Lecture Notes on Complex Analysis

by Stephen New



Chapter 1. Complex Numbers

1.1 Definition: A complex number is a vector in R?. The complex plane, denoted
by C, is the set of complex numbers:

v {()
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In C we usually write 0 = (O)’ 1= (0>’Z_ (1)’36_ <O),zy—y2— (y) and

. . T
T+ =T+ Yyr= (y>

If 2 = x+1iy with z, y € R then z is called the real part of z and y is called the imaginary
part of z, and we write

xGR,yER}.

Rez=2z ,and Imz=y.

1.2 Definition: We define the sum of two complex numbers to be the usual vector sum:

(a+ib) + (c+id) = <Z) + (;) - (ZIg) = (a+¢) +i(b+d),

where a,b € R. We define the product of two complex numbers by setting i> = —1 and
by requiring the product to be commutative and associative and distributive over the sum:

(a4 ib)(c + id) = ac + iad + ibc + i>bd = (ac — bd) + i(ad + be) .
1.3 Example: Let z =2+ ¢ and w =1+ 3i. Find z +w and zw.

Solution: z+w = (2+¢)+(1+3i) = (2+1)+i(1+3) =3+4i, and 2w = (2414)(1+3i) =
24+6t+1—-3=—-14T.
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1.4 Example: Show that every non-zero complex number has a unique inverse z~* and

find a formula for the inverse.
Solution: We let 2 = a+1ib where a,b € R with a®+b? # 0, and we solve (a+ib)(z+iy) = 1
to find 27! = x + iy:
(a+ib)(x +iy) =1 < (ax —by) +i(ay +bx) =1
@am—by_l@a—bx 1
br+ay) \O b a Yy 0
e (T _ (@ 5\ (1 1 a b 1y 1 a
y) \b a 0) a2+b2\—-b a 0) a2+0b2\ b

(a —1ib).

a b
—1 )
a2+ a4 b?

Thus (a +ib) ™' =



1.5 Notation: For z,w € C we use the following notation:
1
—z=-1z, w—z=w+(-2), -=z"' and Yo,
z z
4—14)—(1—2
1.6 Example: Find ( i) —( )

1+2i
4—i)—(1-2i) 3+i
Solution: < ZL(% ) _ 1J—L22z — B+ (1+2) " =@+t —-2)=1—i.

1.7 Note: The set of complex numbers is a field under the operations of addition and
multiplication. This means that for all u, v and w in C we have

u+v=v-+u

(u4v)+w=u+ (v+w)

O+u=u

u+(—u)=0

uv = vu

(uv)w = u(vw)

lu =u

wut=1if u#0

u(v + w) = uv + vw

1.8 Definition: If z = x + iy with =,y € R then we define the conjugate of z to be

Z=T—1y.

and we define the length (or magnitude) of z to be

|z| = Va2 +y2.

1.9 Note: For z and w in C the following identities are all easy to verify.

zZ=2z

z+zZ=2Rez, z—zZ=2Imz
zZ=z?, |z =1

ztw=z+w, Zw=zw, |2w|=]z|w|

1.10 Note: We do not have inequalities between complex numbers. We can only write
a < bora < bin the case that a and b are both real numbers. But there are several
inequalities between real numbers which concern complex numbers. For z € C and w € C,

Re (2)] < [z], [m(2)] < |z

|z 4+ w| < |z| 4+ |w|, this is called the triangle inequality

|2+ w| > [J2] — |w]]
The first two inequalities follow from the fact that |z|? = |[Re (2)|?+ |[Im (2)|?. We can then
prove the triangle inequality as follows: |z+w|* = (z4+w)(Z+wW) = |2|*+|w|* + (wZ+2w) =
122 + |w|? + 2Re (210) < |2]? + |w|? + 2|2w] = |2|* + |w]? + 2|z||w| = (|z] + |w|)?. The last
inequality follows from the triangle inequality since |z| = |z + w — w| < |z + w| + |w| and
lw| = |z 4+ w — z| < |24+ w| + |z|. (Alternatively, the last two inequalities can be proven
using the Law of Cosines).



1.11 Example: Given complex numbers a and b, describe the set {z € C||z—a| < |2—b|} .

Solution: Geometrically, this is the set of all z such that z is closer to a than to b, so it is
the half-plane which contains a and lies on one side of the perpendicular bisector of the
line segment ab.

1.12 Example: Given a complex number a, describe the set {z € C‘l <l|lz—al < 2} )

Solution: {z||z — a| = 1} is the circle centred at a of radius 1 and {z||z — a| = 2} is the
circle centred at a of radius 2, and {z € C|1 <l|lz—al < 2} is the region between these
two circles. Such a region is called an annulus.

1.13 Example: Show that every non-zero complex number has exactly two complex
square roots, and find a formula for the two square roots of z = = + 1y.

Solution: Let z = x + 1y where z,y € R with z and y not both zero. We need to solve

w? = z for w € C. Write w = u + iv with u,v € R. We have

w? =2z <= (ut+v)? =z +tiy <= (U —v?) +i(2w) =2z +iy

2:xand2uv:y).

= (u*—v
To solve this pair of equations for u, square both sides of the second equation to get
4u?v? = y?, then multiply the first equation by 4u? to get 4u* — 4u?v? = 4z u?, that is

4u* — 4z u? — y? = 0. By the quadratic formula,

oy Aad /1622 + 162 _ak Vaz +y?
8 2 '
In the case that y # 0, we must use the + sign so that the right side is non-negative, so

we obtain
2 2
u:i\/x+ ;2 +y ‘

U::l:\/_m+ 2x2+y2.

All four choices of sign will satisfy the equation u? — v? = z, but to satisfy 2uv = y notice

that when y > 0, u and v have the same sign, and when y < 0, v and v have the opposite
sign. It remains only to consider the case that y = 0, and we leave this case as an exercise.
The final result is that

;

u

A similar calculation gives

2 2 _ 2 2

" \/x—l—\/;: +y —i—i\/ T+ 23: +y ify >0,
2 2 _ 2 2

w=1{ 4 \/x+\/:2c +y _Z,\/ T+ 2:1: +y ify <0,

+vz ,ify=0and x>0,
( £iv|z|,ify=0and z <O0.
1.14 Note: When working with real numbers, for 0 < x € R it is customary to write
VT or 2'/2 to denote the unique positive square root of z. When working with complex

numbers, for 0 # z € C we sometimes write \/z or z'/2 to denote one of the two square
roots of z, and we sometimes write \/z or z!/2 to denote both square roots of z.




1.15 Example: Find /3 — 41.

Solution: Using the formula derived in the previous example, we have

e == EE VR NE D B Ry

1.16 Note: The Quadratic Formula can be used for complex numbers. Indeed for
a,b,c,z € C with a # 0 we have

b b 2
az? +bz+c-0<:>z+—z+——()<:>z +—z+(2—) —( )—0-220
a
PN +b2_bzc_b—4a0<:>+b_b — 4dac
& 2]  \2a a  4da? 2a 2a
—b+Vb?% — 4ac
< z = % ,

where Vb2 — 4ac is being used to denote both square roots in the case that b — 4ac # 0.
1.17 Example: Solve i2% — (2 + 3i)z + 5(1 +1i) = 0.

Solution: By the Quadratic Formula, we have

L (24 3i) +/(2+30)2 —20i(1 + i) _ (2+3i) + /=5 + 120 + 20 — 20d
- 2i - 2i
 (2+3i)+ V15 -8

21

and by the formula for square roots we have

VI5 8=+ (\/15—1—\/;52—{—82 _Z-\/—15+\/2152+82) :j:< [1417 /—152+17> — (4 —

and so

(2+3i)+(4—i) 6+2i —2+4i
= = or
2i 2i 2i

=1—-3to0or2+zs.

1.18 Definition: If z # 0, we define the angle (or argument) of z to be the angle 6(z)
from the positive z-axis counterclockwise to z. In other words, 6(z) is the angle such that

z = |z|(cosb(z) + isinf(z)) .

1.19 Note: We can think of the angle 6(z) in several different ways. We can require, for
example, that 0 < 6(z) < 27 so that the angle is uniquely determined. Or we can allow
0(z) to be any real number, in which case the angle will be unique up to a multiple of 2.
Then again, we can think of (z) as the infinite set of real numbers 0(z) = {0y +27k|k € z},
that is we can regard 6(z) as an element of R/27, the set of real numbers modulo 27.
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1.20 Notation: For § € R (or for § € R/27) we shall write

e = cos + isinf.

1.21 Note: If z # 0 and we have z = Re(z), y = Im (z), r = |z| and 6 = 0(z) then

r=rcosf, y=rsinf

r=+x2+y?, tanezg, if 270

i

. _ 1 .
z=re?, z=re 0, l=Ze70
r

We say that  + iy is the cartesian form of z and re?? is the polar form.

1.22 Example: Let z = —3 — 4i. Express z in polar form.

Solution: We have |z| = 5 and tan6(z) = 3. Since 6(2) is in the third quadrant, we have
0(z) =m+tan"' 3. So z = pei(mttan™(4/3))

1.23 Example: Let z = 10¢! 3 ' 3. Express z in cartesian form.

Solution: z = 10 (cos(tan™! 3) + ¢ sin(tan™' 3)) = 10 (x/LTo + 2%) = /10 + 3V/103.
1.24 Example: Find a formula for multiplication in polar coordinates.

Solution: For z = re’® and w = € we have zw = rs(cosa + isina)(cos 3 + isin3) =
((cos ccos 8 —sinasin ) + i(sin acos f + cos asin 3)) = rs( cos(a+ 8) +isin(a+ 3)) and

so we obtain the formula
rei®se’ = rgetl@th)

1.25 Note: An immediate consequence of the above example is that
(7‘ ei@)n — TneinO

for r,0 € R and for n € Z. This result is known as De Moivre’s Law.

1.26 Example: Find (1 + 7)'°.

Solution: This can be done in cartesian coordinates using the binomial theorem (which

holds for complex numbers), but it is easier in polar coordinates. We have 1+i = v/2¢*™/4
SO (1 + Z‘)lO — (\/567171'/4)10 — (ﬁ)lﬂei 10w/4 32€i7r/2 = 39;.

1.27 Example: Find a formula for the n*® roots of a complex number. In other words,
given z = re'?, solve w" = z.

Solution: Let w = se’®. We have w" = z <= (se'®)" = re?? = 5"%!"® = re? —
0+ 2rk
s" =r and na = 0 + 27k for some k € Z <= s = {/r and « = ——— for some k € Z.

n
Notice that when z # 0 there are exactly n solutions obtained by taking 0 < k < n. So we
obtain the formula

(re®)1/n = fpei(O+2mh)/n ke{0,1,...,n—1}.

In particular, (re*?)t/? = £/re?/2, For 0 < a € R we have 22 = a4 <= 2z = +/a, and
for 0 > a € R we have 2° = a <= 2z = ++/l|a|i.
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1.28 Note: When working with complex numbers, for 0 # z € C and for 0 < n € Z, we
sometimes write {/z or w'/™ to denote one of the n solutions to w™ = z, and we sometimes
write {/z or z'/™ to denote the set of all n'" roots.

1.29 Note: For z,w € C, the rule
(Z,w)l/n — Zl/nwl/n

does hold provided that z'/™ is used to denote the set of all n'® roots, but it does not
always hold when 2™ is used to denote one of the n'® roots. Consider the following
amusing “proof” that 1 = —1:

1=V1=(-1)(-1) =vV-1y-1=i*=—1.

1.30 Example: Find v/—2 + 2i.
Solution: Note that —2 + 2i = 2/2e*3™/4_ and so the formula for n'® roots gives

V=24 2i = \/2v/2 37/

= \/éei(ﬂ/él'i_%r k), ke {O, 1, 2}
_ \/éeiw/?a’ Vel 117r/127 V2 ei19m/12

1.31 Note: The remaining examples in this chapter illustrate situations in which we
can use complex numbers as a tool to help solve certain problems which only involve real
numbers.

1.32 Example: Let o = 1 and 2y = 1, and for n > 2 let z,, = 2x,,_1 — 5x,,_2. Find a
closed-form formula for x,,.

Solution: If a sequence x,, satisfies the recursion formula ax, +bx,_1 +cx,_o = 0 and if
the associated quadric az? + bz + ¢ = 0 has distinct roots o and 3, then it can be shown
that x,, = Aa™ + Bf"™ for some constants A and B (if you have not seen this fact before,
then try to prove it by induction). For the given sequence, the associated quadratic is

22 — 224+ 5 = 0 which has roots z = 2Ev2=20 V24_20 =1+ 2¢, and so we have
xn =A1+2i)" + B(1—2i)"

for some constants A and B. To get g = 1 and ;1 = 1, we need A + B = 1 and
A(1 + 2i) + B(1 — 2i) = 1. Solving these two equations gives A = B = 1, so we have

Tn =2 ((1+20)" + (1 —20)") =} ((\/Ee“’)” + (\/Ee—“))") — (O (gind 4 g-ind)
(

— vs)" (2cosnb) = (\/g)ncos nd

2

where § = 0(1 + 2i) = tan~! 2. Thus we obtain

z, = (V5)" cos (ntan™' 2) .



1.33 Example: Find E (i?))n)
1
i=0

Solution: Let o = e?27/3. Note that 1 + a + a® = 1+< % % ) (—% — \/7§Z> =0
By the Binomial Theorem we have
an 3an 3n 3n 3n
1+1)%" =
e =(o) (7)) (3 ) +( () +(3n)
(14 a)™ = 3n n 3n - 3n n 3n N 3n
~\ 0 1 3 4 3n
an an 3n 3n 3n
1 2377,: 2 2
= () () 3 ) <3)+<4)a+ .
3
Adding these three equations gives (1+1)3" 4+ (1 +a)3" + (1 +a?)3" =3 Z ( 3?) . Note

that 1 + o = 1—%—#\/75@':%—#\/752':6”/3 and similarly 1 4+ a? =e ”/3, and so

() = H @0 ) () = (20 () 4 () )

P 37
231 4 2(=1)"
3 .

1.34 Note: The Fundamental Theorem of Algebra (which we shall prove later in this
course) states that every non-constant polynomial over C has a root in C. It follows that
every such polynomial factors into linear factors over C. If a polynomial f(z) has real
coefficients, and « is a complex root of f so that f(a) = 0, then we have f(@) = f(a) =0
so that @ is also a root of f. Notice that in this case

(x—a)(z —a) =2 — (a+a)z +aa =2* —2Re (a) + |af?,

— % (23n + einw + e—inﬂ*) —

which has real coefficients. It follows that every non-constant polynomial over R factors
into linear and quadratic factors over R.

1.35 Example: Let f(x) = 2 + 222 + 4. Solve f(z) = 0 for z € C, factor f(z) over the
complex number, and then factor f(z) over the real numbers.

Solution: By the quadratic formula, f(z) = 0 when 2?2 = —14 /3 or in polar coordinates
z = 2e*"2™/3 Thus the roots of f are z = +v/2eT™/3_ and so f factors over C as

4222+ 4= (2 — V23 (z — \/56_”/3) (z+ \/56”/3) (= + V2e™iT/3)
Since (= VB TI) (s~ VB = 22 B+ 2and (5 VB ) s VBT =

22 + /22 + 2, we see that over R, f factors as
f(z)=@®=V2z+2)(x®> +V22+2).

1.36 Note: Historically, complex numbers first arose in the study of cubic equations. An
equation of the form az?+bx?+cx+d = 0, where a, b, ¢,d € C with a # 0 can be solved as
follows. First, divide by a to obtain an equation of the form z3 + Bx? 4+ Cx+ D = 0. Next,
make the substitution y = x+ % and rewrite the equation in the form y3+py+q = 0. Then

make the substitution y = z — & to convert the equation to the form 23 + ¢ — p3 2 =0.

Finally, multiply by 23 to obtam 20 4+q23— and solve for 23 using the Qua,dratlc Formula.
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1.37 Example: Let f(x) = 2® + 322 + 42 + 1. Note that f/(z) = 322 + 6z + 4 =
3(x+1)24+1 >0, so f is increasing and hence has exactly one real root. Find the real
root of f.

Solution: Let y = x+1. Then 23+3z2+42+1 = (y—1)3+3(y—1)?+4(y—1)+1 = y3+y—1.

Try y =z+rz ! withr = —é, sowehave Y’ +y—1=(z— 3271 +(z— 3271 - 1=
31— i 273, We solve 2° — 23 — 2—17 = 0 using the quadratic formula, and obtain

/31 /3 31
23 = 1+ 27. If 2 \3/ —1+ then rz— ! = _% 1 3/ 2(11_\/%27) 13/ 1-
31 /
Similarly, if z = \3/ Ve then rz~1 = {/ = »—-. In either case we have y = 2 +rz7" =
/31 31 /3L
\/T”+\/ 227,andx:y—1:</ 227+1—\/ 27 L1 (We did not use complex

numbers in this example).

1.38 Example: Find the three real roots of f(z) = 2% — 3z + 1.

Solution: Let x = z+rz~! withr = 1 sothat f(z) = (z24+271)3-3(2+271)+1 = 23+1+273.

Multiply by 22 and solve 2% 4 23 +1 = 0 to get 2> = %\/‘3’1 = 127/3 If 23 = 127/3
then z = e'27/9, e!87/9 or ¢147/9 and so v = 2+ 27! = 24+ Z = 2Re(2) = 2 cos(21),

2cos(8F) or 2003(13”). If 23 = ¢=%27/3 then we obtain the same values for z. Thus the

three real roots are 2 cos(40°), —2cos(20°) and 2 cos(80°).



Chapter 2. Complex Functions

2.1 Definition: Let X and Y be sets. We say that f is a function (or a map) from X
to Y, and we write f : X — Y, when to each element x € X there is assigned a unique
element y = f(x) € Y. The set X is called the domain of f, and the image (or range)
of f is the set

Image (f) = f(X) = { f(z)|z € X}

More generally, for U C X, the image of U under f is the set f(U) = {f(m)‘m € U}. For
V CY, the inverse image of V' under f is the set

FHV)={z e X|f(x) eU}.
The graph of f is the set
Graph (f) = {(z,y) € X x Y|£L' €eX,y=f(z)}.

We say that f is a multi-function from X to Y, and we use the same notation f : X — Y,
when f is a function from X to the set of all subsets of Y.

2.2 Note: A map f: U C R — R can be visualized by drawing a picture of its graph,
which is a curve in R2.

2.3 Note: A map f : U C R — C can be visualized by drawing its image, which is
typically a curve in C.

2.4 Example: The line segment from a € C to b € C is the image of the map
z(t)=a+tb—a), 0<t<1.

2.5 Example: The circle centred at a € C with radius r» > 0 is the image of the map
z(t)=a+ret, 0<t< 2T,

2.6 Example: Describe and sketch the image of the map z(t) = (1 +it)? .

Solution: We can sketch the image of any map z(t) simply by plotting points. Try plotting
the points z(t) for t = —2,—1,0,1,2. For this particular map, we can eliminate the
parameter ¢ to describe the image: z(t) = (1+it)? = (1 —¢2)+1i(2t) so we have z = 1 —¢*
and y =2t,and sox =1 — iy? This shows that the image is the parabola x =1 — }lyz.

() \;4
-2 —3—4 '
-1 =2 x

0 1 : : : j

1 2i ' ' ' /

2 3444 /ﬁ-z

Fa

LN}
g}
-




2.7 Example: Describe and sketch the image of the map z(t) = sin(2t)e’?.

Solution: We have z(t) = r(t)e*?®") where r(t) = sin(2t) and 6(t) = t. Plot the points
r(t)e!?® for t = 5k, k=0,1,2,---,24 on a polar grid (the cartesian grid consists of
vertical lines x = const. and horizontal lines y = const., while the polar grid consists of
cirles 7 = const. and rays € = const.). You will see that the curve is a four-leafed rose: it
consists of one loop in each of the four quadrants.

0=t r=sin(2t)

0 0
7/12 1/2
/6 V3/2
/4 1
/3 V3/2
57 /6 1/2
/2 0

2.8 Note: To visualize a map f : U C C — R we can draw the level curves (also called
contour lines). These are the inverse images f~!(u) = {z € C|f(z) = u} of constant
values u € R, and they are typically curves in U C C. We can also use the level curves of
f to help draw its graph, which is a surface in R3.

2.9 Example: Describe the level curves and the graph of the map u = f(2) = Re (2).

Solution: For v € R we have f~'(u) = {u+iy|y € R}, which is the line x = u. Also,
Graph (f) = {(a:, Y, z) € R3|u = x}, which is the plane through the origin perpendicular
to the vector (1,0, —1).

2.10 Example: Sketch some level curves and sketch the graph of u = f(z) = |2|%.

Solution: For u € R we have f~1(u) = {x +iy|2? +y? = u}. When u < 0, this is empty,
when u = 0 it is the origin, and when u > 0 it is the circle about the origin of radius /u .
Also, we have Graph (f) = {(:Jc, Y, z)‘u =22+ yQ}, which is a paraboloid.

-t
f.____.-a—a-—\:——\-—\.\,_\_\_\_:' - _h:"\. .
& _.--"'-. - N'\. '
x - o -!II- _1=_\_ N
v - - - LY
y .-"ll- . - T "'\-\\ L
I 7 |
JSoror i h "-" 1'- h! 1
Ll 1 v b
1 1 1 Ir ILI |: ': - T
2, lhik ] Az
H - r [
1! J L '
RN RS
! —_ L
o =1 - .
'-\.\\_\ — _F_____..-' -
x — ]
- s
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2.11 Example: Sketch some level curves of u = f(z) = Re (1/z2).

x
Solution: We have u(m+z’y):m. When u = 0 we have x = 0, and when u # 0 we
2 +y
T
have ——— =u <= v=uz’ftuy? < 22 - 249y° =0 <= (z— 5> +1° = ;1=

x? + y?
so the level curve u =constant is the circle centred at (ﬁ, 0) with radius ﬁ These circles
all go through the origin. If you sketch several of them you will see that they form the

pattern which is made by the electric field of a dipole (a small bar magnet).

17
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2.12 Note: To visualize amap f : U C C — C we can sketch the images of various curves
in the domain (if 2 = x + 7y then we usually draw the images of the lines x = const. and
y = const. while if 2 = re’? then we draw the images of the circles r = const. and the
rays 6 = const.). Alternatively, we can draw the inverse images of various curves in the
range (if w = f(z) with w = u + ¢v then we might draw the inverse images of the lines
u = const. and v = const.)

2.13 Example: Give a geometric description of the map w(z) = a z 4+ b where a € C and
b € C. Sketch the images of the lines x+ = —1,0,1 and y = —1,0,1 when z = z + ¢y and
a=142; and b=4+ 3i.

Solution: If a = 7e'® and z = se’? then az = (rs)e’®*P) | so multiplying 2z by a has
the effect of scaling z by a factor of r = |a| and rotating the result about the origin by
the angle a = 0(a). Adding b is the same as translating by b. This geometric description
shows that the three vertical lines x = —1,0,1 will be sent to the three lines which are
parallel to ai = —2 + ¢ and which pass through the points w(—1) =3 + 4, w(0) = 4 + 3i
and w(l) = 5 4+ b5i, respectively, and the three horizontal lines y = —1,0,1 are sent
to the three lines parallel to a = 1 + 2i through w(—i) = 6 + 24, w(0) = 4 + 3i and
w(i) = 2 + 44, respectively. This can also be shown algebraically. For example, the
vertical line x = c¢ is given parametrically by 2(t) = ¢+ it, t € R, and it is sent to
w(z(t)) =alc+it) +b=ac+b+iat =w(c)+ at, which is the line through w(c) parallel
to ta.
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2.14 Example: Let w(z) = 2*. Describe the images of the circles r = const. and the rays
0 = const. where z = re*?. Also, sketch the image of the line z = 1, where z = x + i y.

Solution: We have w = (re??)* = r%e?4? 5o if w = se'? then we have s = r* and ¢ = 4.
Thus the circle » = ¢ is mapped to the circle s = ¢* and the ray § = « is mapped to the
ray ¢ = 4a. The line x = 1 is given parametrically by z = 1 4+ ¢t and it is mapped to
the curve w(t) = (1 +it)* = 1+ 4ti — 6t — 4137 + t* = (1 — 612 + t*) + 4 (4t — 4t3), so
its image is the curve given parametrically by u(t) = 1 — 6t + t* and v(t) = 4t — 4¢3.
The wu-intercepts occur when v = 0, that is when ¢ = 0,£1 and the v-intercepts occur
when u = 0, that is when 2 = 3 £ 2v/2. Also, We have v/(t) = —12t + 4t3 = 4t(t> — 3)
and v'(t) = 4 — 12t> = 4(1 — 3t?), and so the curve is vertical when u/(t) = 0, that
is when t = 0,4+/3 and it is horizontal when v'(t) = 0, that is when t = +1/v/3. To
sketch the curve, plot the points when t = 0, 41/+/3, &1, ++/3, 42, and perhaps also when

t =43 +2V2.

t U v L0
2 7 25
-3 -8 8v/3
1 4 0 *

-1/V/3 —8/9 —8V/3/9
0 1 0

1/vV3 —8/9 8V3/9
1 —4 0 0
V3 -8  —8V3 [
2 7 —25 L
:—E‘D
2.15 Example: Let w(z) = i Describe the images of the circles r = const. and the rays

0 = const., and then describe the images of the lines x = const. and y = const.

) ) 1 )

Solution: If 2 = re’? and w = se'? then we have w = —— = 1e' so that s = 1
re

and ¢ = 6. This map is known as the inversion in the unit circle: the circle r = ¢ is

mapped to the circle s = 1/c¢ while the ray § = « is mapped to itself. If z = =z + iy

and w = u + iv then the vertical line x = ¢ is given parametrically by z(t) = ¢+ it
c+ut
and it is sent to w(z(t)) = ———=, so its image is the curve given by u(t) = ——— and
C0) = S0 g given by u(t) =

v(t) = o When ¢ = 0 we have u = 0 and v = t/t? = 1/t, so the line x = 0 (excluding

the origin) is mapped to the line u = 0 (excludind the origin). When ¢ # 0, we can use the
expression for u(t) to solve for t to get t> = (¢ — uc?)/u and then we can substitute this
into the expression v?(t) = t2/(c? + t?)? and simplify to get v? = Lu — u? or equivalently
(u— 5)? + v? = (5)?. Thus the image of the line z = ¢, ¢ # 0 is the circle centred at 5
with radius ﬁ, excluding the origin. Similarly, the image of the horizontal line y = c is

the circle centred at 2%2 with radius ﬁ, excluding the origin.
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2.16 Definition: We define the exponential function by
etV = e%e'Y = e cosy +ie”siny.

We also write exp(z) = e*.

2.17 Note: It is not hard to check that the exponential function has the following prop-
erties for all complex numbers z and w:

e =1
e =1/, e =(e*)",neZ
eerw — ezew esz — ez/ew

)

e =¢e¥ < w=z+12nk for some k € Z

2.18 Example: Let w(z) = e®. Describe the images of the lines x = const. and y = const.
where z =2z +1y.

Solution: We have w = e®e’y, so if w = re’? then we have r = €® and § = 3. So the
vertical line « = ¢ is mapped to the circle r = e, and the horizontal line y = ¢ is mapped
to the ray # = c. Notice that the domain of e* is all of C while the range is C\ {0}.

2.19 Definition: We define the trigonometric functions by

) et —et” e'? +e*” sin z
sing=———, coSz=——769Z¥—, tanz=
21 2 COS 2

and secz = 1/cosz, cscz = 1/sinz and cot z = cosz/sinz. We define the hyperbolic
functions by

) e —e 7 e +e 7 sinh z
sinhz = ——— , coshz= — tanh z =

cosh z

and coth z = cosh z/sinh z.

13



2.20 Note: It is not hard to verify the following properties, where z,w € C:

sin(z 4 27) =sinz , cos(z + 2w) = cosz
sin(—z) = —sinz , cos(—z) =cosz
sin? z + cos? z = 1

sin(z +w) = sinzcosw + cos zsinw , sin(2z) = 2sinz cos z

2 2

cos(z +w) = coszcosw —sinzsinw , cos(2z) = cos® z — sin” 2z
sinh(—z) = —sinhz , cosh(—z) = coshz

cosh? z — sinh? z = 1

sinh(z + w) = sinh zcoshw + cosh zsinhw , sinh(2z) = 2sinh z cosh z

cosh(z 4+ w) = cosh z cosh w + sinh zsinhw ,  cosh(2z) = cosh? z + sinh? 2

In fact all of the trigonometric identities and hyperbolic identies which hold for real num-
bers also hold for complex numbers. Here are some more properties:

sinh(z +42m) =sinhz, cosh(z+i27) = coshz
sinh(iz) =i sinz, cosh(iz)=cosz

sin(iz) =i sinhz, cos(iz) = coshz

sin(z 4 iy) =sinxzcoshy + i coszsinhy , |sin(z +iy)|> = sin? z + sinh?y
cos(z 4+ iy) = coszcoshy —i sinxzsinhy , |cos(z +iy)|? = cos? z + sinh? y
sinh(z 4 iy) = sinhx cosy + i coshasiny , |sinh(z + iy)|> = sinh® z + sin?y

cosh(z 4+ iy) = coshzcosy + i sinhasiny , |cosh(z +iy)[? = sinh?® z + cos? y

2.21 Example: Find sin(§ + ¢ In2).

Solution: We have

sin(Z + i In2) = sin(Z) cosh(In2) 4 i cos(Z)sinh(In2) = 1 - 2 + \/7§ :

|

2.22 Example: Solve coshz = —2.

Solution: If z = x + iy then we have coshz = coshxcosy + ¢ sinhxsiny, so we have
cosh z = —2 when cosh x cosy = —2 and sinh zsiny = 0. We cannot have sinh z = 0, since
if sinhx = 0 then x = 0 so coshxcosy = cosy # —2. So we must have siny = 0 and so
y = k7 for some k € Z and we have cosy = £1. To have cosh x cosy = —2, we must have
cosy = —1 and coshx = 2 (since coshx is always positive). We can solve coshx = 2 as
follows: coshz =2 <= e +e @ =4 <= ()2 —4e"+1=0 <= e =243 50 we
have = In(2+1/3) or equivalently z = +1n(2++/3). Thus z = +In(2++/3) +i (7 + 27k)
for some k € Z.

2.23 Example: Let w(z) = sinz. Describe the images of the lines z = const. and
y = const. where z = x + i y.

Solution: The vertical line x = ¢ is given parametrically by z(¢) = ¢+ it and it is mapped
to the curve w(t) = sin(c + ¢t) = sinccosht + i coscsinht. If w = v+ iv then we have
u(t) = sinccosht and v(t) = cos csinh t. Using the identity cosh® ¢ —sinh® = 1 we obtain

14



u? v?

e coc = 1, provided that ¢ # Zk,k € Z. This is the equation of a hyperbola.
The image of the line x = ¢ will be one of the two branches of this hyperbola; when sin ¢
is positive u(t) is also positive and the image is the branch on the right; when sinc is
negative, the image is the branch on the left. When sinc = 0 (so that ¢ = 7k), the image
is the line u = 0, that is, the v-axis. When cosc¢ = 0, the image lies on the line v = 0 (the
u-axis) and it is either the interval [1,00) (when sinc = 1) or else the interval (—oo, —1]
(when sinc = —1).

The horizontal line y = ¢ is given parametrically by z(¢) =t + i c and it is mapped to
w(t) = sintcosh ¢+ ¢ costsinh ¢ so we have u(t) = sint cosh ¢ and v(t) = costsinht. Since

2
v
= 1. The line y = ¢ is mapped to this ellipse,

sin®t + cos?t = 1 we have 5 —
- . cosh®c  sinh“c )
unless ¢ = 27k ¢ in which case the image can be seen to be the line segment [—1,1] on the

u-axis.
If you sketch a few of these hyperbolas and ellipses, you will get a nice picture showing
two orthogonal families of curves. You will see that the domain and the range of sin z are

et
/// Dj é\\\

2.24 Definition: Let X and Y be sets and let f: X — Y. We say that f is one-to-one,
written as f is 1:1, (or that f is injective) when for every y € Y there exists at most
one z € X such that f(x) = y. We say that f is onto (or surjective) when for every
y € Y there exists at least one z € X such that f(x) = y. We say that f is invertible (or
bijective) when f is both one-to-one and onto, that is when for every y € Y there exists
exactly one z € X such that f(z) =v.

When a map f from X to Y is invertible, it has a unique inverse function from Y
to X, denoted by f~!, which is defined by

fl@)y=y <= fly) ==

or equivalently by
FUE W) =y, F(f@)==

forall z € X and y € Y. When f from X to Y is not invertible, we define its inverse
multi-function from Y to X given by

fHy) = {z e X[f(x) =y} .

2.25 Note: When amap f: X — Y is 1:1 (but perhaps not onto), the map f : X — f(X)
is both 1:1 and onto, and hence invertible. When a map f : X — Y is not 1:1, then
sometimes we can find a subset U C X such that the restriction f: U C X — Y is 1:1,
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and then the map f : U — f(U) is invertible. In this case, the inverse function of the
map f : U — f(U) is called a branch of the inverse multi-function. When working with
complex-valued functions of a complex variable, we shall sometimes use the notation f~!
to denote the inverse multi-function of f, and we shall sometimes use the notation f~! to
denote some branch of the inverse multi-function.

2.26 Example: In real variable calculus, to define sin™! z it is customary to restrict the
domain of sinz to —5 <z < 7 so that it becomes 1:1. If we thought instead of sin~!x as

a multi-function then for example we would have sin~' (1) = {Z + 2nk, 5 + 2rk|k € Z}.

2.27 Example: The polar coordinates map f : {(7“, 9)|7“ > 0,0 € R} — R? given by
f(r,0) =(rcosf,rsinf) is not 1:1. We can make it 1:1 by restricting the domain in various
ways. For example for any 6y € R, if we restrict the domain to

{(r,0)]r > 0,00 < 0 < 0y + 2}

then f becomes 1:1 and its inverse is given by f~1(x,y) = (r,6) where r = |z + iy| and
0 = 0(x +iy) with 6y < 0(x +1iy) < 0y + 27. Alternatively, if we think of f~! as a multi-
function, then we can still write f~1(z,y) = (r,0) where r = |x +iy| and 0 = 0(z +iy),
but this time 6(z + iy) denotes an infinite set of the form 6(z + iy) = {6y + 27 k:|k: €Z}
with say 0 < 0y < 2.

2.28 Definition: The inverse of the exponential function e is the logarithmic function
(or the logarithmic multi-function), denoted by log z.

2.29 Example: Find a formula for log z.

Solution: Let z = re*? and w =u+iv. Then w =logz <= e¥ =2z <= e%'? =re'?,

which happens when e* = r and v = 6 + 27k for some k € Z. Thus
log (re'?) =Inr+i(0 + 2nk), k€ Z.

This is the formula for the multi-valued logarithm. We can obtain a branch of the logarithm
by restricting the domain of the exponential function in various ways. For example, for
any 0y € R, if we restrict its domain to the set {rew|r > 0,60) < 0 < 6y + 27?}, then it
becomes invertible with inverse function

log (rew) =lInr—+1:60 , where 6y < 0 < 0y + 27.

2.30 Example: Find log(1 — i)
Solution: log(1 — i) = log(v2e™*™/4) = Inv2 + i (—% + 27k), k € Z.

2.31 Note: For the multi-valued logarithm, you should convince yourself that the follow-
ing formulas make sense and they all hold:

6logz — 5
log(z w) = log z + logw
log(z/w) = log z — logw
2.32 Definition: We can use the logarithm to define complex exponents: given a € C
we define
2% = exp(alogz) .
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2.33 Example: Find i=%.
Solution: i~% = exp(—2i logi) = exp(—2i (i (5 + 27k)) = exp(w + 47k), k € Z.
2.34 Example: Find a formula for 2%/3.

Solution: Write z = re*?. Then we have
223 = exp(% log z) = exp (%(lnr + (0 + 27 k))) = 12/3¢i(20+47K)/3 | c 7.

Notice that there are three distinct values of 2%/3 obtained by taking k € {0, 1, 2}.
2.35 Note: Check that

2" = exp(nlogz) is single valued for 0 <n € Z

= exp (% log z) takes n values for 0 <n € Z

2.36 Definition: The inverse trigonometric functions are denoted by sin™! z, cos ™! z,

tan~! z and so on. The inverse hyperbolic functions are denoted by sinh™' z, cosh ™ z,
tanh™! z and so on.

2.37 Note: Since the trigonometric and the hyperbolic functions are defined using the
exponential function, their inverses can be expressed in terms of the logarithmic function:

sin~!z = —i log <iz +v1- ,22)

cos tz=—ilog <z + V22— 1)

_1z:310gl.+2’
2 1 — Z

sinh™! z = log (z + V22 + 1)

cosh™ z = log (z +v22 - 1)

1 1
tanh™' 2 = = log tz
2 1—-2

tan

where the square roots are double valued. Let us derive the formula for sin™! z. We have
w=sin"lz &= z=sinw <= z= (" —eW)/2 — (™) —2iz(e™)—-1=0
< ™ =iz + V1 — 22 so we obtain iw = log (iz + V1 — 22), as required.

2.38 Example: Find cosh™'(—2).

Solution: We already did this in example 2.22, but let us do it again using the above
logarithmic formula. We have

cosh™(=2) = log(—2 + v/3) = log((2 £ V3)e!™) = In(2+ V3) + i (7 + 27k), k € Z.
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Chapter 3. Topology in Euclidean Space

3.1 Definition: For vectors z,y € R"™ we define the dot product of x and y to be
rey=yle= > @i
When z,w € C = R? we have z « w = Re (2W).
3.2 Theorem: (Properties of the Dot Product) For all z,y,z € R™ and allt € R we have
(1) (Bilinearity) (x +y) e z=x+24+ye+2z, (tz) sy =tz +y)
ze(yt+z)=zyta-z, z-(ty) =t(z-y),
(2) (Symmetry) x « y =y » x, and
(3) (Positive Definiteness) x « x > 0 with x « x = 0 if and only if z = 0.

Proof: The proof is left as an exercise.

3.3 Definition: For a vector x € R", we define the norm (or length) of z to be

ol = VarE =[St

We say that x is a unit vector when |z| = 1.

3.4 Theorem: (Properties of Length) Let z,y € R™ and let t € R. Then

(1) (Positive Definiteness) |z| > 0 with |x| = 0 if and only if x = 0,

(2) (Scaling) |tz| = |t||x|,

(3) lv£y|* = £2(z - y) + [y|*.

(4) (The Polarization Identities) x « y = % (|z + y|> — |z* — |y]?) = 2 (Jz + y|> — |z — y/?),
(5) (The Cachy-Schwarz Inequality) |x « y| < |z||y| with |z « y| = |z| |y| if and only if the
set {x,y} is linearly dependent, and

(6) (The Triangle Inequality) |z + y| < |x| + |y|.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {z,y} is linearly
dependent. Then one of z and y is a multiple of the other, say y = tx with ¢ € R. Then

@yl = |a - (ta)| = [t(z - )| = [t]2]* = || [te] = |2] |y].
Suppose next that {z,y} is linearly independent. Then for all ¢ € R we have x + ty # 0
and so
0# |z +ty|*> = (x+ty) « (x+ty) = x> + 2t(x - y) + 2|y]*.
Since the quadratic on the right is non-zero for all ¢ € R, it follows that the discriminant
of the quadratic must be negative, that is

Az - y)? — 4lzlyl* < 0.

Thus (z « y)? < |2|?|y|? and hence |z « y| < |z||y|. This proves part (5).
Using part (5) note that

2
e +yl* = l2l*+2(z - y) +yl* < lo+yl*+ 202 - yl+ [y < o +202] lyl+[y* = (2] +]y])
and so |z + y| < |z| + |y|, which proves part (6).
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3.5 Definition: For points a,b € R", we define the distance between a and b to be
dist(a,b) = |b — al.

3.6 Theorem: (Properties of Distance) Let a,b,c € R™. Then

(1) (Positive Definiteness) dist(a,b) > 0 with dist(a,b) = 0 if and only if a = b,
(2) (Symmetry) dist(a,b) = dist(b, a), and

(3) (The Triangle Inequality) dist(a,c) < dist(a,b) 4 dist(b, ¢).

Proof: The proof is left as an exercise.

3.7 Definition: For a € R™ and 0 < r € R, the sphere, the open ball, the closed ball,
and the (open) punctured ball in R™ centered at a of radius r are defined to be the sets

S(a,r) = {z € R*|dist(z,a) =71} = {z € R"||a — z| =1},

(a,7) = {z € R"|dist(z,a) <1} = {z € R"||a — 2| < r},

(a,r)={z € R”|dist(x,a) <r}={ze R”Ha —z| <r},
B*(a,r) = {z € R"*|0 < dist(z,a) <r} = {z € R"|0 < |a — x| < r}.

a,r

When n = 2, a sphere is also called a circle and a ball is also called a disc. Fora € R?> = C

and 0 < r € R we also write D(a,r) = B(a,r), D(a,r) = B(a,r) and D*(a,r) = B*(a,r).
3.8 Definition: For a set A C R", we say that A is open (in R™) when for every a € A
there exists 7 > 0 such that B(a,r) C A, and we say that A is closed (in R™) when its
complement A° = R™ \ A is open in R".

3.9 Example: Show that for a € R" and 0 < r € R, the set B(a,r) is open and the set
B(a,r) is closed.

Solution: Let a € R™ and let » > 0. We claim that B(a,r) is open. We need to show that
for all b € B(a,r) there exists s > 0 such that B(b,s) C B(a,r). Let b € B(a,r) and note
that |b —a| < r. Let s = r — |b — a| and note that s > 0. Let x € B(b,s), so we have
|x — b] < s. Then, by the Triangle Inequality, we have

|t —al =]z —b+b—a|<|z—bl+|b—a|<s+|b—a|l =7

and so x € B(a,r). This shows that B(b,s) C B(a,r) and hence B(a,r) is open.
Next we claim that B(a,r) is closed, that is B(a,r) is open. Let b € B(a,r), that is
let b € R™ with b ¢ B(a,r). Since b ¢ B(a,r) we have [b—a| >r. Let s=|b—a| —r > 0.

Let € B(b, s) and note that |z — b| < s. Then we have
b—al=b—xz+x—a|<|b—z|+|r—a| <s+ |z —q
and so |z —a| > |b—a| — s = r. Since |x —a| > r we have z ¢ B(a,r) and so x € B(a,)°.

This shows that B(b,s) € B(a,r)® and it follows that B(a,r) is open and hence that
B(a,r) is closed.
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3.10 Theorem: (Basic Properties of Open Sets)

(1) The sets () and R™ are open in R".
(2) If S is a set of open sets then the union |JS = |J U is open.

Ues
(3) If S is a finite set of open sets then the intersection (1S = () U is open.

ves

Proof: The empty set is open because any statement of the form “for all z€() F” (where
F is any statement) is considered to be true (by convention). The set R™ is open because
given a € R™ we can choose any value of r > 0 and then we have B(a,r) C R™ by the
definition of B(a, ). This proves Part (1).

To prove Part (2), let S be any set of open sets. Let a € |JS = UyegU. Choose
an open set U € S such that a € U. Since U is open we can choose r > 0 such that
B(a,r) C U. Since U € S we have U C |JS. Since B(a,r) C U and U C |JS we have
B(a,r) CJS. Thus |J S is open, as required.

To prove Part (3), let S be a finite set of open sets. If S = ) then we use the convention
that (.S = R", which is open. Suppose that S # 0, say S = {Uy,Us,---,U,, } where each
Ui is an open set. Let a € (S = (2, Ux. For each index k, since a € Uy, we can
choose ry, > 0 so that B(a,ry) C Ug. Let r = min{ry,rs,---,r,}. Then for each index
k we have B(a,r) C B(a,ry) C Ug. Since B(a,r) C Uy for every index k, it follows that
B(a,r) €~ Ux =(S. Thus (S is open, as required.

3.11 Theorem: (Basic Properties of Closed Sets)

(1) The sets () and R™ are closed in R™.

(2) If S is a set of closed sets then the intersection (S = ()| K is closed.
KeS

(3) If S is a finite set of closed sets then the union |JS = |J K is closed.
KeS

Proof: The proof is left as an exercise

3.12 Definition: Let A C R™. The interior and the closure of A (in R™) are the sets
A% = J{U CR"|U is open, and U C A},
A= ﬂ {K - R”‘K is closed and A C K}.

3.13 Theorem: Let A C R™.

(1) The interior of A is the largest open set which is contained in A. In other words,
A% C A and A° is open, and for every open set U with U C A we have U C A°.

(2) The closure of A is the smallest closed set which contains A. In other words, A C A
and A is closed, and for every closed set K with A C K we have A C K.

Proof: Note that A° is open by Part (2) of Theorem 8.10, because A° is equal to the union
of a set of open sets. Also note that AY C A because A is equal to the union of a set of
subsets of A. Finally note that for any open set U with U C A we have U € S so that
U C|JS = A" This completes the proof of Part (1), and the proof of Part (2) is similar.

3.14 Corollary: Let A C R".

(1) (A°)0 = A% and A = A.

(2) A is open if and only if A = A°
(3) A is closed if and only if A= A.

Proof: The proof is left as an exercise.
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3.15 Definition: Let A C R". An interior point of A is a point a € A such that for
some r > 0 we have B(a,r) C A. A limit point of A is a point a € R™ such that for
every r > 0 we have B*(a,7) N A # (). A boundary point of A is a point a € R" such
that for every r > 0 we have B(a,7) N A # 0 and B(a,r) N A # (). The set of all limit
points of A is denoted by A’. The boundary of A, is the set of all boundary points of A.

3.16 Theorem: (Equivalent Topological Definitions) Let A C R".
(1) A is closed if and only if A’ C A.

(2) A=AUA.
(3) A° is equal to the set of all interior points of A.
(4) 0A = A\ A°.

Proof: To prove Part (1) note that when a ¢ A we have B(a,r)NA = B*(a,r)N A and so

A is closed <= A€ is open

Vae A° 3r>0 B(a,r) C A°

VaeR" (a¢ A = Ir>0 B(a,r) C A°
VaceR" (a¢ A = Ir>0 Bla,r) N A =0)
VaeR" (a¢ A = Ir>0 B*(a,r)N A =10)
VaeR" (Vr>0 B*(a,r)NA#0 = acA)
VaeR" (a

A C A.

€A = ac A

rrereey

To prove Part (2) we shall prove that AU A’ is the smallest closed set which contains A.
It is clear that A U A’ contains A. We claim that A U A" is closed, that is (AU A’)¢ is
open. Let a € (AU A’)°, that is let a € R™ with a ¢ A and a ¢ A’. Since a ¢ A’ we can
choose r > 0 so that B(a,r) N A = (). We claim that because B(a,r) N A = ) it follows
that B(a,r) N A’ = (). Suppose, for a contradiction, that B(a,r) N A" # emptyset. Choose
b € B(a,r)N A’. Since b € B(a,r) and B(a,r) is open, we can choose s > 0 so that
B(b,s) C B(a,r). Since b € A’ it follows that B(b,s) N A # (. Choose x € B(b,s) N A.
Then we have z € B(b,s) C B(a,r) and x € A and so z € B(a,r) N A, which contradicts
the fact that B(a,r) N A = (. Thus B(a,r) N A" = (), as claimed. Since B(a,r)N A =
and B(a,r)NA" = it follows that B(a,r)N(AUA") = () hence B(a,r) C (AU A")°. Thus
proves that (AU A’)¢ is open, and hence AU A’ is closed.

It remains to show that for every closed set K with A C K we have AUA’ C K. Let
K be a closed set in R"® with A C K. Note that since A C K it follows that A’ C K’
because if a € A’ then for all » > 0 we have B(a,r) N A # 0 hence B(a,r) N K # () and so
a € K'. Since K is closed we have K’ C K by Part (1). Since A’ C K’ and K’ C K we
have A’ C K. Since A C K and A’ C K we have AU A’ C K, as required. This completes
the proof of Part (2). We leave the proofs of Parts (3) and (4) as an exercise.

3.17 Definition: Let A C R"”. We say that A is disconnected when there exist open
sets U and V in R" such that

UNA#Q, VNA£D, UNV =0and ACUUYV.

When A is disconnected, such open sets U and V are said to separate A. We say that A
is connected when it is not disconnected.
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3.18 Theorem: The connected sets in R are the intervals, that is the sets of one of the
forms

(a,b), [a,b), (a,b], [a,b], (a,0), [a,0), (—o0,b), (—00,b], (—00,00)
for some a,b € R with a < b. We include the case that a = b in order to include the
degenerate intervals ) = (a,a) and {a} = [a, a].
Proof: I may include a proof later.

3.19 Definition: Let A C R". We say that A is bounded when there exists R > 0 such
that A C B(0, R).

3.20 Exercise: Show that A is bounded if and only if there exists a € R™ and r > 0 such
that A C B(a,r).

3.21 Definition: Let A C R”. An open cover of A is a set S of open sets such that
A C|JS. A subcover of an open cover S of A is a subset T' C S such that A C |JT. We
say that A is compact when every open caver of A has a finite subcover.

3.22 Exercise: Show that the set A = {%|n € Z+} is not compact, but that the set
B = AU {0} is compact.

3.23 Definition: A closed rectangle in R" is a set of the form

R = [al,bl] X [a2,b2] X X [an,bn]
= {(wl,xg,---,azn) € R”}ai < z; <b; for all z}

3.24 Theorem: (Nested Rectangles) Let Ry, Ro, R3,--- be closed rectangles in R™ with
Rl QRQ 2R3 2 --+. Then

() Be # 0.

k=1
Proof: I may include a proof later.
3.25 Theorem: (Compactness of Rectangles) Every closed rectangle in R™ is compact.

Proof: T may include a proof later.
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3.26 Theorem: (The Heine-Borel Theorem) Let A C R"™. Then A is compact if and only
if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded.
For each k € Z" let U, = B(0,k) and let S = {Ux|k € Z*}. Then JS = R" so S
is an open cover of A. Let T be any finite subset of S. If T = () then |JT = () and
A Z |JT. Suppose that T # 0, say T = {Ukl,ng,"',Ukm} with k1 < ko < -+ < k.
Since Uy, C Uy, C -+ C Uy,, we have YT = .-, Ui, = Uy,, = B(0, k). Since A is not
bounded we have A Z B(0, k,,) and so A € |JT. This shows that the open cover S has
no finite subcover T', which contradicts the fact that A is compact.

Next suppose, for a contradiction, that A is not closed. By Part (1) of Theorem 8.16,
it follows that A” € A. Choose a € A’ with a ¢ A. For each k € Z* let Uy be the
open set Uy = B(a,£)" = {z € R"||z —a| > +} and let S = {Ui|k € Z*}. Note that
US = R"™\ {a} so S is an open cover of A. Let T be any finite subset of S. If T = )
then |JT = 0 so A € |JT (since A is not closed so A # (). Suppose that T # (), say
T = {Uk,,Usy, -+, Uy, } with ky < ko < -+ < ky,. Since Uy, C Ui, C --- C Uy,, we have
UT =U=L, U, = Uy, = B(a, ﬁ)c Since a is a limit point of A we have B(a, i) # 0
hence E(a, kl) NA#Pandso AL E(a, ﬁ)c, hence A € |JT. This shows that the open
cover S has no finite subcover T', which again contradicts the fact that A is compact.

Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose
r > 0 so that A C B(0,7). Let R be the closed rectangle R = {z € R"||z;| < r for all k}.
Note that B(0,7) C R since when z = (x1,---,z,) € B(0,r), for each index k we have

n 1/2
ol = (@) < (L a2) " =lal <.

=1

We claim that since A is closed and A C R and R is compact, it follows that A is compact.
Let S be an open cover of A. Since A is closed, the set A° is open, and since A C |J S we
have |J (SU{A°}) = R™ and so the set SU{A°} is an open cover of the rectangle R. Since
R is compact, we can choose a finite subset 7' C (S U {A°}) such that R C |JT. Then we
have A C R C T and so A C |J (T \ {A°}). Thus the open cover S of A does have a
finite subcover, namely the set T'\ {A°}. This proves that A is compact, as required.

3.27 Definition: Let A C S C R™. We say that A is open in S when there exists an
open set U in R™ such that A = SNU. We say that A is closed in S when its complement
A¢ =5\ Aisopenin S.

3.28 Theorem: Let A C S C R™.

(1) A is open in S if and only if for all a € A there exists r > 0 such that B(a,r)NS C A.
(2) A is closed in S if and only if there exists a closed set K in R™ such that A =SNK.
(3) S is disconnected if and only if S has a nonempty proper subset which is both open
and closed in S.

Proof: I may include a proof later.
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3.29 Definition: Let (a,),>, be a sequence in R™. We say the sequence (a)n>p is
bounded when
JR>0Vn€Zs>)y |a,| < R.

For b € R™, we say that the sequence (a,),>, converges to b and write lim a, =b (or
- n—oo

a, — b) when
Ve>03IN€Z>, Vn€ Z>y(n > N = |a, — b < ).

We say the sequence (a,),>, diverges to oo and write lim a,, = oo (or a, — c0) when
- n—oo

VR>03N€ Zs, Vn€Zsy(n>N = |a,| > R).
We say that the sequence (a,)n>, converges when it converges to some point b € R™
and otherwise we say that it diverges.
3.30 Theorem: Let (ay),>p be a sequence in R™, say a,, = (Gn,l, A2, ,Gn,m) c R™.

(1) (@n)n>p is bounded if and only if (a, i)n>p is bounded for all indices i.
(2) For b= (b1, --,by) € R™ we have lim a,, =b if and only if lim a,; = b; for all i.

n—oo n—oo
In particular, if u,v,x,,y, € R and a,, = x,, + 1 y,, then

lim a, =u+ v < ( lim x, =wv and lim y, :v).
n—oo n—oo n—oo

Proof: The proof is left as an exercise.

3.31 Theorem: Let (a,)n>p be a sequence in R™ and let u,v € R™ U {o0}.

(1) If lim a, =u and lim a, = v then u = v.

n—oo n—oo
(2) If lim a, = u and (an,);>, is a subsequence of {(a,) then lim a,, = u.
n—oo - J—o0

(3) If {(apn)n>p converges then it is bounded.
Proof: The proof is left as an exercise.

3.32 Theorem: Let ¢ € R, let u,v € R™, and let {(a,,) and (b,) be sequences in R™ with

lim a, =w and lim b, =v. Then
n—oo n—oo

(1) nli_}rrgo(can) = cu,

(2) nli_)rgo(an +b,) =utw,

(3) nli_)n;o(un cUp) = U,

(4) if m = 2 so that u,v € C then lim (a,b,) = uv, and

n—oo

(5) if m = 2 so that u,v € C and if v # 0 then lim a, /b, = u/v.
n—oo
Proof: The proof is left as an exercise.

3.33 Theorem: (Bolzano-Weierstrass) Every bounded sequence in R™ has a convergent
subsequence.

Proof: T may include a proof later.

3.34 Definition: Let (a,)n>p, be a sequence in R™. We say that (a,) is Cauchy when
Ve>0 IN €2y, Wk, L€ Zzy (K1 > N = |ag — ar| < ).

3.35 Theorem: (The Completeness of R™) For every sequence in R"™, the sequence
converges if and only if it is Cauchy.

Proof: T may include a proof later.

24



3.36 Definition: Let A C R™ and let f : A — R"™. When « is a limit point of A and
b € R™, we say that f(z) converges to b as z tends to a, and we write lim f(z) = b
Tr—a

when

Ve>0 E|5>OV33€A<0< |t —a| <§d = |f(x) =] <e>.

When a is a limit point of A, we say that f(z) diverges to co and we write lim f(x) = oo
r—a

when

YR>035>0 \meA(o <lz—a|<d = |f(z)] > R).

3.37 Theorem: (Sequential Characterization of Limits) Let A C R"™, let f : A — R™,
let a be a limit point of A and let w € R™ U {oco}. Then lim f(z) = u if and only if
r—ra

lim f(z,) = u for every sequence (x,) in A\ {a} with lim z, = a.
n—oo n—oo

Proof: The proof is left as an exercise.

3.38 Corollary: Let A C R"™ and let f : A — R™, let a be a limit point of A, let
b= (b1,ba, - ,by) € R" and say f(x) = (fl(:zz), e ,fm(x)) € R™ for each v € A so that
fi: A— R for each i. Then lim f(x) =10 if and only if lim f;(x) = b; for all i.

T—a r—a

Proof: The proof is left as an exercise.

3.39 Corollary: Let A C R™, let f : A — R™, let a be a limit point of A, and let

u,v € R™U{oo}. If lim = u and lim = v then u = v.
TrT—a Tr—a

Proof: The proof is left as an exercise.

3.40 Corollary: Let A C R™, let f,g: A — R™, let a be a limit point of A, let u,v € R™
and suppose that aljl_rg f(z) =w and :%13% g(x) = v. Then

(1) tim ) = e,

(2) Tim F(x) + g(a) = uv,

(3) Tn S2) - 9(0) = u -,

(4) if m = 2 so that u,v € C then il_rg f(x)g(x) = wv, and

(5) if m = 2 so that u,v € C and if v # 0 then :ll_rgf(:c)/g(x) = u/v.

Proof: The proof is left as an exercise.
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3.41 Definition: Let A C R", let BC R™, and let f: A — B. For a € A, we say that
f is continuous at a when

Ve>036>0VzeA (Jx—a| <6 = |f(z) — f(a)] <e).

We say that f is continuous (in A) when f is continuous at a for every a € A. We say
that f is uniformly continuous in A when

Ve>036>0VacAVzeA (Jz —a| <d = |f(z) — f(a)] <e¢).
3.42 Theorem: Let ACR", let f: A— R", and let a € A. Then

(1) if a is not a limit point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim f(z) = f(a).
r—ra

Proof: The proof is left as an exercise.

3.43 Theorem: (Sequential Characterization of Continuity) Let A C R"™, let f : A — R",
and let a € A. Then f is continuous at a if and only if lim f(x,) = f(a) for every sequence
n—oo

(Tn)n>p In A with lim z,, = a.
- n—r 00

Proof: The proof is left as an exercise.

3.44 Corollary: Let A C R"™, let f : A — R™ be given by f(z) = (fi(z), -, fm(z))
where fi, : A — R for each k, and let a € A. Then f is continuous at a if and only if each
function fj, is continuous at a.

Proof: The proof is left as an exercise.

3.45 Corollary: Letce R, let ACR", Ilet f,g: A — R™, let a € A, and suppose that f
and g are both continuous at a. Then the functions cf, f + g, and f « g are all continuous
at a, and in the case that m = 2 so that f,g : A — C the function fg is continuous at a,
and in the case that m = 2 and g(a) # 0 the function f/g is continuous at a.

Proof: The proof is left as an exercise.

3.46 Example: Let U = {re'r > 0,0 < 6 < 27}. Let 0 : U — (0,27) be the angle
function. Show that 6 is continuous in U.

Solution: Write z = = + iy with z,y € R. For Im(z) > 0, the angle function is given
by the formula 0(x +iy) = cos™? (93/\/902 + yz). This formula expresses 6(x + i y) using
sums, products, quotients and composites of known continuous functions, and so it must
be continuous, by parts b) and c) of the above theorem. Thus 6(z) is continuous at all
points z with Im (z) > 0.

Similarly, for Re (z) < 0, (z) is given by the formula 0(x+iy) = m+tan™! (y/w), and
for Im (z) < 0 we have 6(z + iy) = 27 — cos™! (z/y/2% + y?). These are both continuous
and so 0(z) is continuous for all z € U.

3.47 Example: As an excercise, show that for the angle function 6 : C* — [0,27) and

for a > 0, the limit lim 0(z) does not exist, so 6 : C* — [0, 27) is not continuous in C*.
z—a

In fact it is impossible to choose 0(z) € R so that § : C* — R is continuous in C*. As in
the previous example, we must restrict the domain to make the angle function continuous.
Indeed, for any a € R, if we restrict the domain to U, = {re'?|r > 0,a < 0 < a + 27}
and choose 6(z) with a < 0(z) < a + 27 then 0 : U, — (o, a + 27) will be continuous.
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3.48 Note: We have found formulas for the real and imaginary parts of the identity
f(z) = z, the exponential f(z) = €*, the trigonometric functions, and the hyperbolic
functions. These formulas reveal that they are all continuous in their domains. Also,
any branch of the logarithm logz = In|z| + i0(z) is continuous provided that 6(z) is
chosen to be continuous. The inverse trigonometric and inverse hyperbolic functions can
all be expressed in terms of the logarithm, and so they are also continuous provided that
(=) is chosen to be continuous. Any complex function which can be expressed using sums,
products, quotients and composites of the above functions will be continuous in its domain.

3.49 Theorem: (Topological Characterization of Continuity) Let A C R", let B C R™,
and let f : A — B.

(1) f is continuous if and only if f~1(U) is open in A for every open set U in B.

(2) f is continuous if and only if f~*(K) is closed in A for every closed set K in B.

3.50 Exercise: Show that the set U = {(x, y) € Rz‘y > 332} is open in R2.

3.51 Theorem: (Properties of Continuous Functions) Let A C R", let B C R™, and let
f + A — B be continuous.

(1) If A is bounded then f(A) is bounded.

(2) If A is connected then f(A) is connected.

(3) If A is compact then f(A) is compact.

(4) If A is compact the f is uniformly continuous on A.

(5) If A is compact and m = 1 then f(x) attains its maximum and minimum values on A.

3.52 Definition: Let A C R" and let a,b € A. A (continuous) path from a to b in A
is a continuous function f : [0,1] — A with f(0) = a and f(1) = b. We say that A is
path-connected when for every a,b € A there exists a continuous path from a to b in A.

3.53 Theorem: Let A C R". If A is path-connected then A is connected.
Proof: T may include a proof later.

3.54 Exercise: Show that for a € R™ and r > 0, the set B(a,r) is connected.
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Chapter 4. Derivatives

4.1 Note: From now on, we shall always use the letter U to denote an open set.

4.2 Definition: Recall that for a function f: U C R — R we define

) — 1 L0 @)

Tr—a Tr—aQa

provided the limit exists, and then we say that f is differentiable at z = a and f’(a)
is called the (real) derivative of f at a. Equivalently, we see that f is differentiable at
Jw) = J(a) f'(a)| = 0. This last

x = a if there exists a real number f’(a) such that lim
T—a T —a

condition can be rewritten as lim ||.CCR(—$2L|’ =0, where R(z) = f(z) — (f(a) + f'(a)(z — a)).

In this way we obtain a definition which applies to functions f : U C R™ — R™.

A function f : U C R™ — R™ is differentiable at = = a if there exists an m x n

R
matrix Df(a) such that lim Lx)“ = 0, where R(z) = f(z) — (f(a) + Df(a)(z — a)).
r—a | — Q

The matrix Df(a) is called the (real) derivative matrix of f at x = a. We say that
f:U CR" — R™ is differentiable in U if it is differentiable at every point a € U.

For amap f: U C R” — R, the j** partial derivative of f is given by

fu (@) = Ef—jjm) — 4(0),

if it exists, where g(t) = f(a +te;) with e; denoting the j'" standard basis vector in R".
We now recall (without proof) some theorems from vector calculus.

4.3 Theorem: Let f : U C R"™ — R™, and let f; be the components of f so that

f(x) = (fi(z), - fm(x)). Then if f is differentiable at x = a then the partial derivatives

Ofi

5, all exist and
J

g—g(a) g—;‘;(a) gmii(a)
Df(a) = ; ; :
%fTT(a) %’%;(a) %’:(a)

4.4 Theorem: If f : U C R™ — R™ is C' in U, which means that the partial derivatives

% all exist and are continuous in U, then f is differentiable in U.
J

4.5 Theorem: If f: U C R™ — R™ is differentiable at a then f is continuous at a.

4.6 Theorem: If f,g: U C R™ — R™ are both differentiable at x = a, then

(a) D(c f)(a) = cDf(a) where c € R.

(b) D(f + g)(a) = Df(a) + Dy(a).

(¢) (The Product Rule) If m = 1 then D(fg)(a) = Df(a)g(a)+ f(a)Dg(a).

(d) (The Quotient Rule) If m = 1 then D(f/g)(a) = (Df(a)g(a) — f(a)D(a))/g*(a).
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4.7 Theorem: (The Chain Rule) If f : U C R™ — R™ is differentiable at a, and
g:V C R™ — R! is differentiable at f(a) then h(z) = g(f(z)) is differentiable at a and

hW(a) = g'(f(a))f'(a).
4.8 Theorem: (The Inverse Function Theorem) If f : U C R™ — R™ is C' in U and

Df(a) is invertible, then we can restrict the domain of f to some open set V. C U with
a €V so that f is invertible, g = f~! is C', and Dg(f(a:)) = Df(z)!

xl(t)

4.9 Definition: For a differentiable map f: U C R — R" given by f(t) = , We
have Tn (1)
1/ (t)
Df(t) = f'(t) = :
' (1)

the point f(a).

The vector D f(a) = f'(a) is the tangent vector to the curve x = f(t) at
= 2(t) = 2(t) +iy(t),

In particular, for a differentiable map f: U C C — C given by f(t)
we have

Df(t) =2'(t) =2'(t) +iy'(t) .
4.10 Definition: For a differentiable map f: U C R™ — R we have

Df@)= (@ 2w ... ZLw).

We define the gradient of f at a to be Vf = Df(x)?. Given a point a € U and a vector
v € R"™, we define the directional derivative D, f(a) of f at a with respect to v as follows.
Choose any curve o : R — U with «(0) = a and o/ (0) = v, and set 8(t) = f(«(t)). By the
chain rule, we have 5'(t) = Df(«a(t))d/(t) and so 8'(0) = Df(a)v = V f(a) « v. We define

Dy f(a) = p'(0) = Df(a)v = Vf(a) -

Notice that the gradient V f(a) is perpendicular to the level set f(z) = f(a). To see this,
choose any curve z(t) with z(0) = a and with f(x(t)) = f(a) (so that z(¢) lies in the
level set). Then by the chain rule we have Df(x(t))z'(t) = 0, and setting ¢ = 0 gives
Df(a)z'(0) = 0 or equivalently V f(a) « 2’(a) = 0. Thus V f(a) is perpendicular to z’(0).

4.11 Example: Given a differentiable map f : U C R® — R™, notice that the i*" row of
the matrix Df(a) is equal to Df;(a) = Vfi(a)?, where f; is the i'" component of f. So
the i*" row is perpendicular to the level set f;(x) = fi(a).

4.12 Example: For a differentiable map f : U C R® — R™, we denote the j*' column
of the matrix Df(a) by fz,(a) (or by %), so we have

9fr
af ox
8233 97,
8:8j

Notice that this is equal to the tangent vector to the curve 3(t) = f(a + te;), where e; is
the j' standard basis vector; indeed if a(t) = a +te; so a(0) = a and o/(0) = e;, and if
B(t) = f(a(t)), then by the Chain Rule we have 8'(t) = D f (a(t))/(t) so #/(0) = Df(a) e;,
which is the j** column of Df(a).
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4.13 Example: For a differentiable map f : U C C — C given by w(z) = u(z) + iv(2)

with z = x + 1y, we have
Df(a) = <u$(a) uy(“)) .

vz(a)  vy(a)

The columns f, = (Zx ) and f, = <Zy ) are the tangent vectors to the curves f(a+t) and
@ y
f(a+1it) respectively, and the rows Du = (u; wu,)and Dv = (v, v, ) are perpendicular

to the level curves u = u(a) and v = v(b) respectively.

4.14 Example: Let f be the polar coordinates map (z,y) = f(r,0) = (rcosf,rsinf).
Then
Df(r,0) = xr, x9\ [cosf —rsinf
" Ny, wye) \sinf rcosh )
V3/2 —1)

At (r,0) = (2,%), we have (z,y) = f(2,5) = (V3,1) and Df(2, %) = < 1/2 3

Below on the left, is a picture showing the images of the lines r = 0,1,2 and 0 =0, 5, 5, 5
~1/2

are shown at the point (z,y) = (v/3,1). On the right, there is a picture showing the

level curves z = 0,1,v/3 and y = 0,1, /3 (they are multiples of r = secf and r = csc#),

and the gradient vectors Dz = (\/7g —1) and Dy = (3 /3) are shown at the point

(r,0) = (2, ) draw This map f is not 1 : 1 so it does not have an inverse, but since the

matrix Df(2, ) is invertible, we know that we can make f invertible by restricting its
! near the point (r,6) = (2, %), then we have

domain. If g = f~
pavs= (5 ) =3( i)

This can also be verified by finding an explicit formula for g, for example if we restrict the
domain of f tor >0, =5 <6 < Z then (r,0) = g(z,y) = (V22 + y?,tan" ' (y/z)).

(the images are circles and rays), and the tangent vectors f, = <\/§/ 2) and fy = (\_/é)

37 /f
] 2
E': j__,-*
] : 4] —
1 ' e
2 1 1 A 2 =z o 2 3 4
1
] ]
-2

4.15 Note: We now wish to interpret the real derivative matrix Df of a map of the form
f:U C C — C in terms of complex numbers.
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4.16 Note: A real 2 x 2 matrix A corresponds to two complex numbers in the following

a b
two ways. Let A = (c d

1=a(3)= ()= (0):

=(a+ic)r+ (b+id)y

), and write z = x + 1y with z,y € R. Then we have

z L N2 —Z
+ (b+1id) 5;

=1((a+d)+i(c=b)z=2%((a—d)+i(c+b)z

:(a+ic)z+

Thus we have A (‘;) = px + qy = uz + vZ where p and ¢ are the columns of A, that is

p=a+icand ¢=b+id, and u and v are given by u = 1 ((a+d)+i(c—b)) = F(p—iq)
and v = 3((a—d)+i(c+b)) =3(p+iq). Note also that p=wu+ v and ¢ =i (u — v).
Conversely, given u = o + 18 and v = v + 19, with «, 8,7, € R, we have

uz:<a+w>(x+w>:<ax—ﬁy>+i<ﬁﬂf+ay):(g _aﬂ) (‘5)

vz = (y+id)(z —iy) = (yo +0y) +i(0x —yy) = (g —57) (5)

B o =
4.17 Definition: Foramap f: U C C — C given by f(z) = u(z)+iv(z) with z = z+iy,

wich is differentiable at a € U so that Df(a) = <ZI§Z§ Zygzg ), we define
@ y

andsouz—f—UE:AzwhereA:(a _j)—f—<7 6).

fa(a) = ug(a) +ive(a) = f2(a) + fz(a)

fy(a) = uy(a) +ivy(a) = i(f:(a) - fz(a)

foa) = 5(fala) =i fy(a)) = 5 ((uz(a) + vy(a)) + i (va(a) — uy(a)))
fzla) = 5(fala) +1i fy(a)) = 5 ((us(a) — vy(a)) + i (uy(a) — vs(a)))

Note that if f.(a) = a+ i and fz(a) =+ id with o, 8,7,6 € R then

o=(5 )+ (¢ 4).

When w = f(z), other notations for these include

_ of _ — Ow
fo =55 =ws = G;

_ of _ _ Ow
fy=7%;, =wy =%,

fzzﬂzﬁf:wz:%—quaw

0z
fgz%zéf:wgzg_;vzgw,
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4.18 Note: For f: U C C — C with a € U, then from the above note and definition, we
see that

f is differentiable at a
<= there exists a real 2 X 2 matrix Df (a) such that

lim R()] = 0, where R(z — (f(a) + Df(a)(z — a))
)

= i;eartlze;lscl two complex numbers fx(a and f,(a) such that

Zh_m “fi zl‘l = 0, where R(2 — (f(a)+ fz(a)Re (z —a) + fy(a)Im (z — a))
<= there exist two complex numbers fz(a) and fz(a) such that

lim 1B =0, where R(z — (f(a) + f:(a)(z — a) + fz(z —Q)).

z—a |z — a|

4.19 Example: Show that az = gz =1, % % =0, and % = % = 0, where a € C.

Solution: If f(z) = z, then we have f(z +iy) = u(x,y) + iv(x,y), where u(x,y) = x and

- 1 0 . . .
v(a:,y) = . So Df = (Z :jy) — (O 1)’ fx = Uy + 1V, = 17 fy = uy+zvy =1,
x Uy

fz = %(f—"x_zfy) =1 and fE: %(fx _ify) = 0.

If f(z) =z, then we have u(x,y) = =z and v(x,y) = —y. So Df = (é _01>, fz=1,
fy=—1i, f,=0and fz=1

If f(2) = a € C then u(z,y) = Re(a) and v(x,y) = Im(a). So Df = 0 and hence
foe=fy=1=/z=0.
4.20 Theorem: Let f: U C C — C be differentiable in U. For o = x,y, z or Z we have
(a) (cfla = ¢ fa
(b) (fj:g)a = fa ifa
(c) (The Product Rule) (f9)a = fa9 + f9a
(d) (The Quotient Rule) (f/9)a = (fag — f9a)/g*, when g # 0

Proof: We prove the product rule, and leave the other parts as an exercise. We write
f =wu+ivand g = s+it where u, v, s and t are real-valued. Then fg = (us—uvt)+i (ut+vs).
The Product Rule in Theorem 4.6 applies to the functions u, v, s and t, so we have
(f9)e = (us — vt)z + i (ut + vs)s
= (UzpS + USy — Vpt — vty ) + i (ugt + uty + v + VSy)
= (ug +ivgy)(s+it)+ (u+iv)(sy +its)
= fag + [ 9z

Similarly, (fg)y = fyg + fgy. Then, using this result, we have

(f9): = 2((f9)e — i (f9)y)
= %((fxg + f92) — i (fyg + fgy))
=2(fo—ify) g+ filg.—igy)
- fzg+ fgz’

and similarly, (fg)z = fzg + f 9=
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4.21 Theorem: For f : U C C — C, define f : U — C by f(z) = f(z). Then we have
f _fz andf _fz

Proof: Write f = u+14v with v and v real-valued. Then f = u—iv so Df = ( Uz Uy )

and hence f, = u, —iv, = f, and 7y = Uy — 1y :f_y. So we have

Tz:%(fx_i?y):%(E_ny):%(fx“f‘lfy) Ea

and similarly, f- = f..

4.22 Theorem: (The Chain Rule) Suppose f : U — V C C and g : V — C are both
differentiable, and let h(z) = g(f(z)). Then h is differentiable, and if we write w = f(z)

and q = g(w), then
(qz qz) _ <qw %) (wz wz)
q, 4z Gy Gw) \W: Wz

Equivalently, we have @ = @81" 9q Ow and 24 dq dq 8_w 0q ow

0: " owd: owo: oz owor | owoE
Proof: Write z =z + iy, f(z) =w =u+iv and g(w) = q¢= s+ it. Then

q, = ((sm +ty) +i(ty — sy))

((suuw + SyUp + tytly + tyUy) + 1 (EuUy + Loy — SuUy — svvy)) )

NI

On the other hand

QuWz + Wz = quW; + qmWz
= %((Su + tv) +1 (tu - Sv)) %((ufﬂ + Uy) +i (UI - uy))
(e 1)+t ) B = 1) =i +)

Expanding and simplifying this last expression shows that ¢, = q,w, + ¢zw,. Similarly,
we can show that ¢z = ¢, wz + qzw=.

4.23 Example: Let f(z) = 22 + 32z. Find £, and f-.

Solution: We Solve thls using two methods. First, by Example 4.19 and Theorem 4.20, we
can calculate 2 — and 2 8‘ using all the same rules that we use to find partial derivatives of
real functions of two real variables. We have f, = 2z + 37 and fz = 3z.

Our second solution is to express f in terms of real variables, and then use Definition
4.17. We have f(z) = f(z +iy) = (@ +iy)* + 3(x +iy)(z —iy) = (42 + 2y?) + i (22y),

and so Df = (2; ;li) Thus we have f, = 8z + 12y and f, = 4y + 2z, and so
fo=3(fo—ify) =3Bz +i2y —idy+2x) =5z —iy =54 £=2:+32
fe=5(fo+ify)=50Br+i2y+idy—2z) =3x+1i3y=3z.
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4.24 Example: Let f(z) = (;i—z); Find f.(1+1) and fz(1+1).

Solution: By the Product and Quotient rules, we have
of (24 (2472)(2+27) — (2 +7)2Z “ %(1 +i) = (34+1)(4) —(2)(2) 2+
0z (24 22)? T Oz B (4)2 4

and

Of _ (2)(2+22) — (2 +7%)2° “ g(l L) = (1+14)(4) —(2)(2i) _1

0z (2 + 2%)? 0z (4)2 4"
4.25 Example: Let w = f(2) =iz + %z, let ¢ = g(w) = w? — w, and let h(z) = g(f(2)).
Find h,(1 + 2i) and hz(1 + 21).

Solution: We provide three solutions to this problem. Our first solution uses the Chain
Rule in theorem 4.22. We have

(h. h)=(gw o) (% %_) — (2w —1) (i _12> — (2wi—1 2w+4i).
When z = 1+ 2i we have w = f(z) = i(1 +2i) + (1 — 2i) = —1 — i and so we obtain
h=2wi—1=2(-1—i)i—1=1-2iand hs =2w+i=2(—1—i)+i=—2—i.

Our second solution is to expand the composite g(f(z)) so that we can avoid using
the Chain Rule. We have h(z) = g(f(2)) = (iz+2)? — (—iZ+2) = =22 +2i2Z+ 22 +iZ — 2.
Thus we have h, = =22+ 2iz —1s0 h,(14+2i) = —2(1 +2¢) +2i(1 —2i) —1 =1—2¢ and
we have hz = 2iz + 27 + i 50 he = 2i(1 + 2i) + 2(1 — 2i) +i = —2 — 1.

The third solution is to express f, g and h in terms of real variables. Write z = x4y,
w= f(z) =u+ivand ¢ = h(z) = s+ it. Then f(x +iy) =i(x +iy)+ (x —iy) =
(x—y)+i(z—y)sou=x—yandv=x—y, and g(u+iv) = (u+iv)? — (u—iv) =
(u? —v? —u) +1i (2uv —v) so s = u? —v? —u and t = 2uv +v. By the Chain Rule for real
variables,

Sz Sy _ [2u—1 —2v 1 -1\ (2u—2v—-1 “2u+2v+1
ty ty ) 2u 2u + 1 1 1) \2u+2v+1 —2u—2v—-1

soh, = 1 ((2u—2v—1)+(—2u—2v—1))+ % ((2u+2v+1) — (—2u+2v+1)) = (—2v—1)+i (2u)
and hz = §((2u—2v—1)—(—2u—2v—1)) + % ((2u+2v+1)+(—2u+2v+1)) = 2u+i (2v+1).
When z = 1 + 2i, we have w = f(z) =i(14+2i)+ (1 —2i) = =1 — i, s0 u = v = —1 and

hence h,(1+2i)=(—2v—1)+i(2u) =1—2i and hz(1+2i) =2u+i(2v+1) = -2 —i.
4.26 Definition: Let f: U C C — C. We define
f’(a) — lim f(Z) - f(a)

z—a Z — Qa
provided that the limit exists, and in this case we say that f is holomorphic at z = a
and thet f’(a) is the derivative of f at a. Equivalently, we say that f is holomorphic at
z = a if there exists a complex number f’(a) such that
lim —]S(z)| =0,
where S(z) = f(z) — (f(a) + f'(a)(z — a)). We say that f is holomorphic in U if it is

holomorphic at every point in U. When w = f(2) we also write f' = % =w' = ‘é—f.

34



4.27 Definition: For f: U C C — C we define

zZ—a z —

() — i FE) @

provided the limit exists, and if so we say that f is conjugate-holomorphic at z = a.
Equivalently, f is conjugate-holomorphic at a if there exists a complex number f*(a) such
T

that lim || (z)|| = 0 where T'(z) = f(z) — (f(a) + [*(a)(z — @)).

zZ—a |2 —Qa
4.28 Theorem: Let f:U CC — C and let a € U.
(a) f is holomorphic at a

<= f is differentiable at a and fz(a) = 0.

<= [ is differentiable at a and u,(a) = vy(a) and u,(a) = —vy(a)
<= f is differentiable at a and D f(a) is of the form Df(a) = ((; _aﬁ)'

In this case we have f'(a) = f.(a) = uy +iv, = a+1ip.
(b) f is conjugate-holomorphic at a

<= f is differentiable at a and f,(a) = 0.

<= f is differentiable at a and uy(a) = —vy(a) and uy(a) = vy(a)

<= f is differentiable at a and D f(a) is of the form Df(a) = (g _67)
In this case we have f*(a) = fz(a) = uy +iv, =y +1i4.

Proof: This follows immediately from Definition 4.17, Note 4.18 and Definitions 4.26, 4.27.

4.29 Definition: The two differential equations u, = v, and u, = —v, are called the
Cauchy-Riemann equations. Note that if f : U C C — C is C' in U, then it is
differentiable in U, and if f also satisfies the Cauchy-Riemann equations in U, then it is
holomorphic in U.

4.30 Example: Let f(z) = 22 +2|z|%. Determine where f is holomorphic and where it is
conjugate-holomorphic.

Solution: We have f(z) = 2% + 22%, so f. = 2z + 2z = 4Re(2), and fz = 2z. Thus
f is conjugate-holomorphic when f, = 4Re(z) = 0, that is along the y-axis, and f is
holomorphic when fz = z = 0, that is at the origin.

4.31 Theorem: If f : U C C — C is holomorphic (or conjugate-holomorphic) at a then
f is continuous at a.

Proof: We have lim (f(z) — f(a)) = lim

z—a z—a zZ—a

(120 ) = p-0=o

4.32 Theorem: If f,g: U C C — C are both be holomorphic at a, then
(a) (cf)(a) = cf’ ( )
(b)(fig)() f'(a) £4'(a)
(¢) (fg)'(a) = f'(a)g () )(a() 1; f(a()g)(a() )

f f'(a)g(a) — f(a)g'(a :
(d) (5) (a) = () , provided g(a) # 0.

Similar results hold when f and g are both conjugate-holomorphic.

/

Proof: This follows immediately from Theorem 4.20.
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4.33 Theorem: (The Chain Rule) Let f,h: U C C —V C C and let g,k : V — C with
f and g holomorphic and h and k conjugate-holomorphic. Then

(a) g o f is holomorphic with (go f)'(z) = ¢'(f(2))f'(2).

(b) ko f is conjugate-holomorphic with (ho f)*(z) = h*(f(2))f'(2).

(c) g o h is conjugate-homorphic with (f o h)*(z) = f'(h(2))h*(2).

(d) k o h is holomorphic with (ko h)'(z) = k™ (h(2))h*(2).

Proof: These all follows from the Chain Rule in Theorem 4.22. We prove part (a). Write

w = f(z) and ¢ = g(w). Since f and g are holomorphic, we have %—‘_“ =0 and 8‘7 =0. So
by the Chain Rule in Theorem 4.22 , we have % = gg %1;’ + gg} %1;’ = 0, which shovvs that

g o f is holomorphic, and % = gg) %’f + g—%%—g = gg} %;’.

4.34 Theorem: (The Inverse Function Theorem) If f : U C C — C is holomorphic in
U and f'(a) # 0 then we can make f invertible by restricting its domain, and then the
inverse function g = f~! will be holomorphic near f(a) with ¢'(f(z)) = 1/f/(z). A similar
result holds when f is conjugate-holomorphic.

Proof: We give a proof which uses the Inverse Function for real functions, under the
additional assumption that f’(z) is continuous in U (we shall prove later that when f is
holomorphic in U, its derivative is also holomorphic, and hence continuous). Suppose that
f is holomorphic in U with f/(z) = a(z) + i 5(z), where o and [ are continuous, and that

f'(a) # 0. Then we have Df = (g _aﬁ)’ and u, = vy, = a and u, = —v, = [. Since

a and 3 are continuous in U, f is C! in U. Also, since f'(a) = a(a) + i (a) # 0 we have
|Df (a)| = a(a)?+ B(a)? # 0, so Df(a) is invertible. By the Inverse Function Theorem 4.8,
we can restrict the domain of f so that it becomes invertible and has a C! inverse g with
Dg(f(z)) = Df(z)~!. Note that

olz) —B(z -1 - Zoz(Z)2 S ZB(Z)2 _
Dg(f(2)) = (58 a(i)>) _ ( @

a?(2)+4%(z)  a?(2)+p%(2)

Since g is C! in U and satisfies the Cauchy-Riemann Equations in U, it is holomorphic in
U, and we have

a(z) )1
)+ )

4.35 Theorem: The maps 2", n € Z, the exponential map e*, the trigonometric fuctions
and the hyperbolic functions are all holomorphic in their domains. Also, any continuous
branch of the logarithm log z, (with an open domain) is holomorphic. We have

(a) (z™) = nz”_l, where n € Z.

(b) () =

(c) (sinz)’ = cos z, (cosz) = —sinz, (tanz) = sec? z.

(d) (sinh z)’ = cosh z, (cosh z)’ = sinh z, (tanh z)’ = sech?z.

1
(e) (log z)" = — for any branch of log z.
z
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Proof: For Part (a), let f(z) = 2", 0 < n € Z. Then we have

wh — " .
f/(z) = lim ——— = lim (wn—l —l—wn_QZ—l—"' _|_wzn—2 —|—Zn_1) —n"
w—z W — 2 w—z

—1

For f(z) = 2™ with n < 0, say n = —m, we have f(z) = Lm so by the Quotient Rule

—-m mel

fl(z) = ————=-m2z" =nz

For Part (b), let f(z) = e* and write z =z + iy and f(z2) = u(z) + iv(z). Then

f(Z) :eJC—F’iZU :@$Cosy+iewsiny’ Df: ('Zm ’I,Ly) _ <€xC.OSy —i Slny) 7

x Uy e’siny e*cosy

and we see that f is holomorphic in C with f/(z) = e® cosy +ie®siny = e*.

For part (c), we only derive the formula for the derivative of sin z, but we do this in
two ways. One way is to let f(z) = sinz and write z = x + iy and f(z) = u(z) + iv(2).
Then we have

f(z) =sinxcoshy + i coszsinhy , Df = (u”’ uy) = ( cos z cosh y smxsmhy)

e Uy —sinxsinhy cosx coshy
and so f is holomorphic in C and f/(z) = cosx coshy — isinz sinhy = cos(z).

Another way is to apply Part (b) and the differentiation rules in Theorem 4.32 b) to
the definition of sin z. Indeed

| T S -
(e e = (i 4 ieT) = L(e e = cosz.

. r
(sin2)" = 5 2i

We leave the other formulas in Parts (¢) and (d) as an exercise.
For Part (e), let f(z) = logz and write z = z + iy and f(z) u(z) +iv(z). Then

since log(z) = In |z| 4+ 6(z), we have u(z 4+ iy) = In /22 + y? = § In(z? + y?) and

( -1Y

tan +27rk ,if x>0
COS_lL—I—Qﬂ'k,ify>0

. . Va? +y?

vx+iy) =0(x+iy) = y
tan +7r+27rk: Jifx <0
x

—Cos_l——|—27rk:,ify<0.

\ Va2 +y?

Verify that using any one of the four formulas for v(z + iy) = 0(z + i y) gives

z Y
[ Uz Uy . z2+y2 z2+y2
Df = = :
Ve Uy gy
1

and so f is holomorphic with f'(2) = z¥7 —i =1z = +-
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4.36 Example: The two above theorems show that elementary complex functions can be
differentiated much like the real elementary functions. For example, let f(z) = (23e5"#)5,
then f/(z) = 5(z3e5"#)4(322e5% + 3¢50 % cos 2).

4.37 Example: Let f(z) = 22 — 22+ 3. Then f’(z) = 2z — 2 and we have f(2) = 3 and
f/(2) = 2. Since f’(2) # 0, we can restrict the domain of f so that it is invertible. Let g
be the inverse function. Find ¢'(3).

1 1

N

4.38 Example: Find a formula for the derivative of one branch of 2", where w € C.

Solution: By the Inverse Function Theorem, we have ¢’(3)

Solution: Let z* = exp(wlog z), where log z is a branch of the logarithm. Then

w zY

w/: 1 E:
(=) = exp(wlog 2) 2 =

Notice that this is similar to the familiar formula (2*) = w z*~!; the familiar formula has
the disadvantage that it does not specify which branch of z*~! we should use.

4.39 Example: Let f(z) =sin (22 + (1 +4)z). Find f. and f.

Solution: We have f(z) = w(v(u(2))), where u(z) = 22 + (1 + i)z, v(u) = sinu and
w(v) = v. Note that u, = 2z, uz = (1 + 1), v, = cosu, vg =0, w, = 0 and wy = 1. By
the Chain Rule, v, = vyu, + vgu, = 2z cosu and also vz = vyuz + vguz = (1 + i) cosu.
Using the Chain Rule again, we have w, = w,v, + wzv, = U, = vz = (1 —i)cosu and also

Wz = Wyvz+wylz = Uz = U; = 2zcosu. Thus f. = (1—i)cosu = (1—i)cos (22 + (1 +1)Z)
and fz = 2zcosu = 2z cos (22 + (1 +19)z).
An alternate solution is to note that for z = z + iy we have

e =e" 'Y =e(cosy —isiny) = e?,

and so from the definition of sin z we also have sin(z) = sin z. Thus f(z) = sin (2 +(1—17)z)
and so f.(z) = (1 —4)cos (22 + (1 —i)z) and fz(z) = 2z cos (2% + (1 — i)z).
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Chapter 5. Conformal Maps

5.1 Note: Later on we shall see that every holomorphic function is C*°, which means that
all partial derivatives of all orders exist (and are continuous). For this chapter we shall
assume that all functions are C2, which means that all the second order partial derivatives
of f (namely Uz, Upy, Uyz, Uyy, Vaz, Uzy, Uye and vy, ) exist and are continuous. We shall
also use the fact that for C? functions, we always have Ugy = Uyz aNd Vgy = Vyg.

5.2 Definition: A map f: U C R™ — R" is said to preserve orientation at z = a
when |Df(a)| > 0, and it is said to reverse orientation at a if |Df(a)| < 0.

5.3 Note: Let f : U C C — C. If f is holomorphic at z = a and f/(a) # 0 then f

a =B\ _ 2
5 a)-oz + B¢ > 0. On the other

hand, if f is conjugate-holomorphic at a with f*(a) # 0 then f reverses orientation at a

since |Df (a)| = det (?5/ _57> =—(v?*+4?%) < 0.
5.4 Definition: A map f : U C R" — R" is called an isometry when it preserves
distance, that is if |f(x) — f(y)| = |z — y| for all x,y € R™. Using some linear algebra, one
can show that f is an isometry if and only if f is of the form f(x) = Az +b for some vector
b € R™ and some orthogonal n x n matrix A (A is orthogonal means that AT A = TI).

preserves orientation at a, since |Df(a)| = det (

5.5 Note: Since the 2 x 2 orthogonal matrices are the matrices either of the form

(COS& B sm9) or of the form (COS& sin 0 , we see that the isometries in R? are

sinf  cosf sinf) —cos6
the maps f which are either of the form f(z) = az + b or of the form f(z) = aZ 4 b for
some a,b € C with |a| = 1.

5.6 Definition: A map f: U C R" — R" is called a similarity of scaling factor k£ > 0
when it scales distances by a factor of k, that is if | f(z) — f(y)| = k|z —y| for all z,y € R™.
It is not hard to see that f is a similarity of scaling factor k if and only if % f is an isometry.

5.7 Note: A map f:U C C — C is a similarity of scaling factor £ > 0 if and only if f
is either of the form f(z) = az + b or of the form f(z) = az 4+ b for some a,b € C with
la] = k.

5.8 Note: Let f : U C R"™ — R™ be differentiable at a. Given a vector v € R",
choose a curve «(t) with a(0) = a and ’/(0) = v. The image of o under f is the curve
B(t) = f(a(t)). By the Chain Rule, we have 8'(0) = Df(a(0))c/(0) = Df(a)v, so we say
that f sends the vector v at a to the vector w = Df (a)v at f(a).

5.9 Definition: A map f: U C R®™ — R™ is called conformal at a when it preserves
angles between curves at a, or to be precise, f is conformal at a when

(Dfv) - (Dfw) _ v-w

[Df ol [Df o ol |wl

for all vectors v,w € R™. We say f is conformal in U when it is conformal at every a € U.
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5.10 Note: Using linear algebra, one can show that f is conformal at a if and only if
Df(a)T Df(a) = kI for some k > 0. We shall show only that the latter implies the former;
suppose that DfT Df = kI with k > 0. Then

(Df v) - (Df w) = (Df v)" (Df w) = " Df T Df w = vk Tw = kvlw = kv -w

and in particular |Df v| = \/(Df v) - (Df v) = Vk |v|, and similarly |Df w| = vk |w]|. Tt
follows that f is conformal; f behaves locally like a similarity of scaling factor v/k.

5.11 Example: The steriographic projection from the unit sphere, with the north
pole removed, to the complex plane is the map ¢ which sends the point (z,y,2) on the
sphere to the point of intersection (u,v) of the line through (z,y, z) and the plane z = 0.
Find a formula for ¢ and ¢—!, and show that stereographic projection is conformal.

-
s

xu

Solution: The line through (0,0, 1) and (z,y, 2) is given by (0,0,1) +¢t(z,y,z2 — 1), t €
The point of intersection of this line with the plane z =0 oceurs when 1+t(z— 1) =0, that
is when ¢ = 1/(1—2). The point of intersection is (0,0,1)+ 1 (z,y,2— 1) = (%, 1yz,0)

so we have
<u,v>=¢(x,y,z>:( v Y )

1—2"1—2

Given (u,v) on the other hand, the line through (0,0,1) and (u,v) is given by «a(t) =
(0,0,1) +t(u,v,—1) = (tu,tv,1 —t). The point of intersection with the unit sphere occurs
when |a(t)| = 1, so we need (tu)?+ (tv)? + (1 —t)? = 1, that is t?u® +t?v? — 2t +t? = 0, or

t (tu? + tv? +t — 2) = 0. The point of intersection occurs when t = m, so we obtain
the formula
2u 2 u? + 02 -1
_ -1 _
(@y,2) = ¢ (u,0) <u2 02+ 17w+ 02 4+1" w2402 +1

Now let us show that ¢! is conformal. We have

Ty Ty 9 —u? + 02 +1 —2uv
Do t=|wys wo | = —2uv u? —v?+1
2u 2v




and a quick calculation yields

IN\T —1 4

Note that near the point (u,v), ¢~! behaves like a similarity of scaling factor 2/(u?+v2+1).

5.12 Theorem: Let f:U C C — C.

(a) f is conformal at a if and only if either f is holomorphic at a with f’(a) # 0, in which
case f preserves orientation, or f is conjugate-holomorhic at a with f*(a) # 0, in which
case f reverses orientation.

(b) If U is connected, then f is conformal in U if and only if either f is homorphic in U with
f'(z) # 0 for all z € U, in which case f preserves orientation, or f is conjugate-holomorphic
in U with f*(z) # 0 for all z € U, in which case f reverses orientation.

Proof: To prove part (a), note that f is conformal at a if and ony if Df (a) is a positive scalar
multiple of an orthogonal matrix. Since the 2 x 2 orthogonal matrices are the matrices of

the form <cos€ —s1n9> . (cos@ sin 6

sinf  cosf sinf  — cos 6)’ we see that f is conformal if and only if

Df = <g _(f) or Df = (g _57> for some a, B or 7,6 € R not both equal to zero.

Part (b) involves a subtle point: if f is conformal in U then how do we know that f
cannot be holomorphic at some points a € U and conjugate-holomorphic at other points?
It is for this reason that we must assume that U is connected. Since we have assumed that
all functions in this chapter are C? we know that u,, Uy, v and v, are all continuous and
so |Df| = uzvy — uyv, is also continuous. At each point a € U we have |Df(a)| # 0, so
|Df| is a continuous map from U to R*. Since U is connected, we know that |Df|(U) is
also connected and lies in R*. This implies that either |Df(a)| > 0 for all a or |Df(a)| <0
for all a.

5.13 Note: If f : U C C — C is holomorphic at a with f(a) = b and f’(a) = re®?,
where r > 0, then by the definition of the (complex) derivative, for z near a we have
f(z) 2 f(a) + f'(a)(z — a) = b+ re?(z — a). This shows that locally, f behaves like the
following similarity: translate by —a, rotate by 6, scale by r, then translate by b.

5.14 Example: Let f(z) = 22. Then f is holomorphic in C and f/(z) = 2z so f/'(z) # 0
in C*. Hence f(z) = 22 is conformal in C* and preserves orientation. Verify directly that
f preserves the oriented angle from «(t) =i+t to 5(t) =i+ (1 + 1) t.

Solution: We have a(0) = 5(0) =14, o/(0) =1 = ((1)) and 5'(0) =1+1i= (1), so the

angle from o/ (0) to '(0) is 5. The images are y(t) = f(a(t)) = (i+t)* = (t*—1)+4 2t (this

is the parabola u = v? — 1) and 6(t) = f(B(t)) = (i + (1 +0)t)? = —(1+2t) + i (2t + 2t?)

(check that this is the parabola v = 1u? — 1). Note that (0 ) 5(0) = —1, so the two
) =

parabolas intersect at —1. We have ~/(t) = 2t + 2i so 7/(0 ((2)) and we have

0 (t)=—-2+1i(4t+2)so §'(0) = -2+ 2i = (_22) So the angle from +/(0) to ¢’(0) is 7.

Notice also that o and 3 meet at i, and we have f(i) = —1 and f’(i) = 2i = 2¢*™/2,
So near z =i, f can be approximated as follows: translate by —i, rotate by 7, scale by 2,
then translate by —1. Indeed, this is precisely what happens to the tangent vectors.
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5.15 Definition: Let u: U C C — C. The (2 dimensional) Laplacian is the differential
operator V2 given by
Vu = ug, + Uyy -

The map w is called harmonic in U when it is C?> and satisfies Laplace’s equation
Viu=0.

5.16 Note: There are several functions from physics which satisfy Laplace’s equation.
Steady state temperature (in a homogeneous medium), electrostatic potential (in a vacc-
ume) and the velocity potential for a steady flow of fluid (irrotational and indecompressible)
al satisfy Laplace’s equation.

-1
5.17 Example: As an exercise, you should check that the map u(z,y, z) =
/1'2 + y2 + 252
satisfies the 3 dimensional Laplace equation ug, + uyy + u,. = 0, but that the map

1
u represents the electic potential surrounding a point charge in R3, but the second map u
does not represent the potential which surrounds a long straight wire. On the other hand,
you can check that the map u(z,y) = Iny/z? + y2 does satisfy the 2 dimensional Laplace
equation, and this map u does represent the potential surrounding a wire.

does not satisfy the 2 dimensional Laplace equation. The first map

5.18 Theorem: If f(z) = u(z) + iv(z) is holomorphic (or conjugate-holomorphic) in U
then v and v are both harmonic functions. When f = u + i v is holomorphic, we say that
v is the harmonic conjugate of u.

Proof: The Cauchy-Riemann equations u, = v, and u, = —v, imply that
Upz = (Uz )z = (Vy)z = Vyao = Vay = (Vz)y = (—Uy)y = —Uyy
and likewise vyp = —Uyy = —Ugy = —Vyy.

5.19 Example: Let f(z) = e®. Verify that u is harmonic, where u = Re (f).

Solution: Since e* ¥ = e®(cosy + i siny), we have u(x +iy) = e* cosy. So u; = €* cosy
— xT 3 N T o3 . xX —
and ug, = e” cosy, while u, = —e*siny and uy, = —€* cOSY = —Uzyy.
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5.20 Example: Let f(z) = z3. Verify that u is harmonic, where u = Re (f).

Solution: We have f(z +iy) = (x +iy)3 = (23 — 329?) + i 322y — y3) so u = z3 — 3zy?.
We have u, = 322 — 3y? 50 u,, = 62 and Uy = 322 — 62y and so Vyy = —62 = —Uyy.

5.21 Note: There is a partial converse to the above note which says that for certain
sets U, for example when U is convex, if u is harmonic in U then there exists a harmonic
function v such that the map f = w + iv is holomorphic in U. The following example
shows how to find v.

5.22 Example: Let u = 222 + 3zy — 2y?. Check that u is harmonic in C, and find a
harmonic conjugate v.

Solution: We have u, = 4z + 3y, ug, = 4, uy = 3 — 4y and uyy = —4 = —Uyy, SO U
is harmonic. To find v such that u 4 i v is holomorphic, we need to find v such that the
Cauchy-Riemann equations v, = v, and u, = —v, are satisfied. To get v, = u, = 42 + 3y
we must take v = [4z + 3y dy = 4wy + 3y* + c(x). Then we have v, = 4y + ¢/(z). To
get v, = —u, = 4y — 3z we need to have ¢’(z) = —3z, so we choose c(z) = —222. In this
way we obtain v = 4zy + %(y2 —2?). The function f = u+iv should be holomorphic, and
indeed you can check that f(z) = (2 — %z) 22.

5.23 Example: A long strip of heat conducting material is modelled by the set
S={zx+iyl0<y<1}.

Find the steady state temperature u(z+1y) at each point in the strip given that the bottom
edge is held at a constant temperature of a° and the top edge is held at b°. Describe the
isotherms, that is the curves of constant temperature.

Solution: We must find a map w : S — R which is continuous on S and harmonic in S
such that u(z,0) = a and u(z, 1) = b for all z. We can take

uwrz+iy) =a+(b—a)y.

It is easy to see that w is harmonic, indeed u,, = uy, = 0. Also notice that u is the

imaginary part of the holomorphic map f(z) = ai + (b — a)z. The isotherm u = ¢ is the
horizontal line ¢ = a + (b — a)y, or y = ;—=.

5.24 Theorem: Ifu: U C C — R is harmonic and if f : V C C — U C C is holomorphic
then u o f is harmonic.

Proof: Write z +iy = f(s+it), u = u(x +iy), and v = wo f. The chain rule gives
Vs = UgTs + UyYs Ut = Ug Ty + UyYt -
Using the chain rule and the product rule, we obtain
Uss = (Uza®s + UzyYs)Ts + UsTss + (UyaTs + UyyYs)Ys + UyYss
Vit = (Ugp Ty + ua;yyt)xt + Ugp Tyt + (nyxt + Uyyyt)yt + Uy Yt
Adding these, using the fact that u,, = u,, we obtain
Vgs +V4 = uxx(3752+513y2)+uyy(y32+yt2)+ny(2$sys+2$tyt>+ux(ﬂfss F ) Fy (Yss +Yee) -

Since f is holomorphic, the Cauchy-Riemann equations =5 = y; and z; = —y, imply that
(ys2 +y:2) = (z52 +242) and that (2z,ys + 224¢) = 0 and that o and y are each harmonic
so that (zss + x¢) = 0 and (yss + yiz) = 0. So we are left with

Vss + Vgt = (Ugy + Uyy)($s2 + xyz) .

Finally, since u is harmonic, we have (uz ., + u¢) = 0 and hence vgs + vy = 0.
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5.25 Note: We shall now consider problems of the following kind: given an open set
U C C, find a harmonic function u : U — R which satisfies some given condition on the
boundary QU this kind of problem is called a boundary value problem. We solved
an easy boundary value problem in example 5.23, in which the open set was the strip
S ={x+iy|0 <y < 1}. The above theorem allows us to use a solution to one boundary
value problem on a set U to obtain a solution to another problem on a set V' by mapping
the set U to the set V' using a holomorphic map.

5.26 Example: The upper half-plane H = {z + iy|y > 0} is a model for a large heat
conducting plate. Find the steady state temperature v(z) at each point in the plate if the
temperature along the bottom edge is held at a° for x > 0 and b° for x < 0. Also, describe
the isotherms.

Solution: Notice that we can map the strip S = {z +iy|0 < y < 1} (which appeared in
the example 5.23) to the half-plane H = {z +iy|y > 0} using the map f(z) = e"*. The
bottom edge of S is mapped to the positive x-axis, and the top edge of S is mapped to the
negative z-axis. To map H back to S we use the inverse map g(z) = %log z, where log z
is the branch of the logarithm given by log z = In |z| + i0(z) where 0 < 6(z) < 7.

From example 5.23, the map u(z) = Im (ai+ (b—a)z) is harmonic in the strip S with
u = a when y = 0 and v = b when y = 1. To solve our problem in H, we take v = u o g.

To be explicit, we take
b—a

™

b—a

v(z) = Im (m+ logz) —a+——20(2),

where 0 < §(z) < 7. The isotherm u = c is the ray ¢ = a + 222 60(z) or 0(z) = &2 .
5.27 Example: Find the steady state temperature u(z) inside a circular plate modelled
by the disc U = D(0, 1), given that the top half of the boundary is held at a® = 1° and the

bottom half is held at b° = 5°. In particular, find the temperature at the point %z Also
describe the isotherm u = 2.

1
Solution: The map fi(z) = % maps the disc D(0,1) to the disc D(1, 1), and it sends the
top half of the boundary of the first disc to the top half of the boundary of the second. The

1
map fa(z) = ~ maps the disc D(%, %) to the half-plane Hy = {z +iy|x > 1}, and it maps

the top half of the boundary of the disc to the bottom half {1+4iy|y < 0} of the boundary
of Hy. The map f3(z) = z—1 translates the half-plane H; to Hy = {x+iy|z > 0}. Finally
the map f4(z) = iz rotates Hy to the half-plane H = {x 4+ iy|y > 0} sending the bottom
half of the boundary of Hy to the right half {z > 0} of the boundary of H. So we can use
our solution v(z) from the previous example to obtain the solution u = vo fyo f30 fao fi.

To be explicit, we have fao(f1(2)) = . 2 and f3(f2(f1(2))) = <i - 1) = <1 — Z)

s 142 1+2

b— 1— 4 1-—
u(z) =a-+ a@ 7 c =14+—-61(1 ° )
T 1+ 2z T 1+ 2

), so our solution is

where 0 < 9(2' L‘_i) < 7. Since 6(i L‘_;) = 9(%;2) + %, we have
4 1—=z2
=3+-—-0
u(z)=3+ (Hz),
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where —5 < 9(%;2) < 3. In particular, the temperature at %Z is

TH) =3+ 20(558) =3+ fran! (-

u(3i)=3+26(

Ol

) =21.82°.

To find the isotherm u = 2, we recall that the corresponding isotherm v = ¢ = 2 in
example 5.26 was the ray 0(z) = =% 7 = 2=} 7 = Z. This ray is rotated by fa N z2) = —iz
to the ray 0(z) = —7, then translated by f3~' =241 totheray (z—1) = — 7, this ray is

the portion below the x-axis of the line whose nearest point to the origin is %(1 +1) and so

it is mapped by fo~'(z) = 1/z to the portion above the z-axis of the circle with diameter

0, %ﬂ = 1—1, that is the circle |z — %| = ?, and finally this arc is translated and scaled
by the map f;'(z) = 2z — 1 to the portion above the z-axis of the circle |z + i| = v/2.

Thus the isotherm u = 2 is the arc |z +i| = v/2, z € D(0,1).

We also remark that 6( }jr;) =1Im (log( };j)) — —2Im (tanh™ " 2).

filz) == fa(z) =1/z fa(f3(2)) = i(z = 1)

5.28 Example: Find the steady state temperature u(z) in the plate shaped like the semi-
infinite strip U = {x +iy| — 1 < = < 1,y > 0} given that the temperature along the
bottom edge and the right edge is held at a® = 10° and the temperature along the left
edge of the boundary is held at b° = 40°. Also, find the temperature at z = i.

Solution: The map fi(z) = Fz widens the strip U by a factor of 7, and then the map
f2(z) = sin z sends the strip to the half plane H = {x + iy|y > 0}. The left edge of the
boundary of U is mapped to the portion of the real axis with x < —1. Lastly, the map
fa(z) = z+ 1 sends H to itself and it sends the portion of the real axis with z < —1
to the portion with x < 0. We can again use our solution v(z) from example 5.26 to

obtain the solution to this problem. We take u = uo f3 o fy o fi. To be explicit, we have
f3(f2(fi1(2))) =1+ sin 5z and so

— a 0(1+sin(%z)) =10+ ? 0(1+sin(%z)),

u(z) =a+
where 0 < 6(1 + sin(% z)) < m. In particular, we have
w(i) =10+ 320(1 +sin(i §)) =10+ 296(1 4+ isinh ) =10+ 2 tan~* (sinh J) = 21.1°.
5.29 Example: Find the steady state temperature v(z) at each point on a plate modelled
by the half-plane H = {x + i y|y > 0} given that the temperature along the boundary is

held constant at a° for x > 1, b° for —1 < z < 1 and at ¢° for x < —1.
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Solution: We can use the fact that the sum of two harmonic maps will also be harmonic.
We use the solution from example 5.26 to get one harmonic map v; in H with v; = a along
the portion of the z-axis with x > 1 and v; = b along the portion with x < 1, and we get
another harmonic map vy in H with vo = 0 along the portion of the z-axis with > 1 and

vy = ¢ — b along the portion with x < —1. Then we add them to get v = v; + v5. To be
b— —b
a O(z — 1) and vo(2) = i 0(z+ 1) and so
7r

explicit, v1(2) = a +

b+ ),

v(z) =a+
m 7T

where 0 < 0(z—1),0(z+1) <.

5.30 Example: Find the steady-state temperature u(z) in the semi-circular plate mod-

elled by U = {z + iy|z® + 3% < 1,y < 0} given that the temperature along the boundary

is held constant at a® = 5° when y = 0 and z > 0, and at b° = 10° when y = —v/1 — 2
1

and at ¢® = 20° when y = 0 and z < 0. In particular, find the temperature at z = —3 .

Solution: The map f; = 1/z sends U to the region V above the z-axis and outside the unit
circle V.= {z +iy|z? + y* > 1,y > 0}. Then f»(2) = log z, the branch of the logarithm
with 0 < # < 7, maps V to the semi-infinite strip W = {z +iylx > 0,0 < y < 7}.
We rotate the strip by 90° using f3(z) = iz then shift it to the right by 7 using the
map f4(z) = 2z + § (so that its base is centred at the origin), and then we use the map
f5(2) = sin z to map the strip to the half-plane H = {x + iy|y > 0}. The portions of the
boundary which are to be held constant at a®, b° and ¢° are mapped to the portions of the
z-axis with z > 1, —1 < & < 1 and & < —1 respectively, so we can use our solution v(z)

from the previous example. Our solution is u = v o fso...0 f;. To be explicit, we have
f5(fa(f3(2))) = sin(iz + §) = cos(iz) = coshz, and f5(fs(f3(f2(2)))) = cosh(logz) =

log z —log z Z—I—l l—l—Z 1 2
€ +26 = 2Z,andso (f5o...of1)(z)zz2 = _2:2 . Our solution is

b— 1+ 22 —b, (1+22

u(z) =a+ y 2 1)+ C 6 +e +1
T 2z T 2z
5 (1422 10 (/14 22
—s4 2o (2 )+ P ()
T 2z T 2z

In particular, u(—i/2) = 5—1—%9(%— )+ 9(%—#1) =5+20(—1+i3)+20(1+:2) =

S+ %(77 —tan~! %) + 17r—0tan_1 % =10+ %tam_1 % = 11.0°.

fi(z) =1/z fa(z) =log z
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5.31 Note: All of the above examples can be re-worded so that they are asking us to find
the electrostatic potential in a certain region given that the voltage along the boundary is
held constant. If u is the electrostatic potential in a region, then the electric field F is
defined by

E=—-Vu.
If f is holomorphic and u = Re (f) and v = Im (f), then we have Vu = ug +iu, = f. and
Vo =u,+ivy =—uy+iuy =i(ug +iuy) =iVu=1f,.

5.32 Example: Find the electostatic potential and the electric field at each point inside
a long hollow metal cylinder, with unit radius, made up of two semi-cylindrical pieces
separated by thin strips of insulating material, with one piece held at a potential of 1 Volt,
and the other at 5 Volts. In particular, find the electrostatic potential and the electric field
at points along the centre of the cylinder.

¥

X
Solution: The cross-section of the cylinder is modelled by the unit disc U = D(0,1). Asin

example 5.27, the electric potential is u(z) =3+ 26 (L‘L;) Note that u = Re (f), where

f(z)=3-— %z’ log (h__j) The electric field is E = —Vu = —f, = %z’ i*_’i (113)2 = ﬂ(lsjzg).

In particular, we have u(0) = 3 and E(0) = 2 4.

5.33 Example: Find all solutions v(z) to Laplace’s equation in C* such that v(re’?) =
f(r) for some function f (the solution will model the electrostatic potential at each point

around a long charged rod).

Solution: The exponential function maps C onto C*. If v(z) is harmonic in C* then
u(z) = v(e*) will be harmonic in C. If v is of the form v(re'?) = f(r) then we have
u(z +iy) = v(e®e”) = f(e®). Since u is independent of y, Laplace’s equation becomes
Uz, = 0, and the only solutions are of the form u(z +iy) = ax + b = Re (az + b) for some
a,b € R. Thus we have v(z) = u(logz) = Re (alogz +b) = aln|z| +b.

5.34 Example: Find the electrostatic potential v(z) and the electric field E(z) at each
point inside a long grounded cylinder, of unit radius, which encloses a charged wire centred
inside the cylinder.

Solution: We look for a harmonic map v(z) defined on the punctured disc U = D*(0,1)
with v(z) = 0 when |z| = 1. From the previous example, we can take v(z) = aln|z|. The
constant a depends on the charge per unit length and on the choice of units. In fact

v(z) = —2kqIn |z|,
where ¢ is the charge on the rod in coulombs per meter and k& = 9 x 10? NC@Q. Since
v = Re (f), where f(z) = —2kqlog(z), we have E(z) = —f. = 2kq/Z.
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5.35 Example: A charged wire at z = 0,y = 1 lies inside the region in space given by
y > 0, and the boundary of the region is grounded. Find the potential u(z) at each point
in the region and around the wire.

Solution: Let U be the punctured half-plane U = {z|Imz > 0,z # i}. The map fi(z) =
z+ i maps U to the set V = {z|Imz > 1,2z # 2i}, the map fa(z) = 1/z maps V to the
punctured disc W = D*(—%z’, %), and the map f3(z) = 2z 4+ i maps W to the punctured
disc D*(0,1). So our solution is u = v o f3 o fy o fi where v(z) = —2kqIn|z| is the solution
from the previous example. Check that

zZ—1

= —2kql
u(z) qln |~

f2(2) =1/z

5.36 Note: The velocity field F' of a flow (of perfect fluid) and the velocity potential v
are related (like the electric field and electric potential) by

F=-Vv.

5.37 Example: Find the velocity potential v(z) of the constant flow with velocity field
F(x +iy) = ¢ in the upper half plane H = {x +iy|ly > 0}.

Solution: We must have F' = —Vv so we need ¢ = —(v, +1iv,), that is v, = —c and v, = 0.
Since v, = 0, v is independent of y, and since v, = —c we have
v=—cx=Re(—cz).

We could add a constant to this solution.

5.38 Example: Use the previous example to find the velocity potential for the region
U= {x+iyla® +y* > 1,y > 0} given that as 2 — oo the flow tends to the constant flow
F = k. Also, determine the speed of the flow near z = i, that is, at the top of the bump.

Solution: As in example 5.32, the map f(z) = cosh(logz) = 1(z + 1/z) sends the region
U to the upper half-plane H = {z + iy|y > 0}. We use the potential v from the previous
example, and we take u(z) = v(f(z)) = Reg(z), where g(z) = —5(z + 1/2). The velocity
field is F = —g; = £(1 — 1/z%). As z — 0o we have F(z) — ¢/2 so we must take ¢ = 2k.
Thus our solution is

v(z)=Re(—k(z+27") , F(z)=k(1-1/z%).

We have F(i) = 2k, so the velocity at the top of the bump is twice the velocity at co.
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Chapter 6. Integration

6.1 Definition: Let I be an interval in R (I could be open, closed or half-open). Say
I = (a,b) where a,b € RU {#o00} with a < b and where { and ) denote either open or
closed brackets depending on whether a and b are open or closed endpoints of I. A function
f: I — C is called piecewise continuous when there exist points s; € R U {£o0} with
a=258y<8 <---<8, =band there exist continuous functions

g1:(s0,81] > C, gi:[si—18] > Cflorl <i<n,andg,:[sSp—1,5,) = C

such that f(t) = g(t) for all t € (s;_1,8;). A function f : I — C is called piecewise C!
when f is differentiable and f’ is piecewise continuous on I.

6.2 Definition: Let f : I C R — C be piecewise continuous, where [ is an interval, let
u(t) = Re f(t) and v(t) = Im f(¢), and let t1,t; € I. We define the integral of f from ¢,

to t9 to be
to to to to
/ F=1{ fya ::/ u(t) dt —H’/ ot dt.
t1 t1

t1 t1

6.3 Remark: It is also possible to define the definite integral as a limit of Riemann sums,
but we shall not do this here.

0
6.4 Example: Let f(t) =¢'! for t € R. For § € R, find / a(t) dt.
0

Solution: We have
0 0 0 0
/ f(t)dt:/ (cost—i—z'sint)dtz/ costdt+z'/ sin t dt
0 0 0 0

0 0 .
= [sint} -l—z’[—cost] =sinf+i(l —cosf) =i—ie'?.
0 0

Note that as 8 varies, this traces out the circle centered at 7 of radius 1.

6.5 Theorem: (Linearity) If f,g : I C R — C are piecewise continuous, where I is an
interval with t1,t5 € I, and ¢ € C then

[oreeffsou [so- [ ['s

Proof: This follows from Linearity for real-valued functions.

6.6 Theorem: (Decomposition) If f: 1 C R — C is piecewise continuous, where I is an
interval with ty,ts,t3,---,t, € I then

e e R

Proof: This follows from the Decomposition Theorem for real-valued functions.
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6.7 Theorem: (Change of Parameter) Let s : I C R — R be piecewise C! (this means
that s = s(t) is continuous and s'(t) is piecewise continuous) where I is an interval, let
J = s(I), which is also an interval, let f : J C R — R be piecewise continuous, and let

t1,t2 € I. Then
tz S(tz)
Fls(t)s' () dt = / f(s)ds.
s(t1)

Proof: This follows from the Change of Variables Theorem for real-valued functions.

t1

6.8 Theorem: (Estimation) Let f : [t1,t2] C R — C be piecewise continuous. Then

to to
d dt .
R t\g/tl £(0)] di

Proof: Write / f(t)dt in polar coordinates as / f(t)

f(t)dt| = et f(t)dt = e 1Of(t) dt
[, swaf = [ roa= [

where the last equality holds since for » > 0 we have r = |Re (r)|. We can then use the
Estimation Theorem for real-valued functions to obtain

‘Re /t2 (e—wf(t))dt': /:Re(e—wf@))d‘ /t Re (¢ (1) |dt</tlt2|f(t)|dt,

since [Re (e °f(1))| < |ef (t)| = | (£)]-

6.9 Theorem: (The Fundamental Theorem of Calculus) Let f,g: I C R — C where I is
an interval with t1,t5 € I, f is piecewise continuous, g is differentiable, and ¢’ = f. Then

/t " F(t)dt = g(t2) — g(t).

Proof: Let u(t) = Reg(t) and v(t) = Im g(t) so that g(t) = u(t) +iv(t) and f(t) = ¢'(t) =
u'(t)+1iv'(t). Then, using the Fundamental Theorem of Calculus for real-valued functions,

we have
/t2 f(t)dt = /t2 ' (t) + 0 (t) dt = /tZ o' (t) dt +z‘/t2 o' (t) dt
= (u(tz) —u(t1)) +1i (v(t2) —v(t1)) = g(t2) — g(t1).

6.10 Example: With the help of the Fundamental Theorem of Calculus, we can find the
integral of example 6.4 as follows

o 10 .
/ e”dt:[—ie”} = —ie'? 4+,
0 t=0

6.11 Definition: Let a,b € U C C. A path (or curve) from a to b in U is a piecewise
C! function a : [t1,t2] € R — U with a(t;) = a and a(tz) = b. In the case that a = b, we
say that « is a loop at a in U.

2 .
f(t)dt|e*®. Then

= |Re /tQ (e f (1)) dt‘,

t1
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6.12 Example: For a,b € C, the path
alt)=a+(b—a)t,for0<t<1
traces the line segment from a to b.
6.13 Example: For a € C and 0 < r € R, the loop
aft)=a+re't  for 0 <t<2r
traces the circle of radius r centered at a.

6.14 Definition: The arclength of a path « : [t1,t2] — U C C is given by

L(a) = /t o) dt.

We remark that the arclength L(«) exists and is finite, since o’ is piecewise continuous.
6.15 Example: Find the arclength of the path a(t) =t +it3, 0 <t < 1.

Solution: We have

1 1 1
L(a)z/ !o/(t)\dt:/ |2t+i3t2|dt:/ VA2 - 914 dt
0 0 0
1 13
2/0 t\/4+9t2dt:/4 =Vudu

3

= [%u\/ﬂl = 5-(13V13 -38).

6.16 Definition: Given a path « : [t1,t2] — U C C and a continuous function f : U — C
we define the path integral of f along a to be

to
[1=[ 1= [ famo.
[e% «a t1
6.17 Remark: It is possible to define the path integral as a limit of Riemann sums, but

we shall not do this here.

6.18 Remark: The complex path integral is related to real path integrals in the following
way. Write z = a(t) = z(t) +iy(t) and f(z) = u(z) +iv(z) with z,y,u,v € R. Then

[ 1@ = [ e = [ (utan) +ivla) (@0 + iy 0)

- / ")’ (t) — v(a(t)y'(t) dt +i / o)’ () + ula()y' (1) dt

tl tl
:/(udas—vdy)-i-i/(vdx—i-udy).

This can easily be remembered by defining dz = dx + ¢ dy and then writing

/af(z)dz:/Ot(u%—iv)(dx%—idy):L(udx—vdy)+i/(vdx+udy).

«

In a similar way we could define the path integral / f(2)dz, where dz = dx — idy
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6.19 Example: Find / ¢ where a,b,c € C and a(t) =a+ (b—a)t for 0 <t <1.

(e

Solution: We have

/acdz:/Olco/(t)dt:/olc(b—a)dt: [c(b—a)t}zzozc(b—a).

6.20 Example: Find / 2?dz where a(t) =2+ (=1 + i)t for 0 <t < 1.

«

Solution: We have

/szz:/Ol (oz(t))Qo/(t)dt:/Ol 2+ (=1+i)t) (=1 +14) dt
— [%(2+(—1+i)t)3};:%((1—#2’)3—23):%(—2—#2@'—8):—%—#%2\

6.21 Theorem: (Linearity) Let o be a path in U C C let f,g : U — C be continuous,

and let ¢ € C. Then
/acfzc/afand /Q<f+g>=/af+/ag.

Proof: This follows from the Linearity Theorem 6.5.

6.22 Theorem: (Decomposition) Let « : [t1,t2] — U C C be a path, let n be a positive
integer, let t1 = sop < s1 < 89 < -+ < 8, = t1, for each 1 = 1,2,--- n, let a; be the
restriction of « to the interval [s;_1,s;|, and let f : U — C be continuous. Then

Aszlf+ a2f+-~-+/anf-

Proof: This follows from the Decomposition Theorem 6.6.

6.23 Definition: For a path a : [t1,t2] — U C C, we define the inverse path a~! by
a t(t)=a(ty +ty—t), for t; <t <ty.

Note that o' has the same image as «, but it traces this image in the opposite direction
with a=1(t;) = a(tz) and a~1(t2) = a(ty).

6.24 Theorem: (Change of Direction) Let « : [t1,t3] — U C C be a path, and let
f : U — C be continuous. Then

|-

a1 «

Proof: This theorem is a special case of the following more general theorem.
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6.25 Theorem: (Change of Parameter) Let s : [t1,t2] C R — [s1,s2] C R be invertible
and piecewise C'. Note that s must be monotonic, and if s is increasing then we have
s1 = s(t1) and sy = s(t3), while if s is decreasing then we have s1 = s(t3) and so = s(t1).
Let « : [s1,82] — U C C be a path, let B(t) = a(s(t)) fort; <t <ty, andlet f : U — C

be continuous. Then
[ 1@dz== [ f)az.
B o

where we use + when s is increasing and we use — when s is decreasing.
Proof: Since B(t) = a(s(t)), the Chain Rule gives §'(t) = o/(s(t))s'(t), and so

to s(tz2)

f@MWW%@W@ﬁz/ f(a(s)a! (s) ds

s(t1)

Af=lfﬂmm3@ﬁ:

t1

by the Change of Parameter Theorem 6.7. When s is increasing, the integral on the right
52

is equal to f(a(s))d'(s)ds = [ f, but when s is decreasing, the integral on the right

is equal to / Fla(s))o/ () ds = N / Fla(s))o’ (s) ds = — /a f.

6.26 Remark: We use the Decomposition Theorem, the Change of Direction Theorem
and the Change of Parameter Theorem implicitly when we join two or more paths together
to form a single path or loop. For example, let a,b € U C C, let f : U — C be continuous,
let o and 3 be two paths from a to b in U, and let v be a loop which follows « then 371.
Then no matter how we choose to parametrize v, we have

=L s

This fact makes it unnecessary to find an explicit formula for «(t¢), such as the following:
if a: [t1,t2] = U and B : [ts,t4] — U, then one specific parametrization for a loop = which
follows o then 8~! is given by

a(t) Lt <t <ty
y(t) =
Blto+ty—t), to <t <ty+ty—1t3.

6.27 Theorem: (Estimation) Let «: [t1,t2] — U C C be a path, let L = L(«), and let
M = max) | f(2)|- Then

z=a(t

‘/af('z) dz‘ = /tt | ()’ (t)] dt < ML.

Proof: This follows from the Estimation Theorem 6.8.

6.28 Definition: Let f,g: U C C — C. If ¢/(z) = f(z) for all z € U then we write

9= |1

and we say that g is an antiderivative of f in U.
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6.29 Note: Note that since complex functions have the same derivative formulas as
real functions, they also have the same antiderivative formulas. For example, we can use
Integration by Parts or the Substitution Rule to find an antiderivative.

6.30 Example: Find an antiderivative for f(z) = z3¢* .

Solution: Make the substitution w = 22, dw = 2z dz, then use Integration by Parts with

Lw, du = %dw, v=e" and dv = e" dw to get

U:2

2
/z3ez dz:/%wewdw:%we“’—/%ewdw:%wew—%ew

=j(w-1e =5 (1)
6.31 Note: Let U C C be a non-empty connected open set. If V' C U is non-empty
and open, and U \ V is also open, then we must have V' = U since otherwise U would be
separated by the open sets V and U \ V.

6.32 Theorem: Let U C C be a non-empty connected open set. Let f,g: U — C be
holomorphic with f’ = ¢’ in U. Then there is a constant ¢ € C such that f = g+ c in U.

Proof: Let a € U, let ¢ = f(a) — g(a), let h = f — g, and let
V={2e€U|f(z) =g(z) +c} = {z € U|n(z) = c}.

We must show that V' = U. By the above note, we can do this by showing that V is
non-empty and that both V and U \ V are open. The set V is clearly non-empty since
a € V. To see that V' \ U is open, note that V.= h~!(c) so we have U\ V = h=*(C\ {c}).
Since h is continuous and C \ {c} is open, the set h=*(C\ {c}) is open by Theorem 3.29.
It remains to show that V' is open.

Let w € V, so we have h(w) = ¢, and choose r > 0 so that D(w,r) C U. We claim
that D(w,r) C V. Let z € D(w,r). We must show that f(z) = g(z) + ¢, or equivalently
that h(z) = c. Note that since f' = ¢’ and h = f — g we have h/ = 0. Let p be the
point with Re (p) = Re(2) and Im (p) = Im (w). Let u = Re (h) and v = Im (h) so that
h = w4+ iv. On the horizontal line through w, given by «a(t) = w + t for t € R, we have

d . d / /
%u(a(t)) +1 %U@(t)) = ah(a(t)) = k' (a(t))d/(t) = 0.

Since Lu(a(t)) =0 and Lv(a(t)) = 0, it follows that the real-valued functions u(a(t))
and v(a(t)) are both constant and so h(a(t)) is constant. In particular, h(p) = h(w) =
A similar argument involving the vertical line through p, which is given by S(t) = p + it

for t € R, shows that h(z) = h(p) = c.

6.33 Example: Let U, = {re'|r > 0,0 < < a+2r}, and let f(z) = 1/z. Then the
antiderivatives of f in U, are the maps of the form ¢(z) = log z+c where log z = |z|+i 6(2)
with a < 0(z) < a + 27. However, f(z) does not have an antiderivative in C* because
none of the maps g(z) can be extended continuously to C*.

C.
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6.34 Theorem: (The Fundamental Theorem of Calculus) Let « : [t1,t2] — U C C be a
path in U, and let f,g : U — C with f continuous and g holomorphic with ¢’ = f in U.
Then

[ £=[o)]"" = state) - gtatw)

a(t)

[1-0.

Proof: Let h(t) = g(«a(t)). By the Chain Rule, h/(t) = Dg(a(t))d’(t) = ¢'(a(t))d/(t), and
so by the Fundamental Theorem of Calculus 6.9, we have

In particular, if « is a loop then

/ ;= / g = / "y (alt))a (t) di = / W) dt = h(t) — h(ty) = g(a(ta)) — glaltr).

tl tl

When « is a loop we have a(t1) = a(t2), so g(a(t1)) = g(a(t2)), and hence / f=0.

6.35 Example: Using the Fundamental Theorem of Calculus, we can solve example 6.20

as follows
a(1)
/z2dz:[%z3] :[
« O‘(O)

6.36 Example: Find / 2% e dz where alt) =1+2¢€', 28 <t <m.

«

zS];H = 1((~2+2)—(8)) = -0 424,

Wl
W~

Solution: Since o (2F) = /34 and a(w) = —1, by the Fundamental Theorem of Calculus,

using the antiderivative calculated in example 6.30, we have

6.37 Example: Find / sin® z sec? 2z dz where a(t) =i+ et for -5 <t< 3.

«

Solution: We make the substitution u = cos z, du = —sin z dz to get

. 3 9 sin® z dz (1 — cos? ) sin z dz 1—u?
sin” zsec” z dz = 5 = 5 = [ ——>5du
cos? z cos? z u

1 1
:/1—$du:u+azcosz+secz,

and so
/ 5 ) a(m/2) 2
sin® zsec” z dz = [Cosz—f—secz} = [cosz—f—secz}
@ a(—m/2) 0
2 —2 4 2
= (”; +62fe,2)—(1+1):62;;1+j11—2.
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6.38 Definition: For a path a : [t;,t2] = U C C and a point a € C which does not
lie on the path «, we define the winding number 7(a,a) of a about a as follows. We
write a(t) = a + r(t)e'*® where 7(t) = |a(t) — a| and 6(t) is chosen continuously with
0 < 6(t1) < 2 (it can be shown that the map 6(t) exists and is uniquely determined), and

then we set
0(t2) — 0(t1)

27

If o is a loop then we have a(t;) = a(t) and so (1) = ¢?9(t2) and hence 6(t5) — 6(t;)
will be a multiple of 2. Thus for a loop «a, we have n(a,a) € Z.

n(a,a) =

6.39 Example: It is not hard to find the winding number 7n(«a, a) from a picture of the
path a. For example, for @ and a as shown below, we can choose values t = s; (as shown).
Then 0(sg) = 7, and then 0(t) increases (since we move counterclockwise around a) with
0(s1) = Z, 0(s2) = m, O(s3) = 2L, 0(s4) = 27 and 0(s5) = 2L, and then 6(t) reaches its
maximum at 6(sg) = 11T and begins to decrease (since we now begin moving clockwise
around a) with 6(s7) = 2F, 6(ss) = 2 and finally 6(sg) = ZX. Thus we have

O(so) —0(s0) o T -5

2T 2T 4

77(047 CL) =

6.40 Example: If o is the pretzel curve a(t) = r(t)e*?®), where 7(t) = (2 + cos 3t) and
0(t) = 2t with 0 < ¢ < 27 (as shown below), then the winding number of a about 0
is n(a,0) = 9(272;0(0) = 470 = 2. The winding number about other points is hard to
compute from the given formula for «, but is easy to find using a sketch of the curve. For
example we have 1(a,2) = n(a,2e2™/3) = n(a, 2¢**7/3) = 1 and n(a,4) = 0.
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6.41 Theorem: (Winding Number) For the path a(t) = a + r(t)e*?) with r(t) > 0 and
t1 <t <t;, we have

d t a(ts)
/a . —za =In :E;% +2min(a,a) = [In |z — a\]a(:) +2min(a,a).

In particular, when « is a loop we have r(t1) = r(t2) so

d
2rin(a,a) :/ :

wZ—a

Proof: We have
d to /t to .1 10 . 9/ 0 to ./ to
/ z :/ _a(t) dt:/ re tirde dt:/ T—dtﬂ'/ o' dt
wZ—a ¢y, at)—a ¢ retf P .

= [mr)] " i [00)] " = mr(ts) — () +1 (0(02) — 0(11))

t1 tl

oz + 2 N }
2(z + 1) dz where a(t) = (14 2t)e'™ for 0 < ¢ < 3.

Solution: First we sketch the path o by making a table of values and plotting points on a
polar grid.

6.42 Example: Find /

«

t f=mt r=1+32¢ L
0 0 1
1/3  w/3 9/8
2/3 27/3 5/4
1 s 11/8
4/3  4m/3 3/2
5/3  5m/3 13/8
2 2m 7/4
7/3  Tn/3 15/8
8/3 8m/3 2
Notice that &(0) =1 and a (3) = -1+ v3i. N d the functi bzt 2
otice a Oé( = ana « 3) = —+ 1. OW we decompose € runction m
C D 5 2
into partial fractions. In order to get 2 + =+ pon + T = z2(z 1 )2 we need

Az(z4+1)2+B(2+1)2+C2%(2+1)+ D2? = 52+ 2. Equate coefficients to get the equations
A+C=0,2A+B+C+D=0,A+2B =5 and B = 2. Solve these to get A=1, B =2,
C = —1 and D = —3. Using the Winding Number Theorem, we have

52 + 2 1 2 1 3
—sdz= | -+ < — - d
/0/52(24—1)2 : Lz+z2 z+1 (241)? :
—1+V3i

—nd+2min(a,0)— [2] T —m¥ —2mina,-1) + |5

— ;4 2 V3 .5 3
—1n2+27m§— _1+\/§i+2—1n7—27r21+_1+\/§i—

3
2
=2+ 8 i+ L1 4+vBi)+2-n¥LE - 57— 3(14/34) -3

—(mg+4) - (5-4) .
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Chapter 7. Cauchy’s Integral Formulas

7.1 Remark: Let U C C be open, and let a be a path which runs counterclockwise
around the boundary of a closed convex set £ C U. Recall that Green’s theorem (for real
path integrals) states that if u,v : U — R are C! maps, then

/udm—l—vdy—// y)dr dy.

Let f: U — C be holomorphic, and let u = Re (f) and v = Im (f). If we suppose that u
and v are C!, then Green’s Theorem and the Cauchy-Riemann equations imply that

f(z dz—/(u+zv)(dac+zdy) /udac—vdy+i/vdx+udy

// dxdy+@// e — Uy)drdy =0.

We shall now prove a series of theorems which generalize this result (which is known as
Cauchy’s Theorem) and which do not require the assumption that u and v are C!.
Indeed, we shall be able to show that every holomorphic map is C*°.

7.2 Lemma: Let Ky 2O K; D Ky D --- be non-empty compact sets. Then (| K, # 0.

n=0

Proof: Suppose, for a contradiction, that (| K, = 0. For n € Z*, let U, = K,,°. Note

n=0

that each U,, isopenand Uy CUs; C U3 C ---. Wehave () = KoN () K, :Koﬂ( U Un)
n=1 n=1

oo
and so Ko C |J U,. Thus {Ul, Us,Us,--- } is an open cover of K. Since K| is compact,

n—

we can choose a finite subcover, say Ko C U,,, UU,, U---UU,, withn; <ng <--- < ny.
Since U,, C U,, € --- C U,, we have Ky C U,,. But then Ky N U, = 0, that is
KoN K, =0, and this is not possible since ) # K,,, C K.

7.3 Theorem: (Cauchy’s Theorem in a Triangle) Suppose that f : U C C — C is
holomorphic in U. Let A be a closed solid triangle in U and let « be a loop which goes

once around the boundary of the triangle. Then / f=0.

Proof: Let I = |[ f|andset Iy =1, Ag=A, ap = o and Ly = L(c). Divide A into four
similar triangles Ag1, Ag2, Agz and Agy, let agq, ..., ags be loops around these triangles,
and let Ip; = ‘fao‘ f‘ for 7 = 1,2,3,4. Choose k so that Iy is the largest of these, and

then set Iy = Iog, A1 = Aok, o1 = agr and Ly = L(ay). Since the triangles A, are half
as big as Ag we have Lo = 2L;. Also, since I} > Iy; for all j, we have

4 4 n
f’ZZ/ fl<> f‘:ZIojgélh.
j=1"0j j=1 j=1
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Next we subdivide A into four similar triangles Aq1, A12, A3 and A4, and repeat the
procedure. In this way we obtain a sequence of similar triangles Ag D Ay D ... with a loop
ay, around each triangle, and we have Iy < 4I; < 4%I, < ... and Ly = 2L, = 22L, =

where I, = ‘fak f’ and Ly = L(ay). By the above lemma, we can choose a point a which

lies in all of the compact sets Ay.

Now let € > 0. Since f is holomorphic at a, we can choose § so that for |z —a| < §
we have |f(z) — (f(a) + f'(a)(z — a))| < €|z — a|]. Choose N so that for n > N we have
A, C D(a,d), and note that for all z € A,, we have |z —a| < L,,. So for z € A,, we
have |z — a| < & which implies |f(2) — (f(a) + f'(a)(z — a))| < €|z — a| < €eL,. Since
f(a) + f’( )(z — a) has an antiderivative, namely f(a)z + f’ ( ) (32? — az), we know that
A (a)(z—a) dz=0so0 we have [ f(z)dz= [ f(z)— (f(a)+ f'(a)(z —a)) d=.
ertlng M = maé) (f(z) = (f(a) + f'(a)(z — a)) < €Ly, the Estimation Theorem gives

L2
f'(a)(z —a)) dz SMnLngeLf:e%.

Thus Iy < 4™1,, < eLy?. Since € was arbitrary, we must have Iy = 0.

7.4 Theorem: (Cauchy’s Theorem in a Convex Region) Suppose that f : U C C — C
is holomorphic in U, where U is open and convex. Then f has an antiderivative in U.

Consequently, / f =0 for all loops o in U.

«

Proof: Choose any point a € U. For each z € U set g(z / f where « is the line

segment from a to z (thatis a(t) =a+(z —a)t ,0<t < 1) We claim that ¢'(2) = f(2)
for all z € U. Indeed, given h € C (small enough so that z +h € U) we let 8 be the
line segment from z to z + h and we let v be the line segment from z + h to a, so by the
definition of g we have g(z+h) = fv—l f=- fv f, and by Cauchy’s Theorem in a Triangle

Wehavefaf+fﬂf—|—f7f:0,andso

= s+ ([ o [ ) au)
- |fe) - [ srau

- |5 [ [ )il

I RCRICEY

wmgict) | f(z) = f(w)].

gz + 1)~ g(2)
fla) - FE

IN

As h — 0 we have w = B(t) — z and so | f(z) — f(w)| — 0, since f is continuous.
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7.5 Definition: Let o, : [t1,t2] - U C C be paths with «(t1) = S(t1) = a and
a(ta) = B(t2) = b. A path-homotopy (or deformation of paths) from « to §in U is a
continuous map F': [t1,ts] x [0,1] — U such that F(¢,0) = «(t) and F(t,1) = S(t) for all
t, and also F'(t1,s) = a and F(t2,s) = b for all s. If such a homotopy exists, then we say
that « is (path)-homotopic to § in U and we write a = 3 in U. Note that for each fixed
s € [0,1], the map Fs(t) := F(t,s) is a continuous curve from a to b.

8

ja B b

o t,

«

7.6 Example: In a convex set U C C we can find a path-homotopy between any two
paths «, 5 : [t1,t2] — U with a(t;) = B(t1) and a(t2) = B(t2). Indeed, we can take

F(t,s) = a(t)+s(B() — alt)).
7.7 Theorem: (Cauchy’s Theorem for Paths) If f : U C C — C is holomorphic and «
and 8 are homotopic paths in U then / f= / f-
o B

Proof: Say «, 5 : [p,q] — U. Choose a path-homotopy F' : [p,q] x [0,1] = U from « to
G in U. Choose partitions p = tg < t1 < ...tx = qand 0 = 51 < 9 < ...s = 1 with
the property that for each i, j the image F' ([ i—1,ti] X [s5-1, sj]) is contained in a convex
set which lies in U. (To prove that such partitions can be found, you must use the fact
that [p,q| x [0,1] is compact). For each i and j, let «; be the restriction of « to [t;_1,t;],
let B; be the restriction of 5 to [t;—1,t;], let a; be the line segment from «(t;—1) to a(t;),
let b; be the line segment from 5(t;_1) to B(¢;), and let ~;; be the polygonal loop around

the polygon with vertices at F'(t;—1,sj-1), F(ti,sj-1), F(t;,s;) and F(t;—1,s;). Then by
Cauchy’s Theorem for convex sets, we have

/aif:/aif | /mf:/bif and /%jfzo.

When we consider all of the paths a; !, b; and 7vij, every line segment occurs twice, once
in each direction, and so the path integrals all cancel with each other to give

O—Z/f Z/ f+; 5
IR I

=4f—Lf
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7.8 Example: Let o, 3 : [0,71] — C* be given by «a(t) = €'t and S(t) = e~**. Show that
« and B are not homotopic in C*.

Solution: Let f(z) = 1/z. Then f is holomorphic in C* and we have [ f = im and
fﬁ f=—in. Since [ f+# fﬁ f we know that « is not homotopic to 3.

7.9 Definition: Let o, : [t1,t2] — U C C be loops in U. A loop-homotopy (or
deformation of loops) from a to 8 in U is a continuous map F': [t1,t2] x [0,1] — U such
that F'(t,0) = «a(t) and F(t,1) = §(t) for all t and F(t1,s) = F(t2,s) for all s. If such a
homotopy exists, we say that « is (loop)-homotopic to 5 in U and we write a ~ 3 in U.

7.10 Example: In a convex set U C C, any two loops are homotopic. Indeed, given loops
a, B : [t1,t2] = U we can take F(t,s) = a(t) + s (B(t) — a(t)).

7.11 Theorem: (Cauchy’s Theorem for Loops) If f : U C C — C is holomorphic and «
and 3 are homotopic loops in U, then / f= / f-
e’ B

Proof: The proof is the same as the proof of Cauchy’s Theorem for Paths.

7.12 Example: Let o, f : [t1,t2] — C* be loops. Show that if n(«a,0) # n(5,0) then «
and [ are not homotopic in C*.

Solution: Let f(z) = 1/z. Then f is holomorphic and we have [ f = 2mi n(a,0) and
fﬂ f=2min(B,0), so if n(c,0) # n(B,0) then a and B cannot be homotopic in C*.

7.13 Definition: A set U C C is called simply connected when U is connected and
any two loops «, 3 : [t1,t2] — U are homotopic in U. Roughly speaking, a connected set
will be simply connected if it doesn’t have any holes in it.

7.14 Example: Any convex set is simply connected, but C* is not.

7.15 Theorem: (Cauchy’s Theorem in a Simply Connected Region) If U C C is a simply

connected open set and if f : U — C is holomorphic, then / f =0 for every loop a in U.

«

Proof: Since U is simply connected, any loop « : [t1,t3] — U will be homotopic to the
to

constant loop k given by k(t) = a(ty) for all ¢, so / f= /f = flaa))k'(t)dt =0
« K t1

since £/(t) = 0.
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7.16 Theorem: (Cauchy’s Integral Formulas) Let U C C be a convex open set, let a € U,
let f be ho]omorphic inU and let a be a loop in U \ {a}. Then

(a) 21 n(a, a) f /f

(b) All the derivatives f(™(a) exist, and 27 n(a,a) f™(a) = n! /a % dz.

Proof: First we prove part (a). For any € > 0, let a denote the path a.(t) = a+e(a(t) —a).

Note that a ~ a in U\ {a}, indeed a homotopy is given by F(t,s) = a(t) + s(a(t) —a(t)).
f(z) = fla)

Also note that the map is holomorphic in U \ {a}. So we have

z—a
a%dz—%rin(a,a)f(a) = jgzl dz — :j(——aidz‘
1(z) = f(a) ‘ 2| < M. L(a).
z—a z—a
where M, = max u Ase—)OwehaveM—>f’(a)soM€—>|f’(a)|,
z=a.(t) zZ—a zZ—a

and also L(ae) = e L(a) — 0

We prove part (b) inductively. Suppose 2mi (e, a) f7(a) = n!/ ( /(z)

Ga

Then we have

) M) (g +h)— ") (q n! f(z f(z
2“”““”0 e ()):E/Q(Z—(agr)h))"ﬂ_(Z—(a))”H e

_n'/f (e~ o) &

= h /af(z)/)\mdw dz ,

where A is the line segment from a to a + h. So we have

@t k) = Fa) [ 29

h z —a)nt?

- |5 (/f A= >n+2dwdz‘h/cx%)dz‘
_ n+1 /f (/ )n+2dw—hm)dz
_ (n+1 /f(z)/ z_l)n+2_(z_i)n+2dwdz

n—|—2
= /f // G +3dudwdz

where 7 is the line segment from a to w. Choose r > 0 so that D(a,2r) C U \ Image (a),
and let |h| < r. For w € Image (\) and u € Image (7) we have w between a and a + h, and

1
< —. By the

L=

2mi n(a,a)

)

)
u between a and w, so u € D(a,r), and so we have |z — u| > r hence P
Z j—
)!

(n+2
Id

Estimation Theorem, L < L(a) ma(x) lf(2)||h] |k — 0 as |h| — 0.
z=o(t

n+3
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. 1
7.17 Example: Let a(t) = 2¢€'! for 0 <t < 27 and let f(2) = ;i T Find / f(z)dz

Solution: We shall find the integral in several ways. First, we shall use partial fractions. To

1 1
write il Z,+ — in the form -+ - weneed A(z—i)+B(z+1i) = z2+1
224+1  (z2414)(2—1) 241 z—1
41 ,— 1
for all z. Setting z = i gives B(Qi):i—l—lsoB:Z—; :Z2 . Setting z = —i gives
i
—i4+1 141
A(=2i)=—i+1s0 A= Z_; = ;_Z.Andsowehave
—2i
1 1+i [ d 1—i [ d 1+ 1—i
/Z2+ dz = H/ ot Z/ S i, —i) + T 2 (asi)
o2+ 1 2 Jaz+1 2 Jaz—1 2 2
1+i 1—i
_ o +TZ27T2':7T(2'—1)—|—7T(2'+1):27H'.

2

Now we shall find the integral again by immitating the proof of Cauchy’s integral
formula. Notice that f is holomorphic except at z = +i. Let a3 be the loop around the
top half of the circle, and let as be the loop around the bottom half, to be explicit, we

2e't for0<t<n 1—2tfor0<t<m
take a1(t) = < 4
™

das(t) =9, in - d th
t-3forr<t<zr el {26” for m <t <2p MOV

will have [ f= [, f+ [, f. Next we deform the paths c; and o into the circular paths
o1 and o2, where o1(t) =i +re't and o2(t) = —i + et for 0 <t < 27, where 0 < r < 1.
We have

27 27 . it
l1+i+re <
= — ) oy () dt = . . ire't dt
Lr=]r= ] tewerma= [ G i
27 .
1
—>/ —;Zdtzw(l—i)asr—)O,
0

and we have

27 27 . it
l1—i7+re .
= = t ") dt = . — jre' dt
/Ot2 f /02 f 0 f(aQ( )) 02 ( ) /0 — 95 reit 4 p2ei2t Lre

27 .
1—
—>/ ! =7n(i—1)asr—0.
0

-2

Thus/f:27ri.

Finally, we shall compute the integral a third time using Cauchy’s formula. Taking
a1 and as as above, we have

' F 41
/ / (241 Z+Z)dz:/ FG) gp —omiF(iy = 2mi L —ni 1),
Z — oy

7 zZ—1 21

where F(z) = (z+1)/(z + i), and
/ / (z+1)/ z—@)dz:/ G g —omiG(—i) = 2mi i —x(i— 1),
- o ay 211 21

Z+1

where G(z) = (z +1)/(z — ). Again we obtain / f=2mi.
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7.18 Example: Let a(t) = 2¢'t for 0 <t < 27, and let f(z) =

7 1 Find faf

Solution: Of the three methods we used above, only the third works easily here. Notice
that f is holomorphic except at z = +1. Let a7 be the loop around the right half of the
circle, and let az be the loop around the left half, so we have [ f= [ f+ [ f. Then

we have

F4 1 F

/f:/ MdZ:/ ﬁdz:?ﬂ'iF(l)ZZﬂ'iE:iﬂ'e,
o o z—1 alz—l 2

—1) -1
/ / (2 dz = / G) dz =2miG(—1) = omis— = —ime?.
Cz+1 ap 21T 1 -2

So the integral of f over « is equal to i (e — %)

ar

. 1
7.19 Example: Let a(t) = 2¢€" for 0 < ¢ < 27 and let f(z) = 3&2; Find / f.
z

Solution: We shall solve this integral using two methods. First we use partial fractions.

z+1 A+B+C+ D n E dto L
—_—— ==+ =+ = we need to have
23(z —1)2 z 222 z—-1 (z2—-1)

A2%(2 =12+ Bz2(z —1)2+ C(2 = 1)2 + Dz3(z — 1) + E2® = 2 + 1 for all 2. Equating
coefficients gives fives 5 equations: A+ D =0, 2A+B—-D+FE =0, A—2B+C =0,
B —2C =1 and C = 1. Solving these gives A =5, B=3,C=1, D= —-5and £ =2. So

/f /5+3+1 5) N 2 d
= L R z
o 0wz 2222 z=1 (2—-1)

=2mi(5n(c, 0) — 5n(a, 1)) = 27i(5 —5) = 0.

To write f in the form

Now we compute the integral again using Cauchy’s formulas. Notice that f is holo-
morphic except at z = 0,1. Let a; be the loop around the portion of the circle which lies
to the right of the line y = % and let ag be the loop around the portion to the left of y = %
sothat [ f= [ [+ fao f. We have

/ / 2_1 zz/aOF;;)dz:%F”(O).

1 —z—3 2 10
%’ we calculate F'(z) = : and F"(z) = ]
z —

F"(0) = 10, so we have f =10mi. Also,

€3}

/ / z+1 :/al (ZG_(ZI))Z o Qir!iG,(l).

—2
Z+ we find G'(z) = Z—gtogetG’() —5,sowehave/ f=—-10mi.
24

a2

From F(z) =

From G(z) =

Again we obtain / f=0.
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7.20 Note: If a(t) = €'t for 0 < t < 2m, then sint = % (e” — e‘“) = % (a(t) — ﬁ)

and cost = 3 (e’ +e7) =1 <a(t) + ﬁ), and o (t) = ie't = ia(t). It follows that

2

f(sint, cos, t) dt = / S G-, 1(r1) L.

0

Sometimes we can use this equality to solve a real integral involving trigonometric (or
hyperbolic) functions, by converting it to a path integral.

7.21 Example: Find/ L
o 2+cost
Solution: Let a(t) = €'t for 0 <t < 27. Then
/” dt _1/2” dt _1/ / —idz
o 24+cost 2J, 24cost 2 2—|— z2+4z+1
_/ —idz /
o (7= (24 V) (2 - (2 2+xf)
=2mi F(-2+V3) = 2mi ;o = I,
—1
where F(z) = :
—(2-3)
. 21 dt
7.22 Example: Find — -
o 3-+sin“t

Solution: Let a(t) = e*! for 0 < ¢t < 27w. Then

/2” dt _/ 5 dz _/ diz dz _/ diz dz
o 3+sin’t  Jog_1 (2_1)2_ o —1222 4 (24 —22241) J, 24— 1422 +1

47 z dz
_/a (= 2+V3) (e +2+V3) (- 2-V3) (+(2-V3)

Let a7 be the loop around the right side of the unit circle and let as be the loop around
the left side so that 2 — /3 lies inside oy and —2 + v/3 lies inside . Then for

44 2z
e e v G ve)

47 z

(2= 2+V3) (z+ 2+ V3)) (= (2-V3))’

2 dt F(z)dz G(z)
/0 3—|—Sin2t:/a1z—(2—\/§)+/a2z+(2—\/§)
=27 (F(2 —V3) +H(—2+\/§)>

i @e-VE @2+ V)
(2V3M(-2V3) " (~0)(2V3)(~1+2V3)

— 1 1 T
__W<—2\/§+—2\/§>_7§'

G(z) =

we have
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[e.9]
7.23 Note: Sometimes we can solve an improper real integral of the form u(x) dx by

finding a complex-valued function f(z) of a complex variable, whose real (gr imaginary)
part extends u(z), and then integrating f(z) around a large loop which follows the positive
x-axis, for example the loop which follows the line A\(t) = ¢ for —R < ¢t < R, then the
semicircle o(t) = Re'! for 0 <t < 7, where R is some large positive real number.

—R A R

dz
zt+ 1
Solution: Let 7 be the loop which follows the line A\(t) = ¢ for —R < ¢t < R then the
semicircle o(t) = €'t for 0 <t < 7. Then

/ dz _/ dz +/ dz
724+1_ AR s 2417

/ dz _/ dz
, A1 y (z— 6171'/4) (Z+€i7r/4) (Z_61'37r/4) (Z_|_€i37r/4)
/

F(z)dz +/ ZG(Z)dZ :27Ti(F(€i7T/4)+G(€i37T/4))

7.24 Example: Find [ :/
0

We have

— ei3m/4

1 1
=271 ( , ~ + . - )
(2e/4)(V2)(V24)  (=V2)(V210)(2e37/4)
_ 7 1 1 - 1 1 - _m
=5((-%i)+(H+rHi) =%
where 71 is a loop around the right half of v, and ~5 is a loop around the left half of v, so
that e’ 7/* lies inside v; and e*37/% lies inside v,, and F(z) and G(z) are as expected. Also

R
/ dz / di — 2] as R — >
A t

A1l ottt
and . .
dz T {Re'tdt T iRe't
_dz | _ _ietdt | L
s 2t +1 1—o (RettH)d +1 1o | R*et4t + 1
T Rdt TR

< == 0 R — .

—/t:0R4—1 R 1 asfrTree
Since

dz dz dz
. = — 2 +0as R —
V2 Lz‘l—}—l //\z4+1+/(,z4+1 +0as o
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7.25 Example: Find I — / Zf‘l—x.
o (z2+1)3

Solution: Let A, o and 7 be as in the previous example. Then

/v@;iTzl)?’:/y(Z—i)gferz‘)s :A%=2wiF;fi) _ (;2;5 _ o

where F(z2) = 1/(z + )3, so F'(2) = =3/(z +14)* and F"(z) = 12/(z + i)%. Also,

/L—/R L—> as R — oo
A(Z 1P S g (2 41)°

and
/ dz _ /7T iRe't dt </7r Rdt _ ™R L 0as B oo
o 2| T o ((Rerp 1) | T o 1P T @D

Since

dz dz dz
3
st — | - = —C 4+ | —— —2[+0as R— 0,
s /7(22+1>3 /A(z2+1)3 /g(z2+1)3

it follows that I = ?1—76’.

dx

7.26 Example: Find I:/ ——
o x°+1

Solution: Note that 23 +1 = (2 + 1) (2 — e'™/3) (z — e~*™/3). Let v be the loop which
follows the line A then the arc o then the line u=!, where \(t) = ¢ for 0 < t < R,
o(t)=Re't for 0 <t < %’T, and pu(t) = te'27/3 for 0 <t < R, so that the point /3 lies
inside the loop . Then for F(z) = 1/((z 4+ 1)(z — e~*™/3)) we have

d F ,
/—z :/—(?) = 2ri F(e'™/?)
L2241 )z —etm/3

211 2

(3+L0)(V3i) 3(8+14)

_ 27, —ipi/6
3 e .

Also, we have

d B
/ 32 :/ 3 —> 1 as R — o0,
)\Z +]_ t:Ot +1

d R i27r/3dt ]
/ : / e——>el2”/31aSR%oo,
w t

z3+1: o t?+1
and
/ dz ':/” iRe”dt ‘</” Rdt _ TR 0 as B oo
s 23 +1 o (Re't)3+1|~ J, R®—1 R3-1
Since

2?71-6—1%/6:/ Sdz :/ Sdz +/ 3dz —/ 3dz — T —€e'2Plas R — oo,
v 20+ 1 A2 +1 s 20 +1 PR

: T ,—im/6 _ 127 — V3 — —im — 2w
1tfollowsthat%e /6—(1—62/3)1—(%—73@)1—\/56 /6I.ThusI_327§.
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7.27 Example: Find T = / R L
o x°+1

* cosz e e e
Solution: Write I = d Let = = let F'
olution: Write /0 = et f(z) = Py Sl P et F(z) = P

and let a be the loop that follows the line A\ given by A(t) =t for —R <t < R, then the
semicircle o given by o(t) = Re'’ for 0 <t < m. Then [ f= f/\ f+ J f and we have

—1
e
f —opiF()=2ni- S =1
/f /a s mi F(q) T .,
it ¢ R t B sint
/f:/ 62—:/ gidt+z'/ ?Ldt—>21asR—>oo,and
rt2+1 rt?+1 _pt*+1

el Re't R” T Rdt R
/f / 1 e dt S/ — —>0as R — o0,
Rezt 0

iz

R2—-1 R?2-1

since }eiRe”| ‘ei(Rcost—H’Rsint)‘ — |e—Rsint—|—iRcost — e—Rsint S 1 for O S t S . Tt
folows that 21 = 7, so [ = .
7.28 Example: Find I :/ S dx.
0 x
. ) * sinx et? .
Solution: Write I = dx. Let f(z) = , and let o be the loop which follows
z

first the line A\ given by At ) =t for r < t < R, then the large semicircle o given by
o(t) = Re't for 0 <t < R, then the line k! where x(t) = —t for r <t < R, and then the
small semicircle p~! where p(t) = re'? for 0 <t <. Then [ f = fAf—l—fo—fo—fpf

and we have
/f:o,

R zt R R
/f / —dt / —COStdt—f— / —Smtdt
fzt R R
/f——/ dt:—/ cotstdt / smtd

/f /f_ZZ/ Sl—ntdt—>221asr—>0andR—>oo

T w/2
< / e—Rsint dt = 2/ / e—Rsint dt
0 0

/2 -
< 2/ e~ QR/mt 44 [_ %e—(QR/ﬂ”)t} /2 _
0

it .
7T ezRe zRe”

Rett di

JES

(-em) <

=

0
—» 0as R — oo, and

Weireitl'reit ™ ) )
/f:/ —.dt:/ je-rsmitircost gy irasr—0,
P 0 0

rett

L it . . ot ; ;
i Re'" _ e—Rsmt—H Rcost ire’ _ g—rsinttircost Tt follows

where we used the fact that e and e

that 2i ] —ir =0,s0 I = §
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<
7.29 Example: Find I — / " d.
o x°+1
Solution: Write I /OO T e Let £(2) = -25% and let F(z) = %87 where |
olution: rite = xX. € Z) = —/——— an € , where 10g 2
o T2+1 2241 i’ &

is the branch of the logarithm given by logz = In|z| +i60(z) with —F < 0(z) < 37”, and

let a be the loop which follows first the line A given by A(f) = ¢ for r < t < R, then the
large semicircle o given by o(t) = Re'! for 0 <t < R, then the line k= where s(t) = —t
for r <t < R, and then the small semicircle p~1 where p(t) = re't for 0 < ¢t < w. Then

faf:fAf‘i‘faf—fnf—fpf and we have

L
/f / S i F(1) = 27?22—327,7,

B Int
/f / dt—)Iasr—)OandR—)oo,

t2

R . R R
Int Int dt
/f:_/ udt:_/ Ldt_i/ mdt
. . 241 . 241 . 241

d
—>—(I—|—iJ)asr—>0andR—>oo,WhereJ:/ %,
o z¢+1
/f _ /7r (lnR—Fit)iRe“dtdt </" (1nR+7T)Rdt:7r(lnR+7r)R
. (Reit)2 1 1 =),  R-1 R 1

—>0as R — oo, and
/f _ /7r (lnr—i;iZt)ire” dt‘g/w (lnr+7r)rdt:7r(lnr+7r)r
P 0 (rez) +1 0

— 0asr—0.

It follows that I +1iJ =1 %2 so I = 0. Incidentally, we also find that J = %-

. *  Inz
7.30 Example: Find [ = /0 m dzx.
) ) > Inx dx * wdx log =
Solution: Write I = /O m and J = /O m Let f(Z) = m and

F(z) = (:(f Z)

with —Z < 0(z) < =. Note that

where log z is the branch of the logarithm given by log z = In |z| + i (2)

1 (z+14)% — 3(log z)(z +i)? _ (2+41) —3zlogz
(z+1)8 B z(z+1)*
(1—3logz—3)(2)(z+19)* — ((z+1) — 3zlog 2) ((z + i)* + 42(z + 1))
22(z 4 1)8
(2+3logz)(z)(z+1i) + (2 +i—3zlog z)(5z + )
22(z +1)° '

F'(2) = , and

F//(z) —
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Let a, A, 0, k and p be as in the previous two examples. Then

/fZQﬂ'iw:—ﬂ'i.(2+i3§)(i)(2i)+(2i+3§)(6i):...:_E_i_iﬁ
N 2! —(2i)5 2 16 >
R
Int dt
/f:/ (75211_‘_—1)3—>Iasr—>0andR—>oo,
A r

R .
Int
/f:—/ udt—>—I—iJasr—>0a1r1dR—>c>o,
p r (24 1)3
71'1 . . it 1
/f‘—/ (nR%‘—zt)zRi dt<w
o 0 ((Reit)2 +1) (R? —1)

T . . (Lt
/f _ / (Inr+it)ire gt SW(IDT+W)T—>OaST—>O.
p 0 ((reit)2 + 1)3 (1—r2)3

It follows that 21 +iJ = —3 +i%, and so I = —Z. We also find that J = %‘

7.31 Theorem: (Morera’s Theorem) Let f : U C C — C be continuous. Suppose that
fa f =0 for every loop « in U. Then f is holomorphic in U.

Proof: Let a € U. Choose r > 0 so that D(a,r) C U. Since D(a,r) is convex, the proof
of Cauchy’s Theorem in a Convex Set shows that f has an antiderivative g in D(a,r)
(indeed, g may be defined by g(z) = [, f where X is any path from a to z in U). Since
g is holomorphic in D(a,r), f = ¢’ is also holomorphic in D(a,r) by Cauchy’s Integral
Formula.

7.32 Theorem: (Liouville’s Theorem) If f : C — C is holomorphic and bounded, then f
is constant.

Proof: Suppose that f is holomorphic in C with |f(z)| < M for all z. Let a and b be any
two distinct points in C. Let a(t) = a + r|b — ale’ for 0 <t < 2, where r > 1. Then

L[ 101,

dt — 0 as R — oo , and

|f(a) = f(D)] =

2ri Joz—a z—b

1 a—>b

— R
o /af(z)(z—a)(z—b) :

1

< —2mr|b—alM|b—al

2m r

1 1
b—al (r—1)|b— al

M
= —0 asr — .
r—1

7.33 Theorem: (The Fundamental Theorem of Algebra) Every non-constant polynomial
has a root in C.

Proof: Suppose, for a contradiction, that p is a non-constant polynomial with no roots.
Since p is a non-constant polynomial, we have p(z) — oo as z — oo, and so we can choose
R large enough that when |z| > R we have |p(z)| > 1 and so 1/|p(z)| < 1. Note that since p
has no roots, 1/p is holomorphic in C. In particular, 1/p is continuous in D(0, R) and so it
attains its maximum value. Since 1/p is bounded in D(0, R) and |1/p| < 1 outside D(0, R),
we know that 1/p is bounded in C. By Liouville’s Theorem, 1/p must be a constant. But
this implies that p is constant, giving the desired contradiction.
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Chapter 8. Power Series

8.1 Definition: A sequence of complex numbers is a function f:{k,k+1,k+2...} - C
where k € Z. We usually write f(n) as a,, and we denote the sequence f by {a,}n>r or
simply by {a,}. For a € C, we say that the sequence {a,} converges to a, and we write

lim a, = a ( or we write a,, — a)

n—oo
when for all € > 0 there exists N € Z such that n > N = a,, € D(a,€). If the sequence
converges to some a € C, then we say it converges, otherwise we say it diverges. We
say that the sequence {a, } diverges to co, and write

lim a, = > (or a, — oo)
n—oo

when for all R > 0 there exists N € Z such that n > N = a,, ¢ D(0, R).

8.2 Example: If a, = 1/n then a,, — 0. If b, = 2 + (%(1 + z))n then b, — 2. If
¢n = (14 14)™ then ¢, — oo. If d,, = i"™ then {d,, } diverges.

8.3 Theorem: Let a, = x, + 1y, and let a = x + iy € C. Then a,, — a if and only if
T, — x and Y, — Y.

Proof: Suppose first that a,, — a. Note that (z,, —x) = Re (a,, — a) so |z, — x| < |a, —al.

So given € > 0 we choose N € Z so that n > N = |a, — a|] < ¢, and then for n > N

we have |z, — z| < |a, — a| < e. This shows that =, — . Similarly, we can show

that y, — y. Conversely, suppose that x,, — x and that y, — y. By the triangle

inequality we have |a, — a| < |z, — 2| + |y, — y|. So given € > 0 we choose N € Z
1 1

so that n > N = (|z, — 2| < ieand |y, — y| < 3¢). Then for n > N we will have

lan, — a| < |z, — x| + |yn — y| < €. This shows that a,, — a.

8.4 Theorem: Let {a,} and {b,} be sequences with a,, — a and b,, — b and let ¢ € C.
Then

(a) (can) — ca

(b) (an £b,) - a+b

(c) (anbn) — ab

(d) (an/bn) — a/b, provided that b # 0 (and hence b,, # 0 for large n)

(¢) lan| = lal

All parts except (c) and (d) hold for sequences in R™.

Proof: We shall only prove part (c) (the proofs of the other parts are similar). We write
Gnp = Ty +1Yn, a =+ 1y, by, = u, +iv, and b = v + tv. We suppose that a,, — a
and b, — b so that by Theorem 8.3 we have z,, — z, ¥y, — vy, u, — u and v, — 0.
We have anb, = (z, + i1yn)(Un +ivy) = (Tpuy — Ynvyn) + @ (Trvn + ypuy). From our
knowlege of sequences of real numbers, we know that (z,u, — ynv,) — ru — yv and that
(TnVUn + Yntn) = xv — yu. By Theorem 8.3 again, we see that

anbn = (Tptn — Ynvn) + i (Tnvn + Yntn) — (zu — yv) + i (zv + yu) = ab.
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8.5 Definition: We write i an (or simply > a,) to denote the sequence {s;} where
n=Fk
s; = i an. This kind of sequence is called a series, and the finite sums s; are called the
part?;lksums. We say the series > a,, converges or diverges according to whether the
sequence {s;} converges or diverges. We also write § a, to denote the limit of {s;}, if
n=Fk .
it exists, and we call the limit the sum of the series. If s; — s then we write »_ a, = s.
The series ) a,, is said to converge absolutely when the series > |a,,| conve?g:s.

8.6 Theorem: (Linearity) Suppose that > a,, and > b, converge and let ¢ € C. Then

[o@) [o@) o0 o0 [oe)
ann:cZan and Z(an+bn):Zan +an
n==k n==k n==k n==k n==k

Proof: This is immediate from Theorem 8.4.
8.7 Theorem: (Convergence Tests) Let > a, be a series. Then
(a) If > a, converges then |a,| — 0.

(b) If > |an| converges then > a,, converges and

>

n==k

Z |anl.

(c) (The Ratio Test)
(i) If lim ‘ n“’ < 1 then Y |a,| converges.

n—oo

(ii) If IN € Z s.t. n > N = ‘ n+1‘ > 1 then |a,| /4 0 and so ) a,, diverges.
(d) (The Root Test)
(i) If lim 3/|ay,| <1 then ) |a,| converges.
n—oo
(ii)) If AN € Z s.t. n > N = {/|a,| > 1 then |a,| 4 0 and so ) a,, diverges.

Proof: We shall only prove the ratio test here. Suppose first that lim Gnt1 ‘ =p <1
n— oo
Choose r with p < r < 1. Choose N such that for n > N we have ‘anH
an

we have |any1| < rlan|, anie < rlanii] < 7?|an], lanis] < rlanie| < 7¥lan| and so
on, and so |a,| < 7" N]ay| for all n > N . Since 0 < r < 1, the real-valius geometric
series Y |an|r" ™Y converges, and so Y |a,| converges by the comparison test for series of
positive real numbers.

On the other hand, if we suppose that there exists N € Z such that for n > N we

have a,, # 0 and fnt1

’ > 1 then we have |ay| < lany1| < lani2| < --- and so |a,| 4 0.

8.8 Example: The sum —_—
P ng() (n + 7’)2
1

__ 1
(n+i)?] ~ (n—1)

converges by part (b) since for n > 2 we have

In+i| >n—1so

, and we know that > converges.

ot
(n—1)2
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o0
8.9 Definition: A power series centred at a € C is a series of the form ) ¢,(z—a)",
n=0
with ¢, € C where, by convention, we take (z —a)? = 1. A power series is a series for each
value of z € C. It will converge for some values of z and diverge for others.

oo
8.10 Example: The geometric series Y 2™ = 1+ 2+ 22+ -+ is a power series centred at

n:Ol 1—zl+1

a = 0. Its partial sums are given by s, = > 2" = - For |z| < 1 we have 2! — 0 as
n=0 -z

1 & 1
[ — oo and so s; — e hence > 2" = 1 On the other hand, for |z| > 1 we have
z

- n=0

o0
|2™| > 1 for all n so |2"| /4 0 and hence ) 2" diverges.

n=0

o0
8.11 Theorem: Let )  c¢,(z — a)™ be a power series.
n=0
(a) There exists a number R with 0 < R < oo, called the radius of convergence of the
power series, such that
(i) if |z —a| < R then ) ¢,(z — a)™ converges absolutely.
(ii) if |z — a| > R then |c,(z — a)"| /4 0 and s0 Y ¢, (2 — a)™ diverges.

(b) The power series Y. nc,(z —a)"~! has the same radius of convergence R.
o0

(c) When R > 0 then the function f defined by f(z) = Y. ¢,(z2 —a)™ for z € D(a, R) is
n=0
) e 1
holomorphic with f'(z) = nglncn(z —a)" 1 and /f(z) dz = RZ:% ] en(z —a)™ .
(d) When R > 0, the above function f(z) has derivatives of all orders and the coefficients
. f"(a) o (@) n
¢y, are given by ¢, = oy so we have f(z) = Z oy (z—a)".

n=0

(e) When R > 0, it Y by(z—a)" = > cp(z—a)” for all z € D(a, R) then b,, = ¢, for all n.
Proof: We shall give the proof in the case that a = 0.

o0
To prove part (a), we shall show that if >  c,w™ converges, where w € C
00 n=0
then > ¢,2z™ converges absolutely for all z with |z| < |w|. Fix w € C, suppose that
n=0
> cpw™ converges, and let z € C with |z| < |w|. Since ) ¢, w™ converges, we know that
lecnw™| — 0 as n — oo and so we can choose M > 0 so that M > |c,w™| for all n. Then

we have
n

Z n
len 2" = ‘cnwnm

n

w w
Since ‘ﬂ < 1, the series > M ‘%} converges and hence the series ) |¢,2"| converges too
by the comparison test (for series of positive real terms). The radius of convergence is
R =sup {|w||w € C, 3 c,w™ converges}. If R = oo then the series converges for all z.
Next we prove part (b). Let R be the radius of convergence of the series ) ¢, 2™ and
let S be the radius of convergence of the series chnz”_l. First we show that R > S.
If S # 0 then let 2z be any point with |z| < S. Then by part (a), the series Y |nc,2" !
converges, and so Y. [c,2" 7! = 3 L|n¢,2"7!| also converges by comparison, and hence
S lenz™ = |2| 3 |enz™ Y also converges. This implies that R > |z|. Since z was arbitrary,
we have R > S.
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It is a bit harder to show that R < S. If R # 0 then let z be any point with
0 < |2| < R. Choose p > 0 with |z| < p < R. We have |nc, 2"t = E |(|z|/p) lenp™]. The
series (of positive real terms) > n(|z|/ p)n converges by the Ratio Test, so we know that
n(|z|/p)" — 0 and hence we can choose M > 0 so that M > n(|z|/p)" for all n. Then
we have |nc,2z" 71| < % lenp™|. Since p < R we know that the series Y |, p™| converges,
so the series ) %]cnp”\ = % > lenp™| also converges, and hence the series Y [n ¢, 2" !
also converges by comparison. Thus S > |z, and since z was arbitrary, S > R.

Now we prove part (c). Let f(z) = Z cnz™ and let g(z) = Z ncpz"" 1 for all
=1

z € D(0, R). We claim that f/(z) = g(2). leen z € D(0, R) choose r > 0 with |z| <r < R.
Then for |w| < r we have

cpLw™ — cp 2"
TS (ORI I =N =
w—z w—z — "
=L e (wh — 2" > wh — " _
= | e S e = | Y ()
n=1 n=1 n=2
o
_ ch<wn—1 +wn—2z+ +wzn—2+zn—1 nZn—l)
n=2
o
= ch(w—z)<w” 2412w B 3w 4 (n - 1)2" 2)
n=2
<> lenllw = 2l (Juwl ™2 4+ 2 w]" 2]+ 4 (0 = D]2"7?)
n=2

< Z|Cn||w—2’(l—|—2—|—...+(n_l))rn—Z

n=2

o0
_ el > d S n(n 1) Jea| 2.
n=2

But notice that by part (b), the series " ¢,2", Y nc,2" !t and > n(n—1)c,2z" 2 all have
the same radius of convergence R and so since r < R we know that > n(n — 1)|c,|r" 2
converges. Thus [w—z| 1 3" n(n—1)|c,|r"~2 — 0 as w — z. This proves that f'(z ) g(2).

To complete the proof of part (c), note that by part (b) the power series > —— ] e
has the same radius of convergence R, and by our above proof that f’ = g, the function h

defined by h(z) = > n}rlcnzm'1 is holomorphic in D(a, R) with A’ = f.
n=0

Part (d) follows from part (c). Indeed, if f(z) = co+c12+c222+c323+- - - then we have
f'(2) =c1+2coz+3c322+4eyz3+- -, f(2) =2-1ca+3-2¢c32+4-3cg2? +5-degz3+- -
and f"(2) =3-2-1c3+4-3-2c42+5-4-3¢52% + -+ and so on, and we have f(0) = co,
f(0) =1e¢q, f7(0) = 2leq, f7(0) = 3les and so on. Using induction you can show that
F(0) =nley,.

Finally, note that part (e) follows immediately from part (d).
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8.12 Theorem: (Taylor’s Theorem) If f(z) is holomorphic in D(a, R) and0 < r < R < oo
then

S fM@) 1 f(2)
z) = cn(z —a)® where ¢, = =— | ————d=z,
nz—% /a (2

n! 271 —a)ntl
and where o is the circle o(t) = a +re't with 0 <t < 2.

Proof: We give the proof in the case that a = 0. Fix z € D(0,R) and choose r with
|z| < r < R. Then by Cauchy’s integral formula,

f(Z)Z%/LiU)Zd
:2772/f w1 —( Z/’LU)
:W/f (1+ +(w)2+...+<g)N*+%)dw
22271” wn+)1 2" dw +2m/f z/w) dw

N-1
f(”)(O) n
Z z

+RN7

where Ry = 5 / U z/w dw. Setting M = max |f(w)|, the estimation theorem
i ),

w=o(t)
: 1 M(|=|/ T)N
ives |Ry| < ——F——
ves vl < 5 70 )
8.13 Example: The elementary complex functions have the same derivative formulas as
their real counterparts, and so they have the same Taylor series centred at the origin (or
centred at any real number). For all z € C we have

27r. Since |z| < r, we have Ry — 0 as N — o0

n=0
0 z2n—|—1 o0 Z2n
— n n
San—ZO(— ) Gn 1) cosz—zo(—l) )l
n= n=
S 2n-+1 oo 2n
sinh z = i ' coshz—z - '
— (2n+1) — (2n)!
For |z| < 1 we have
1 . n 1 . n . n 1 . n 2n
— =2 U =) (s
n=0 n=0 n=0

When |z| < 1, the principal branch of logarithm and inverse tangent are given by

zZ" z"
log(1 — . log(1 1)ntt =
og z ; o og + z Z

n=1
0o
Z2n+1

tan"'(z) = Z (="
0

2n+1
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For |z| < 1 and for a € R, the principal branch of (1 + z)® is given by

(1+Z)GZZ<Z> anl_f_az_i_a(az?l)22_1_@(@_13)!((1_2)23_1_”'

n=0

This last power series is called the Binomial series.

8.14 Note: We should point out two important differences between Taylor series of com-
plex functions and Taylor series of real functions. The first difference is that holomorphic
functions are always equal to their Taylor series. This is not the case for real C*° functions.

671/9:2 , *#0

o 7~ . This function is C*° at
, =0

The standard example is the real function f(z) =

x = 0, but all its derivatives vanish so its Taylor series is equal to 0. The second difference
we would like to mention is that a real function might be C* in a large interval while
its Taylor series might converge only in a small interval, but notice that if a function is
holomorphic in an open disc, then its Taylor series will converge in the entire disc. An
example which illustrates this difference is the real function f(x) = 1/(1 + 2?). This func-
tion is C* for all x, but its Taylor series only converges for |x| < 1. The reason for this is
that when we extend f to the complex numbers, so f(z) = 1/(1 + 22), then we find that

1
Sl P Ty
equal to 1 because the disc D(0, 1) is the largest disc (centred at 0) which can be contained
in the domain of f(z).

so that f is holomorphic in C\ {#i}. The radius of convergence is

8.15 Note: If f and g are both holomorphic at a then The product fg will also be
holomorphic at a. The coefficients of the Taylor series of fg at a are given by (fg)™ (a)/n!,
and so they can be computed, using the product rule, from the coefficients of the Taylor
series for f and for g. One can show that the Taylor series at a for fg is obtained from the
Taylor series at a of f and of g by multiplying the power series together as if they were
polynomials. We have

(g‘; an(z — a)”) (g} bz — a)”) _ f: (i;aibni> o

n=0

Also, if f and g are holomorphic at a and g(a) # 0, then we can solve the equation
hg = f for h to obtain the Taylor series of h = f/g centred at a from the Taylor series of
f and of g. This is equivalent to calculating f/g using long division as if the power series
were polynomials.

Also, if f is holomorphic at a and g is holomorphic at b = f(a) then the composite
go f is holomorphic at a and hence has a Taylor series centred at a. Using the chain rule,
one can show that the Taylor series for go f at a can be computed by composing the Taylor
series of g at b with that of f at a as if the power series were polynomials.
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1
1—-2)*
Solution: We give several solutions. But first we note that since f(z) is holomorphic in
C\ {1}, we know that the Taylor series at 0 converges in D(0,1).

For our first solution, we calculate the derivatives: f(z) = (1—2)72, f/(z) = 2(1—2) 73,
f"(z) =3!(1 —2)~%, and so on. So f(0) =1, f'(0) =2, f”(0) = 3 and so on. Thus

f(0) . f"(0) f"(0)
TR TR T

8.16 Example: Find the Taylor series at 0 for f(z) =

f(z) = f(0)+ P =14+2243224+42% .

Our second solution uses the Binomial series:

fz)=(1—-2)2=1+ _1—!2(—2)1 +

=1+22+322+.-.

Our third solution is to differentiate both sides of

: =142+ 22423+ --- to obtain
—z

f(2)=04+142243224---

Our fourth solution is to mutiply the Taylor series for ] by itself as if it was a poly-

—z
nomial to obtain

f@)=(Q+z2+22+2+)1+z2+22+2"+-)
=1+ +Dz+0+1+D)22+14+14+14+1D)25+--.
=1422+322+423+--.

8.17 Example: Find the Taylor series for f(z) = e*/(1 — 2).

Solution: We have f(z) = e* 1= = ( > %z”)( > z”) = > (X 4)z". We can write
n=0 n=0 n=0 1¢=0

out the first few terms: f(z) =1+2z+4 522+ 5§23+ 5324 4 ..,

8.18 Example: Find the first few terms of the Taylor series about 0 for f(z) = tan z.

. sin z o
Solution: We have tan z = . We can use long division:
CoS 2
1.3 2.5 4 ...
2+ 327+ 527+
1,2, 1.4 1,34 1 .5_
1 —=32%+ 5527 + )Z 6% T 1207
1.3, 1.5 _
2= 52"+ 5%
Ty W50
1.3_ "1,5
3% g% +
2 .5
is% T

We find that f(z) = z+ %23 + 1%25 +---. We can also easily find the radius of convergence.
Since cosz = 0 <= z = § + 7wk for some k € Z, we know that f(z) is holomorphic for
z # 5 + 7k, so the radius of convergence is R = 7.
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1
8.19 Example: Find the Taylor series centred at 2i for f(z) = —.
z

_ 1 1 11 i1 i iz = 20)\"
Solutlon-f<2>—;—m—%Tz;—;i“§1__i<z;%>“52( )

n=0

oo el
= Z - (%) (z — 2i)". The disc of convergence is D(2i,2).
n=0

8.20 Theorem: (The Local Identity Theorem) Let f and g be holomorphic in the disc
D(a,r). Let {a,} be a sequence in D*(a,r) with a,, — a. If f(a,) = g(a,) for all n then
f(z) = g(z) for all z € D(a,r).

Proof: Suppose that f(a,) = g(a,) for all n. Let h = f —g. Then h(a,) = 0 for all n.
Since h is continuous at a, we have h(a) = 0. Since its holomorphic it is equal to its

[e.¢]
Taylor series h(z) = Y. ¢n(z —a)™. We want to show that all the coefficients ¢, are zero.

n=0
Suppose not, and say m is the smallest integer such that ¢, # 0. Let k(z) = h(2)(z—a)™™
Then we have k(2) = ¢y + ¢mi1(2 — a) + cmya(z —a)™™2 + -+, so k(z) is holomorphic

in D(a,r) and k(a) = ¢, # 0. Since k(z) is continuous with k(a) # 0, we can find
s > 0 such that k(z) # 0 for all z € D(a,s). But since (z — a)”™ # 0 in D*(a,s) and
since h(z) = k(z)(z — a)™, this would imply that h(z) # 0 in D*(a,s). This gives us a
contradiction since we assumed that h(a,) = 0 for all n.

8.21 Theorem: (The Identity Theorem) Let U C C be a connected open set. Let
f,g: U — C be holomorphic in U. Let A = {z € U|f(z) = g(z)} Suppose that A has a
limit point in U. Then f(z) = g(z) for all z € U.

Proof: Let h = f — g so that h is holomorphic in U and A = h~1(0) = {z € U| h(z) = 0}.
We must show that h(z) = 0 for all z € U, or equivalently that A = U. Let V be the set
of all limit points of A which lie in U. Note that V # () since A has a limit point in U.
Note that V' C A since for a € U, if a ¢ A, that is if h(a) # 0, then since h is continuous,
we can choose r > 0 so that h(z) # 0 for all z € D(a,r), and we see that a is not a limit
point of A, that is a ¢ V. Note that U \ V is open since if a € U \ V, that is if a is not a
limit point of A, then we can choose r > 0 so that D*(a,r) is disjoint from A, and we see
that each z € D(a,r) is not a limit point of A so we have D(a,r) C U \ V. Finally note
that V' is open because given a € V we can choose r > 0 so that D(a,r) C U and then,
by the Local Identity Theorem, we have h(z) = 0 for all z € D(a,r) so that D(a,r) C V.
It follows that V = U (otherwise the open sets V and U \ V' would separate U) and hence
A=U (since V C A).

8.22 Lemma: Let f be holomorphic with |f| constant in the disc D(a,r). Then f is
constant.

Proof: Say |f(z)| = cfor all z € D(a,r). Let u = Re (f) and v = Im (f) so that f = u+iv.
Then we have u? + v? = ¢?. Differentiate with respect to = and to y to get the two
equations uu, + vv, = 0 and wu, + vv, = 0. The Cauchy Riemann Equations then
give uu, —vu, = 0 and vu, +uu, = 0. Eliminating u, from these two equations gives
(u? 4+ v?)u, = 0, that is c?u, = 0. Eliminating u, gives c2uy = 0. If ¢ = 0 then we have
|f(2)] =c=0s0 f(z) =0 for all z € D(a,r). If ¢ # 0 then we obtain u, =0 and u, =0
for all © + iy € D(a,r), and hence f is constant.
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8.23 Theorem: (The Local Maximum Modulus Theorem) Let f be holomorphic in the
disc D(a,r). Suppose that |f(z)| < |f(a)| for all z € D(a,r). Then f is constant.

Proof: Fix s with 0 < s < r. Let o(t) = a+ se'! for 0 < ¢t < 27. By Cauchy’s Integral
Formula, we have

27 i . i 27
f(a)zi (2) 5 — 1 f(a-l—set)zsetdt:i fatseit)ydt.

2ri J, z—a 21 Jo sett 27 Jo

Since |f(2)| < |f(a)| for all z € D(a,r), the Estimation Theorem gives

2m
f@] < 3 [ Ifasseh]ar <|p@)

1

T o

2
and so we must have |f(a)| / | f(a+set)|dt. Tt follows that
0

/OZW <|f(a)‘ — |f(a—|—se“)‘>dt =0.

Since the integrand is continuous and non-negative, it must be identically zero so we have
|f(a+se't)| = |f(a)| for all ¢, that is [f(z)| = |f(a)] for all z with |z — a|] = s. Since s
was fixed but arbitrary, we have |f(z)| = |f(a)| for all z € D(a,r). By the above lemma,
it follows that f is constant.

8.24 Theorem: L The Maximum Modulus Theorem) Let U C C bg a bounded connected
open set. Let f : U — C be holomorphic in U and continuous on U. Then |f| attains its
maximum on OU.

Proof: Since |f] is continuous on U and U is compact, | f| attains its maximum on U. Since
U = U UdU, |f| attains its maximum either on QU or on U. Consider the case that |f]|
attains its maximum at a point a € U. Choose r > 0 small enough so that D(a,r) C U. By
the Local Maximum Modulus Theorem, f is constant in D(a,r). By the Identity Theorem,
f is constant in U. Since f is constant in U and continuous on U, it is constant on U.
Since f is constant, it attains its maximum at all points, including points in OU.
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Chapter 9. Laurent Series and Residues

9.1 Note: We have studied power series. We are also interested in series of the form

[e%e) —1

Z cn(z—a)" = Z cn(z—a)”+ch(z—a)"C—Zc_nw +chz—a

n=-—oo n=—oo n=0 n=1

where we have written w = 1/(z — a). If the first series has radius of convergence 1/R and
the second has radius of convergence S, then the first converges when |w| < 1/R, that is
when |z — a| > R, and the second converges for |z — a|] < S. They both converge in the
annulus A = {z € C|R < |z—a| < S}. The next theorem shows that every function which
is holomorphic in an annulus can be expressed as a series of this form.

9.2 Theorem: (Laurent’s Theorem) Let 0 < R < p < S < oo and let a € C. Suppose
that f is holomorphic in the annulus A = {z € C|R <lz—al< S}. Then for all z € A,

o0

f(z) = Z cn(z—a)" where ¢, =

n=—oo

1 f(z)

2mi ), (z — a)*t?

dz,

where o is the circle o(t) = a + pe't with 0 <t < 27. In particular, we have

SRETACE

Proof: To simplify notation, we take a = 0, so A = {z|R < |z| < S}. For z € A pick r and
s so that R < r < |z] < s < S. Again to simplify notation, suppose that Im (z) > 0. Let
a be the loop in A which follows the semicircle counterclockwise from s to —s, then the
line segment from —s to —r, then the semicircle clockwise from —r to r, and then the line
segment from r to s. Let 8 be the loop which follows the line segment from s to r, then
the semicircle clockwise from r to —r, then the line segment from —r to —s, and then the
semicircle counterclockwise from —s to s.

Since n(a, z) = 1 and n(f, z) = 0, Cauchy’s theorem tells us that / J(w dw =27 f(2)

/ f(w) dw = 0. Also, since the integrals along the line segments cancel, we have
w—z

30



/ g (w) dw = f ( ) dw M dw, where o, and o are the circles

o UTUJ—Z

ar(:; =rett and o4(t) = se't for 0 < t < 2m. So we have
fe) =5 (/f )L - /f
:%(/f i A _11_ydw)
:2%. /f 2 n+1dw+/f > i";ldw>
:2%. Z " dw +Z dw>
L5 M>z< ;;szz i) )

RS fw) n
“5, 2 (L)

n=—oo

|
w
8

In the second last equlity, we replaced m by —n — 1, and we used the fact that each of the
loops o, and o, is homotopic to o in A. The interchange of summation and integration in
the third equality should be justified. We can justify it as follows. For any positive integer

N we have
/JS f(w)l;)(%)nde/ f<w>$(N21(§)” +%) dw
_Z/f ——dw +/f ;—ﬁ/(?/w)dw

Zn
dw and the second
wntl

oo
As N — oo the first term tends to the infinite sum Z f(w)
n=0"v7s
term may be estimated using the Estimation Theorem:

(I=l/5)™
(s = I21)

27s — 0

w' < |I£‘a:xs|f(W)|

as N — oo since (|z|/s) < 1.
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1
z(22+4)

z = £+2i. In particular, f is holomorphic in the annulus A = {z]|0 < |2| < 2} and in the
annulus B = {z]2 < |z| < oo} and also in the annulus C' = {z]0 < |z — 2i| < 2}. Find the
Laurent series of f(z) in A and in B and in C. Also, use the Laurent series to find the
path integrals [ f, fB f and f7 f, where , 3 and  are the circles a(t) = €', B(t) = 3¢t

and y(t) = 2i + €'t for 0 <t < 27.

. 1 1 1 — N A N b L .
Solution: We have f(z) = yy e oy =5 Z(—l) (—) = Z (4n+)1 2*"~1. This

is the Laurent series for f in A. Since the coefficient of 2~1 in this series is c_; = %, we

1
have / f=2mic_q = 5772'.

9.3 Example: Let f(z) = Note that f is holomorphic except at z = 0 and

1 1 1 & 20 o o .
AAISO7 we have f(Z) = ; m = 2_3 E (—1) (;) = E (—1) 4" z 2 3. This

is the Laurent series for f in B. Since the coefficient of z=! is c_; = 0, we have / f=0.
B
In the third annulus we write

1 1 1 1 1 1
f(z) = . - — = . . . . .
2—2i 242z 2z—2i(z2—2i)+4 (z—2i)+2i

1 1 1 1 1

. . _2'_. —2;
z— 21 41 1—}—24—1.1 21 1—|—Z2—iZ

11 & A oz —2\"
T 8z-2i ;(_1) < 4i ) ;(_1) < 2i )
_ 11 (e G n
T 8 2-—2 Z Z (44)7  (2i)n—7 (= = 2i)

n=0 \ j=0

I N [ 1 _
=22 o | o | 22

n=0 =0

1= im(2ntl — 1) .
-5 e

n=0

This is the Laurent series in C. The coefficient of (z —2i)~" is c_; = —1 so / f=—1mi.
gl

9.4 Note: It should be remarked that all three of the path integrals in the above example
are easy to compute using Cauchy’s integral formula. In the following example, however,
its easier to use the Laurent series to find the path integral.
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9.5 Definition: When f is holomorphic in an open set U which contains the punctured
disc D*(a, R), and f is undefined at a, we say that f has an isolated singularity at a.
We define the multiplicity of f at a, denoted by m(f,a), as follows. Say the Laurent
series of f in D*(a, R) is given by

oo

f)= ) ealz—a)".

n=—oo

If ¢, = 0 for all n € Z so that f is identically zero in D*(a, R), then we define m(f,a) = co.
If for all N € Z there exists n < N with ¢, # 0 then we define m(f,a) = —oo. Otherwise,
we define m(f,a) be the smallest integer m such that ¢,, # 0.

Let m = m(f,a). When m = —oo we say that f has an essential singularity at a.
When m < 0 we say that f has a pole at a of order |m|. A pole of order 1 is also called
a simple pole. When m > 0 we say that f has a removable singularity at a, and in this
case we shall extend f so that it is holomorphic in the disc D(a,r) by setting f(a) = co.
If m > 0 then we say that f has a zero at a of order m. A zero of order 1 is also called a
simple zero. In any of these cases, we define the residue of f at a to be Res (f,a) = c_;.
If o is the circle o(t) = a + 7€'t for 0 <t < 27 where 0 < r < R then we have

Res(f,a) =c_1 = L/f(z)alz

271

9.6 Note: If f has a removable singularity at a, then of course we have lim f(z) = cg.
z—a
If f has a pole at a then its not hard to show that lim f(z) = co. If f has an essential
zZ—a
singularity at a, then the limit lim f(z) does not exist, and in fact there is a (dificult)
zZ—a

theorem called Picard’s Theorem which states that for all € > 0 the image f(D*(a,€)) is
either equal to C or to C\ {p} for some point p.

9.7 Definition: Let A C C (or A C R™). We say that an element a € A is an isolated
point of A when there exists > 0 such that D*(a,r) C C\ A. We say that A is discrete
when every point in A is isolated.

9.8 Example: The set of zeros of the function f(z) = sin% is the set A = {% ‘0 #*ke Z},
which is discrete. The set of zeros and singularities of f(z) = sin % is the set AU{0}, which
is not discrete. The set of poles of the function g(z) =1/ sin% is the above discrete set A,
and ¢ also has an unisolated singularity at the point {0}, so the set of all singularities of
g(z) is the non-discrete set A U {0}.

9.9 Example: When f is holomorphic in an open set U, unless f is identically zero in
some connected component of U, the set of zeros of f is discrete by the Identity Theorem.

9.10 Definition: We say that f is meromorphic in the open set U when there exists a
discrete set A C U such that U \ A is open and f : U\ A — C is holomorphic in U \ A
and has a pole at each point a € A. We remark that such a map f can be extended to a
holomorphic map f : U — C by setting f(a) = oo for each a € A.
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9.11 Theorem: (The Residue Theorem) Let U C C be an open set, let A C U be a
discrete set such that U \ A is open, and let f : U\ A — C be holomorphic in U \ A. Let
a be a loop in U\ A which is homotopic in U to a constant loop. Then there are finitely
many points a € A for which n(a,a) # 0 and we have

/ f(z)dz = 2mi Z n(a,a)Res (f,a).

acA

Proof: Say « : [u,v] — C. Let F : [u,v] x [0,1] — U be a homotopy from « to a
constant loop x in U. Since [u,v] x [0,1] is compact and F' is continuous, the image
Image (F) = F([u,v] x [0,1]) is compact. For each a € Image (F) let U, = D(a,r,) where
if a € A then r, > 0 is such that D*(a,r,) CU \ A and if a ¢ A then r, > 0 is such that
D(a,r,) C U\ A. Since Image (F) is compact, the open cover U = {U,|a € Image (F)}
must have a finite subcover. Since each a € A is contained in a unique element of U
(namely the set U,), it follows that there are only finitely many elements in ANImage (F).
But notice that when a ¢ Image (F'), the homotopy F' takes values in U \ {a} and so F' is
a homotopy from « to x in U \ {a} so that n(a,a) = L/ = _ / = _ 0. Thus
2w Jo, 2 —a L Z—Q
there are only finitely many points a € A for which n(a,a) # 0. Let B be the finite set

B={ac A‘n(a,a) #0}.

Choose R > 0 so that for every b € B we have D*(b, R) C U \ A. Inside each of these
punctured discs, f is equal to the sum of its Laurent series. For fixed b € B, write

oo

f(z) = Z cn(z—0)" =pp(z) + hp(2) , where
-1 0o
Py = Z cn(z—0)" and hy = Z cn(z—=0)"
n=-—00 n=0

(pp is called the principal part, and h; is called the holomorphic part, of f at b). Note
that Res (f,b) = c_1 = Res(py,b). Also note that h; is holomorphic in the disc D(b, R)
(not just the punctured disc) and that p; is holomorphic in all of C\ {b}. Now we let

9(2) = f(z) = > _m(2).

beB

Although f was only holomorphic in U \ A, the map g is holomorphic in all of U, indeed in

D*(b, R) we have g(2) = f(2) —po(2) — D_ pa(2) = hp(2) — D pa(z). Since « is homotopic
aF#b a#b
to a constant loop in U, we have

0= [z~ [ 1= Em = [ @ a=Y [ n)a

beB beBY ™

:/f(z) dz — ) 2mi n(a,b) Res (f,0)).

beB
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9.12 Note: We describe two situations in which it is easy to calculate Res (f,a). Suppose

first that f(z) = _g(;))nﬂ

o be a circle in U centred at a. Then Cauchy’s Integral Formula gives

z (") (q
Res (f,a) = ZLm/ (Z_g(a))n-f—l dz = 9 n'( )

Suppose next that f(z) = % where g and h are holomorphic in an open set U containing
z
a with h(a) = 0 and h'(a) # 0. Then we can write h(z) = (z—a)k(z) with k(a) = h'(a) # 0.

Note that k(z) # 0 in a small disc D(a,r) and g(z)/k(z) is holomorphic in this disc. We

have f(z) = % with g(z)/k(z) holomorphic in D(a,r) so if ¢ is a circle in D(a, )

centred at a then

where g(z) is holomorphic in an open set U containing a. Let

9(2)/1(z) . _ 9(a) _ g(a)
Res(f,a) = 27?7,/ z—a w_h’(a)'
9.13 Example: Let a be a loop in D(0, 3) with n(a, 0) =3, n(a, 5)=—1and n(a, -5 ) =1,
and let f(z) = CEVE pig / f(2) dz.
ZCos z o

Solution: Notice that f is holomorphic in C except at z = 0 and z = § + k7 for k € Z.
In particular, f is holomorphic in D(0,3) except at z = 0 and z = +7. So by the Residue
Theorem,

/af(z) dz = 27m'<3Res (£,0) — Res (f, Z) + Res (f, —g)) .

To find Res (f,0), note that we can write f(z) = g(z)/z where g(z) = (z + 1) e*/cos z
(which is holomorphic at 0) so by the first part of the above note

Res(f,0) =g(0) =1.

To find Res (f,5) and Res (f, —%), note that we can write f(z) = g(z)/h(z) where now
g(z) = (2 + 1)e*/z (which is holomorphic at £7) and h(z) = cosz (which has a simple
zero at £7 ). By the second part of the above note, we have

Res (f,§) = ]f,(é)) 3 +_1S)i§ﬂ;2/§ =—(1+2)e™?, and

Thus we obtain

/ f(z)dz = 2mi (3 + (1 + %)eﬁ/2 +(1- %)e—nm) _

85



d
9.14 Example: Find/ 4,—Z.
|2|=4 2 sinh z

Solution: Let f(z) = TAenhs
z%sinh z

holomorphic except at z = kmi. Note that the loop |z| = 4 surrounds the singularities at
0 and =+im, so we need to find the residue of f at these points. To find Res (f, Lim), write
f = g/h with g(z) = 1/2z* and h(z) = sinh z. Then

N og(E) 1t 1wt
Res (f, +i) = W(+i)  cosh(dim)  cos(£m) T

To find Res(f,0), we find the first few terms of the Laurent series for f in the annulus

1 1 1 1
A={zecClo . We h - — == W
{z € C|0 < |2| < 7}. We have f(z) 2hsinhz 2% (141224 2t 4 ) ¢

. Since sinhz = 0 when z = kwi, k € Z we see that f is

use long division:
1,2 7 4
T+ 8224 et ) 140224 0244

1+ 2224+ g2t +-

22_ 1_§()Z4+'

2_ 1

z 367 +
T .5 ..
360° T

o=

I

273 4+ 3%02_1 + --- so that

Res (f,0) =c_1 =

We find that f(z) =27 — ¢
325
Thus
/ f=2mi (Res (f,0) + Res(f,im) + Res (f, —’iﬂ')) = 2mi (505 — ).
|z|=4

9.15 Theorem: (Zeros and Poles) Let f be meromorphic in U. Let A be the set of all
zeros and poles of f in U. Let « be a loop in U \ A which is homotopic in U to a constant

loop. Then .
f'z) »
L7 2 2rinfa,a)mif,a).

Proof: Note that the function f’/f is holomorphic in U \ A. Let a € A, let m = m(f,a)
and choose R > 0 so that D*(0,R) C U \ A. Then for z € D*(0, R) we have

f2)= % enlz=a) = (= a)"g(2) where g(2) = 3= ez~ )"

Note that g is holomorphic in D(0, R) with g(a) = ¢, # 0. Choose r with 0 < r < R so
that g(z) # 0 for all z € D(a,r). Then for all z € D(a,r), ¢'/g is holomorphic at z and

') _mz—a)" g(x)+(z—a)"g'(z) _ m  g'(2)

f(z) (z —a)mg(z) z—a  g(z)
Thus f’/f has a simple pole at a with Res (f'/f,a) = m = m(f,a). This holds for every
a € A, so by the Residue Theorem,

/ ];,((3 dz=2miy_n(aa)Res(f'/f,a) =2mi )y n(a,a)m(fa).

acA a€A
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9.16 Theorem: (Rouché’s Theorem) Let f and g be holomorphic in U. Let o be a loop
in U. Suppose that | f(z) — g(z)| < | f(z)] for all z € Image (). Then

Z 77(0'/5 a) m(fa a) = Z 77(047 a) m

acA beB

where A is the set of zeros of f in U and B is the set of zeros of g in U.

Proof: For each s € [0,1], define ks, : U — C by ks(z) = f(2) + s(g(z) — f(z)). For
all z € Image (o), since |g(z) — f(2)| < |f(z) we have |f(z)] > 0 and we have g(z) €
D(f(2),|f(2)]). Since D(f(z),|f(z)|) is convex, it follows that the line segment from f(z)
to g(z) is contained in D(f(z),|f(z)|) and hence that k,(z) # 0 for all s € [0,1] and all
z € Image («). Define ¢ : [0,1] — Z by

g L [EE 1 e+ =)
“)‘%aémwﬁi‘mmé CECE O

Note that ¢(s) does take values in Z by the Zeros and Poles Theorem. We shall show below
that ¢(z) is continuous. Since ¢ is continuous and takes values in Z, it is constant in [0, 1]
and so, by the Zeros and Poles Theorem,

> nla,a)m(f,a) = £(0) = (1) = Y n(a,b) m(f,b),

acA beB

as required. To show that £ is continuous, let h = g — f and note that for sq, s2 € [0,1] we
have . P woop o
+ 81 + S9
l —/ = _
| (51) (82)| 2ri Jo [+ s1h f 4+ sah
|1 / (f"+ s1h)(f + s2h) — (f" + s2h)(f + s1h)
27’('@ (f —+ Slh)(f + Sgh)

BE /(a—ﬂﬂwﬁ—f%w

omi J,, (f + s1h)(f + s2h)
1 — so| M

< —. & - Length(a) — 0 as s; — so,
2w m?

where M = ma(x) W (2)f(2) = f'(2)h(2)| and m = mins € [0,1], 2z = a(t)| f(2) + sh(z)|.
z=a(t

9.17 Example: Let f(z) = 2° + 152 + 1. Show that f has exactly 4 zeros (counted with
multiplicity) inside the annulus A = {z € C!% <z <2}

Solution: Let g(z) = 15z and h(z) = 2°. When |z| = 2 we have
[f(2) —g(2) =122 +1 < 2P +1= 37 +1 < =15]2| = |g(2)|

so, by Rouché s Theorem, f has the same number of zeros inside the circle |z| = 5 as the
function ¢g(z) = 15z, namely 1 zero. When |z| = 2, we have

1f(2) — h(z)| = 152 + 1] < 15|2| + 1 =31 < 32 = |2]® = |h(2)|
so, by Rouché s Theorem, f has the same number of zeros inside the circle |z| = 2 as the

function h(z) = z°, namely 5 zeros.
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9.18 Lemma: Let f be holomorphic in the open set U and suppose that f has a zero of
multiplicity m at a € U. Choose R > 0 so that D(a, R) C U and f(z) # 0 in D*(a, R),
and let 0 < r < R. Let § = | min |f(z)| and note that 6 > 0. Then for all w € D(0, ),

z—al=r

the function g(z) = f(z) — w has exactly m zeros (counted with multiplicity) in D(a,r).
Proof: Let w € D(0,) and let g(z) = f(z) — w. Then for all z with |z — a|] = r we have

F(2) = 9(2)| = [w| <& < |f(2)]

so, by Rouché s Theorem, g has the same number of zeros as f in D(a,r).

9.19 Theorem: (The Conformal Mapping Theorem) Let f : U C C — C be holomorphic
and injective. Then f'(z) # 0 for all z € U, so f is conformal.

Proof: Suppose, for a contradiction, that a € U and f’(a) = 0. Let g(z) = f(2) — f(a)
and note that ¢’(z) = f’(z) so we have g(a) = 0 and ¢'(a) = 0 so that g has a zero of
multiplicity m > 2 at a. Choose R > 0 so that D(a,R) C U and ¢'(z) # 0 in D*(a, R).
Let 0 < r < R and let § = | min |g(z)] > 0. Choose w € C with 0 < |w| < J, let

h(z) = g(z) —w = f(2) — f(a) — w, and note that h'(z) = ¢’(z) = f'(z). By the above
lemma, h has m > 2 zeros inside the circle |z — a|] = r. Since h(a) = —w # 0 and
h'(z) = ¢'(2) # 0 in D*(a, R), it follows that h has exactly m distinct zeros, each of
multiplicity 1, in D*(a,r). Choose u,v € D*(a,r) with u # v such that h(u) = h(v) = 0.
Then

f(u) = h(u) + fla) + w = fla) + w = h(v) + fa) + w = f(v)

which contradicts the fact that f is injective.

9.20 Theorem: (The Open Mapping Theorem) Let f : U C C — C be holomorphic and
non-constant. Then f(U) is open.

Proof: Let b € f(U), and choose a € U so that f(a) = b. Let g(z) = f(z) —b and note that
g(a) = 0. Choose R > 0 so that D(a, R) C U and ¢g(z) # 0in D*(a, R). Let 0 < r < R and
let 6 = | miln_ lg(2)|. We claim that D(b,6) C f(U). Let w € D(b,9). Let v =w — b and
note that |v| < §. By the above lemma, the function h(z) = g(z) — v has at least one zero
in D(a,r). Choose u € D(a,r) so that h(u) = 0. Then f(u) =g(u) +b=h(u)+v+b=
v+b=w.
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9.21 Theorem: (The Inverse Function Theorem) Let f : U C C — C be holomorphic
with f'(a) # 0 where a € U. Then there exists r > 0 such that the restriction of f to
D(a,r) is invertible, and its inverse g = f~! is holomorphic with

1

gw)= S (g(w))

for all w € f(D(a,r))

Proof: Let h(z) = f(z) — f(a). Since h(a) = 0 and h'(a) = f'(a) # 0, h has a simple zero
at a. Choose R > 0 so that D(a, R) C U and h(z) # 0 in D*(a, R). Let 0 < s < R and let
d = min |h(z)|. We claim that for every w € D(f(a),d) there exists a unique u € D(a, s)

|z—a|=s
such that f(u) =w. Let w € D(f(a),d). Let v = w — f(a) and note that [v| < §. By the
above lemma, the function k(z) = h(z) —v has exactly 1 simple zero in D(a, s). Thus there
is a unique u € D(a, s) such that 0 = k(u) = h(u)—v = (f(u)—f(a))—(w—f(a)) = f(u)—w
hence there is a unique u € D(a, s) such that f(u) = w, as claimed. It follows that if we
choose 7 > 0 so that D(a,r) C f~*(D(f(a),d)) then the restriction of f to D(a,r) is
invertible. Let g = f~! be the inverse of the restriction of f to D(a,r).

Let z € D(a,r) and let w = f(z) so that z = g(w). By the Conformal Mapping
Theorem, we know that f’(g(w))f’(z) # 0. By the Open Mapping Theorem, we know
that g is continuous. For v € f(D(a,r)), as v — w with v # w, we have g(v) — g(w) with
g(v) # g(w) since g is continuous and injective, and so

gw) —g(w) _ g)—g(w) 1

v—w fgv)) = f(g(w)) f(g(w))

39



