Appendix 1. Review of Differentiation

1.1 Remark: In this appendix we shall review some of the theory of differentiation of
vector valued functions of several variables, as presented in MATH 247, including The
Inverse Function Theorem (which is not usually proven in MATH 237).

1.2 Note: Recall that for f: U CR —- R and a € U,

f is differentiable at a <= lim M

Tr—a r — a

exists

x) — f(a)

<= dJmeRVex>036>0VerelU 0<|x—a|<5:>‘f(x_a —m‘<e

— IMERVe>0I>0VeeU 0<|z—a|<d = |f(z)— f(a) —m(z —a)| < |z —q
< IMERVe>030>0VacU |z—a| <6 = |f(z)— (f(a) + m(z —a))| < €|z —al.
In this case, the number m € R is unique, we call it the derivative of f at a and denote
it by f’(a), and the map ¢(x) = f(a) + f'(a)(x — a) is called the linearization of f at a.

1.3 Definition: Let f: U CR"™ — R™, where U is open. We say f is differentiable at
a € U if there is an m x n matrix A such that

Ve>036>0VeelU <|ac —al| <6 = |f(z) - (f(a) + A(z — a)| < €|z — a|).
We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and
we denote it by Df(a). The affine map L : R®™ — R™ given by L(z) = f(a)+ Df(a)(z —a),

which approximates f(x), is called the linearization of f at a. We say f is differentiable
in U when it is differentiable at every point a € U.

1.4 Example: If f is the affine map f(x) = Az + b, then we have Df(a) = A for all a.
Indeed given € > 0 we can choose 6 > 0 to be anything we like, and then for all x we have

|f(z) = f(a) — A(z — a)| = |Az +b— Aa — b— Az + Aa| =0 < €|z — al.
1.5 Theorem: (The Derivative is the Jacobian) Let f : U C R™ — R™ and let a € U.

If f is differentiable at a then the partial derivatives g—i’z(a) all exist and the matrix A
which appears in the definition of the derivative is equal to the Jacobian matrix Df (a).

Proof: Suppose that f is differentiable at a. Fix indices k and ¢ and let g(t) = fi(a + tes)
so that g—i’;(a) = ¢'(0) provided that the derivative ¢’(0) exists. Let A be a matrix as in
the definition of differentiability. Let € > 0. Choose ¢ > 0 such that for all z € U with
|z — a|] < 6 we have |f(z) — f(a) — A(x — a)| < €|z —al. Let t € R with [¢] < §. Let
x = a+tes. Then we have [z—a| = |te| = |t| < § and so | f(z)— f(a)—A(z—a)| < €|z —al.
Since for any vector u € R™ we have |ug| < |u|, we have

9(t) — 9(0) — Apet| = | fr(a+ te) — fr(a) — (Alter)) |
< |fla+tee) — f(a) — A(te)|
= |f(x) = f(a) — A(z — a)|
<e€lr—al=c¢€lt]

It follows that Ay, = ¢'(0) = g—f;’;(a), as required.



1.6 Definition: Let A € M,,«,(R) and let S = {x € R"! |z| = 1}. Since S is compact,
by the Extreme Value Theorem, the continuous function f : R™ — R given by f(z) = }Aac!
attains its maximum value on S. We define the norm of the matrix A to be

|Al| = max {|Az| ||z] = 1}.
1.7 Lemma: (Properties of the Matrix Norm) Let A € M« (R). Then
(1) |[Az| < ||Al| || for all z € R™,
(2) if A is invertible then |Ax| > ﬁ for all x € R",
3 A< 32 > [Ak.el, and

k=16=1
(4) || A]| is equal to the square root of the largest eigenvalue of the matrix ATA.

Proof: When x = 0 € R™ we have |Az| = 0 = ||A| |z| and when 0 # x € R™ we have

Az] = |lo] A | = lzl|AZ] < lal Al

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose
x € R™ with |z| = 1 such that Az # 0 so we must have [|A|| > 0. Similarly, since
A~! is also invertible, we also have ||A~™!|| > 0. By Part 1, for all x € R™ we have

jz| = |A™ 1 Az| < ||[A7Y||Az| so that [Az| > ﬁ, as required. To prove Part 3, let

x € R™ with |z| = 1. Then |x¢| < |z| <1 for all indices ¢, and so

n m n m n
o Ao < 30 D0 Akl el < D0 Y7 [Awyel
=1 k ¢ k=1/¢=1

= =1/4=1

m

|Az| = ‘ i(AfL’)kek‘ <3 [GENEDY
k=1 k=1 k=1

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra
course).

1.8 Theorem: (Differentiability Implies Continuity) Let f : U C R™ — R™. If f is
differentiable at a € U, then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all x € U we have
[f(x) = f(a)| = | f(z) — f(a) = Df(a)(z — a) + Df(a)(z — a)|
< |f(z) - f(a) — Df(a)(z — a)| + |Df (a) (x - a)]
< |f(z) = f(a) = Df (a)(z — a)| + || Df (a)|| |2 — a|

Let € > 0. Since f is differentiable at a we can choose § with 0 < § < such that

D@
2~ al <6 = |£(@) — f(a) = Df{a) @ — )| < |0 —af
and then for |x — a|] < § we have
/@)~ £(@)] < |£(@) — (a) = D @)z = )] + | D (@)][]a — a
< |z —al + IDf(a)|| |z — a| = (1 + | Df (@)]) |= — al
< (1+[[Df(a)]l) 6 <e.



1.9 Theorem: (The Chain Rule) Let f : U CR® - V CR™ let g : V C R™ — R,
and let h(x) = g(f(z)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and ¢ is differentiable at f(a). Write y = f(x) and
b= f(a). We have

|h(x) — h(a) —

Dy(f(a))Df (a)(z — a)| = |9(y) — g(b) — Dg(b) Df (a)(z — a)|
( ) —g(b

/

) — Dg(b)(y — b) + Dg(b)(y — b) — Dg(b)Df (a)(z — a)

) — Dg(b)(y — b)| + [|Dg(®)|| |y — b — Df(a)(x — a)|

) — Dg(b)(y — b)| + (1 + |[Dg(b)||)| f(x) — f(a) — Df (a)(z — a)|

I IA
A
<
~—
Q
—
=

and

ly = bl =|f(z) — f(a)|
= |f(2) = f(a) — Df(a)(z — a) + Df(a)(z — a)
< |f(z) = f(a) = Df(a)(z — a)| + | Df (a)| |z — a] .
Let € > 0 be given. Since g is differentiable at b we can choose dy > 0 so that

—b| < — — — < € |y—bl.
[y — bl < 00 = [g(y) — 9(b) = Dg(O)(y = b)| < srams v —

Since f is continuous at a we can choose §; > 0 so that
[z —al <6 = |y — bl = [f(z) — fla)] < do
Since f is differentiable at a we can choose 2 > 0 so that
|z —a| <6 = |f(z) — f(a) — Df(a)(z — a)| < |z —ql
and we can choose d3 > 0 so that

|z —a| <65 = |f(z) — f(a) — Df(a)(z —a)| < Weg(a)n)\x—a].

Let 6 = min{d;,d2,93}. Then for |x — a| < § we have
ly = 0| < [f(2) = f(a) — Df(a)(z — a)| + [ Df(a)(z — a))|
< |z —al +|[Df(a)[l |z - af
= (1 +[[Df (a)l]) |« — al

SO
— _ _ < € Jyu—-bl<Elr—
|9(y) = 9(b) = Dg(b)(y = b)| < soram 1Y — Ol < Sl —al

and we have
(1+Dg®))|f(z) — f(a) = Df(a)(z — a)| < § |z — al
and so
|h(x) — h(a) — Dg(f(a))Df(a)(z — a)| < § o —a| + § |z —a| = €|z — al.
Thus h is differentiable at a with derivative Dh(a) = Dg(f(a))Df(a), as required.



1.10 Definition: Let f : U C R” — R, let a € R" and let v € R®. We define the
directional derivative of f at a with respect to v, written as D, f(a), as follows: pick
any differentiable function a : (—¢,¢) C R — U C R", where € > 0, such that «(0) = a
and o/(0) = v (for example, we could pick a(t) = a+vt), let g(t) = f(«a(t)), note that by
the Chain Rule we have ¢'(t) = Df(«(t))d/(t), and then define

D, f(a) = g'(0) = Df(2(0)) &'(0) = Df (a) v = V f(a) +v
Notice that the formula for D, f(a) does not depend on the choice of the function «(t).

1.11 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.

1.12 Theorem: Let f : U C R™ — R be differentiable at a € U. Say f(a) = b. The
gradient V f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let a(t) be any curve in the level set f(x) = b, with «(0) = a. We wish to show that
Vf(a) L a/(0). Since «(t) lies in the level set f(x) = b, we have f(«(t)) = b for all t. Take
the derivative of both sides to get Df (a(t))a/(t) = 0. Put in ¢t = 0 to get Df(a)a’(0) =0,
that is Vf(a)+a/(0) = 0. Thus Vf(a) is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then D, f(a) = Vf(a)+u = |Vf(a)|cos @, where 6 is the
angle between u and Vf(a). So the maximum possible value of D,, f(a) is |Vf(a)|, and this
occurs when cosf = 1, that is when # = 0, which happens when u is in the direction of

Vf(a).

1.13 Theorem: (Continuous Partial Derivatives Implies Differentiability) Let U C R™ be
open, let f : U CR"™ — R™ and let a € U. If the partial derivatives g—i’;(x) exist in U and
are continuous at a then f is differentiable at a. ‘

Proof: Suppose that the partial derivatives 8—f’“(a:) exist in U and are continuous at a.

Let € > 0. Choose § > 0 so that B(a d) C U and so that for all indices k, ¢ and for all

y € U we have |y —a| < § = |g£’z g—g’;’z(a)‘ < & Let ¢ € U with |z —a] < 4. For
0</l<n,let u = (T, ,Tg,Qpx1, -+, an), with ug = a and u,, = x, and note that each
weB(a,é). For 1</<n, let ag(t):(acl, cee Xyp—1,t,ap41, -, ap) for t between a; and zy,
For 1 <k<m and 1 <¢<n, let gx,(t) = fr(cu(t)) so that Gr(t) = 8£’; (ce(t)). By the

Mean Value Theorem, we can choose si ¢ between ay and z, so that g;, ,(sg.¢)(xe — ar) =

9k.0(z¢) — g e(ar) or, equivalently, so that af’“ (O[g(Sk g))(l’g—ag) = fr(ug) — fr(ug—1). Then

fe(x) = fr(a) = fe(un) — fr(uo) = é (fr(ue) = fr(up—1)) = i Sk (cvg(sn.p) ) (e — ag).

(=1

Let B € My, xn(R) be the matrix with entries By, = aw ( e(Ske ) Then we have

k
f(@) = f(a) — Df(a)(x — a) = (B — Df(a))(z — a)
and so (by Part 2 of Lemma 5.7)

|f(z)— f(a)—Df(a)(x—a)| < ||[B—Df(a)|| |z~ a|<z\8fk(agsk£>)—g—§§(a)\ge|x—a|.

1.14 Corollary: IfU C R" is open and f : U C R® — R™ is C! then f is differentiable.



1.15 Corollary: Every function f : U C R™ — R™, which can be obtained by applying
the standard operations (such as multiplication and composition) on functions to basic
elementary functions defined on open domains, is differentiable in U.

1.16 Exercise: For each of the following functions f : R? \ {(0,0)} — R, extend the
domain of f(z,y) to all of R? by defining f(0,0) = 0 and then determine whether the
partial derivatives of f exist at (0,0) and whether f is differential at (0,0).

(a) f(z,y) = =342 (b) f(z,y) = |yl () fz,y) = ]ayl

(@) f(a,y) = 5o (&) f(2,y) = Grriayrs () f(z,y) = L2

1.17 Definition: For a,b € R™, we define the line segment from a to b to be the set
[a,b] = {a+t(b—a)|0 <t <1}

For A C R™ we say the A is convex when for all a,b € A we have [a,b] C A.

1.18 Exercise: Show, using the triangle inequality, that B(a,r) is convex for all a € R™
and r > 0.

1.19 Theorem: (The Mean Value Theorem) Let f : U C R™ — R™ with U open in R".
Suppose that f is differentiable in U. Let u € R™ and let a,b € U with [a,b] C U. Then
there exists ¢ € [a, b] such that

DIE)(b —a)+u = (£(5) — f(a)) -u.

Proof: Let a(t) = a+t(b— a) and define g : [0,1] = R by g(¢t) = f(a(t)) +u. By the Chain
Rule, we have ¢/(t) = (Df(a(t))c/(t))su = (Df((t))(b — a))+u. By the Mean Value
Theorem (for a real-valued function of a single variable) we can choose s € [0, 1] such that
g'(s) = g(1) — g(0), that is (Df(a(s))(b — a))+u = f(b)-u— f(a)-u = (f(b) — f(a))-u.
Thus we can take ¢ = a(s) € [a,b] to get Df(c)(b—a)-u= (f(b) — f(a))-u.

1.20 Corollary: (Vanishing Derivative) Let U C R™ be open and connected and let
f: U — R™ be differentiable with Df (x) = O for all x € U. Then f is constant in U.

Proof: Let a € U and let A = {z € U|f(z) = f(a)}. We claim that A is open (both
in R” and in U). Let b € A, that is let b € U with f(b) = f(a). Since U is open we
can choose r > 0 so that B(b,r) C U. Let ¢ € B(b,r). Since B(b,r) is convex we have
[b,c] € B(b,r) C U. Let u = f(c) — f(b) and choose d € [b,¢|, as in the Mean Value
Theorem, so that (Df(d)(c —b))+u = (f(c) — f(b)) +u. Then we have

£(e) = FO)] = (f(¢) = f(b)) »u = (Df(d)(c— b)) ru=0

since Df (d) = O . Since |f(c) — f(b)| = 0 we have f(c) = f(b) = f(a), and so ¢ € A. Thus
B(b,r) € A and so A is open, as claimed. A similar argument shows that if b € U \ A
and we chose r > 0 so that B(b,7) C U then we have f(c) = f(b) for all ¢ € B(b,r) hence
B(b,r) CU\ A and hence U \ A is also open. Note that A is non-empty since a € A. If
U \ A was also non-empty then U would be the union of the two non-empty open sets A
and U \ A, and this is not possible since U is connected. Thus U\ A =0 so U = A. Since
U=A={zeUl|f(z)= f(a)} we have f(z) = f(a) for all z € U, so f is constant in U.



1.21 Theorem: (The Inverse Function Theorem) Let f : U C R™ — R"™ where U C R"
is open with a € U. Suppose that f is C! in U and that Df(a) is invertible. Then there
exists an open set Uy C U with a € Uy such that the set Vo = f(Uy) is open in R™ and the
restriction f : Uy — Vj is bijective, and its inverse g = f~' : Vo — Uy is C* in Vj. In this
case we have Dg(f(a)) = Df(a)™".

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is C!, we can

choose > 0 so that B(a,r) C U and so that ’g—i’;(m) - %(aﬂ < m for all k, £. Let

Up = B(a,r) and note that for all z € Uy we have || Df (z) — A|| < m.

Claim 1: for all z € Uy, the matrix Df(z) is invertible.

Let x € Uy and suppose, for a contradiction, that Df(x) is not invertible. Then we can
choose u € R™ with |u| = 1 such that Df(a)u = 0. But then we have

|Df(2) — Al| > |(Df () — AYu| = |du| > i = A

which contradicts the fact that since x € Uy we have HDf(m) — AH < m.

Claim 2: for all b, ¢ € Uy we have |f(c) — f(b) — A(c —b)| < 2Hf4_fb1|ll'

Let b,c € Uy. Let a(t) = b+1t(c—b) and note that we «a(t) € Uy for all t € [0, 1]. Let ¢(t) =
f(a(t)) —L(a(t)) where L is the linearization of f at a given by L(a) = f(a)+Df (a)(z—a).
By the Chain Rule, we have ¢/ (t) = Df (a(t))a/(t) = DL(a(t)) o' (t) = (Df (a(t)) — A) (c—b)
and so

16/ ()] < || DF (e(t) — Al e — b] < <=t

2A=H”

By the Mean Value Theorem we have ’¢(1) - ¢(0)’ < Jnax ‘d)’(t)‘ < 2|||:f71‘” and note that

(1) = 6(0) = (f(c) = L(c)) — (f(b) — L(b)) = f(c) — F(b) — A(c—b), and so
[£(e) = J(b) = Ale—b)| < gt

Claim 3: for all b, ¢ € Uy we have |f(c) — f(b)| > 2|||6Af_bl|“.

Let b,c € Uy. By the Triangle Inequality we have
[f(e) = F(b) = A(c=b)| = |A(c = b)] = | £(c) = F(B)] = 153 — [ f(e) = ()]

and so, by Claim 3, we have
_ le—=b] _ _ _ _ le=b] _ _le=b] __ _le=b]
}f(c) f(b)| > A1 ’f(C) f(b> A(C b)‘ > A= 2lA-1 — 2A-L"
It follows that when b # ¢ we have f(b) # f(c), so the restriction of f to Uy is injective.

Claim 4: the restriction of f to Uy is injective, hence f : Uy — Vo = f(Up) is bijective.
By Claim 3, when b,c € Uy with b # ¢ we have |f(c) — f(b)| > 2|||CAT_bl|” > 0 so that
f(b) # f(c). Thus the restriction of f to Up is injective, as claimed.

Claim 5: the inverse g = f~1 : Vi — Up is continuous (indeed uniformly continuous).

Let p,q € V. Let b = g(p) and ¢ = g(q) so that p = f(b) and ¢ = f(c¢). By Claim 3 we
have |c — b] < 2|[A7Y||f(c) — f(b)], that is |g(q) — g(p)| < 2| A7 |g — p|. It follows that
g is uniformly continuous in Vj. (We remark that this claim is not used anywhere in the
proof and we included it simply because it fits neatly nestled at the bottom of the page).



Claim 6: the set Vj is open in R™.

Let p € Vo. Let b = g(p) so that p = f(b). Choose s > 0 so that B(b,s) C Up.
We shall show that B(p, m) C Vp. Let q € B(b, m). We need to show that
q€ Vo f(Uo) and in fact we shall show that ¢ € f(B(b, s)) To do this, define ) : U — R
by ¥ (x ‘ flx) — q!. Since 1) is continuous, it attains its minimum value on the compact
set B(b s), say at c € B(b,s). We shall show that ¢ € B(b s) and that f(c) = ¢ so we have
q€ f(B(b, s)), hence ¢q € f(Uy) = Vo, hence B(b C Vp, and hence V} is open.

Claim 6(a): we have ¢ € B(b, s).
Suppose, for a contradiction, that ¢ ¢ B(b, s) so we have |c — b| = s. Then

T afjA- 1||)

=|f(b) — q| =lp—q|l < m and, using Claim 3,

= |fle) —a| = [f(c) = FO)] = [f(b) —q| > 2|\A 1|| —lp—dl

S S

= qa ~ P~ > e e T e
so that ¢(b) < 1(c). But this contradicts the fact that ¢(c) is the minimum value of ¥(x)
in B(b, s), so we have ¢ € B(b, s), as claimed.
Claim 6(b): we have f(c) = q.
Suppose, for a contradiction, that f(c) # g so we have ¥(c) > 0. Let v = f(c¢) — ¢ so that
lv| = (c) > 0. Let u = A~ v so that v = Au. Then for 0 < ¢ < 1, using Claim 2, we have
Yle+tu) = |fle+tu) — g < |flc+tu) — f(c) — Atu| + | f(c) + Atu — g

[tu] t|A” | t _ t
< 2[[ AT + |tv —’U’ 2[[ A1 + (1 —t)"U| < 2 |U| + (1 —t)l’U| - (1 o 5)"0"

Since [v] > 0 we have ¥(c + tu) < (1 — £)|v| < |v| = ¢(c). But this again contradicts the
fact that ¢(z) attains its minimum value at ¢, and so we have f(c) = ¢, as claimed.

Claim 7: the function g is differentiable in Vy with Dg(f (b)) = Df(b)~* for all b € Uy.
Let p € Vp and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by
Claim 1. Let C = B~!. Let y € V and let z = g(y) € Uy so that y = f(x). Then we have

l9(y) —g(p) = Cly —p)| = |z —b—C(f(x) — f(b))| = |CB(z —b—C(f(x) — f(b)))]
= |C(Bz — Bb— (f(z) — f(b))| < IC|l| f(z) — f(b) — B(z — b)|

|z—b|

m so that

and, as shown above, we have |y — p| = |f(z) — f(b)| >
| — b < 2| A7 ]y — pl.
It follows that g is differentiable at p with Dg(p) = C = Df(b)~!, as claimed.

Claim 8: the function g is C! in Vj.
By the cofactor formula for the inverse of a matrix, for all y € Vy and all indices k, ¢,

Ogs _ _ -1 (— 1)k+é
3y, ¥ = (P9, = (DI e = T Brtamn

where is E is the matrix obtained from Df(g(y)) by removing the £*' column and the ¢}
row. Thus %(y) is a continuous function of y, as claimed.

det £



1.22 Corollary: (The Parametric Function Theorem) Let f : U C R™ — R"™*+* be C1.
Let a € U and suppose that Df(a) has rank n. Then Range(f) is locally equal to the
graph of a C' function.

Proof: Since Df(a) has maximal rank n, it follows that some n x n submatrix of Df(a)
is invertible. By reordering the variables in R™T* if necessary, suppose that the top
n rows of Df(a) form an invertible n x n submatrix. Write f(t) = (z(¢),y(t)), where

z(t) = (z1(t), -+, 2, (t)) and y(t) = (y1(t), -+, yr(t)), so that we have
Dx(t) >
Df(t) =
/e (Dy(t)

with Dz(a) invertible. By the Inverse function Theorem, the function z(t) is locally
invertible. Write the inverse function as ¢ = t(z) and let g(z) = y(t(z)). Then, locally,
we have Range(f) = Graph (g) because if (z,y) € Graph (9) and we choose t = t(x) then
we have (x,y) = (x,g(a:)) = (x(t),g ) ( ) € Range(f) and, on the other
hand, if (z,y) € Range(f), say (z,y) = (x(t), y(t )) then we must have t = t(x) so that
y(t) = y(t(z)) = g(z) so that (z,y) = ((t),y(t)) = (v,9(x)) € Graph (g).

1.23 Corollary: (The Implicit Function Theorem) Let f : U C R*** — RF be C!. Let
p € U, suppose that Df (p) has rank k and let ¢ = f(p). Then the level set f~1(c) is locally
the graph of a C! function.

Proof: Since Df(p) has rank k, it follows that some k X k submatrix of f is invertible.
By reordering the variables in R™** if necessary, suppose that the last k& columns of
Df(p) form an invertible k x k matrix. Write p = (a,b) with a = (p1,---,pn) € R™ and
b= Pnit, ,Pnsir) € R¥ and write z = f(z,y) with z € R", y € R* and z € R¥, and
write

Df(z,y) = (F(2,v), 55 (x,))

with g—Z(a,b) invertible. Define F': U C R"*F — R"** by F(z,y) = (=, f(z,y)) = (w, 2).
Then we have I o
DF = < 0z 0z )
oz dy

with DF'(a,b) invertible. By the Inverse Function Theorem, F' = F(x,y) is locally invert-
ible. Write the inverse function as (z,y) = G(w, 2) = (w, g(w, z)) and let h(z) = g(z, c).
Then, locally, we have f~1(c) = Graph (h) because

flz,y) =c¢ == F(z,y) = (x,¢) <= (x,y) = G(z,0)
— (2,y) = (z,9(z,¢)) < (,y) € Graph (h).

1.24 Remark: We can also find a formula for Dh where h is the function in the above
I O

proof. Since G(w,z) = (w,g(w,z)) we have DG(w,z) = | a3 ay ) and we also have
ow 0z
I
DG(w,z) = DF(z,y)~ ! = < YN aZO—l) so, since h(z) = g(z, ¢), we have
-(5) 7 (5)

Dh(z) = 92 (x,¢) = —(82) 7" 8(x, ).



