Chapter 1. Curves

Curves in R”

1.1 Definition: A (parametrized) curve in R" is a continuous map o : I C R — R”
where I is a nonempty interval. We can write a(t) = (21(¢), z2(t), -+, zn(t)) where each
2y : I CR — R is continuous. When a € I and o/(a) = (z1'(a), -+, z,/(a)) exists, a'(a)
is called the tangent vector to o at t = a. We say that « is C* when the k" order
derivative of « exists and is continuous on I, we say that a is smooth or C>° when « is
C* for all k € Z*, and we say that « is regular when « is C! with o/(t) # 0 for all t € I.
Unless otherwise stated, we shall always assume curves are smooth and regular.

1.2 Example: The curve a : R — R? given by a(t) = (¢,t|) is not regular because o(0)
does not exist. The curve 8 : R — R? given by S(t) = (¢3,t?) is not regular because
B'(0) = 0. The curve v : R — R? given by v(0) = (0,0) and ~(t) = (¢,¢*sin 1) for t # 0 is
differentiable but not regular because v is not continuous at ¢ = 0.
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1.3 Theorem: Every regular curve in R™ is locally injective.

Proof: Let o : I C R — R™ be a regular curve, write a(t) = (21(t), -, zn(t)), and let
a € I. Since o/(a) # 0 we have x’'(a) # 0 for some index k, say x;’(a) > 0 (the case that
2’ (a) < 0is similar). Since ' is continuous, x’ is continuous. Since xy’ is continuous and
x'(a) > 0 we can choose 6 > 0 so that |t — a| < § = z}/(t) > 0. Then zj, is increasing,
hence injective, in the interval (a—3J,a+4d) NI, and so « is injective in the same interval.

1.4 Example: The curves o, 3,7 : R — R? from Example 1.2 are not regular, but they
are all injective, so a curve does not necessarily need to be regular in order to be injective.
1.5 Example: The alpha curve o : R — R? which is given by a(t) = (t2—1,¢(t*—1)),
the circle 8 : R — R? which is given by 3(t) = (cost,sint), and the limgon v : R — R?
which is given by v(t) = ((1+2cost) cost, (1+ 2 cost)sint), are all regular, so they are all
locally injective, but they are not (globally) injective (the alpha curve crosses itself with
a(l) = a(—1) = (0,0), the circle is periodic with 5(t + 27k) = B(t) for all k € Z, and the
limagon is periodic and crosses itself).
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1.6 Example: The curve o : R — R? given by o(0) = 0 and a(t) = (¢?,t*sin 1) for t # 0
is differentiable, but not regular since o/(0) = 0, and (as you can verify) it is not locally
injective at t = 0.




1.7 Definition: For a curve « : [a,b] C R — R", the length of « on [a, b] is
p
L=1Ly([a,b]) = sup{ > Jalt;) — a(tj-1)| ‘a =t <ti <ty <---<tp= b}
j=1

(which can be infinite) and we say that « is rectifiable on [a, b] when L ([a,b]) is finite.

1.8 Theorem: Let o : [a,b] C R — R™ be a regular curve. Then « is rectifiable with

length
b
L = Ly/([a,b]) :/ o/ ()| dt.
Proof: For a partition P = (to,t1,---,t,), where a =ty < t; < --- <t, =b, let us write
P
L(a, P) = Z‘()—ajl‘andS(aP Z}a )|t = ti—1)

so L(a, P) is the sum which approximates Length(«) and S(«, P) is the Riemann sum
(using right endpoints) which approximates the integral f; |/ (t)| dt. First note that

a(t)—a(t;-)] £ 35 3% feelts) —ralty)| = 5 5 Jow(ein) (0 —1i01)

32 85 Mty 1) = 3 M= a) = nM(b—a)

where we used the Mean Value Theorem to choose points c; j, between ¢;_; and ¢; such that
(zn(t;) —zk(tj—1)) = ' (cjk)(t; —tj—1) and we let M =max {|zi/(t)| [1<k<n,t€[a,b]}.
This shows that L = L ([a, b]) is finite.

Note that if P = (to,t1,---,tp) is a partition of [a,b], and @ is a partition which is
obtained by adding one more point, say @ = (to,t1,---,t;-1,5,t;, -+, tp), then we have
L(o, P) < L(a, Q) because |a(t;) — a(tj—1) < |a(t;) — afs)| + |e(s) — atj—1)]|. It follows
(by induction) that when @ is any partition with P C @) we have

L(a,P) < L(a,Q) < L.
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Also note that for any partition P, with c¢;; chosen as above, we have
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Let € > 0. Since each z’ is continuous (hence uniformly continuous) on [a,b] and since

|a’| is continuous (hence Riemann integrable) on [a, b], we can choose § > 0 such that for
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all s,t € [a,b] with [s — t| < § we have |z;/(s) — )/ ()| < Fntb—ay for all k , and such that
for every partition P = (to,t1,--,t,) with |[P| < § we have ‘f: o/ (t)] dt — S(a, P)| < &
where |P| is the size of the partition P, that is |P| = max {tj—tj_l | 1< jgp}. Choose
a partition Py with |P;| < 6 and choose a partition P, such that |L — L(a, P»)| < & then
let P = P, UP,. Since P, C P we have L(a, Py) < L(a P) < L so that |L — L(a, P)| <
|L — L(o, Py)| < §. Since |P| < |Py| < § we have !f o/ (t)| dt — S(a, P)| < &. Also since

|P| < 4, for all of the points ¢; , we have |¢; ,—t;] < 0 so that |z (c;x)—z' (t;)] < In—a)
p n

and hence (as shown above) ‘L(a,P)—S(a,P)| <> |xk’(cj7k)—xk’(tj)‘(tj—tj,l) < 3.

Thus =l k=1

(L—fj o/ ()| dt‘ < ‘L—L(a,P)‘ + ‘L(a,P)—S(a,P)‘ + ‘S(a,P)—f; o/ (8)] dt)
<st5t+Ss=c¢
Since € > 0 was arbitrary, it follows that L = f |/ (t)| dt, as required.

1.9 Example: A curve which is differentiable, but not C!, can have infinite length. For
example, consider the curve a : [0,1] — R? given by a(t) = (x(t),y(t)) where z(t) = ¢
y(t) = t* cos % when ¢ # 0 with y(0) = 0. Note that z(y) and y(t) are both differentiable
(with ¢/(0) = 0) but y/(t) is not continuous at 0 (as you can check).

Let P be the partition P = (to,t1,---t,) with tp = 0 and t; = # that is let
_ 1 1 1 1 . (_1)p—j+1

P = (0, v Y= i 75,1) We have yl(tj) = = J+1 cos(p j+)m = 2 for
1<j5< p, a and hence |y(tj) — (tj_l)‘ = ‘p7j+1 + p7j+2‘ > p7j+2 for 2 < j < p. Letting
{=p—j+ 2 we have

P P p., P,

> Ja(ty) —altj-1| > X Jyt) —yti-1)| > X o = 2 %

j=1 j=2 j=2 =2

Since Y 2 diverges, it follows that L, ([a,b]) = oo

1.10 Definition: When a: I CR — R™ is a continuous curve and s : I CR — J C Risa
homeomorphism with inverse ¢ = t(s), the curve 8 : J C R — R™ defined by 8(s) = «(t(s))
is called a reparameterisation of o, and the map s is called a change of parameter
(or a change of coordinates). When s is C! with s/(t) # 0 for all ¢, we say that s is
regular. By the Inverse Function Theorem, if s = s(¢) is smooth (or C*) and regular then
so is its inverse ¢ = ¢(s). When s'(t) > 0 for all ¢t we say s preserves direction and
when s'(t) < 0 for all ¢ we say s reverses direction. When « and s are both smooth

(or C*) and regular, so is 3, and for ¢ = t(s) we have 3'(s) = o/ (t(s))t'(s) = ?,/((f)) When
|B'(s)| = 1for all s € J, we say that [ is parameterised by arclength. Unless otherwise

stated, we shall assume that any change of coordinates is smooth and regular.

1.11 Theorem: Every regular curve can be reparameterised by arclength, using a regular
direction-preserving change of coordinates.

Proof: Let a: I C R — R"™ be a regular curve. Let a € I and define s(t) = f; o/ (1) dr-.
Note that s'(t) |a ’ > 0 so s(t) is regular and strictly increasing, and it maps the

interval I to an interval .J, and if o is C¥ then so is s = s(t). By the inverse function

t = t(s) satisfies t'(s) = lt) = |a,1(t)|. The reparameterised curve g : J — R™ given by

B(s) = a(t(s)) satisfies B'(s) = o/ (t(s))t/(s) = @:Eigg%' so that |3'(s)| =1 for all s € J.




Curves in R2

1.12 Definition: Let 8 : J € R — R? be a smooth regular curve parameterised by
arclength. For a vector u = (z,y) € R?, write u* = (—y,z) and note that |u*| = |u|. The
unit tangent vector and the unit normal vector of 3 at s are the vectors

T(s) = Tp(s) = B'(s),
N(s) = Na(s) =T(s)*.
Since (3 is parametrized by arclength |T( )| |6'(s)| =1 and |N(s)| = |5'(s)*| =1 for

all s. For all s we have 3'(s | ‘ = 1. By differentiation both sides we obtain

4 (B'(s)+B'(s)) = 0, that is 2ﬁ (t )_6 ( ) = 0. Thus 5”(s) is orthogonal to 8'(s) = T'(s),
and so (" (s) lies in the span of T'(s)* = N(s). We define the signed curvature of 3 at
)

s to be the real number k(s) = kg(s such that
B"(s) = k(s) N(s) = kp(s) Na(s).
Since |Ng(s)| = 1 we have |8 (s)| = |ks(s)|- The scalar curvature of 3 at s is

k(s) = kg(s) |k ‘:‘5”(3)‘.

When o : I C R — R? is a smooth regular curve We ﬁrst reparametrize by arclength
by choosing a € I and letting B(s) = «a(t(s)) where s( f |a/(r)|dr, and then we
define T(t) = To(t) = Tp(s(t)), N(t) = Na(t) = Np(s(t )) /f( ) = ka(t) = kp(s(t)) and
k(t) = ka(t) = Kp(s(t)), and we call these the unit tangent vector, the unit normal vector,
the signed curvature, and the scalar curvature, of o at t. The following theorem shows
that these are well-defined, that is they do not depend on the choice of a € I.

1.13 Theorem: For a smooth regular curve o« = a(t) we have
/ I x
T=o V=)
/| o]

deta(a’,a”)  (a/xa')-e3  detz(a,a”, e3)

k = = =
o2 o2 o2
o | deta (e, 0| o/ xa”|
I E

where dety(’, @) is the determinant of the 2x 2 matrix with columns o/,a” € R?, and
where we identify o/, o/ € R? with (% ), (

1"
«
0

of two vectors (%/), (O‘ON) € R3 and detz(a/, ", e3) is the determinant of the 3 x 3 matrix

12

whose first two columns are (06/), (O‘O ) € R? and whose last column is the 3'¢ standard
basis vector es.

) € R3 so that o xa is the cross product

Proof: First verify (easily) that when we identify u,v € R? with (), (7) € R® we have
u*ev = detg(u,v) = (uxv)e3 = dets(u, v, e3)
and | deta(u, v)| = |uxv|.
Peparametrize by arclength by choosing a € I and letting §(s) = «a(t(s)) where
f |a/ ()| dr. We have Tg(s) = '(s) and Ng(s) = f’(s)*. Let us find formulas for
k:g( ) and rg(s). By definition, kg(s)B’(s)* = kg(s)Ng(s) = 5”"(s). Take the dot product
of both sides with £'(s)* to get
ks (s ) = p'(s)*B"(s)
rp(s) = |kp(s)| = |B'(s)x 8" (s)].
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Now let us find formulas for T'(t) = T, (t) = Ts(s(t)), N(t) = Nua(t) = Na(s(t)),
k(t) = kq(t) = k’g( (1)) and k(t) = ka(t) = Kkp(s(t)). We have a(t) = (s ( )) so that
o/ (t) = B'(s(t)s'(t). Since |#'(s(t))| =1 and s'(t) > 0, it follows that |/ (t)| = . Since
B"(s) = kg(s)Ng(s) and [Na(s)| = [T(s)| = 1, we have |8"(s)| = |ks(s)| = ) Since
6\’/’(5}3 is orthogonal to 8'(s) (see Definition 1.12) we have rg(s) = |8 (s)| = }B ( )xB"(s)|.

a(t) = B(s(t) , o/ (t) = B'(s(t))s'(t) , o (t) = B"(s(t))s'(t)* + B'(s(1))s" (1),
o/ (t)xa”(t) = (B'(s(t)) x 8" (s(t))) (s")°.

Since |o/(t)| = §'(t) this gives

o(t) Hs(8)) = To(s(t)) — a’(t) \< S(1))X = s(t)) =
gy = PO = Tals0) = T0) . (1) = Tals(0)* = Na(s(t) = N(1),
o(t)xa”(t) (g "
Samp - =P e@)x8 0,
A O1 — | 0 7 60| = i) = ).

Finally note that since 8" = kgNg = kg(5’)* we have ' x 3" = kg 8’ x(8')* = kg es and
so kg = (B’ xB")-e3

1.14 Theorem: For a smooth regular curve « in R?, the curvature of « is identically zero
if and only if (the image of) « lies on a straight line.

Proof: Let a: I C R — R? be a smooth regular curve Choose a € I and reparametrize
a by arclength by setting 5(s) = a(t(s)) where s(t f |a/(t)| dt. Suppose that x(t) =0
for all ¢. Then we have 0 = r(t(s)) = |B"(s)] for all s so that 8”(s) = 0 for all s. By
integrating once we obtain 8'(s) = u for some u € R? since |5’(s)| = 1, u is a unit vector)
and by integrating again we obtain 3(s) = p + su for some p € R2. Thus «a(t) = p + s(t)u
for all ¢ so that « lies on the line through p in the direction of .

Suppose, conversely, that (the image of ) « lies on a straight line, say the line p + su
where p,u € R? and |u| = 1. Then for every t € I there is a (unique) s = s(t) such that
a(t) = p+ s(t)u. We remark that taking the dot product with u gives s(t) = (a(t) — p)-u
for all ¢ so we see that s(¢) is smooth. Since a(t) = p + s(t)u, we have o/ (t) = s'(t)u and
o' (t) = s"(t)u so that a(t) x o”(t) = s'(t)s” (t) uxu = 0 and kence x(t) = 0 for all ¢.

1.15 Definition: Let a : I C R — R? be a smooth regular curve, let a € I, and suppose
that k(a) # 0. We define the osculating circle (or the best-fit circle) of o at ¢t = a
as follows. Let p = a(a), T = T(a), N = N( ), k = k(a) and k = k(a). Reparametrize
by arclength, letting B(s) = a(t(s) where s( f |/ ()| dr so that we have §(0) = p.
p'(0) =T and p”(0) = kEN. The osculating c1rcle at t = a is the circle given by

o(s)=(p+ 1 N) — 1 cos(ks)N + ¢ sin(ks)T

o'(s) = sin(ks)N + cos(ks)T

0" (s) = kcos(ks)N — ksin(ks)T
which is the circle of radius R = ; centered at p + 1N , parametrized by arclength (since
|o’(s)] =1 for all s), such that o(0)=p=2(0), ¢'(0 ) T=p'(0) and ¢”(0)=kN =p3"(0).

1.16 Note: When « is a smooth regular curve, the scalar curvature at ¢ = a is equal to
the reciprocal of the radius of the best-fit circle at t = a.



1.17 Theorem: (Polar Coordinates) Let I C R be an interval with a € I, let p € R?,
and let o : I C R — R? be a continuous curve in R? with a(t) # p for any t € I. Let
ro = {a(a) — p‘ and choose 6y € R such that a(a) — p = ro(cos by,sinby) (0y is unique up
to an integer multiple of 2m). Then there exist unique continuous functions r,0 : I — R
with r(a) = ro and 6(a) = 0y such that

a(t) =p+r(t)(cosb(t),sinb(t))

for all t € I. Moreover, if o is smooth (or C*) then so are the functions r and 0.
Proof: We omit the proof, but we remark that it is surprisingly involved.

1.18 Definition: For a continuous curve « : [a,b] C R — R? with «a(t) # p for any ¢, we
define the winding number Wind(«, p) of o about p as follows. We let 7y = |a(a) - p{
and choose 6y € [0, 27) so that a(a) = p+ro(cosby,sinbp), then we let r,0 : [a,0] CR - R
be the unique continuous maps such that a(t) = p+7(t)( cosd(t),sin0(t)) for all t € [a, b],
and then we define

Wind(a, p) = 5-(0(b) — 0(a)).

When « is regular, we define the turning number of a to be
Turn(a) = Wind (<, 0).

1.19 Theorem: Let o : [a,b] C R — R? be a curve in R? and write a(t) = (z(t), y(t)).
(1) If a is a C* curve with a(t) # 0 for any t € [a,b] then

: _ [Ty () —y(t)2'@)
Wind(a,0) = %/a 22 1 (1) dt

(2) If « is C? regular curve then

b
Turn(a) = %/ ko (t) |/ (t)] dt.

Proof: To prove Part 1, write o in polar coordinates as a(t) = r(t)( cos6(t),sin6(t)), that
is write x = r cosf and y = rsin 6 where r = r(t) and 6 = (t) are continuous with r(¢) > 0
for all t € [a,b] and 6(a) € [0,27). Then
/b zy —ya' gt — /b (rcos)(r'sinf +rcosf8') — (rsind)(r' cosd — rsing ') @t

o 2y

r2 cos? +r2sin? 6

:/br2008299’+7°251n299’dt:/be,dt

2
=0(b) — 0(a) = 27 Wind(a, 0).
To prove Part 2, write o/(¢) in polar coordinates as o' (t) = |O/(t)|(cos 0(t),sinf(t)) with
f(a) € [0,27). Since v is C? and regular, we note that o’ is C* with a/(t) # 0forallt € [a,b)].

Reparametrize a by arclength 1etting B(s) = a(t(s)) where s(t f |/ ()| dt, then write
B'(s) in polar coordinates as B'(s) = |3'(s)|(cos ¢(s), sin ¢(s )) with ¢(0) € [0,27). Since

18'(s)] = 1 we have (cos@(s(t )),Sln¢( () = B'(s(t) = % = (cosf(t),sinf(t)) for
all t € [a,b], and hence ¢(s(t)) = 0(t) for all t € [a,b] (by the uniqueness of the polar
representation). Since 3'(s) = (cos ¢(s),sin¢(s)), we have

B"(s) = (—sing(s) ¢ (s), cos p(s) ¢ (s)) = ¢'(s)( — sin é(s), cos ¢(s)) = ¢'(s) B'(s)*



By the definition of kg(s) we see that kg(s) = ¢'(s). Thus

s(b) s(b)
/ kp(s)ds = @' (s)ds
s(a) s(a)

= ¢(s(b)) — ¢(s(a)) = 0(b) — 0(a) = 2r Wind(a/, 0) = 27 Turn(«).

1.20 Theorem: (The Fundamental Theorem for Plane Curves) Let I C R be an interval
with a € I, let p,u € R? with |u| =1, and let £ : I C R — R be a smooth function. Then
there exists a unique smooth regular curve 8 : I C R — R? with |8'(s)] =1 for all s € I
such that $(a) = p and '(a) = u and k(s) = {(s) for all s € I.

b b
/k:a(t)\a’(t)|dt:/ kg(s(t))s'(t)dt

a

Proof: Suppose that such a curve ( exists. Since |3'(s)] = 1 for all s, we can write 3
in polar coordinates as 3'(s) = (cosf(s),sinf(s)) with 6(a) € [0,27). Then we have
B"(s) = (—sinb(s)0 (s),cos0(s)0'(s)) = 6'(s)B'(s)* so that 0'(s) = k(s) = £(s). We can
integrate to get 0(s) = 0(a) + [ £(t)dt. Since 5'(s) = (cosf(s),sinf(s)) we can integrate
again to get

B(s)=p+ (f; cos(t)dt, [’ sinf(t) dt).

This shows that ((s) is uniquely determined and gives us a formula for 3(s).

Conversely, we can choose 6y € [0,27) so that (cosfp,sinfy) = u, and then define
0(s) = 0o + [ £(t)dt so that 6(a) = 6y and '(s) = {(s) for all s € I, and then define
B(s)=p+ (fas cos(t)dt, [ sinf(t) dt> so that #'(s) = (cosf(s),sinf(s)) for all s € I.
Then |5'(s)| = 1for all s and 3(a) = p and '(a) = (cosb(a),sinb(a)) = (cos by, sinfy) = u
and ”(s) = 0'(s)5'(s)* so that k(s) = 0'(s) = £(s) for all s € I, as required.



Curves in R3

1.21 Definition: Let 8: I C R — R3 be a smooth regular curve in R?® parametrized by
arclength (so |5'(s)| = 1 for all s € I). The unit tangent vector of 8 at s is the unit
vector T'(s) = T(s) = '(s). The vector 5”(s) iis called the curvature vector of § at s.
The scalar curvature of 3 at s is given by x(s) = rg(s) = |8"(s)|.

If 5”(s) # 0 then we define the principal normal vector of 5 at s to be the unit
vector P(s) = Pg(s) = é,;%j% and we define the binormal vector of § at s to be the unit
vector B(s) = Bg(s) = T(s)x P(s). Note that {T'(s), P(s), B(s)} is a positive ordered

orthonormal basis for R3. Since B = Tx P and P = %, we have
B ' =T'xP+TxP =|T'|PxP+TxP =TxP.

Notice that B’ is orthogonal to both 7" and B (it is orthogonal to T' because B’ =T x P’
and it is orthogonal to B because we have B(s)+B(s) = |B(s)|?> =1 for all s so taking the
derivative on both sides gives 2 B’« B = O). Since {T, P, B} is an orthonormal basis for R3
and B’ is orthogonal to both T" and B, we have B’ = (B’+ P)P. We define the torsion of
B at s to be 7(s) = 73(s) = —B’(s)+ P(s) so that B’(s) = —7(s)P(s) for all s (the negative
sign is included so that the torsion of the right-handed helix is positive).

To summarize the above definitions, when 3 : I C R — R? is a smooth regular curve,
parametrized by arclength, with non-zero curvature vector 5”(s) # 0, the unit tangent
vector, the principal normal vector, the binormal vector, the scalar curvature
and the torsion of § at s are given by

T(s) =Tp(s) = B'(s),
P(s) = Ps(s) = {2,
B(s) = Ba(s) = T(s) x P(s),
k(s) = ka(s) ‘6"
7(s) =T75(s) = = B'(s )'P(S)'

and {T, (s)P(s), B(s)} is a positive ordered orthonormal basis for R3 for every s € I. From
the definition of P and x we have T = xP, and as explained above, we defined 7 = —B’- P
so that B’ = —7P. Since P = BxT we also have

P ' =B'XT+ BXxT' = —-7PxT+kBxP =71B — kT.

Thus the derivatives T', P’ and B’ satisfy the following matrix identity which gives a
system of three equations called the Frenet-Seret Formulas

T 0 kK 0 T
Pl=|-x 0 7 P
B’ 0 —7 0 B

When o : I € R — R? is a smooth regular curve 1n R3, we reparametrize by arclength
by choosing a € I and letting 8(s) = a(t(s)) where s(t f |/ (r)| dr, then we define the
unit tangent vector of o at ¢ to be T'(t) = T,(t) = TB( (t)), and if B"(s(t)) # 0, we
define the principal normal vector, the binormal vector, the scalar curvature and
the torsion of a at ¢ to be given by P(t) = P,(t) = Ps(s(t)), B(t) = Ba(t) = Bg(s(t)),
k(t) = ka(t) = kp(s(t)) and 7(t) = 74(t) = 75(s(t)). The following theorem shows that
these are all well-defined, that is they do not depend on the choice of a € I.



1.22 Theorem: Let o : I C R — R3 be a smooth regular curve. For all t € I for which
o/ (t)xa”(t) # 0, we have

o T’
= — P=— B=TxP
/| 7 7|’
B |O/ ><a”| B detg(o/, oz”, O/”)
|Oz"3 ’ ‘O/ % O/'}2

Proof: Choose a € I and let 3(s) = a(t(s)) where s( f |/ (r)| dr. Then a(t) = B(s(t))
and so for all t € 1

o (t) = B'(s(2))s'(1),
o (t) = B"(s(t))s'(t)* + B'(t)s" (1),
a(t) = 8" (s(t))s'(t)° + 3 8" (s(t))s' (1)s" (t) + B'(t)s"" (1),
o/ (t)xa(t) = (B'(s(t)) x B"(s(t)))s'(t)°,
(o' (t) x " (t)) =" (t) = ((B'(s(£)) x B (s(t))) « B (s(2))) s' (1)°.

Since o/ xa” = (8’ xB")(s')?, we have o/ xa” =0 <= p'xB” = 0. Since |5'(s)] = 1
for all s, it follows (by taking the derivative of 1 = §'(s)+f'(s)) that 8’ and 5" are
orthogonal, and so we have |5’ x3"| = |B'||8”| = |8”] so that 3/x8" =0 < p”" =0.
Since T, (t) = ('(s(t)) we have T, (t) = 8" (s(t))s'(t) so that T,,'(t) = 0 < B"(s(t)) = 0.
Thus
d(t)xa’(t) =0 <= B'(s(t))xB"(s(t)) =0 = B"(s(t)) =0 < T,/'(t) =0.

Suppose that o/ (t) x @’ (t) # 0. Since T, (t) = 8" (s(t))s'(t) and s'(t) = |o/(t)| > 0 we have

/ 1

L) _ SO _ SO g~ py
7@ [87(s0)s' O]~ [87(5(0))]

Ba(t) = Bp(s(t)) = Tp(s(t)) x Ps(s(t)) = Ta(t) X Pu(t).

Since o' x " = (' x 8")(s')® and |5’ x B"| = |B"] and s’ = |o/|, we have
/() xa”" ()] _ | a0 _ _
DS = (0] = ws(s(0)) = 1)
To simplify notation, write § for S(s(t)) and similarly for 8’ and §”, and write T for
T3(s(t)) = Tw(t) and similarly for P and B, and write & for kg(s(t)) = kq(t) and similarly
for 7. Since B’ = T, using the Frenet-Serre formulas and the fact that {7, P, B} is a
positive ordered orthonormal basis for R3, we have
(B"'xB")«B" = (TxT")T" = (T'x (kP))+(kP) = (T x (kP))+ (k' P + kP')
=K*(TxP)+ P = r*(TxP)+(—kT + 7B) = r*1.

Since we have detz(a/, o, o"’) = (&’ xa")+a™ = ((8'x")+B")(s')° = k?*7|a/|® and we
have |a’ x o] = k |d/|?, it follows that

dets (a/(t),a"(t),a"(t))  Kalt)?7a(t) |/ ()|

o/ (1) x " (1)]? Ka(t)?]e/ (t)[6

= To(t).



1.23 Example: The curve a : R — R3? given by a(t) = (a Cost,asint,bt) is called a
(right-handed) helix. We have

— ssint,acost, b),
— acost, —asint,O),

asint, —acost, 0) and

~— ~— ~— ~—
I
N N N N

absint, —abcost, a?, )
and so
‘a’(t)‘ = (a® +b2)1/2,
o/ (1) x " ()] = a(a® + b*)/* and
(o (8) xa”(t)) 0" (t) = a®b,

and hence o (8) ")
o (t) X« a
= Toor e
(@) xa’(t)a"(t) b
T(t) = ’a/(t)‘G T a2 4 b2

We note that the scalar curvature and the torsion of the helix are constant.

nd

1.24 Theorem: Let o : I C R — R? be a smooth regular curve in R3.

(1) The curvature of « is identically zero if and only if (the image of) « lies on a line.
(2) If o has non-vanishing curvature (so its torsion is defined) then the torsion of « is
identically zero if and only if (the image of) « lies in a plane.

Proof: The proof of Part 1 is the same as the proof of the analogous theorem for plane
curves (Theorem 1.14). To prove part 2, suppose that k,(t) # 0 for all t € I. Choose
a € I and let S(s) = a(t(s)) where s(t) = fcf |/ (r)| dr.

Suppose 7,(t) = 0 for all t. Then 75(s) = 7,(t(s)) = 0 for all s. Write 7(s) = 75(s).
We have B'(s) = —7(s)P(s) = 0 for all s, so B(s) is constant, say B(s) =b € R3 for all s
and note that |b| = |B(s)| = 1. Note that - (5(s)+b) = 8'(s)+b=T(s)+B(s) = 0 for all s,
and so B(s)+b is constant, say [(s)+b = c¢ € R. Thus we have a(t)+b = [(s(t))+b = ¢ for
all t and so (the image of) « lies on the plane in R? given by z+b = c.

Suppose, conversely, that (the image of) a lies on a plane in R3, say a(t)-b = ¢
for all t € I where b,c € R3 with |o] = 1. Then B(s)-b = a(t(s))+b = c for all s.
Take the derivative to get '(s)«b = 0 and 5”(s)+b = 0 for all s, that is T'(s)+«b = 0
and k(s)P(s)+b = 0 for all s. Since we are assuming that k,(t) # 0 for all ¢, hence
k(s) = kp(s) # 0 for all s, it follows that P(s)+b = 0 for all s. Since {T'(s), P(s), B(s)}
is orthonormal and 7T'(s)«b = P(s)«b = 0 and |b| = 1, it follows that B(s) = £b for all s.
Since B(s) is continuous, either we have B(s) = b for all s or we have B(s) = —b for all s
and, in either case, B'(s) = 0 for all s. Since 0 = B’(s) = —7(s)P(s) with |P(s)| = 1, we
have 7(s) = 0, that is 73(s) = 0, for all s, and hence 7,(t) = 73(s(t)) = 0 for all ¢.
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1.25 Definition: Let a : I € R — R3 be a smooth regular curve in R3, let a € I,
and suppose that x(a) # 0 (and hence 7(a) is defined). We define the osculating plane
of @ at t = a to be the plane through «(a) parallel to T'(a) and P(a), that is the plane
(x—a(a))+«B(a) = 0. We define the osculating circle (or the best-fit circle) of c at t = a
as we did for a planar curve (in Definition 1.15). Let p = a(a), T = T( ), P = P(a), and
k = k(a). Reparametrize by arclength, letting B(s) = a(t(s)) where s(t f |/ (r)] dr so
that we have 8(0) = p. f/(0) = T and ”(0) = kP. The osculating mrcle at t = a is the
circle given by
o(s) = (p+ 2 P) — L cos(ks)P + Lsin(ks)T
(s) sin(ks)P + cos(ks)T
0" (s) = kcos(ks)P — ksin(ks)T

which is the circle of radius R = E centered at p + + =P, parametrized by arclength (since
lo’(s)] =1 for all s), such that o(0)=p=p(0), o’(0 ) T=/4'(0) and ¢”(0)=kP=p"(0).

1.26 Note: When « is a smooth regular curve, the scalar curvature at ¢ = a is equal to
the reciprocal of the radius of the osculating circle at t = a.

1.27 Theorem: (The Fundamental Theorem for Space Curves) Given p,u,v € R with
lu| = |v| =1 and u+v = 0, and given smooth functions ¢,d : I C R — R where I is an
interval with 0 € I and c(s) > 0 for all s € I, there exists a unique smooth regular curve

B: I — R3 with 8(0)=p, T(0)=u, P(0)=v and k(s)=c(s) and 7(s)=d(s) for all s€ .

Proof: We want to have 7" = kP, P/ = —kT + 7B and B’ = —7P, so we solve the system
of linear first order differential equations

X' =¢Y
Y = —cX +dZ
7' = —dY

with the initial conditions X (0) = u, Y (0) = v and Z(0) = uxv (such a system always has
a unique solution). We claim that {X(s),Y(s), Z(s)} is a positive ordered orthonormal
basis for R? for all s (this is true when s = 0 from the initial conditions). Write X; = X,
Xo =Y and X3 = Z and define Fy o : I — R by Fj, ¢(s) = Xp(s)* Xe(s) for 1 <k < ¢ <3.
Then the functions F}, , satisfy the system of differential equations

i}711,1: (X X)—ZX/XZZ(CY)'XZZCFLQ

ds ds

AP o=2(XY)=XY+XY =cY Y+ Xe(—cX+dZ) = —cFi1+d Fi 3+cFa o
AP 3=2(XZ)=X"Z+X-Z' =cYZ+X-(—dY) = —dFip+cF3
LFyo=2(Y.Y)=2Y"Y =2(—cX+dZ)Y = —2cF 5+2d F>3

APy =LV Z) =Y Z4Y 7 = (~cX+dZ)+ Z+Y+(=dY) = —cFy 3—d Fy 2 +d F3 3
LAFys=0(2.2)=22"Z=2(-dY)+Z =—-2F53

with the initial conditions Fj x(0) = 1 and Fy¢(0) = 0 when k£ # ¢. Again, such a
system has a unique solution, and the unique solution to this system is easily seen to
be given by the constant functions Fj p(s) = 1 and Fj(s) = 0 for all s € I and all
k # €. Thus {X(s),Y(s), Z(s)} is an orthonormal system for all s € I as claimed. To get
B'(s) = T(s) = X(s) with (0) = p we must choose 3(s) = p+ [; X(t)dt. Then we have
T =X and s(s) = |f"(s)| = |T'| = |X'| =|c¢Y]| =cand P = LT = iX’ =LY)=Y
and B=TxP=XxY=Zand7=-B+P=-7'-Y = (dY)-Y = d, as required.
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