
Appendix 2. The Generalized Cross Product

2.1 Definition: Given vectors u1, u2, · · · , uk ∈ Rn, we define the parallelotope on
u1, · · · , uk to be the set

P (u1, · · · , uk) =
{ k∑

j=1

tiui

∣∣∣0 ≤ ti ≤ 1 for all i
}
.

We define the volume of this parallelotope, denoted by V (u1, · · · , uk), recursively by
V (u1) = |u1| and

V (u1, · · · , uk) = V (u1, · · · , uk−1)
∣∣ProjU⊥(uk)

∣∣
where U = Span{u1, · · · , uk−1}.

2.2 Theorem: Let u1, · · · , uk ∈ Rn and let A = (u1, · · · , uk) ∈Mn×k(R). Then

V (u1, · · · , uk) =
√

det(ATA).

Proof: We prove the theorem by induction on k. Note that when k = 1, u1 ∈ Rn and
A = u1 ∈ Mn×1(R), we have V (u1) = |u1| =

√
u1.u1 =

√
u1

Tu1 =
√
ATA, as required.

Let k ≥ 2 and suppose, inductively, that when A = (u1, · · · , uk−1) ∈ Mn×k−1 we have
det(ATA) > 0 and V (u1, · · · , uk−1) =

√
det(ATA). Let B = (u1, · · · , uk) = (A, uk). Let

U = Span{u1, · · · , uk−1} = Col(A). Let v = ProjU (uk) and w = ProjU⊥(uk). Note
that v ∈ U = Col(A) and w ∈ U⊥ = Null(AT ). Then we have uk = v + w so that
B = (A, v + w). Since v ∈ Col(A), the matrix B can be obtained from the matrix (A,w)
by performing elementary column operations of the type Ck 7→ Ck + tCi. Let E be the
product of the elementary matrices corresponding to these column operations, and note
that B = (A, v + w) = (A,w)E. Since the row operations Ck 7→ Ck + tCi do not alter
the determinant, E is a product of elementary matrices of determinant 1, so we have
det(E) = 1. Since det(E) = 1 and w ∈ Null(AT ) we have

det(BTB) = det
(
ET (A,w)T (A,w)E

)
= det

((
AT

wT

)(
A w

))
= det

(
ATA ATw
wTA wTw

)
=

(
ATA 0

0 |w|2
)

= det(ATA) |w|2.

By the induction hypothesis, we can take the square root on both sides to get√
det(BTB) =

√
det(ATA) |w| = V (u1, · · · , uk−1) |w| = V (u1, · · · , uk).

2.3 Note: In the special case that A = (u1, u2, · · · , un) ∈Mn(R), we have

V (u1, · · · , un) =
√

det(ATA) =
√

det(A)2 =
∣∣det(A)

∣∣.
2.4 Remark: There is a similar formula for the volume of an l-simplex in Rn. For the
l-simplex S = [a0, a1, · · · , al] (this means that S is the smallest convex set which contains
each of the points ak), if we let A = (u1, u2, · · · , ul) ∈ Mn×l(R) where uk = ak − a0, then
the volume of S is given by

V [a0, a1, · · · , al] =
1

l !
V (u1, · · · , ul) =

1

l !

√
det(ATA).
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2.5 Definition: Let F be a field. For n ≥ 2 we define the cross product

X : Mn×(n−1)(F ) =
n−1∏
k=1

Fn → Fn

as follows. Given A = (u1, u2, · · · , un−1) ∈ Mn×(n−1)(F ), we define X(A), also written as
X(u1, u2, · · · , un−1), to be the vector in Fn with entries

X(A)j = X(u1, u2, · · · , un−1)j = (−1)n+j detA(j)

where A(j) ∈Mn−1(F ) is the matrix obtained from A by removing the jth row. For u ∈ F 2

we write X(u) as u×, and for u, v ∈ F 3 we write X(u, v) as u× v.

2.6 Example: Given u ∈ F 2 we have

u× =

(
u1

u2

)×
=

(
−u2

u1

)
.

Given u, v ∈ F 3 we have

u× v =

u1

u2

u3

×
 v1

v2
v3

 =


det

(
u2 v2
u3 v3

)
−det

(
u1 v1
u3 v3

)
det

(
u1 v1
u2 v2

)

 =

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

 .

2.7 Note: Because the determinant is n-linear and alternating, it follows that the cross
product is (n− 1)-linear and alternating. Thus for ui, v, w ∈ Fn and t ∈ F we have

(1) X(u1, · · · , v + w, · · · , un−1) = X(u1, · · · , v, · · · , un−1) + X(u1, · · · , w, · · · , un−1),
(2) X(u1, · · · , t uk, · · · , un−1) = tX(u1, · · · , uk, · · · , un−1),
(3) X(u1, · · · , uk, · · · , ul, · · · , un−1) = −X(u1, · · · , ul, · · · , uk, · · · , un−1).

2.8 Definition: Recall that for u1, · · · , un ∈ Rn, the set {u1, · · · , un} is a basis for Rn if
and only if det(u1, · · · , un) 6= 0. For an ordered basis A = (u1, · · · , un), we say that A is
positively oriented when det(u1, · · · , un) > 0 and we say that A is negatively oriented
when det(u1, · · · , un) < 0.

2.9 Theorem: (Properties of the Cross Product) For u1, · · · , un−1, v1, · · · , vn−1, w ∈ Rn,

(1) X(u1, · · · , un−1).w = det(u1, · · · , un−1, w),
(2) X(u1, · · · , un−1).uk = 0 for 1 ≤ k < n.
(3) X(u1, · · · , un−1) = 0 if and only if {u1, · · · , un−1} is linearly dependent.
(4) When w = X(u1, · · · , un−1) 6= 0 we have det(u1, · · · , un−1, w) > 0 so that the n-tuple
(u1, · · · , un−1, w) is a positively oriented basis for Rn,
(5)

∣∣X(u1, · · · , un−1)
∣∣ is equal to the volume of the parallelotope on u1, · · · , un−1,

(6) X(u1, · · · , un−1).X(v1, · · · , vn−1) = det(BTA) where A= (u1, · · · , un−1) ∈ Mn×n−1(R)
and B=(v1, · · · , vn−1) ∈Mn×n−1(R), and

(7) X
(
u1, · · ·, un−2, X(v1, · · ·, vn−1)

)
=

n−1∑
i=1

(−1)n+idet
(
(BTA)(i)

)
vi where A=(u1, · · ·, un−2)

and B = (v1, · · · , vn−1), and (BTA)(i) is obtained from BTA by removing the ith row.
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Proof: Since X(u1, · · · , un−1) =
n∑

i=1

(−1)n+i detA(i) ei we have

X(u1, u2, · · · , un−1).w =
n∑

i=1

(−1)n+i detA(i) wi = det(u1, · · · , un−1, w),

where the last equality follows by expanding the determinant along the last column. This
proves Part (1), and Part (2) follows from Part (1) since det(u1, · · · , uk, · · · , un−1, uk) = 0.

To prove Part (3), let A = (u1, · · · , un−1). Then {u1, · · · , un−1} is linearly independent
if and only rank(A) = n−1 if and only if some set of n−1 rows of A are linearly independent
if and only if A(i) is invertible for some index i if and only if X(u1, · · · , un−1) 6= 0.

Part (4) holds because when w = X(u1, · · · , un−1) 6= 0 we have |w|2 > 0 so that

0 < |w|2 = w.w = X(u1, · · · , un−1).w = det(u1, · · · , un−1, w).

To prove Part (6), let x = X(u1, · · · , un−1), y = X(v1, · · · , vn−1), A = (u1, · · · , un−1)
and B = (v1, · · · , vn−1). Using Part (1) we see that x.y = det(u1, · · · , un−1, y) = det(A, y)
and also x.y = det(v1, · · · , vn−1, x) = det(B, x), and so

(x.y)2 = det(A, y) det(B, x) = det
(
(B, x)T (A, y)

)
= det

(
BTA BTy
xTA xTy

)
.

By Part (2), x is perpendicular to the columns of A and y is perpendicular to the columns
of B and so we have ATx = 0 = BTy and so

(x.y)2 = det

(
BTA 0

0 x.y
)

= (x.y) det(BTA).

When x.y 6= 0, we can divide both sides by x.y to get x.y = det(BTA), as required.
We shall now provide two proofs to deal with the case in which x.y = 0. For the first

proof, we consider both sides of the above equality, namely (x.y)2 and (x.y) det(BTA),
to be polynomials in the entries of the vectors ui and vj . By unique factorization of
polynomials (in many variables), we obtain (x.y) = det(BTA), as required.

Here is an alternate proof. Suppose that x.y = 0. First we consider the case that
x = 0 or y = 0. In this case, either rank(A) < n−1 or rank(B) < n−1, and in either case we
have rank(BTA) < n− 1 so that BTA is not invertible, hence det(BTA) = 0 = x.y. Finally,
we consider the case that x.y = 0 with x 6= 0 and y 6= 0. In this case, since x.y = 0 we
have y ∈ Span{x}⊥. Since x 6= 0, the set {u1, · · · , un−1} is linearly independent by Part (3)
and so we have y ∈ Span{x}⊥ = Span{u1, · · · , un−1} = Col(A). But also, by Part (2),
we have y ∈ Span{v1, · · · , vn−1}⊥ = Col(B)⊥ = Null(BT ). Since 0 6= y ∈ Col(A) we can
write y = At for some 0 6= t ∈ Rn−1, and since y ∈ Null(BT ) we have 0 = BTy = BTAt.
Since t 6= 0 and BTAt = 0 it follows that BTA is not invertble, so again we find that
det(BTA) = 0 = x.y. This completes the proof of Part (6).

Note that Part (5) follows from Part (6). Indeed when A = (u1, · · · , un−1) we have∣∣X(u1, · · · , un−1)
∣∣2 = X(u1, · · · , un−1).X(u1, · · · , un−1) = det(ATA)

and so ∣∣X(u1, · · · , un−1)
∣∣ =

√
det(ATA) = V (u1, · · · , un−1).
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In order to prove Part (7), we shall obtain a change of variables formula for the cross
product. Let A = (u1, · · · , un−1) ∈Mn×(n−1)(R) and let P = (v1, · · · , vn) ∈Mn(R). Note

that the ith entry of PTX(PA) is(
PTX(PA)

)
i

= vi
TX(PA) = X(PA).vi = det(PA, vi).

Recall that Cof(P )P = P Cof(P ) = det(P ) I, where Cof(P ) is the cofactor matrix of P
(or the transpose of the cofactor matrix of P , depending on convention), so we have

(detP )n
(
PTX(PA)

)
i

= det
(
P Cof(P )

)
det(PA, vi) = det(P ) det

(
Cof(P )PA,Cof(P )vi

)
= det(P ) det

(
(detP )A, (Cof(P )P )i

))
= det(P ) det

(
(detP )A, (detP )ei

)
= (detP )n+1 det(A, ei) = (detP )n+1(−1)n+i detA(i) = (detP )n+1X(A)i.

Thus (detP )nPTX(PA) = (detP )n+1X(A). When P is invertible, we can divide both
sides by (detP )n to get PTX(PA) = (detP )X(A). Even when P is not invertible, we can
regard both sides of the equality (detP )nPTX(PA) = (detP )n+1X(A) as polynomials in
the entries of the vectors ui and vj , and then by unique factorization we obtain the change
of variables formula

PTX(PA) = (detP )X(A).

Alternatively, replacing P by PT , we obtain

P X(PTA) = (detP )X(A).

Finally, let us prove Part (7). Let A = (u1, · · · , un−2) and B = (v1, · · · , vn−1), and let
y = X(B) = X(v1, · · · , vn−1), so that we have

X(u1, · · · , un−2, X(v1, · · · , vn−1)
)

= X(A, y).

Let P = (B, y) = (v1, · · · , vn−1, y). Note that

detP = X(v1, · · · , vn−1).y = y.y = |y|2.
By the above change of variables formula, we have

|y|2X(A, y) = (detP )X(A, y) = P X
(
PT (A, y)

)
= P X

((
BT

yT

)(
A, y

))
= P X

(
BTA BTy
yTA yTy

)
= P X

(
BTA 0
yTA |y|2

)
= P

(( n−1∑
i=1

(−1)n+i det

(
(BTA)(i) 0

yTA |y|2
)
ei

)
+ 0 · en

)

= (v1, · · · , vn−1, y)

(
n−1∑
i=1

(−1)n+i|y|2 det(BTA)(i) ei + 0 · en
)

= |y|2
n−1∑
i=1

(−1)n+i det
(
(BTA)(i)

)
vi

Regarding both sides of the equality |y|2X(A, y) = |y|2
n−1∑
i=1

(−1)n+i det
(
(BTA)(i) vi as poly-

nomials in the entries of the vectors ui and vj , we can divide both sides by |y|2 to obtain

X(A, y) =
n−1∑
i=1

det
(
(BTA)(i) vi, as required.
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