Appendix 2. The Generalized Cross Product

2.1 Definition: Given vectors ui,us,---,ur € R™, we define the parallelotope on
ui, -, ug to be the set
k
P(u1,~-,uk) = { Z tiui OgtZ S 1 for all Z}

j=1
We define the volume of this parallelotope, denoted by V' (uy,---,ux), recursively by
V(uy) = |up| and
V(ug, -+ ux) =V(ug,--- ,uk_1)|Pr0jUL (uk)‘

where U = Span{uq, -+, up_1}.

2.2 Theorem: Let uy,---,u; € R™ and let A = (uy,---,ur) € Mpxi(R). Then

V(ug,---,ur) = /det(ATA).

Proof: We prove the theorem by induction on k. Note that when £ = 1, u; € R”™ and
A =uy € Myxi1(R), we have V(u1) = |u1] = Jur-u1 = VurTuy = VATA, as required.
Let k> 2 and suppose, inductively, that when A = (uq,---,ug—1) € M,xk—1 we have
det(ATA) > 0 and V(uy, -, up_1) = v/det(ATA). Let B = (uy,---,u) = (A,ug). Let
U = Span{ui,---,ux—1} = Col(A). Let v = Projy(ux) and w = Projy.(ur). Note
that v € U = Col(A) and w € UL = Null(AT). Then we have u; = v + w so that
B = (A,v+ w). Since v € Col(A), the matrix B can be obtained from the matrix (A, w)
by performing elementary column operations of the type Cy +— Cj + tC;. Let E be the
product of the elementary matrices corresponding to these column operations, and note
that B = (A,v +w) = (A,w)E. Since the row operations Cy — C} + tC; do not alter
the determinant, F is a product of elementary matrices of determinant 1, so we have
det(E) = 1. Since det(E) = 1 and w € Null(AT) we have

det(B'B) = det (E”(A,w)" (A w)E) = det (<i;> (A w))

T T. T
_ det (A A ATw) - (A A |£’2) — det(ATA) [wl2.

wlA  wlw 0

By the induction hypothesis, we can take the square root on both sides to get

\Jdet(BTB) = \/det(ATA) [w] = V(ur, - up—1) Jw| = V(ur, -, ug).

2.3 Note: In the special case that A = (uy,us,- -, u,) € M,(R), we have

V(ug, - up) = y/det(ATA) = /det(A)? = | det(A)|.

2.4 Remark: There is a similar formula for the volume of an [-simplex in R™. For the
l-simplex S = [ag, a1, -, a;] (this means that S is the smallest convex set which contains
each of the points ay), if we let A = (uy,ug, -, u;) € Myx;(R) where up = ar — ag, then
the volume of §' is given by

1 1
Vag,a1,---,a;] = l—'V(ul,---,ul) = ﬁ\/det(ATA).



2.5 Definition: Let F' be a field. For n > 2 we define the cross product
n—1
X: Mnx(n_l)(F) =[] F* — F"
k=1

as follows. Given A = (u1,u2, -, Un—1) € Myx(n—1)(F), we define X (A), also written as
X(uy,ug, -+, u,—1), to be the vector in F™ with entries

X(A)] = X(U]_,UZ, T un—l)j - (_1)n+‘7 det A(J)

where AY) € M, _1(F) is the matrix obtained from A by removing the j*" row. For u € F?
we write X (u) as u*, and for u,v € F3 we write X (u,v) as u X v.

2.6 Example: Given u € F? we have

Given u,v € F3 we have

(31 U1 U2V3 — U3V

uy v1
uXv=|1u | x| vg | = |—det v = | usvy — uqvs
us V3 500 ULve — UV

2.7 Note: Because the determinant is n-linear and alternating, it follows that the cross
product is (n — 1)-linear and alternating. Thus for u;,v,w € F™ and t € F' we have

(1) X(uh"'av—'—wa"'vunfl) :X(ulv"'ava"Wunfl)+X(u17"'7w7"'7u’n71)7

(2) X(ub"';tuk?”';un—l) :tX(uh'"auka"'aun—l)?

(3) X(“l?"'aukv"'7ul7"'7un—1) = _X(ula"'7ul7"'7uk7"'7un—1)-

2.8 Definition: Recall that for uy,---,u, € R™, the set {uy,---,u,} is a basis for R™ if
and only if det(uy,---,u,) # 0. For an ordered basis A = (uq,- -, u,), we say that A is
positively oriented when det(uq,---,u,) > 0 and we say that A is negatively oriented
when det(uq, -+, u,) <O0.

2.9 Theorem: (Properties of the Cross Product) For uy,- -, up—1,v1,"+,Up—1,w € R™,

(l) X(uh T 7un—1)'w = det(U1, T 7un—17w)7

(2) X(uy, -+ up—1)sur =0 for 1 <k <n.

(3) X(uy,--+,up—1) =0 if and only if {uq,- -, u,—1} is linearly dependent.

(4) When w = X (uy,---,un—1) # 0 we have det(uy, -, u,—1,w) > 0 so that the n-tuple
(uq,--+,up—1,w) is a positively oriented basis for R™,

(5) |X(u1, e ,un_l)‘ is equal to the volume of the parallelotope on u1,- -+, Up_1,

(6) X(uy, ,Up_1)X(v1,+,v,_1) = det(BTA) where A= (u1, -+, un_1) € Mpsxn_1(R)
and B=(v1, -+ ,Up—1) € Myxn—1(R), and

(7) X(ul, e Up—2, X (V1,0 vn_l)) = Z(—l)”“det((BTA)(i)) v; where A= (uqy, -+, up_2)

=1

and B = (v1,---,vp_1), and (BTA)® is obtained from B™A by removing the i** row.



Proof: Since X (ug, -, un_1) = > (—1)"T"det AW ¢; we have

X(ug,ug, - tup_1)ew =S (=1)" i det A® w; = det(uy, -, Up_1,w),

where the last equality follows by expanding the determinant along the last column. This
proves Part (1), and Part (2) follows from Part (1) since det(uq, -+, ug, -, Up—1,ur) = 0.
To prove Part (3), let A = (uq,- -, up—1). Then {uq,---,u,_1} is linearly independent
if and only rank(A) = n—1 if and only if some set of n—1 rows of A are linearly independent
if and only if A® is invertible for some index i if and only if X (uy,- -, up—1) # 0.
Part (4) holds because when w = X (u1,- -+, u,_1) # 0 we have |w|? > 0 so that

0 < |wP=wew= X(up, ,Up_1)ow = det(ur, -, Un_1,w).

To prove Part (6), let x = X (u1, -, up—1), y = X(v1, - ,vp-1), A= (U1, ,Up_1)
and B = (vq,--+,v,-1). Using Part (1) we see that x+y = det(uy,- -, un—_1,y) = det(A,y)
and also z+y = det(vy, -+, v,_1,2) = det(B, x), and so

(+9)? = det(A, y) det(B, z) = det (B, 2)7(A,y)) = det (BTA BTy) .

1A 2Ty
By Part (2), x is perpendicular to the columns of A and y is perpendicular to the columns
of B and so we have ATz = 0 = BTy and so

BTA 0
2 _
(xey) —det( 0 zey

When x+y # 0, we can divide both sides by z+y to get z+y = det(BTA), as required.

We shall now provide two proofs to deal with the case in which x+y = 0. For the first
proof, we consider both sides of the above equality, namely (x-y)? and (zy) det(BZA),
to be polynomials in the entries of the vectors u; and v;. By unique factorization of
polynomials (in many variables), we obtain (x+y) = det(B*A), as required.

Here is an alternate proof. Suppose that x<y = 0. First we consider the case that
x = 0ory = 0. In this case, either rank(A) < n—1 or rank(B) < n—1, and in either case we
have rank(BZA) < n — 1 so that B4 is not invertible, hence det(B*4) = 0 = z+y. Finally,
we consider the case that z+y = 0 with z # 0 and y # 0. In this case, since x+y = 0 we
have y € Span{z}+. Since x # 0, the set {u1,---,u,_1} is linearly independent by Part (3)
and so we have y € Span{z}+ = Span{ui,---,u,_1} = Col(A). But also, by Part (2),
we have y € Span{vy,---,v,_1}+ = Col(B)+ = Null(BT). Since 0 # y € Col(A4) we can
write y = At for some 0 # t € R*~! and since y € Null(BT) we have 0 = BTy = BTAt.
Since t # 0 and B7At = 0 it follows that B”A is not invertble, so again we find that
det(BTA) = 0 = x-y. This completes the proof of Part (6).

Note that Part (5) follows from Part (6). Indeed when A = (uq,---,u,—1) we have

) = (z+y) det(B*A).

‘X(ula T 7un—l)’2 = X(“’l? U ,Un_]_)'X('U,l, te 'aun—l) = det(ATA)

‘X(ul, e ,un_l)’ = /det(ATA) = V(ug, -, up_1).

and so



In order to prove Part (7), we shall obtain a change of variables formula for the cross
product. Let A = (uy,- -+, upn—1) € My x(n—1)(R) and let P = (vq,---,v,) € Mp(R). Note
that the i'" entry of PTX(PA) is

(PTX(PA)), = v;"X(PA) = X(PA)-v; = det(PA,v;).

Recall that Cof(P) P = P Cof(P) = det(P) I, where Cof(P) is the cofactor matrix of P
(or the transpose of the cofactor matrix of P, depending on convention), so we have

(det P)"(PTX(PA))Z. = det (P Cof(P)) det(PA, v;) = det(P) det (Cof (P)PA, Cof (P)v;)
= det(P) det ((det P)A, (Cof(P)P);)) = det(P) det ((det P)A, (det P)e;)
= (det P)"*ldet(A4, e;) = (det P)" T (=1)" T det A®) = (det P)" 1 X (A);.
Thus (det P)"PTX(PA) = (det P)""1X(A). When P is invertible, we can divide both
sides by (det P)" to get PT X(PA) = (det P) X(A). Even when P is not invertible, we can
regard both sides of the equality (det P)"PT X (PA) = (det P)"*1 X (A) as polynomials in
the entries of the vectors u; and v;, and then by unique factorization we obtain the change
of variables formula

PTX(PA) = (det P) X (A).
Alternatively, replacing P by PT, we obtain
P X(PTA) = (det P) X(A).

Finally, let us prove Part (7). Let A = (uy,- -, un—2) and B = (vy,--+,v,-1), and let
y=X(B)=X(v1,-+,vn-1), so that we have

X(ula"'7un—2:X(Ul>"';Un—1)) = X(4,y).
Let P = (B,y) = (v1,--,Un_1,y). Note that
det P = X (v1,- -, vn1)y = yy = |y|*
By the above change of variables formula, we have

[yPPX(4,y) = (det P)X (A,y) = P X (P"(4,y))
_PX ((l;;) (Ayy)) = PX (ffﬁ 5%) =PX <§7§14 ’;’2>
_ ((S(—mﬂ' det <(B;%i(i) |y0|2> ei) +0~en)

n—1
= (1}1, “ry Un—1, y) ( Z (_1)n+i|y’2 det(BTA)(i) e +0- en)
i=1

= lyP? z (—1)"+ det ((BTA) D)o,

Regarding both sides of the equality |y|>X (4, y) = [y[*> 3 (—1)"** det ((BTA)") v; as poly-

i=1
nomials in the entries of the vectors u; and v;, we can divide both sides by |y|? to obtain

n—1
X(A,y) =Y det (BTA)® v;, as required.
i=1



