all t ∈ [a, b].

Reparametrize α by arclength letting β(s) = α(t(s)) where s(t) =
∫ t
a
|α′(t)| dt, then write

β′(s) in polar coordinates as β′(s) =
∣∣β′(s)∣∣( cosφ(s), sinφ(s)

)
with φ(0) ∈ [0, 2π). Since

|β′(s)| = 1 we have
(

cosφ(s(t)), sinφ(s(t))
)

= β′(s(t)) = α′(t)
|α′(t)| =

(
cos θ(t), sin θ(t)

)
for

all t ∈ [a, b], and hence φ(s(t)) = θ(t) for all t ∈ [a, b] (by the uniqueness of the polar
representation). Since β′(s) =

(
cosφ(s), sinφ(s)

)
, we have

β′′(s) =
(
− sinφ(s)φ′(s), cosφ(s)φ′(s)

)
= φ′(s)

(
− sinφ(s), cosφ(s)

)
= φ′(s)β′(s)×
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By the definition of kβ(s) we see that kβ(s) = φ′(s). Thus∫ b

a

kα
(
t)
∣∣α′(t)∣∣ dt =

∫ b

a

kβ(s(t))s′(t) dt =

∫ s(b)

s(a)

kβ(s)ds =

∫ s(b)

s(a)

φ′(s) ds

= φ(s(b))− φ(s(a)) = θ(b)− θ(a) = 2πWind(α′, 0) = 2πTurn(α).

1.20 Theorem: (The Fundamental Theorem for Plane Curves) Let I ⊆ R be an interval
with a ∈ I, let p, u ∈ R2 with |u| = 1, and let ` : I ⊆ R→ R be a smooth function. Then
there exists a unique smooth regular curve β : I ⊆ R → R2 with |β′(s)| = 1 for all s ∈ I
such that β(a) = p and β′(a) = u and k(s) = `(s) for all s ∈ I.

Proof: Suppose that such a curve β exists. Since |β′(s)| = 1 for all s, we can write β′

in polar coordinates as β′(s) =
(

cos θ(s), sin θ(s)
)

with θ(a) ∈ [0, 2π). Then we have

β′′(s) =
(
− sin θ(s)θ′(s), cos θ(s)θ′(s)

)
= θ′(s)β′(s)× so that θ′(s) = k(s) = `(s). We can

integrate to get θ(s) = θ(a) +
∫ s
a
`(t) dt. Since β′(s) =

(
cos θ(s), sin θ(s)

)
we can integrate

again to get

β(s) = p+
( ∫ s

a
cos θ(t) dt ,

∫ s
a

sin θ(t) dt
)
.

This shows that β(s) is uniquely determined and gives us a formula for β(s).
Conversely, we can choose θ0 ∈ [0, 2π) so that (cos θ0, sin θ0) = u, and then define

θ(s) = θ0 +
∫ s
a
`(t) dt so that θ(a) = θ0 and θ′(s) = `(s) for all s ∈ I, and then define

β(s) = p +
( ∫ s

a
cos θ(t) dt ,

∫ s
a

sin θ(t) dt
)

so that β′(s) =
(

cos θ(s), sin θ(s)
)

for all s ∈ I.

Then |β′(s)| = 1 for all s and β(a) = p and β′(a) =
(

cos θ(a), sin θ(a)
)

= (cos θ0, sin θ0) = u
and β′′(s) = θ′(s)β′(s)× so that k(s) = θ′(s) = `(s) for all s ∈ I, as required.
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Curves in R3

1.21 Definition: Let β : I ⊆ R → R3 be a smooth regular curve in R3 parametrized by
arclength (so |β′(s)| = 1 for all s ∈ I). The unit tangent vector of β at s is the unit
vector T (s) = Tβ(s) = β′(s). The vector β′′(s) iis called the curvature vector of β at s.
The scalar curvature of β at s is given by κ(s) = κβ(s) =

∣∣β′′(s)∣∣.
If β′′(s) 6= 0 then we define the principal normal vector of β at s to be the unit

vector P (s) = Pβ(s) = β′′(s)
|β′′(s)| , and we define the binormal vector of β at s to be the unit

vector B(s) = Bβ(s) = T (s)×P (s). Note that {T (s), P (s), B(s)
}

is a positive ordered

orthonormal basis for R3. Since B = T×P and P = T ′

|T ′| , we have

B′ = T ′×P + T×P ′ = |T ′|P×P + T×P ′ = T×P ′.
Notice that B′ is orthogonal to both T and B

(
it is orthogonal to T because B′ = T×P ′

and it is orthogonal to B because we have B(s).B(s) = |B(s)|2 = 1 for all s so taking the
derivative on both sides gives 2B′.B = 0

)
. Since {T, P,B} is an orthonormal basis for R3

and B′ is orthogonal to both T and B, we have B′ = (B′.P )P . We define the torsion of
β at s to be τ(s) = τβ(s) = −B′(s).P (s) so that B′(s) = −τ(s)P (s) for all s (the negative
sign is included so that the torsion of the right-handed helix is positive).

To summarize the above definitions, when β : I ⊆ R→ R3 is a smooth regular curve,
parametrized by arclength, with non-zero curvature vector β′′(s) 6= 0, the unit tangent
vector, the principal normal vector, the binormal vector, the scalar curvature
and the torsion of β at s are given by

T (s) = Tβ(s) = β′(s),

P (s) = Pβ(s) = β′′(s)
|β′′(s)| ,

B(s) = Bβ(s) = T (s)×P (s),

κ(s) = κβ(s) =
∣∣β′′(s)∣∣,

τ(s) = τβ(s) = −B′(s).P (s).

and {T, (s)P (s), B(s)} is a positive ordered orthonormal basis for R3 for every s ∈ I. From
the definition of P and κ we have T ′ = κP , and as explained above, we defined τ = −B′.P
so that B′ = −τP . Since P = B×T we also have

P ′ = B′×T +B×T ′ = −τP×T + κB×P = τB − κT.
Thus the derivatives T ′, P ′ and B′ satisfy the following matrix identity which gives a
system of three equations called the Frenet-Seret Formulas T ′

P ′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
P
B

 .

When α : I ⊆ R→ R3 is a smooth regular curve in R3, we reparametrize by arclength
by choosing a ∈ I and letting β(s) = α(t(s)) where s(t) =

∫ t
a
|α′(r)| dr, then we define the

unit tangent vector of α at t to be T (t) = Tα(t) = Tβ(s(t)), and if β′′(s(t)) 6= 0, we
define the principal normal vector, the binormal vector, the scalar curvature and
the torsion of α at t to be given by P (t) = Pα(t) = Pβ(s(t)), B(t) = Bα(t) = Bβ(s(t)),
κ(t) = κα(t) = κβ(s(t)) and τ(t) = τα(t) = τβ(s(t)). The following theorem shows that
these are all well-defined, that is they do not depend on the choice of a ∈ I.
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1.22 Theorem: Let α : I ⊆ R → R3 be a smooth regular curve. For all t ∈ I for which
α′(t)×α′′(t) 6= 0, we have

T =
α′

|α′|
, P =

T ′

|T ′|
, B = T×P

κ =
|α′×α′′|
|α′|3

, τ =
det3(α′, α′′, α′′′)∣∣α′ × α′′∣∣2 .

Proof: Choose a ∈ I and let β(s) = α(t(s)) where s(t) =
∫ t
a
|α′(r)| dr. Then α(t) = β(s(t))

and so for all t ∈ I
α′(t) = β′(s(t))s′(t),

α′′(t) = β′′(s(t))s′(t)2 + β′(t)s′′(t),

α′′′(t) = β′′′(s(t))s′(t)3 + 3β′′(s(t))s′(t)s′′(t) + β′(t)s′′′(t),

α′(t)×α′′(t) =
(
β′(s(t))× β′′(s(t))

)
s′(t)3,

(α′(t)×α′′(t)).α′′′(t) =
((
β′(s(t))×β′′(s(t))

).β′′′(s(t)))s′(t)6.
Since α′×α′′ = (β′×β′′)(s′)3, we have α′×α′′ = 0 ⇐⇒ β′×β′′ = 0. Since |β′(s)| = 1
for all s, it follows

(
by taking the derivative of 1 = β′(s).β′(s)) that β′ and β′′ are

orthogonal, and so we have |β′×β′′| = |β′| |β′′| = |β′′| so that β′×β′′ = 0 ⇐⇒ β′′ = 0.
Since Tα(t) = β′(s(t)) we have Tα

′(t) = β′′(s(t))s′(t) so that Tα
′(t) = 0 ⇐⇒ β′′(s(t)) = 0.

Thus

α′(t)×α′′(t) = 0 ⇐⇒ β′(s(t))×β′′(s(t)) = 0 ⇐⇒ β′′(s(t)) = 0 ⇐⇒ Tα
′(t) = 0.

Suppose that α′(t)×α′′(t) 6= 0. Since Tα
′(t) = β′′(s(t))s′(t) and s′(t) = |α′(t)| > 0 we have

Tα
′(t)∣∣Tα′(t)∣∣ =

β′′(s(t))s′(t)∣∣β′′(s(t))s′(t)∣∣ =
β′′(s(t))∣∣β′′(s(t))∣∣ = Pβ(s(t) = Pα(t) and

Bα(t) = Bβ(s(t)) = Tβ(s(t))×Pβ(s(t)) = Tα(t)×Pα(t).

Since α′×α′′ = (β′×β′′)(s′)3 and |β′×β′′| = |β′′| and s′ = |α′|, we have

|α′(t)×α′′(t)|
|α′(t)|3

=
∣∣β′′(s(t))∣∣ = κβ(s(t)) = κα(t).

To simplify notation, write β for β(s(t)) and similarly for β′ and β′′, and write T for
Tβ(s(t)) = Tα(t) and similarly for P and B, and write κ for κβ(s(t)) = κα(t) and similarly
for τ . Since β′ = T , using the Frenet-Serre formulas and the fact that {T, P,B} is a
positive ordered orthonormal basis for R3, we have

(β′×β′′).β′′ = (T×T ′).T ′′ = (T×(κP )).(κP )′ = (T×(κP )).(κ′P + κP ′)

= κ2(T×P ).P ′ = κ2(T×P ).(−κT + τB) = κ2τ.

Since we have det3(α′, α′′, α′′′) = (α′×α′′).α′′′ =
(
(β′×β′′).β′′′)(s′)6 = κ2τ |α′|6 and we

have |α′×α′′| = κ |α′|3, it follows that

det3
(
α′(t), α′′(t), α′′′(t)

)∣∣α′(t)×α′′(t)∣∣2 =
κα(t)2τα(t) |α′(t)|6

κα(t)2|α′(t)|6
= τα(t).
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1.23 Example: The curve α : R → R3 given by α(t) =
(
a cos t, a sin t, bt

)
is called a

(right-handed) helix. We have

α′(t) =
(
− s sin t, a cos t, b

)
,

α′′(t) =
(
− a cos t,−a sin t, 0

)
,

α′′′(t) =
(
a sin t,−a cos t, 0

)
and

α′(t)×α′′(t) =
(
ab sin t,−ab cos t, a2,

)
and so ∣∣α′(t)∣∣ = (a2 + b2)1/2,∣∣α′(t)×α′′(t)∣∣ = a(a2 + b2)1/2 and

(α′(t)×α′′(t)).α′′′(t) = a2b,

and hence

κ(t) =
|α′(t)×α′′(t)|
|α′(t)|3

=
a

a2 + b2
and

τ(t) =
(α′(t)×α′′(t)).α′′′(t)

|α′(t)|6
=

b

a2 + b2
.

We note that the scalar curvature and the torsion of the helix are constant.

1.24 Theorem: Let α : I ⊆ R→ R3 be a smooth regular curve in R3.

(1) The curvature of α is identically zero if and only if (the image of) α lies on a line.
(2) If α has non-vanishing curvature (so its torsion is defined) then the torsion of α is
identically zero if and only if (the image of) α lies in a plane.

Proof: The proof of Part 1 is the same as the proof of the analogous theorem for plane
curves (Theorem 1.14). To prove part 2, suppose that κα(t) 6= 0 for all t ∈ I. Choose

a ∈ I and let β(s) = α(t(s)) where s(t) =
∫ t
a
|α′(r)| dr.

Suppose τα(t) = 0 for all t. Then τβ(s) = τα(t(s)) = 0 for all s. Write τ(s) = τβ(s).
We have B′(s) = −τ(s)P (s) = 0 for all s, so B(s) is constant, say B(s) = b ∈ R3 for all s
and note that |b| = |B(s)| = 1. Note that d

ds (β(s).b) = β′(s).b = T (s).B(s) = 0 for all s,
and so β(s).b is constant, say β(s).b = c ∈ R. Thus we have α(t).b = β(s(t)).b = c for
all t and so (the image of) α lies on the plane in R3 given by x.b = c.

Suppose, conversely, that (the image of) α lies on a plane in R3, say α(t).b = c
for all t ∈ I where b, c ∈ R3 with |b| = 1. Then β(s).b = α(t(s)).b = c for all s.
Take the derivative to get β′(s).b = 0 and β′′(s).b = 0 for all s, that is T (s).b = 0
and κ(s)P (s).b = 0 for all s. Since we are assuming that κα(t) 6= 0 for all t, hence
κ(s) = κβ(s) 6= 0 for all s, it follows that P (s).b = 0 for all s. Since {T (s), P (s), B(s)}
is orthonormal and T (s).b = P (s).b = 0 and |b| = 1, it follows that B(s) = ±b for all s.
Since B(s) is continuous, either we have B(s) = b for all s or we have B(s) = −b for all s
and, in either case, B′(s) = 0 for all s. Since 0 = B′(s) = −τ(s)P (s) with |P (s)| = 1, we
have τ(s) = 0, that is τβ(s) = 0, for all s, and hence τα(t) = τβ(s(t)) = 0 for all t.
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1.25 Definition: Let α : I ⊆ R → R3 be a smooth regular curve in R3, let a ∈ I,
and suppose that κ(a) 6= 0 (and hence τ(a) is defined). We define the osculating plane
of α at t = a to be the plane through α(a) parallel to T (a) and P (a), that is the plane
(x−α(a)).B(a) = 0. We define the osculating circle (or the best-fit circle) of α at t = a
as we did for a planar curve (in Definition 1.15). Let p = α(a), T = T (a), P = P (a), and

κ = κ(a). Reparametrize by arclength, letting β(s) = α(t(s)) where s(t) =
∫ t
a
|α′(r)| dr so

that we have β(0) = p. β′(0) = T and β′′(0) = κP . The osculating circle at t = a is the
circle given by

σ(s) =
(
p+ 1

κ P
)
− 1

κ cos(κs)P + 1
κ sin(κs)T

σ′(s) = sin(κs)P + cos(κs)T

σ′′(s) = κ cos(ks)P − κ sin(κs)T

which is the circle of radius R = 1
κ centered at p + 1

κP , parametrized by arclength (since
|σ′(s)| = 1 for all s), such that σ(0)=p=β(0), σ′(0)=T =β′(0) and σ′′(0)=κP =β′′(0).

1.26 Note: When α is a smooth regular curve, the scalar curvature at t = a is equal to
the reciprocal of the radius of the osculating circle at t = a.

1.27 Theorem: (The Fundamental Theorem for Space Curves) Given p, u, v ∈ R3 with
|u| = |v| = 1 and u.v = 0, and given smooth functions c, d : I ⊆ R → R where I is an
interval with 0 ∈ I and c(s) > 0 for all s ∈ I, there exists a unique smooth regular curve
β : I → R3 with β(0)=p, T (0)=u, P (0)=v and κ(s)=c(s) and τ(s)=d(s) for all s∈I.

Proof: We want to have T ′ = κP , P ′ = −κT + τB and B′ = −τP , so we solve the system
of linear first order differential equations

X ′ = cY

Y ′ = −cX + dZ

Z ′ = −dY
with the initial conditions X(0) = u, Y (0) = v and Z(0) = u×v (such a system always has
a unique solution). We claim that

{
X(s), Y (s), Z(s)

}
is a positive ordered orthonormal

basis for R3 for all s (this is true when s = 0 from the initial conditions). Write X1 = X,
X2 = Y and X3 = Z and define Fk,` : I → R by Fk,`(s) = Xk(s).X`(s) for 1 ≤ k ≤ ` ≤ 3.
Then the functions Fk,` satisfy the system of differential equations

d
dsF1,1 = d

ds (X.X) = 2X ′.X = 2 (cY ).X = 2c F1,2

d
dsF1,2 = d

ds (X.Y ) = X ′.Y +X.Y ′ = c Y.Y +X.(−cX+dZ) = −c F1,1+dF1,3+c F2,2

d
dsF1,3 = d

ds (X.Z) = X ′.Z+X.Z ′ = c Y.Z+X.(−dY ) = −dF1,2+c F2,3

d
dsF2,2 = d

ds (Y.Y ) = 2Y ′.Y = 2 (−cX+dZ).Y = −2c F1,2+2dF2,3

d
dsF2,3 = d

ds (Y.Z) = Y ′.Z+Y.Z ′ = (−cX+dZ).Z+Y.(−dY ) = −c F1,3−dF2,2+dF3,3

d
dsF3,3 = d

ds (Z.Z) = 2Z ′.Z = 2 (−dY ).Z = −2F2,3

with the initial conditions Fk,k(0) = 1 and Fk,`(0) = 0 when k 6= `. Again, such a
system has a unique solution, and the unique solution to this system is easily seen to
be given by the constant functions Fk,k(s) = 1 and Fk,`(s) = 0 for all s ∈ I and all
k 6= `. Thus

{
X(s), Y (s), Z(s)

}
is an orthonormal system for all s ∈ I, as claimed. To get

β′(s) = T (s) = X(s) with β(0) = p we must choose β(s) = p+
∫ s
0
X(t) dt. Then we have

T = X and κ(s) = |β′′(s)| = |T ′| = |X ′| = |cY | = c and P = 1
κ T
′ = 1

cX
′ = 1

c (cY ) = Y
and B = T×P = X×Y = Z and τ = −B′.P = −Z ′.Y = (dY ).Y = d, as required.
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