
Appendix 1. Review of Differentiation

1.1 Remark: In this appendix we shall review some of the theory of differentiation of
vector valued functions of several variables, as presented in MATH 247, including The
Inverse Function Theorem (which is not usually proven in MATH 237).

1.2 Note: Recall that for f : U ⊆ R→ R and a ∈ U ,

f is differentiable at a ⇐⇒ lim
x→a

f(x)− f(a)

x− a
exists

⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U 0< |x−a|<δ =⇒
∣∣∣f(x)− f(a)

x− a
−m

∣∣∣ < ε

⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U 0< |x−a|< δ =⇒
∣∣f(x)− f(a)−m(x− a)

∣∣ < ε |x− a|
⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U |x−a| ≤ δ =⇒

∣∣f(x)−
(
f(a) +m(x− a)

)∣∣ ≤ ε |x− a|.
In this case, the number m ∈ R is unique, we call it the derivative of f at a and denote
it by f ′(a), and the map `(x) = f(a) + f ′(a)(x− a) is called the linearization of f at a.

1.3 Definition: Let f : U ⊆ Rn → Rm, where U is open. We say f is differentiable at
a ∈ U if there is an m× n matrix A such that

∀ ε>0 ∃ δ>0 ∀x∈U
(
|x− a| ≤ δ =⇒

∣∣f(x)− (f(a) +A(x− a))
∣∣ ≤ ε|x− a|).

We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and
we denote it by Df(a). The affine map L : Rn → Rm given by L(x) = f(a)+Df(a)(x−a),
which approximates f(x), is called the linearization of f at a. We say f is differentiable
in U when it is differentiable at every point a ∈ U .

1.4 Example: If f is the affine map f(x) = Ax + b, then we have Df(a) = A for all a.
Indeed given ε > 0 we can choose δ > 0 to be anything we like, and then for all x we have∣∣f(x)− f(a)−A(x− a)

∣∣ =
∣∣Ax+ b−Aa− b−Ax+Aa

∣∣ = 0 ≤ ε|x− a|.

1.5 Theorem: (The Derivative is the Jacobian) Let f : U ⊆ Rn → Rm and let a ∈ U .
If f is differentiable at a then the partial derivatives ∂fk

∂x`
(a) all exist and the matrix A

which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).

Proof: Suppose that f is differentiable at a. Fix indices k and ` and let g(t) = fk(a+ te`)
so that ∂fk

∂x`
(a) = g′(0) provided that the derivative g′(0) exists. Let A be a matrix as in

the definition of differentiability. Let ε > 0. Choose δ > 0 such that for all x ∈ U with
|x − a| ≤ δ we have

∣∣f(x) − f(a) − A(x − a)
∣∣ ≤ ε |x − a|. Let t ∈ R with |t| ≤ δ. Let

x = a+t e`. Then we have |x−a| = |te`| = |t| ≤ δ and so
∣∣f(x)−f(a)−A(x−a)

∣∣ ≤ ε |x−a|.
Since for any vector u ∈ Rm we have |uk| ≤ |u|, we have∣∣g(t)− g(0)−Ak,` t

∣∣ =
∣∣fk(a+ te`)− fk(a)−

(
A(te`)

)
k

∣∣
≤
∣∣f(a+ te`)− f(a)−A(te`)

∣∣
=
∣∣f(x)− f(a)−A(x− a)

∣∣
≤ ε |x− a| = ε |t|.

It follows that Ak,` = g′(0) = ∂fk
∂x`

(a), as required.
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1.6 Definition: Let A ∈ Mm×n(R) and let S =
{
x ∈ Rn

∣∣ |x| = 1
}

. Since S is compact,

by the Extreme Value Theorem, the continuous function f : Rn → R given by f(x) =
∣∣Ax∣∣

attains its maximum value on S. We define the norm of the matrix A to be

‖A‖ = max
{
|Ax|

∣∣|x| = 1
}
.

1.7 Lemma: (Properties of the Matrix Norm) Let A ∈Mm×n(R). Then

(1) |Ax| ≤ ‖A‖ |x| for all x ∈ Rn,

(2) if A is invertible then |Ax| ≥ |x|
‖A−1‖ for all x ∈ Rn,

(3) ‖A‖ ≤
m∑

k=1

n∑̀
=1

|Ak,`|, and

(4) ‖A‖ is equal to the square root of the largest eigenvalue of the matrix ATA.

Proof: When x = 0 ∈ Rn we have |Ax| = 0 = ‖A‖ |x| and when 0 6= x ∈ Rn we have

|Ax| =
∣∣∣|x|A x

|x|

∣∣∣ = |x|
∣∣A x
|x|
∣∣ ≤ |x| ‖A‖.

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose
x ∈ Rn with |x| = 1 such that Ax 6= 0 so we must have ‖A‖ > 0. Similarly, since
A−1 is also invertible, we also have ‖A−1‖ > 0. By Part 1, for all x ∈ Rn we have

|x| =
∣∣A−1Ax∣∣ ≤ ‖A−1‖ |Ax| so that |Ax| ≥ |x|

‖A−1‖ , as required. To prove Part 3, let

x ∈ Rn with |x| = 1. Then |x`| ≤ |x| ≤ 1 for all indices `, and so∣∣Ax∣∣ =
∣∣∣ m∑
k=1

(Ax)kek

∣∣∣ ≤ m∑
k=1

∣∣(Ax)k
∣∣ =

m∑
k=1

∣∣∣ n∑̀
=1

Ak,`x`

∣∣∣ ≤ m∑
k=1

n∑̀
=1

|Ak,`| |x`| ≤
m∑

k=1

n∑̀
=1

|Ak,`|.

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra
course).

1.8 Theorem: (Differentiability Implies Continuity) Let f : U ⊆ Rn → Rm. If f is
differentiable at a ∈ U , then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all x ∈ U we have

|f(x)− f(a)| =
∣∣f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ |Df(a) (x− a)
∣∣

≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ ‖Df(a)‖ |x− a|

Let ε > 0. Since f is differentiable at a we can choose δ with 0 < δ <
ε

1+‖Df(a)‖ such that

|x− a| ≤ δ =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ |x− a|
and then for |x− a| ≤ δ we have∣∣f(x)− f(a)

∣∣ ≤ ∣∣f(x)− f(a)−Df(a)(x− a)
∣∣+ ‖Df(a)‖ |x− a|

≤ |x− a|+ ‖Df(a)‖ |x− a| =
(
1 + ‖Df(a)‖

)
|x− a|

≤
(
1 + ‖Df(a)‖

)
δ < ε.
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1.9 Theorem: (The Chain Rule) Let f : U ⊆ Rn → V ⊆ Rm, let g : V ⊆ Rm → R`,
and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and g is differentiable at f(a). Write y = f(x) and
b = f(a). We have∣∣h(x)− h(a)−Dg(f(a))Df(a)(x− a)

∣∣ =
∣∣g(y)− g(b)−Dg(b)Df(a)(x− a)

∣∣
=
∣∣g(y)− g(b)−Dg(b)(y − b) +Dg(b)(y − b)−Dg(b)Df(a)(x− a)

∣∣
≤
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣+ ‖Dg(b)‖
∣∣y − b−Df(a)(x− a)

∣∣
=
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣+
(
1 + ‖Dg(b)‖

)∣∣f(x)− f(a)−Df(a)(x− a)
∣∣

and
|y − b| = |f(x)− f(a)|

=
∣∣f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ ‖Df(a)‖ |x− a| .

Let ε > 0 be given. Since g is differentiable at b we can choose δ0 > 0 so that

|y − b| ≤ δ0 =⇒
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣ ≤ ε
2(1+‖Df(a)‖)

|y − b| .

Since f is continuous at a we can choose δ1 > 0 so that

|x− a| ≤ δ1 =⇒ |y − b| = |f(x)− f(a)| ≤ δ0
Since f is differentiable at a we can choose δ2 > 0 so that

|x− a| ≤ δ2 =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ |x− a|
and we can choose δ3 > 0 so that

|x− a| ≤ δ3 =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ ε
2(1+‖Dg(a)‖)

|x− a| .

Let δ = min{δ1, δ2, δ3}. Then for |x− a| ≤ δ we have

|y − b| ≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+
∣∣Df(a)(x− a)

∣∣
≤ |x− a|+ ‖Df(a)‖ |x− a|
= (1 + ‖Df(a)‖) |x− a|

so ∣∣g(y)− g(b)−Dg(b)(y − b)
∣∣ ≤ ε

2(1+‖Df(a)‖)
|y − b| ≤ ε

2 |x− a|

and we have (
1 + ‖Dg(b)‖

)∣∣f(x)− f(a)−Df(a)(x− a)
∣∣ ≤ ε

2 |x− a|

and so ∣∣h(x)− h(a)−Dg(f(a))Df(a)(x− a)
∣∣ ≤ ε

2 |x− a|+
ε
2 |x− a| = ε|x− a|.

Thus h is differentiable at a with derivative Dh(a) = Dg(f(a))Df(a), as required.
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1.10 Definition: Let f : U ⊆ Rn → R, let a ∈ Rn and let v ∈ Rn. We define the
directional derivative of f at a with respect to v, written as Dvf(a), as follows: pick
any differentiable function α : (−ε, ε) ⊆ R → U ⊆ Rn, where ε > 0, such that α(0) = a
and α′(0) = v (for example, we could pick α(t) = a+ v t), let g(t) = f(α(t)), note that by
the Chain Rule we have g′(t) = Df(α(t))α′(t), and then define

Dvf(a) = g′(0) = Df(α(0))α′(0) = Df(a) v = ∇f(a).v .
Notice that the formula for Dvf(a) does not depend on the choice of the function α(t).

1.11 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.

1.12 Theorem: Let f : U ⊆ Rn → R be differentiable at a ∈ U . Say f(a) = b. The
gradient ∇f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let α(t) be any curve in the level set f(x) = b, with α(0) = a. We wish to show that
∇f(a) ⊥ α′(0). Since α(t) lies in the level set f(x) = b, we have f(α(t)) = b for all t. Take
the derivative of both sides to get Df(α(t))α′(t) = 0. Put in t = 0 to get Df(a)α′(0) = 0,
that is ∇f(a).α′(0) = 0. Thus ∇f(a) is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then Duf(a) = ∇f(a).u = |∇f(a)| cos θ, where θ is the
angle between u and ∇f(a). So the maximum possible value of Duf(a) is |∇f(a)|, and this
occurs when cos θ = 1, that is when θ = 0, which happens when u is in the direction of
∇f(a).

1.13 Theorem: (Continuous Partial Derivatives Implies Differentiability) Let U ⊆ Rn be
open, let f : U ⊆ Rn → Rm and let a ∈ U . If the partial derivatives ∂fk

∂x`
(x) exist in U and

are continuous at a then f is differentiable at a.

Proof: Suppose that the partial derivatives ∂fk
∂x`

(x) exist in U and are continuous at a.

Let ε > 0. Choose δ > 0 so that B(a, δ) ⊆ U and so that for all indices k, ` and for all
y ∈ U we have |y − a| ≤ δ =⇒

∣∣∂fk
∂x`

(y) − ∂fk
∂x`

(a)
∣∣ ≤ ε

nm . Let x ∈ U with |x − a| ≤ δ. For

0 ≤ ` ≤ n, let u` = (x1, · · · , x`, a`+1, · · · , an), with u0 = a and un = x, and note that each
u`∈B(a, δ). For 1≤`≤n, let α`(t)=(x1, · · · , x`−1, t, a`+1, · · · , an) for t between a` and x`,
For 1≤ k≤m and 1≤ `≤ n, let gk,`(t) = fk

(
α`(t)

)
so that g′k,`(t) = ∂fk

∂x`

(
α`(t)

)
. By the

Mean Value Theorem, we can choose sk,` between a` and x` so that g′k,`(sk,`)(x` − a`) =

gk,`(x`)−gk,`(a`) or, equivalently, so that ∂fk
∂x`

(
α`(sk,`)

)
(x`−a`) = fk(u`)−fk(u`−1). Then

fk(x)− fk(a) = fk(un)− fk(u0) =
n∑̀
=1

(
fk(u`)− fk(u`−1)

)
=

n∑̀
=1

∂fk
∂x`

(
α`(sk,`)

)
(x` − a`).

Let B ∈Mm×n(R) be the matrix with entries Bk,` = ∂f
∂x`

(
α`(sk,`)

)
. Then we have

f(x)− f(a)−Df(a)(x− a) =
(
B −Df(a)

)
(x− a)

and so (by Part 2 of Lemma 5.7)∣∣f(x)−f(a)−Df(a)(x−a)
∣∣ ≤ ∥∥B−Df(a)

∥∥ |x−a| ≤∑
k,`

∣∣∂fk
∂x`

(
α`(sk,`)

)
− ∂fk

∂x`
(a)
∣∣ ≤ ε|x−a|.

1.14 Corollary: If U ⊆ Rn is open and f : U ⊆ Rn → Rm is C1 then f is differentiable.
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1.15 Corollary: Every function f : U ⊆ Rn → Rm, which can be obtained by applying
the standard operations (such as multiplication and composition) on functions to basic
elementary functions defined on open domains, is differentiable in U .

1.16 Exercise: For each of the following functions f : R2 \ {(0, 0)} → R, extend the
domain of f(x, y) to all of R2 by defining f(0, 0) = 0 and then determine whether the
partial derivatives of f exist at (0, 0) and whether f is differential at (0, 0).

(a) f(x, y) = xy
x2+y2 (b) f(x, y) = |xy| (c) f(x, y) =

√
|xy|

(d) f(x, y) = x3

x2+y2 (e) f(x, y) = x
(x2+y2)1/3

(f) f(x, y) = x3−3xy2

x2+y2

1.17 Definition: For a, b ∈ Rn, we define the line segment from a to b to be the set

[a, b] =
{
a+ t(b− a)

∣∣0 ≤ t ≤ 1
}
.

For A ⊆ Rn we say the A is convex when for all a, b ∈ A we have [a, b] ⊆ A.

1.18 Exercise: Show, using the triangle inequality, that B(a, r) is convex for all a ∈ Rn

and r > 0.

1.19 Theorem: (The Mean Value Theorem) Let f : U ⊆ Rn → Rm with U open in Rn.
Suppose that f is differentiable in U . Let u ∈ Rm and let a, b ∈ U with [a, b] ⊆ U . Then
there exists c ∈ [a, b] such that

Df(c)(b− a).u =
(
f(b)− f(a)

).u.
Proof: Let α(t) = a+ t(b− a) and define g : [0, 1]→ R by g(t) = f

(
α(t)

).u. By the Chain

Rule, we have g′(t) =
(
Df(α(t))α′(t)

).u =
(
Df(α(t))(b − a)

).u. By the Mean Value
Theorem (for a real-valued function of a single variable) we can choose s ∈ [0, 1] such that
g′(s) = g(1) − g(0), that is

(
Df(α(s))(b − a)

).u = f(b).u − f(a).u =
(
f(b) − f(a)

).u.

Thus we can take c = α(s) ∈ [a, b] to get Df(c)(b− a).u =
(
f(b)− f(a)

).u.

1.20 Corollary: (Vanishing Derivative) Let U ⊆ Rn be open and connected and let
f : U → Rn be differentiable with Df(x) = O for all x ∈ U . Then f is constant in U .

Proof: Let a ∈ U and let A =
{
x ∈ U

∣∣f(x) = f(a)
}

. We claim that A is open (both
in Rn and in U). Let b ∈ A, that is let b ∈ U with f(b) = f(a). Since U is open we
can choose r > 0 so that B(b, r) ⊆ U . Let c ∈ B(b, r). Since B(b, r) is convex we have
[b, c] ⊆ B(b, r) ⊆ U . Let u = f(c) − f(b) and choose d ∈ [b, c], as in the Mean Value
Theorem, so that

(
Df(d)(c− b)

).u =
(
f(c)− f(b)

).u. Then we have∣∣f(c)− f(b)
∣∣2 =

(
f(c)− f(b)

).u =
(
Df(d)(c− b)

).u = 0

since Df(d) = O . Since
∣∣f(c)− f(b)

∣∣ = 0 we have f(c) = f(b) = f(a), and so c ∈ A. Thus
B(b, r) ⊆ A and so A is open, as claimed. A similar argument shows that if b ∈ U \ A
and we chose r > 0 so that B(b, r) ⊆ U then we have f(c) = f(b) for all c ∈ B(b, r) hence
B(b, r) ⊆ U \ A and hence U \ A is also open. Note that A is non-empty since a ∈ A. If
U \ A was also non-empty then U would be the union of the two non-empty open sets A
and U \A, and this is not possible since U is connected. Thus U \A = ∅ so U = A. Since
U = A =

{
x ∈ U

∣∣f(x) = f(a)
}

we have f(x) = f(a) for all x ∈ U , so f is constant in U .
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1.21 Theorem: (The Inverse Function Theorem) Let f : U ⊆ Rn → Rn where U ⊆ Rn

is open with a ∈ U . Suppose that f is C1 in U and that Df(a) is invertible. Then there
exists an open set U0 ⊆ U with a ∈ U0 such that the set V0 = f(U0) is open in Rn and the
restriction f : U0 → V0 is bijective, and its inverse g = f−1 : V0 → U0 is C1 in V0. In this
case we have Dg(f(a)

)
= Df(a)−1.

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is C1, we can
choose r > 0 so that B(a, r) ⊆ U and so that

∣∣∂fk
∂x`

(x)− ∂fk
∂f`

(a)
∣∣ ≤ 1

2n2‖A−1‖ for all k, `. Let

U0 = B(a, r) and note that for all x ∈ U0 we have
∥∥Df(x)−A

∥∥ ≤ 1
2‖A−1‖ .

Claim 1: for all x ∈ U0, the matrix Df(x) is invertible.
Let x ∈ U0 and suppose, for a contradiction, that Df(x) is not invertible. Then we can
choose u ∈ Rn with |u| = 1 such that Df(a)u = 0. But then we have∥∥Df(x)−A

∥∥ ≥ ∣∣(Df(x)−A)u
∣∣ =

∣∣Au| ≥ |u|
‖A−1‖ = 1

‖A−1‖

which contradicts the fact that since x ∈ U0 we have
∥∥Df(x)−A

∥∥ ≤ 1
2‖A−1‖ .

Claim 2: for all b, c ∈ U0 we have
∣∣f(c)− f(b)−A(c− b)

∣∣ ≤ ‖c−b|
2‖A−1‖ .

Let b, c ∈ U0. Let α(t) = b+t(c−b) and note that we α(t) ∈ U0 for all t ∈ [0, 1]. Let φ(t) =
f
(
α(t)

)
−L
(
α(t)

)
where L is the linearization of f at a given by L(a) = f(a)+Df(a)(x−a).

By the Chain Rule, we have φ′(t) = Df
(
α(t)

)
α′(t)−DL

(
α(t)

)
α′(t) =

(
Df
(
α(t)

)
−A

)
(c−b)

and so ∣∣φ′(t)∣∣ ≤ ∥∥Df(α(t)
)
−A

∥∥ |c− b| ≤ |c−b|
2‖A−1‖ .

By the Mean Value Theorem we have
∣∣φ(1)−φ(0)

∣∣ ≤ max
0≤t≤1

∣∣φ′(t)∣∣ ≤ |c−b|
2‖A−1‖ and note that

φ(1)− φ(0) =
(
f(c)− L(c)

)
−
(
f(b)− L(b)

)
= f(c)− f(b)−A(c− b), and so∣∣f(c)− f(b)−A(c− b)

∣∣ ≤ |c−b|
2‖A−1‖ .

Claim 3: for all b, c ∈ U0 we have
∣∣f(c)− f(b)

∣∣ ≥ |c−b|
2‖A−1‖ .

Let b, c ∈ U0. By the Triangle Inequality we have∣∣f(c)− f(b)−A(c− b)
∣∣ ≥ ∣∣A(c− b)

∣∣− ∣∣f(c)− f(b)
∣∣ ≥ |c−b|

‖A−1‖ −
∣∣f(c)− f(b)

∣∣
and so, by Claim 3, we have∣∣f(c)− f(b)

∣∣ ≥ |c−b|
‖A−1‖ −

∣∣f(c)− f(b)−A(c− b)
∣∣ ≥ |c−b|

‖A−1‖ −
|c−b|

2‖A−1‖ = |c−b|
2‖A−1‖ .

It follows that when b 6= c we have f(b) 6= f(c), so the restriction of f to U0 is injective.

Claim 4: the restriction of f to U0 is injective, hence f : U0 → V0 = f(U0) is bijective.

By Claim 3, when b, c ∈ U0 with b 6= c we have
∣∣f(c) − f(b)

∣∣ ≥ |c−b|
2‖A−1‖ > 0 so that

f(b) 6= f(c). Thus the restriction of f to U0 is injective, as claimed.

Claim 5: the inverse g = f−1 : V0 → U0 is continuous (indeed uniformly continuous).
Let p, q ∈ V0. Let b = g(p) and c = g(q) so that p = f(b) and q = f(c). By Claim 3 we
have |c− b| ≤ 2‖A−1‖

∣∣f(c)− f(b)
∣∣, that is

∣∣g(q)− g(p)
∣∣ ≤ 2‖A−1‖ |q − p|. It follows that

g is uniformly continuous in V0. (We remark that this claim is not used anywhere in the
proof and we included it simply because it fits neatly nestled at the bottom of the page).
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Claim 6: the set V0 is open in Rn.
Let p ∈ V0. Let b = g(p) so that p = f(b). Choose s > 0 so that B(b, s) ⊆ U0.
We shall show that B

(
p, s

4‖A−1‖

)
⊆ V0. Let q ∈ B

(
b, s

4‖A−1‖

)
. We need to show that

q ∈ V0 = f(U0) and in fact we shall show that q ∈ f
(
B(b, s)

)
. To do this, define ψ : U → R

by ψ(x) =
∣∣f(x)− q

∣∣. Since ψ is continuous, it attains its minimum value on the compact

set B(b, s), say at c ∈ B(b, s). We shall show that c ∈ B(b, s) and that f(c) = q so we have
q ∈ f

(
B(b, s)

)
, hence q ∈ f(U0) = V0, hence B

(
b, s

4‖A−1‖

)
⊆ V0, and hence V0 is open.

Claim 6(a): we have c ∈ B(b, s).
Suppose, for a contradiction, that c /∈ B(b, s) so we have |c− b| = s. Then

ψ(b) =
∣∣f(b)− q

∣∣ = |p− q| < s
4‖A−1‖ and, using Claim 3,

ψ(c) =
∣∣f(c)− q

∣∣ ≥ ∣∣f(c)− f(b)
∣∣− ∣∣f(b)− q

∣∣ ≥ |c−b|
2‖A−1‖ − |p− q|

= s
2‖A−1‖ − |p− q| >

s
2‖A−1‖ −

s
4‖A−1‖ = s

4‖A−1‖

so that ψ(b) < ψ(c). But this contradicts the fact that ψ(c) is the minimum value of ψ(x)
in B(b, s), so we have c ∈ B(b, s), as claimed.

Claim 6(b): we have f(c) = q.
Suppose, for a contradiction, that f(c) 6= q so we have ψ(c) > 0. Let v = f(c)− q so that
|v| = ψ(c) > 0. Let u = A−1v so that v = Au. Then for 0 ≤ t ≤ 1, using Claim 2, we have

ψ(c+ tu) =
∣∣f(c+ tu)− q

∣∣ ≤ ∣∣f(c+ tu)− f(c)−Atu
∣∣+
∣∣f(c) +Atu− q

∣∣
≤ |tu|

2‖A−1‖ + |tv − v| = t|A−1v|
2‖A−1‖ + (1− t)|v| ≤ t

2 |v|+ (1− t)|v| =
(
1− t

2

)∣∣v|.
Since |v| > 0 we have ψ(c+ tu) ≤

(
1− t

2

)
|v| < |v| = ψ(c). But this again contradicts the

fact that ψ(x) attains its minimum value at c, and so we have f(c) = q, as claimed.

Claim 7: the function g is differentiable in V0 with Dg
(
f(b)

)
= Df(b)−1 for all b ∈ U0.

Let p ∈ V0 and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by
Claim 1. Let C = B−1. Let y ∈ V0 and let x = g(y) ∈ U0 so that y = f(x). Then we have∣∣g(y)− g(p)− C(y − p)

∣∣ =
∣∣x− b− C(f(x)− f(b))

∣∣ =
∣∣CB(x− b− C(f(x)− f(b))

)∣∣
=
∣∣C(Bx−Bb− (f(x)− f(b))

)∣∣ ≤ ‖C‖∣∣f(x)− f(b)−B(x− b)
∣∣

and, as shown above, we have |y − p| =
∣∣f(x)− f(b)

∣∣ ≥ |x−b|
2‖A−1‖ so that

|x− b| ≤ 2‖A−1‖ |y − p|.
It follows that g is differentiable at p with Dg(p) = C = Df(b)−1, as claimed.

Claim 8: the function g is C1 in V0.
By the cofactor formula for the inverse of a matrix, for all y ∈ V0 and all indices k, `,

∂gk
∂y`

(y) =
(
Dg(y)

)
k,`

=
(
Df(g(y))−1

)
k,`

=
(−1)k+`

detDf(g(y))
detE

where is E is the matrix obtained from Df(g(y)) by removing the kth column and the `th

row. Thus ∂gk
∂y`

(y) is a continuous function of y, as claimed.
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1.22 Corollary: (The Parametric Function Theorem) Let f : U ⊆ Rn → Rn+k be C1.
Let a ∈ U and suppose that Df(a) has rank n. Then Range(f) is locally equal to the
graph of a C1 function.

Proof: Since Df(a) has maximal rank n, it follows that some n × n submatrix of Df(a)
is invertible. By reordering the variables in Rn+k, if necessary, suppose that the top
n rows of Df(a) form an invertible n × n submatrix. Write f(t) =

(
x(t), y(t)

)
, where

x(t) =
(
x1(t), · · · , xn(t)

)
and y(t) =

(
y1(t), · · · , yk(t)

)
, so that we have

Df(t) =

(
Dx(t)
Dy(t)

)
with Dx(a) invertible. By the Inverse function Theorem, the function x(t) is locally
invertible. Write the inverse function as t = t(x) and let g(x) = y

(
t(x)

)
. Then, locally,

we have Range(f) = Graph (g) because if (x, y) ∈ Graph (g) and we choose t = t(x) then
we have (x, y) =

(
x, g(x)

)
=
(
x(t), g(x(t))

)
=
(
x(t), y(t)

)
∈ Range(f) and, on the other

hand, if (x, y) ∈ Range(f), say (x, y) =
(
x(t), y(t)

)
then we must have t = t(x) so that

y(t) = y
(
t(x)

)
= g(x) so that (x, y) =

(
x(t), y(t)

)
=
(
x, g(x)

)
∈ Graph (g).

1.23 Corollary: (The Implicit Function Theorem) Let f : U ⊆ Rn+k → Rk be C1. Let
p ∈ U , suppose that Df(p) has rank k and let c = f(p). Then the level set f−1(c) is locally
the graph of a C1 function.

Proof: Since Df(p) has rank k, it follows that some k × k submatrix of f is invertible.
By reordering the variables in Rn+k, if necessary, suppose that the last k columns of
Df(p) form an invertible k × k matrix. Write p = (a, b) with a = (p1, · · · , pn) ∈ Rn and
b = (pn+1, · · · , pn+k) ∈ Rk and write z = f(x, y) with x ∈ Rn, y ∈ Rk and z ∈ Rk, and
write

Df(x, y) =
(
∂z
∂x (x, y), ∂z∂y (x, y)

)
with ∂z

∂y (a, b) invertible. Define F : U ⊆ Rn+k → Rn+k by F (x, y) =
(
x, f(x, y)

)
= (w, z).

Then we have

DF =

(
I O
∂z
∂x

∂z
∂y

)
with DF (a, b) invertible. By the Inverse Function Theorem, F = F (x, y) is locally invert-
ible. Write the inverse function as (x, y) = G(w, z) =

(
w, g(w, z)

)
and let h(x) = g(x, c).

Then, locally, we have f−1(c) = Graph (h) because

f(x, y) = c ⇐⇒ F (x, y) = (x, c) ⇐⇒ (x, y) = G(x, c)

⇐⇒ (x, y) =
(
x, g(x, c)

)
⇐⇒ (x, y) ∈ Graph (h).

1.24 Remark: We can also find a formula for Dh where h is the function in the above

proof. Since G(w, z) =
(
w, g(w, z)

)
we have DG(w, z) =

(
I O
∂g
∂w

∂g
∂z

)
and we also have

DG(w, z) = DF (x, y)−1 =

(
I O

−
(
∂z
∂y

)−1 ∂z
∂x

(
∂z
∂y

)−1) so, since h(x) = g(x, c), we have

Dh(x) = ∂g
∂w (x, c) = −

(
∂z
∂y

)−1 ∂z
∂x (x, y).
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