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Chapter 1. Complex Numbers

1.1 Definition: A complex number is a vector in R2. The complex plane, denoted
by C, is the set of complex numbers:

C = R2 =

{(
x
y

) ∣∣∣∣x ∈ R, y ∈ R

}
.

In C we usually write 0 =

(
0
0

)
, 1 =

(
1
0

)
, i =

(
0
1

)
, x =

(
x
0

)
, iy = yi =

(
0
y

)
and

x+ iy = x+ yi =

(
x
y

)
.

If z = x+iy with x, y ∈ R then x is called the real part of z and y is called the imaginary
part of z, and we write

Re z = x , and Im z = y .

1.2 Definition: We define the sum of two complex numbers to be the usual vector sum:

(a+ ib) + (c+ id) =

(
a
b

)
+

(
c
d

)
=

(
a+ c
b+ d

)
= (a+ c) + i(b+ d) ,

where a, b ∈ R. We define the product of two complex numbers by setting i2 = −1 and
by requiring the product to be commutative and associative and distributive over the sum:

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc) .

1.3 Example: Let z = 2 + i and w = 1 + 3i. Find z + w and zw.

Solution: z+w = (2 + i) + (1 + 3i) = (2 + 1) + i(1 + 3) = 3 + 4i, and zw = (2 + i)(1 + 3i) =
2 + 6i+ i− 3 = −1 + 7i.

1.4 Example: Show that every non-zero complex number has a unique inverse z−1 and
find a formula for the inverse.

Solution: We let z = a+ib where a, b ∈ R with a2+b2 6= 0, and we solve (a+ib)(x+iy) = 1
to find z−1 = x+ iy:

(a+ ib)(x+ iy) = 1 ⇐⇒ (ax− by) + i(ay + bx) = 1

⇐⇒
(
ax− by
bx+ ay

)
=

(
1
0

)
⇐⇒

(
a −b
b a

)(
x
y

)
=

(
1
0

)
⇐⇒

(
x
y

)
=

(
a −b
b a

)−1(
1
0

)
=

1

a2 + b2

(
a b
−b a

)(
1
0

)
=

1

a2 + b2

(
a
−b

)
⇐⇒ x+ iy =

1

a2 + b2
(a− ib) .

Thus (a+ ib)−1 =
a

a2 + b2
− i b

a2 + b2
.
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1.5 Notation: For z, w ∈ C we use the following notation:

−z = −1z , w − z = w + (−z) , 1

z
= z−1 and

w

z
= wz−1.

1.6 Example: Find
(4− i)− (1− 2i)

1 + 2i
.

Solution:
(4− i)− (1− 2i)

1 + 2i
=

3 + i

1 + 2i
= (3 + i)(1 + 2i)−1 = (3 + i)( 1

5 −
2
5 i) = 1− i.

1.7 Note: The set of complex numbers is a field under the operations of addition and
multiplication. This means that for all u, v and w in C we have

u+ v = v + u

(u+ v) + w = u+ (v + w)

0 + u = u

u+ (−u) = 0

uv = vu

(uv)w = u(vw)

1u = u

uu−1 = 1 if u 6= 0

u(v + w) = uv + uw

1.8 Definition: If z = x+ iy with x, y ∈ R then we define the conjugate of z to be

z = x− iy .

and we define the length (or magnitude) of z to be

|z| =
√
x2 + y2 .

1.9 Note: For z and w in C the following identities are all easy to verify.

z = z

z + z = 2Re z , z − z = 2iIm z

zz = |z|2 , |z| = |z|
z + w = z + w , zw = z w , |zw| = |z||w|

1.10 Note: We do not have inequalities between complex numbers. We can only write
a < b or a ≤ b in the case that a and b are both real numbers. But there are several
inequalities between real numbers which concern complex numbers. For z ∈ C and w ∈ C,

|Re (z)| ≤ |z| , |Im (z)| ≤ |z|
|z + w| ≤ |z|+ |w| , this is called the triangle inequality

|z + w| ≥
∣∣|z| − |w|∣∣

The first two inequalities follow from the fact that |z|2 = |Re (z)|2 + |Im (z)|2. We can then
prove the triangle inequality as follows: |z+w|2 = (z+w)(z+w) = |z|2+|w|2+(wz+zw) =
|z|2 + |w|2 + 2Re (zw) ≤ |z|2 + |w|2 + 2|zw| = |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2. The last
inequality follows from the triangle inequality since |z| = |z + w − w| ≤ |z + w|+ |w| and
|w| = |z + w − z| ≤ |z + w| + |z|. (Alternatively, the last two inequalities can be proven
using the Law of Cosines).
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1.11 Example: Given complex numbers a and b, describe the set
{
z ∈ C

∣∣|z−a| < |z−b|} .
Solution: Geometrically, this is the set of all z such that z is closer to a than to b, so it is
the half-plane which contains a and lies on one side of the perpendicular bisector of the
line segment ab.

1.12 Example: Given a complex number a, describe the set
{
z ∈ C

∣∣1 < |z − a| < 2
}
.

Solution:
{
z|
∣∣z − a| = 1

}
is the circle centred at a of radius 1 and

{
z|
∣∣z − a| = 2

}
is the

circle centred at a of radius 2, and
{
z ∈ C

∣∣1 < |z − a| < 2
}

is the region between these
two circles. Such a region is called an annulus.

1.13 Example: Show that every non-zero complex number has exactly two complex
square roots, and find a formula for the two square roots of z = x+ iy.

Solution: Let z = x + iy where x, y ∈ R with x and y not both zero. We need to solve
w2 = z for w ∈ C. Write w = u+ iv with u, v ∈ R. We have

w2 = z ⇐⇒ (u+ iv)2 = x+ iy ⇐⇒ (u2 − v2) + i(2uv) = x+ iy

⇐⇒
(
u2 − v2 = x and 2uv = y

)
.

To solve this pair of equations for u, square both sides of the second equation to get
4u2v2 = y2, then multiply the first equation by 4u2 to get 4u4 − 4u2v2 = 4xu2, that is
4u4 − 4xu2 − y2 = 0. By the quadratic formula,

u2 =
4x±

√
16x2 + 16y2

8
=
x±

√
x2 + y2

2
.

In the case that y 6= 0, we must use the + sign so that the right side is non-negative, so
we obtain

u = ±

√
x+

√
x2 + y2

2
.

A similar calculation gives

v = ±

√
−x+

√
x2 + y2

2
.

All four choices of sign will satisfy the equation u2 − v2 = x, but to satisfy 2uv = y notice
that when y > 0, u and v have the same sign, and when y < 0, u and v have the opposite
sign. It remains only to consider the case that y = 0, and we leave this case as an exercise.
The final result is that

w =



±

√x+
√
x2 + y2

2
+ i

√
−x+

√
x2 + y2

2

 , if y > 0,

±

√x+
√
x2 + y2

2
− i

√
−x+

√
x2 + y2

2

 , if y < 0,

±
√
x , if y = 0 and x > 0,

± i
√
|x| , if y = 0 and x < 0 .

1.14 Note: When working with real numbers, for 0 < x ∈ R it is customary to write√
x or x1/2 to denote the unique positive square root of x. When working with complex

numbers, for 0 6= z ∈ C we sometimes write
√
z or z1/2 to denote one of the two square

roots of z, and we sometimes write
√
z or z1/2 to denote both square roots of z.
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1.15 Example: Find
√

3− 4i.

Solution: Using the formula derived in the previous example, we have

√
3− 4i = ±

(√
3+
√
32+42

2 − i
√
−3+

√
32+42

2

)
= ±

(√
3+5
2 − i

√
−3+5

2

)
= ±(2− i) .

1.16 Note: The Quadratic Formula can be used for complex numbers. Indeed for
a, b, c, z ∈ C with a 6= 0 we have

az2 + bz + c = 0 ⇐⇒ z2 +
b

a
z +

c

a
= 0 ⇐⇒ z2 +

b

2a
z +

(
b

2a

)2

−
(
b

2a

)2

+
c

a
= 0

⇐⇒
(
z +

b

2a

)2

=

(
b

2a

)2

− c

a
=
b2 − 4ac

4a2
⇐⇒ z +

b

2a
=

√
b2 − 4ac

2a

⇐⇒ z =
−b+

√
b2 − 4ac

2a
,

where
√
b2 − 4ac is being used to denote both square roots in the case that b2 − 4ac 6= 0.

1.17 Example: Solve i z2 − (2 + 3i)z + 5(1 + i) = 0.

Solution: By the Quadratic Formula, we have

z =
(2 + 3i) +

√
(2 + 3i)2 − 20i(1 + i)

2i
=

(2 + 3i) +
√
−5 + 12i+ 20− 20i

2i

=
(2 + 3i) +

√
15− 8i

2i

and by the formula for square roots we have

√
15− 8i =±

(√
15+
√
152+82

2 − i
√
−15+

√
152+82

2

)
=±

(√
15+17

2 − i
√
−15+17

2

)
=± (4− i)

and so

z =
(2 + 3i)± (4− i)

2i
=

6 + 2i

2i
or
−2 + 4i

2i
= 1− 3i or 2 + i .

1.18 Definition: If z 6= 0, we define the angle (or argument) of z to be the angle θ(z)
from the positive x-axis counterclockwise to z. In other words, θ(z) is the angle such that

z = |z|
(

cos θ(z) + i sin θ(z)
)
.

1.19 Note: We can think of the angle θ(z) in several different ways. We can require, for
example, that 0 ≤ θ(z) < 2π so that the angle is uniquely determined. Or we can allow
θ(z) to be any real number, in which case the angle will be unique up to a multiple of 2π.
Then again, we can think of θ(z) as the infinite set of real numbers θ(z) = {θ0+2πk|k ∈ z},
that is we can regard θ(z) as an element of R/2π, the set of real numbers modulo 2π.
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1.20 Notation: For θ ∈ R (or for θ ∈ R/2π) we shall write

eiθ = cos θ + i sin θ .

1.21 Note: If z 6= 0 and we have x = Re (z), y = Im (z), r = |z| and θ = θ(z) then

x = r cos θ , y = r sin θ

r =
√
x2 + y2 , tan θ =

y

x
, if x 6= 0

z = reiθ , z = r e−i θ , z−1 =
1

r
e−i θ

We say that x+ i y is the cartesian form of z and rei θ is the polar form.

1.22 Example: Let z = −3− 4i. Express z in polar form.

Solution: We have |z| = 5 and tan θ(z) = 4
3 . Since θ(z) is in the third quadrant, we have

θ(z) = π + tan−1 4
3 . So z = 5ei(π+tan−1(4/3)).

1.23 Example: Let z = 10ei tan
−1 3. Express z in cartesian form.

Solution: z = 10
(

cos(tan−1 3) + i sin(tan−1 3)
)

= 10
(

1√
10

+ i 3√
10

)
=
√

10 + 3
√

10 i.

1.24 Example: Find a formula for multiplication in polar coordinates.

Solution: For z = reiα and w = eiβ we have zw = rs(cosα + i sinα)(cosβ + i sinβ) =(
(cosα cosβ− sinα sinβ) + i(sinα cosβ+ cosα sinβ)

)
= rs

(
cos(α+β) + i sin(α+β)

)
and

so we obtain the formula
reiαseiβ = rs ei(α+β) .

1.25 Note: An immediate consequence of the above example is that

(r ei θ)n = rnei nθ

for r, θ ∈ R and for n ∈ Z. This result is known as De Moivre’s Law.

1.26 Example: Find (1 + i)10.

Solution: This can be done in cartesian coordinates using the binomial theorem (which
holds for complex numbers), but it is easier in polar coordinates. We have 1+ i =

√
2ei π/4

so (1 + i)10 = (
√

2ei π/4)10 = (
√

2)10ei 10π/4 = 32ei π/2 = 32i.

1.27 Example: Find a formula for the nth roots of a complex number. In other words,
given z = reiθ, solve wn = z.

Solution: Let w = seiα. We have wn = z ⇐⇒ (seiα)n = reiθ ⇐⇒ snei nα = reiθ ⇐⇒

sn = r and nα = θ + 2πk for some k ∈ Z ⇐⇒ s = n
√
r and α =

θ + 2πk

n
for some k ∈ Z.

Notice that when z 6= 0 there are exactly n solutions obtained by taking 0 ≤ k < n. So we
obtain the formula

(r ei θ)1/n = n
√
r ei (θ+2πk)/n , k ∈ {0, 1, . . . , n− 1} .

In particular, (r ei θ)1/2 = ±
√
r ei θ/2. For 0 < a ∈ R we have z2 = a ⇐⇒ z = ±

√
a, and

for 0 > a ∈ R we have z2 = a ⇐⇒ z = ±
√
|a| i.
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1.28 Note: When working with complex numbers, for 0 6= z ∈ C and for 0 < n ∈ Z, we
sometimes write n

√
z or w1/n to denote one of the n solutions to wn = z, and we sometimes

write n
√
z or z1/n to denote the set of all nth roots.

1.29 Note: For z, w ∈ C, the rule

(zw)1/n = z1/nw1/n

does hold provided that z1/n is used to denote the set of all nth roots, but it does not
always hold when z1/n is used to denote one of the nth roots. Consider the following
amusing “proof” that 1 = −1:

1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i2 = −1 .

1.30 Example: Find 3
√
−2 + 2i.

Solution: Note that −2 + 2i = 2
√

2 ei 3π/4, and so the formula for nth roots gives

3
√
−2 + 2i =

3

√
2
√

2 e3π/4

=
√

2 ei(π/4+
2π
3 k), k ∈ {0, 1, 2}

=
√

2 ei π/3,
√

2 ei 11π/12,
√

2 ei 19π/12 .

1.31 Note: The remaining examples in this chapter illustrate situations in which we
can use complex numbers as a tool to help solve certain problems which only involve real
numbers.

1.32 Example: Let x0 = 1 and x1 = 1, and for n ≥ 2 let xn = 2xn−1 − 5xn−2. Find a
closed-form formula for xn.

Solution: If a sequence xn satisfies the recursion formula a xn + b xn−1 + c xn−2 = 0 and if
the associated quadric az2 + bz + c = 0 has distinct roots α and β, then it can be shown
that xn = Aαn +Bβn for some constants A and B (if you have not seen this fact before,
then try to prove it by induction). For the given sequence, the associated quadratic is

z2 − 2z + 5 = 0 which has roots z = 2±
√
4−20
2 = 1± 2i, and so we have

xn = A(1 + 2i)n +B(1− 2i)n

for some constants A and B. To get x0 = 1 and x1 = 1, we need A + B = 1 and
A(1 + 2i) +B(1− 2i) = 1. Solving these two equations gives A = B = 1

2 , so we have

xn = 1
2 ((1 + 2i)n + (1− 2i)n) = 1

2

((√
5 ei θ

)n
+
(√

5 e−i θ
)n)

= (
√
5)n

2

(
ei nθ + e−i nθ

)
=

(
√
5)
n

2 (2 cosnθ) =
(√

5
)n

cosnθ

where θ = θ(1 + 2i) = tan−1 2. Thus we obtain

xn = (
√

5)n cos
(
n tan−1 2

)
.
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1.33 Example: Find

n∑
i=0

(
3n

3i

)
.

Solution: Let α = ei 2π/3. Note that 1 + α + α2 = 1 +
(
− 1

2 +
√
3
2 i
)

+
(
− 1

2 −
√
3
2 i
)

= 0.

By the Binomial Theorem we have

(1 + 1)3n =

(
3n

0

)
+

(
3n

1

)
+

(
3n

2

)
+

(
3n

3

)
+

(
3n

4

)
+ · · ·+

(
3n

3n

)
(1 + α)3n =

(
3n

0

)
+

(
3n

1

)
α +

(
3n

2

)
α2 +

(
3n

3

)
+

(
3n

4

)
α + · · ·+

(
3n

3n

)
(1 + α2)3n =

(
3n

0

)
+

(
3n

1

)
α2 +

(
3n

2

)
α +

(
3n

3

)
+

(
3n

4

)
α2 + · · ·+

(
3n

3n

)
Adding these three equations gives (1 + 1)3n + (1 +α)3n + (1 +α2)3n = 3

n∑
i=0

(
3n

3i

)
. Note

that 1 + α = 1− 1
2 +

√
3
2 i = 1

2 +
√
3
2 i = ei π/3 and similarly 1 + α2 = e−i π/3, and so

n∑
i=0

(
3n

3i

)
= 1

3

(
(1 + 1)3n + (1 + α)3n + (1 + α2)3n

)
= 1

3

(
23n +

(
ei π/3

)3n
+
(
e−i π/3

)3n)
= 1

3

(
23n + ei nπ + e−i nπ

)
=

23n + 2(−1)n

3
.

1.34 Note: The Fundamental Theorem of Algebra (which we shall prove later in this
course) states that every non-constant polynomial over C has a root in C. It follows that
every such polynomial factors into linear factors over C. If a polynomial f(x) has real
coefficients, and α is a complex root of f so that f(α) = 0, then we have f(α) = f(α) = 0
so that α is also a root of f . Notice that in this case

(x− α)(x− α) = x2 − (α+ α)x+ αα = x2 − 2Re (α) + |α|2 ,
which has real coefficients. It follows that every non-constant polynomial over R factors
into linear and quadratic factors over R.

1.35 Example: Let f(x) = x4 + 2x2 + 4. Solve f(z) = 0 for z ∈ C, factor f(z) over the
complex number, and then factor f(x) over the real numbers.

Solution: By the quadratic formula, f(z) = 0 when z2 = −1±
√

3 i or in polar coordinates
z = 2e±i 2π/3. Thus the roots of f are z = ±

√
2e±i π/3, and so f factors over C as

z4 + 2z2 + 4 =
(
z −
√

2ei π/3
)(
z −
√

2e−i π/3
)(
z +
√

2ei π/3
)(
z +
√

2e−i π/3
)
.

Since
(
z −
√

2ei π/3
)(
z −
√

2e−i π/3
)

= z2 −
√

2 z + 2 and
(
z +
√

2ei π/3
)(
z +
√

2e−i π/3
)

=

z2 +
√

2 z + 2, we see that over R, f factors as

f(x) = (x2 −
√

2x+ 2)(x2 +
√

2x+ 2) .

1.36 Note: Historically, complex numbers first arose in the study of cubic equations. An
equation of the form ax3+bx2+cx+d = 0, where a, b, c, d ∈ C with a 6= 0 can be solved as
follows. First, divide by a to obtain an equation of the form x3 +Bx2 +Cx+D = 0. Next,
make the substitution y = x+ B

3 and rewrite the equation in the form y3+py+q = 0. Then

make the substitution y = z − p
3z to convert the equation to the form z3 + q − p3

27z
−3 = 0.

Finally, multiply by z3 to obtain z6+qz3− p3

27 and solve for z3 using the Quadratic Formula.
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1.37 Example: Let f(x) = x3 + 3x2 + 4x + 1. Note that f ′(x) = 3x2 + 6x + 4 =
3(x + 1)2 + 1 > 0, so f is increasing and hence has exactly one real root. Find the real
root of f .

Solution: Let y = x+1. Then x3+3x2+4x+1 = (y−1)3+3(y−1)2+4(y−1)+1 = y3+y−1.
Try y = z + rz−1 with r = − 1

3 , so we have y3 + y − 1 = (z − 1
3z
−1)3 + (z − 1

3z
−1)− 1 =

z3 − 1 − 1
27z
−3. We solve z6 − z3 − 1

27 = 0 using the quadratic formula, and obtain

z3 =
1±
√

31
27

2 . If z =
3

√
1+
√

31
27

2 then r z−1 = − 1
3

3

√
2

1+
√

31
27

= − 1
3

3

√
2(1−
√

31
27 )

1− 31
27

=
3

√
1−
√

31
27

2 .

Similarly, if z =
3

√
1−
√

31
27

2 then r z−1 =
3

√
1+
√

31
27

2 . In either case we have y = z + rz−1 =

3

√
1+
√

31
27

2 +
3

√
1−
√

31
27

2 , and x = y− 1 =
3

√√
31
27+1

2 − 3

√√
31
27−1
2 − 1. (We did not use complex

numbers in this example).

1.38 Example: Find the three real roots of f(x) = x3 − 3x+ 1.

Solution: Let x = z+rz−1 with r = 1 so that f(x) = (z+z−1)3−3(z+z−1)+1 = z3+1+z−3.

Multiply by z3 and solve z6 + z3 + 1 = 0 to get z3 = −1±
√
3 i

2 = e±i 2π/3. If z3 = ei 2π/3

then z = ei 2π/9, ei 8π/9 or ei 14π/9 and so x = z + z−1 = z + z = 2Re (z) = 2 cos( 2π
9 ),

2 cos( 8π
9 ) or 2 cos( 14π

9 ). If z3 = e−i 2π/3 then we obtain the same values for x. Thus the
three real roots are 2 cos(40◦), −2 cos(20◦) and 2 cos(80◦).
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Chapter 2. Complex Functions

2.1 Definition: Let X and Y be sets. We say that f is a function (or a map) from X
to Y , and we write f : X → Y , when to each element x ∈ X there is assigned a unique
element y = f(x) ∈ Y . The set X is called the domain of f , and the image (or range)
of f is the set

Image (f) = f(X) =
{
f(x)

∣∣x ∈ X} .
More generally, for U ⊆ X, the image of U under f is the set f(U) =

{
f(x)

∣∣x ∈ U}. For
V ⊆ Y , the inverse image of V under f is the set

f−1(V ) =
{
x ∈ X

∣∣f(x) ∈ U
}
.

The graph of f is the set

Graph (f) =
{

(x, y) ∈ X × Y
∣∣x ∈ X, y = f(x)

}
.

We say that f is a multi-function from X to Y , and we use the same notation f : X → Y ,
when f is a function from X to the set of all subsets of Y .

2.2 Note: A map f : U ⊆ R → R can be visualized by drawing a picture of its graph,
which is a curve in R2.

2.3 Note: A map f : U ⊆ R → C can be visualized by drawing its image, which is
typically a curve in C.

2.4 Example: The line segment from a ∈ C to b ∈ C is the image of the map

z(t) = a+ t(b− a) , 0 ≤ t ≤ 1 .

2.5 Example: The circle centred at a ∈ C with radius r > 0 is the image of the map

z(t) = a+ r ei t , 0 ≤ t ≤ 2π .

2.6 Example: Describe and sketch the image of the map z(t) = (1 + i t)2 .

Solution: We can sketch the image of any map z(t) simply by plotting points. Try plotting
the points z(t) for t = −2,−1, 0, 1, 2. For this particular map, we can eliminate the
parameter t to describe the image: z(t) = (1 + i t)2 = (1− t2) + i (2t) so we have x = 1− t2
and y = 2t, and so x = 1− 1

4y
2. This shows that the image is the parabola x = 1− 1

4y
2.

t z(t)

−2 −3− 4i
−1 −2i
0 1
1 2i
2 3 + 4i

9



2.7 Example: Describe and sketch the image of the map z(t) = sin(2t)ei t.

Solution: We have z(t) = r(t)ei θ(t) where r(t) = sin(2t) and θ(t) = t. Plot the points
r(t)ei θ(t) for t = π

12 k, k = 0, 1, 2, · · · , 24 on a polar grid (the cartesian grid consists of
vertical lines x = const. and horizontal lines y = const., while the polar grid consists of
cirles r = const. and rays θ = const.). You will see that the curve is a four-leafed rose: it
consists of one loop in each of the four quadrants.

θ = t r = sin(2t)

0 0
π/12 1/2
π/6

√
3/2

π/4 1
π/3

√
3/2

5π/6 1/2
π/2 0

2.8 Note: To visualize a map f : U ⊆ C→ R we can draw the level curves (also called
contour lines). These are the inverse images f−1(u) = {z ∈ C|f(z) = u} of constant
values u ∈ R, and they are typically curves in U ⊆ C. We can also use the level curves of
f to help draw its graph, which is a surface in R3.

2.9 Example: Describe the level curves and the graph of the map u = f(z) = Re (z).

Solution: For u ∈ R we have f−1(u) = {u + i y | y ∈ R}, which is the line x = u. Also,
Graph (f) =

{
(x, y, z) ∈ R3

∣∣u = x
}

, which is the plane through the origin perpendicular
to the vector (1, 0,−1).

2.10 Example: Sketch some level curves and sketch the graph of u = f(z) = |z|2.

Solution: For u ∈ R we have f−1(u) = {x+ i y |x2 + y2 = u}. When u < 0, this is empty,
when u = 0 it is the origin, and when u > 0 it is the circle about the origin of radius

√
u .

Also, we have Graph (f) =
{

(x, y, z)
∣∣u = x2 + y2

}
, which is a paraboloid.

10



2.11 Example: Sketch some level curves of u = f(z) = Re (1/z).

Solution: We have u(x+ i y) =
x

x2 + y2
. When u = 0 we have x = 0, and when u 6= 0 we

have
x

x2 + y2
= u ⇐⇒ x = ux2 + u y2 ⇐⇒ x2 − x

u + y2 = 0 ⇐⇒ (x− 1
2u )2 + y2 = 1

4u2

so the level curve u =constant is the circle centred at ( 1
2u , 0) with radius 1

2u . These circles
all go through the origin. If you sketch several of them you will see that they form the
pattern which is made by the electric field of a dipole (a small bar magnet).

2.12 Note: To visualize a map f : U ⊆ C→ C we can sketch the images of various curves
in the domain (if z = x+ i y then we usually draw the images of the lines x = const. and
y = const. while if z = r ei θ then we draw the images of the circles r = const. and the
rays θ = const.). Alternatively, we can draw the inverse images of various curves in the
range (if w = f(z) with w = u + i v then we might draw the inverse images of the lines
u = const. and v = const.)

2.13 Example: Give a geometric description of the map w(z) = a z+ b where a ∈ C and
b ∈ C. Sketch the images of the lines x = −1, 0, 1 and y = −1, 0, 1 when z = x + i y and
a = 1 + 2i and b = 4 + 3i.

Solution: If a = rei α and z = s ei β then a z = (r s)ei(α+β), so multiplying z by a has
the effect of scaling z by a factor of r = |a| and rotating the result about the origin by
the angle α = θ(a). Adding b is the same as translating by b. This geometric description
shows that the three vertical lines x = −1, 0, 1 will be sent to the three lines which are
parallel to a i = −2 + i and which pass through the points w(−1) = 3 + i, w(0) = 4 + 3i
and w(1) = 5 + 5i, respectively, and the three horizontal lines y = −1, 0, 1 are sent
to the three lines parallel to a = 1 + 2i through w(−i) = 6 + 2i, w(0) = 4 + 3i and
w(i) = 2 + 4i, respectively. This can also be shown algebraically. For example, the
vertical line x = c is given parametrically by z(t) = c + i t, t ∈ R, and it is sent to
w(z(t)) = a(c+ i t) + b = ac+ b+ i at = w(c) + at, which is the line through w(c) parallel
to i a.

11



2.14 Example: Let w(z) = z4. Describe the images of the circles r = const. and the rays
θ = const. where z = r ei θ. Also, sketch the image of the line x = 1, where z = x+ i y.

Solution: We have w = (r ei θ)4 = r4ei 4θ, so if w = s ei φ then we have s = r4 and φ = 4θ.
Thus the circle r = c is mapped to the circle s = c4 and the ray θ = α is mapped to the
ray φ = 4α. The line x = 1 is given parametrically by z = 1 + i t and it is mapped to
the curve w(t) = (1 + i t)4 = 1 + 4t i − 6t2 − 4t3 i + t4 = (1 − 6t2 + t4) + i (4t − 4t3), so
its image is the curve given parametrically by u(t) = 1 − 6t2 + t4 and v(t) = 4t − 4t3.
The u-intercepts occur when v = 0, that is when t = 0,±1 and the v-intercepts occur
when u = 0, that is when t2 = 3 ± 2

√
2. Also, We have u′(t) = −12t + 4t3 = 4t(t2 − 3)

and v′(t) = 4 − 12t2 = 4(1 − 3t2), and so the curve is vertical when u′(t) = 0, that
is when t = 0,±

√
3 and it is horizontal when v′(t) = 0, that is when t = ±1/

√
3. To

sketch the curve, plot the points when t = 0,±1/
√

3,±1,±
√

3,±2, and perhaps also when

t = ±
√

3± 2
√

2.

t u v

−2 7 25
−
√

3 −8 8
√

3
−1 −4 0
−1/
√

3 −8/9 −8
√

3/9
0 1 0

1/
√

3 −8/9 8
√

3/9
1 −4 0√
3 −8 −8

√
3

2 7 −25

2.15 Example: Let w(z) =
1

z
. Describe the images of the circles r = const. and the rays

θ = const., and then describe the images of the lines x = const. and y = const.

Solution: If z = r ei θ and w = s ei φ then we have w =
1

r e−i θ
= 1

r e
i θ so that s = 1

r

and φ = θ. This map is known as the inversion in the unit circle: the circle r = c is
mapped to the circle s = 1/c while the ray θ = α is mapped to itself. If z = x + i y
and w = u + i v then the vertical line x = c is given parametrically by z(t) = c + i t

and it is sent to w(z(t)) =
c+ i t

c2 + t2
, so its image is the curve given by u(t) =

c

c2 + t2
and

v(t) =
t

c2 + t2
. When c = 0 we have u = 0 and v = t/t2 = 1/t, so the line x = 0 (excluding

the origin) is mapped to the line u = 0 (excludind the origin). When c 6= 0, we can use the
expression for u(t) to solve for t to get t2 = (c − u c2)/u and then we can substitute this
into the expression v2(t) = t2/(c2 + t2)2 and simplify to get v2 = 1

cu− u
2 or equivalently

(u− 1
2c )

2 + v2 = ( 1
2c )

2. Thus the image of the line x = c, c 6= 0 is the circle centred at 1
2c

with radius 1
2|c| , excluding the origin. Similarly, the image of the horizontal line y = c is

the circle centred at 1
2c i with radius 1

2|c| , excluding the origin.

12



2.16 Definition: We define the exponential function by

ex+i y = exei y = ex cos y + i ex sin y .

We also write exp(z) = ez.

2.17 Note: It is not hard to check that the exponential function has the following prop-
erties for all complex numbers z and w:

e0 = 1

e−z = 1/ez , enz = (ez)n, n ∈ Z

ez+w = ezew , ez−w = ez/ew

ez = ew ⇐⇒ w = z + i 2πk for some k ∈ Z

2.18 Example: Let w(z) = ez. Describe the images of the lines x = const. and y = const.
where z = x+ i y.

Solution: We have w = exei y, so if w = r ei θ then we have r = ex and θ = y. So the
vertical line x = c is mapped to the circle r = ec, and the horizontal line y = c is mapped
to the ray θ = c. Notice that the domain of ez is all of C while the range is C \ {0}.

2.19 Definition: We define the trigonometric functions by

sin z =
ei z − e−i z

2i
, cos z =

ei z + e−i z

2
, tan z =

sin z

cos z

and sec z = 1/ cos z, csc z = 1/ sin z and cot z = cos z/ sin z. We define the hyperbolic
functions by

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
, tanh z =

sinh z

cosh z

and coth z = cosh z/ sinh z.

13



2.20 Note: It is not hard to verify the following properties, where z, w ∈ C:

sin(z + 2π) = sin z , cos(z + 2π) = cos z

sin(−z) = − sin z , cos(−z) = cos z

sin2 z + cos2 z = 1

sin(z + w) = sin z cosw + cos z sinw , sin(2z) = 2 sin z cos z

cos(z + w) = cos z cosw − sin z sinw , cos(2z) = cos2 z − sin2 z

sinh(−z) = − sinh z , cosh(−z) = cosh z

cosh2 z − sinh2 z = 1

sinh(z + w) = sinh z coshw + cosh z sinhw , sinh(2z) = 2 sinh z cosh z

cosh(z + w) = cosh z coshw + sinh z sinhw , cosh(2z) = cosh2 z + sinh2 z

In fact all of the trigonometric identities and hyperbolic identies which hold for real num-
bers also hold for complex numbers. Here are some more properties:

sinh(z + i 2π) = sinh z , cosh(z + i 2π) = cosh z

sinh(i z) = i sin z , cosh(i z) = cos z

sin(i z) = i sinh z , cos(i z) = cosh z

sin(x+ i y) = sinx cosh y + i cosx sinh y , | sin(x+ i y)|2 = sin2 x+ sinh2 y

cos(x+ i y) = cosx cosh y − i sinx sinh y , | cos(x+ i y)|2 = cos2 x+ sinh2 y

sinh(x+ i y) = sinhx cos y + i coshx sin y , | sinh(x+ i y)|2 = sinh2 x+ sin2 y

cosh(x+ i y) = coshx cos y + i sinhx sin y , | cosh(x+ i y)|2 = sinh2 x+ cos2 y

2.21 Example: Find sin(π6 + i ln 2).

Solution: We have

sin(π6 + i ln 2) = sin(π6 ) cosh(ln 2) + i cos(π6 ) sinh(ln 2) = 1
2 ·

5
4 + i

√
3
2 ·

3
4 = 5+3

√
3 i

8 .

2.22 Example: Solve cosh z = −2.

Solution: If z = x + i y then we have cosh z = coshx cos y + i sinhx sin y, so we have
cosh z = −2 when coshx cos y = −2 and sinhx sin y = 0. We cannot have sinhx = 0, since
if sinhx = 0 then x = 0 so coshx cos y = cos y 6= −2. So we must have sin y = 0 and so
y = kπ for some k ∈ Z and we have cos y = ±1. To have coshx cos y = −2, we must have
cos y = −1 and coshx = 2 (since coshx is always positive). We can solve coshx = 2 as
follows: coshx = 2 ⇐⇒ ex + e−x = 4 ⇐⇒ (ex)2 − 4ex + 1 = 0 ⇐⇒ ex = 2±

√
3 so we

have x = ln(2±
√

3) or equivalently x = ± ln(2+
√

3). Thus z = ± ln(2+
√

3)+ i (π+2πk)
for some k ∈ Z.

2.23 Example: Let w(z) = sin z. Describe the images of the lines x = const. and
y = const. where z = x+ i y.

Solution: The vertical line x = c is given parametrically by z(t) = c+ i t and it is mapped
to the curve w(t) = sin(c + i t) = sin c cosh t + i cos c sinh t. If w = u + i v then we have
u(t) = sin c cosh t and v(t) = cos c sinh t. Using the identity cosh2 t− sinh2 t = 1 we obtain

14



u2

sin2 c
− v2

cos2 c
= 1, provided that t 6= π

2 k, k ∈ Z. This is the equation of a hyperbola.

The image of the line x = c will be one of the two branches of this hyperbola; when sin c
is positive u(t) is also positive and the image is the branch on the right; when sin c is
negative, the image is the branch on the left. When sin c = 0 (so that c = πk), the image
is the line u = 0, that is, the v-axis. When cos c = 0, the image lies on the line v = 0 (the
u-axis) and it is either the interval [1,∞) (when sin c = 1) or else the interval (−∞,−1]
(when sin c = −1).

The horizontal line y = c is given parametrically by z(t) = t+ i c and it is mapped to
w(t) = sin t cosh c+ i cos t sinh c so we have u(t) = sin t cosh c and v(t) = cos t sinh t. Since

sin2 t+ cos2 t = 1 we have
u2

cosh2 c
+

v2

sinh2 c
= 1. The line y = c is mapped to this ellipse,

unless c = 2πk i in which case the image can be seen to be the line segment [−1, 1] on the
u-axis.

If you sketch a few of these hyperbolas and ellipses, you will get a nice picture showing
two orthogonal families of curves. You will see that the domain and the range of sin z are
both equal to C.

2.24 Definition: Let X and Y be sets and let f : X → Y . We say that f is one-to-one,
written as f is 1:1, (or that f is injective) when for every y ∈ Y there exists at most
one x ∈ X such that f(x) = y. We say that f is onto (or surjective) when for every
y ∈ Y there exists at least one x ∈ X such that f(x) = y. We say that f is invertible (or
bijective) when f is both one-to-one and onto, that is when for every y ∈ Y there exists
exactly one x ∈ X such that f(x) = y.

When a map f from X to Y is invertible, it has a unique inverse function from Y
to X, denoted by f−1, which is defined by

f(x) = y ⇐⇒ f−1(y) = x

or equivalently by
f(f−1(y)) = y , f−1(f(x)) = x

for all x ∈ X and y ∈ Y . When f from X to Y is not invertible, we define its inverse
multi-function from Y to X given by

f−1(y) =
{
x ∈ X

∣∣f(x) = y
}
.

2.25 Note: When a map f : X → Y is 1:1 (but perhaps not onto), the map f : X → f(X)
is both 1:1 and onto, and hence invertible. When a map f : X → Y is not 1:1, then
sometimes we can find a subset U ⊂ X such that the restriction f : U ⊂ X → Y is 1:1,
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and then the map f : U → f(U) is invertible. In this case, the inverse function of the
map f : U → f(U) is called a branch of the inverse multi-function. When working with
complex-valued functions of a complex variable, we shall sometimes use the notation f−1

to denote the inverse multi-function of f , and we shall sometimes use the notation f−1 to
denote some branch of the inverse multi-function.

2.26 Example: In real variable calculus, to define sin−1 x it is customary to restrict the
domain of sinx to −π2 ≤ x ≤

π
2 so that it becomes 1:1. If we thought instead of sin−1 x as

a multi-function then for example we would have sin−1( 1
2 ) =

{
π
6 + 2πk, 5π6 + 2πk

∣∣k ∈ Z
}

.

2.27 Example: The polar coordinates map f :
{

(r, θ)
∣∣r > 0, θ ∈ R

}
→ R2 given by

f(r, θ) =(r cos θ, r sin θ) is not 1:1. We can make it 1:1 by restricting the domain in various
ways. For example for any θ0 ∈ R, if we restrict the domain to

{(r, θ)|r > 0, θ0 < θ < θ0 + 2π}

then f becomes 1:1 and its inverse is given by f−1(x, y) = (r, θ) where r = |x + i y| and
θ = θ(x+ i y) with θ0 < θ(x+ i y) < θ0 + 2π. Alternatively, if we think of f−1 as a multi-
function, then we can still write f−1(x, y) = (r, θ) where r = |x + i y| and θ = θ(x + i y),
but this time θ(x+ i y) denotes an infinite set of the form θ(x+ i y) =

{
θ0 + 2π k

∣∣k ∈ Z
}

with say 0 ≤ θ0 < 2π.

2.28 Definition: The inverse of the exponential function ez is the logarithmic function
(or the logarithmic multi-function), denoted by log z.

2.29 Example: Find a formula for log z.

Solution: Let z = r ei θ and w = u+ i v. Then w = log z ⇐⇒ ew = z ⇐⇒ euei v = r ei θ,
which happens when eu = r and v = θ + 2πk for some k ∈ Z. Thus

log
(
r ei θ

)
= ln r + i(θ + 2πk), k ∈ Z .

This is the formula for the multi-valued logarithm. We can obtain a branch of the logarithm
by restricting the domain of the exponential function in various ways. For example, for
any θ0 ∈ R, if we restrict its domain to the set

{
rei θ

∣∣r > 0, θ0 < θ < θ0 + 2π
}

, then it
becomes invertible with inverse function

log
(
rei θ

)
= ln r + i θ , where θ0 < θ < θ0 + 2π .

2.30 Example: Find log(1− i)

Solution: log(1− i) = log(
√

2e−i π/4) = ln
√

2 + i (−π4 + 2πk), k ∈ Z.

2.31 Note: For the multi-valued logarithm, you should convince yourself that the follow-
ing formulas make sense and they all hold:

elog z = z

log(z w) = log z + logw

log(z/w) = log z − logw

2.32 Definition: We can use the logarithm to define complex exponents: given a ∈ C
we define

za = exp(a log z) .
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2.33 Example: Find i−2i.

Solution: i−2i = exp(−2i log i) = exp(−2i (i (π2 + 2πk)) = exp(π + 4πk), k ∈ Z.

2.34 Example: Find a formula for z2/3.

Solution: Write z = r ei θ. Then we have

z2/3 = exp( 2
3 log z) = exp

(
2
3

(
ln r + i(θ + 2π k)

))
= r2/3ei(2θ+4πk)/3, k ∈ Z .

Notice that there are three distinct values of z2/3 obtained by taking k ∈ {0, 1, 2}.

2.35 Note: Check that

zn = exp(n log z) is single valued for 0 < n ∈ Z

z1/n = exp
(
1
n log z

)
takes n values for 0 < n ∈ Z

z−a = (za)−1

2.36 Definition: The inverse trigonometric functions are denoted by sin−1 z, cos−1 z,
tan−1 z and so on. The inverse hyperbolic functions are denoted by sinh−1 z, cosh−1 z,
tanh−1 z and so on.

2.37 Note: Since the trigonometric and the hyperbolic functions are defined using the
exponential function, their inverses can be expressed in terms of the logarithmic function:

sin−1 z = −i log
(
i z +

√
1− z2

)
cos−1 z = −i log

(
z +

√
z2 − 1

)
tan−1 z =

i

2
log

i+ z

i− z
sinh−1 z = log

(
z +

√
z2 + 1

)
cosh−1 z = log

(
z +

√
z2 − 1

)
tanh−1 z =

1

2
log

1 + z

1− z

where the square roots are double valued. Let us derive the formula for sin−1 z. We have
w = sin−1 z ⇐⇒ z = sinw ⇐⇒ z = (eiw − e−iw)/2i ⇐⇒ (eiw)2 − 2iz(eiw) − 1 = 0
⇐⇒ eiw = iz +

√
1− z2 so we obtain iw = log

(
iz +

√
1− z2

)
, as required.

2.38 Example: Find cosh−1(−2).

Solution: We already did this in example 2.22, but let us do it again using the above
logarithmic formula. We have

cosh−1(−2) = log(−2±
√

3) = log((2±
√

3)ei π) = ln(2±
√

3) + i (π + 2πk), k ∈ Z .
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Chapter 3. Topology in Euclidean Space

3.1 Definition: For vectors x, y ∈ Rn we define the dot product of x and y to be

x. y = yTx =
n∑
i=1

xiyi .

When z, w ∈ C = R2 we have z .w = Re (zw).

3.2 Theorem: (Properties of the Dot Product) For all x, y, z ∈ Rn and all t ∈ R we have

(1) (Bilinearity) (x+ y). z = x. z + y . z , (tx). y = t(x. y)
x. (y + z) = x. y + x. z , x. (ty) = t(x. y),

(2) (Symmetry) x. y = y .x, and
(3) (Positive Definiteness) x.x ≥ 0 with x.x = 0 if and only if x = 0.

Proof: The proof is left as an exercise.

3.3 Definition: For a vector x ∈ Rn, we define the norm (or length) of x to be

|x| =
√
x.x =

√
n∑
i=1

xi
2.

We say that x is a unit vector when |x| = 1.

3.4 Theorem: (Properties of Length) Let x, y ∈ Rn and let t ∈ R. Then

(1) (Positive Definiteness) |x| ≥ 0 with |x| = 0 if and only if x = 0,
(2) (Scaling) |tx| = |t||x|,
(3) |x± y|2 = |x|2 ± 2(x. y) + |y|2.
(4) (The Polarization Identities) x. y = 1

2

(
|x+ y|2 − |x|2 − |y|2

)
= 1

4

(
|x+ y|2 − |x− y|2

)
,

(5) (The Cachy-Schwarz Inequality) |x. y| ≤ |x| |y| with |x. y| = |x| |y| if and only if the
set {x, y} is linearly dependent, and
(6) (The Triangle Inequality) |x+ y| ≤ |x|+ |y|.
Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {x, y} is linearly
dependent. Then one of x and y is a multiple of the other, say y = tx with t ∈ R. Then

|x. y| = |x. (tx)| = |t(x.x)| = |t| |x|2 = |x| |tx| = |x| |y|.
Suppose next that {x, y} is linearly independent. Then for all t ∈ R we have x + ty 6= 0
and so

0 6= |x+ ty|2 = (x+ ty). (x+ ty) = |x|2 + 2t(x. y) + t2|y|2.
Since the quadratic on the right is non-zero for all t ∈ R, it follows that the discriminant
of the quadratic must be negative, that is

4(x. y)2 − 4|x|2|y|2 < 0.

Thus (x. y)2 < |x|2|y|2 and hence |x. y| < |x| |y|. This proves part (5).
Using part (5) note that

|x+y|2 = |x|2 +2(x. y)+ |y|2 ≤ |x+y|2 +2|x. y|+ |y|2 ≤ |x|2 +2|x| |y|+ |y|2 =
(
|x|+ |y|

)2
and so |x+ y| ≤ |x|+ |y|, which proves part (6).
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3.5 Definition: For points a, b ∈ Rn, we define the distance between a and b to be

dist(a, b) = |b− a|.

3.6 Theorem: (Properties of Distance) Let a, b, c ∈ Rn. Then

(1) (Positive Definiteness) dist(a, b) ≥ 0 with dist(a, b) = 0 if and only if a = b,
(2) (Symmetry) dist(a, b) = dist(b, a), and
(3) (The Triangle Inequality) dist(a, c) ≤ dist(a, b) + dist(b, c).

Proof: The proof is left as an exercise.

3.7 Definition: For a ∈ Rn and 0 < r ∈ R, the sphere, the open ball, the closed ball,
and the (open) punctured ball in Rn centered at a of radius r are defined to be the sets

S(a, r) =
{
x ∈ Rn

∣∣dist(x, a) = r
}

=
{
x ∈ Rn

∣∣|a− x| = r
}
,

B(a, r) =
{
x ∈ Rn

∣∣dist(x, a) < r
}

=
{
x ∈ Rn

∣∣|a− x| < r
}
,

B(a, r) =
{
x ∈ Rn

∣∣dist(x, a) ≤ r
}

=
{
x ∈ Rn

∣∣|a− x| ≤ r},
B∗(a, r) =

{
x ∈ Rn

∣∣0 < dist(x, a) < r
}

=
{
x ∈ Rn

∣∣0 < |a− x| < r
}
.

When n = 2, a sphere is also called a circle and a ball is also called a disc. For a ∈ R2 = C
and 0 < r ∈ R we also write D(a, r) = B(a, r), D(a, r) = B(a, r) and D∗(a, r) = B∗(a, r).

3.8 Definition: For a set A ⊆ Rn, we say that A is open (in Rn) when for every a ∈ A
there exists r > 0 such that B(a, r) ⊆ A, and we say that A is closed (in Rn) when its
complement Ac = Rn \A is open in Rn.

3.9 Example: Show that for a ∈ Rn and 0 < r ∈ R, the set B(a, r) is open and the set
B(a, r) is closed.

Solution: Let a ∈ Rn and let r > 0. We claim that B(a, r) is open. We need to show that
for all b ∈ B(a, r) there exists s > 0 such that B(b, s) ⊆ B(a, r). Let b ∈ B(a, r) and note
that |b − a| < r. Let s = r − |b − a| and note that s > 0. Let x ∈ B(b, s), so we have
|x− b| < s. Then, by the Triangle Inequality, we have

|x− a| = |x− b+ b− a| ≤ |x− b|+ |b− a| < s+ |b− a| = r

and so x ∈ B(a, r). This shows that B(b, s) ⊆ B(a, r) and hence B(a, r) is open.
Next we claim that B(a, r) is closed, that is B(a, r)c is open. Let b ∈ B(a, r)c, that is

let b ∈ Rn with b /∈ B(a, r). Since b /∈ B(a, r) we have |b− a| > r. Let s = |b− a| − r > 0.
Let x ∈ B(b, s) and note that |x− b| < s. Then we have

|b− a| = |b− x+ x− a| ≤ |b− x|+ |x− a| < s+ |x− a|

and so |x− a| > |b− a| − s = r. Since |x− a| > r we have x /∈ B(a, r) and so x ∈ B(a, r)c.
This shows that B(b, s) ⊆ B(a, r)c and it follows that B(a, r)c is open and hence that
B(a, r) is closed.
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3.10 Theorem: (Basic Properties of Open Sets)

(1) The sets ∅ and Rn are open in Rn.
(2) If S is a set of open sets then the union

⋃
S =

⋃
U∈S

U is open.

(3) If S is a finite set of open sets then the intersection
⋂
S =

⋂
U∈S

U is open.

Proof: The empty set is open because any statement of the form “for all x∈∅ F” (where
F is any statement) is considered to be true (by convention). The set Rn is open because
given a ∈ Rn we can choose any value of r > 0 and then we have B(a, r) ⊆ Rn by the
definition of B(a, r). This proves Part (1).

To prove Part (2), let S be any set of open sets. Let a ∈
⋃
S =

⋃
U∈S U . Choose

an open set U ∈ S such that a ∈ U . Since U is open we can choose r > 0 such that
B(a, r) ⊆ U . Since U ∈ S we have U ⊆

⋃
S. Since B(a, r) ⊆ U and U ⊆

⋃
S we have

B(a, r) ⊆
⋃
S. Thus

⋃
S is open, as required.

To prove Part (3), let S be a finite set of open sets. If S = ∅ then we use the convention
that

⋂
S = Rn, which is open. Suppose that S 6= ∅, say S = {U1, U2, · · · , Um} where each

Uk is an open set. Let a ∈
⋂
S =

⋂m
k=1 Uk. For each index k, since a ∈ Uk we can

choose rk > 0 so that B(a, rk) ⊆ Uk. Let r = min{r1, r2, · · · , rm}. Then for each index
k we have B(a, r) ⊆ B(a, rk) ⊆ Uk. Since B(a, r) ⊆ Uk for every index k, it follows that
B(a, r) ⊆

⋂m
k=1 Uk =

⋂
S. Thus

⋂
S is open, as required.

3.11 Theorem: (Basic Properties of Closed Sets)

(1) The sets ∅ and Rn are closed in Rn.
(2) If S is a set of closed sets then the intersection

⋂
S =

⋂
K∈S

K is closed.

(3) If S is a finite set of closed sets then the union
⋃
S =

⋃
K∈S

K is closed.

Proof: The proof is left as an exercise

3.12 Definition: Let A ⊆ Rn. The interior and the closure of A (in Rn) are the sets

A0 =
⋃{

U ⊆ Rn
∣∣U is open, and U ⊆ A

}
,

A =
⋂{

K ⊆ Rn
∣∣K is closed and A ⊆ K

}
.

3.13 Theorem: Let A ⊆ Rn.

(1) The interior of A is the largest open set which is contained in A. In other words,
A0 ⊆ A and A0 is open, and for every open set U with U ⊆ A we have U ⊆ A0.

(2) The closure of A is the smallest closed set which contains A. In other words, A ⊆ A
and A is closed, and for every closed set K with A ⊆ K we have A ⊆ K.

Proof: Note that A0 is open by Part (2) of Theorem 8.10, because A0 is equal to the union
of a set of open sets. Also note that A0 ⊆ A because A0 is equal to the union of a set of
subsets of A. Finally note that for any open set U with U ⊆ A we have U ∈ S so that
U ⊆

⋃
S = A0. This completes the proof of Part (1), and the proof of Part (2) is similar.

3.14 Corollary: Let A ⊆ Rn.

(1) (A0)0 = A0 and A = A.
(2) A is open if and only if A = A0

(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.
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3.15 Definition: Let A ⊆ Rn. An interior point of A is a point a ∈ A such that for
some r > 0 we have B(a, r) ⊆ A. A limit point of A is a point a ∈ Rn such that for
every r > 0 we have B∗(a, r) ∩ A 6= ∅. A boundary point of A is a point a ∈ Rn such
that for every r > 0 we have B(a, r) ∩ A 6= ∅ and B(a, r) ∩ Ac 6= ∅. The set of all limit
points of A is denoted by A′. The boundary of A, is the set of all boundary points of A.

3.16 Theorem: (Equivalent Topological Definitions) Let A ⊆ Rn.

(1) A is closed if and only if A′ ⊆ A.
(2) A = A ∪A′.
(3) A0 is equal to the set of all interior points of A.
(4) ∂A = A \A0.

Proof: To prove Part (1) note that when a /∈ A we have B(a, r)∩A = B∗(a, r)∩A and so

A is closed ⇐⇒ Ac is open

⇐⇒ ∀a∈Ac ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
a /∈A =⇒ ∃r>0 B∗(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
∀r>0 B∗(a, r) ∩A 6= ∅ =⇒ a∈A

)
⇐⇒ ∀a∈Rn

(
a ∈ A′ =⇒ a ∈ A

)
⇐⇒ A′ ⊆ A.

To prove Part (2) we shall prove that A ∪ A′ is the smallest closed set which contains A.
It is clear that A ∪ A′ contains A. We claim that A ∪ A′ is closed, that is (A ∪ A′)c is
open. Let a ∈ (A ∪ A′)c, that is let a ∈ Rn with a /∈ A and a /∈ A′. Since a /∈ A′ we can
choose r > 0 so that B(a, r) ∩ A = ∅. We claim that because B(a, r) ∩ A = ∅ it follows
that B(a, r)∩A′ = ∅. Suppose, for a contradiction, that B(a, r)∩A′ 6= emptyset. Choose
b ∈ B(a, r) ∩ A′. Since b ∈ B(a, r) and B(a, r) is open, we can choose s > 0 so that
B(b, s) ⊆ B(a, r). Since b ∈ A′ it follows that B(b, s) ∩ A 6= ∅. Choose x ∈ B(b, s) ∩ A.
Then we have x ∈ B(b, s) ⊆ B(a, r) and x ∈ A and so x ∈ B(a, r) ∩ A, which contradicts
the fact that B(a, r) ∩ A = ∅. Thus B(a, r) ∩ A′ = ∅, as claimed. Since B(a, r) ∩ A = ∅
and B(a, r)∩A′ = ∅ it follows that B(a, r)∩ (A∪A′) = ∅ hence B(a, r) ⊆ (A∪A′)c. Thus
proves that (A ∪A′)c is open, and hence A ∪A′ is closed.

It remains to show that for every closed set K with A ⊆ K we have A ∪A′ ⊆ K. Let
K be a closed set in Rn with A ⊆ K. Note that since A ⊆ K it follows that A′ ⊆ K ′

because if a ∈ A′ then for all r > 0 we have B(a, r) ∩A 6= ∅ hence B(a, r) ∩K 6= ∅ and so
a ∈ K ′. Since K is closed we have K ′ ⊆ K by Part (1). Since A′ ⊆ K ′ and K ′ ⊆ K we
have A′ ⊆ K. Since A ⊆ K and A′ ⊆ K we have A∪A′ ⊆ K, as required. This completes
the proof of Part (2). We leave the proofs of Parts (3) and (4) as an exercise.

3.17 Definition: Let A ⊆ Rn. We say that A is disconnected when there exist open
sets U and V in Rn such that

U ∩A 6= ∅ , V ∩A 6= ∅ , U ∩ V = ∅ and A ⊆ U ∪ V.

When A is disconnected, such open sets U and V are said to separate A. We say that A
is connected when it is not disconnected.
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3.18 Theorem: The connected sets in R are the intervals, that is the sets of one of the
forms

(a, b) , [ a, b) , (a, b ] , [ a, b ] , (a,∞) , [ a,∞) , (−∞, b) , (−∞, b ] , (−∞,∞)

for some a, b ∈ R with a ≤ b. We include the case that a = b in order to include the
degenerate intervals ∅ = (a, a) and {a} = [a, a].

Proof: I may include a proof later.

3.19 Definition: Let A ⊆ Rn. We say that A is bounded when there exists R > 0 such
that A ⊆ B(0, R).

3.20 Exercise: Show that A is bounded if and only if there exists a ∈ Rn and r > 0 such
that A ⊆ B(a, r).

3.21 Definition: Let A ⊆ Rn. An open cover of A is a set S of open sets such that
A ⊆

⋃
S. A subcover of an open cover S of A is a subset T ⊆ S such that A ⊆

⋃
T . We

say that A is compact when every open caver of A has a finite subcover.

3.22 Exercise: Show that the set A =
{

1
n

∣∣n ∈ Z+
}

is not compact, but that the set
B = A ∪ {0} is compact.

3.23 Definition: A closed rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn]

=
{

(x1, x2, · · · , xn) ∈ Rn
∣∣ai ≤ xi ≤ bi for all i

}
.

3.24 Theorem: (Nested Rectangles) Let R1, R2, R3, · · · be closed rectangles in Rn with
R1 ⊇ R2 ⊇ R3 ⊇ · · ·. Then

∞⋂
k=1

Rk 6= ∅.

Proof: I may include a proof later.

3.25 Theorem: (Compactness of Rectangles) Every closed rectangle in Rn is compact.

Proof: I may include a proof later.
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3.26 Theorem: (The Heine-Borel Theorem) Let A ⊆ Rn. Then A is compact if and only
if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded.
For each k ∈ Z+ let Uk = B(0, k) and let S =

{
Uk
∣∣k ∈ Z+

}
. Then

⋃
S = Rn so S

is an open cover of A. Let T be any finite subset of S. If T = ∅ then
⋃
T = ∅ and

A 6⊆
⋃
T . Suppose that T 6= ∅, say T =

{
Uk1 , Uk2 , · · · , Ukm

}
with k1 < k2 < · · · < km.

Since Uk1 ⊆ Uk2 ⊆ · · · ⊆ Ukm we have
⋃
T =

⋃m
i=1 Uki = Ukm = B(0, km). Since A is not

bounded we have A 6⊆ B(0, km) and so A 6⊆
⋃
T . This shows that the open cover S has

no finite subcover T , which contradicts the fact that A is compact.
Next suppose, for a contradiction, that A is not closed. By Part (1) of Theorem 8.16,

it follows that A′ 6⊆ A. Choose a ∈ A′ with a /∈ A. For each k ∈ Z+ let Uk be the
open set Uk = B

(
a, 1k

)c
=
{
x ∈ Rn

∣∣|x − a| > 1
k

}
and let S =

{
Uk
∣∣k ∈ Z+

}
. Note that⋃

S = Rn \ {a} so S is an open cover of A. Let T be any finite subset of S. If T = ∅
then

⋃
T = ∅ so A 6⊆

⋃
T (since A is not closed so A 6= ∅). Suppose that T 6= ∅, say

T =
{
Uk1 , Uk2 , · · · , Ukm

}
with k1 < k2 < · · · < km. Since Uk1 ⊆ Uk2 ⊆ · · · ⊆ Ukm we have⋃

T =
⋃m
i=1 Uki = Ukm = B

(
a, 1

km

)c
. Since a is a limit point of A we have B

(
a, 1

km

)
6= ∅

hence B
(
a, 1

km

)
∩A 6= ∅ and so A 6⊆ B

(
a, 1

km

)c
, hence A 6⊆

⋃
T . This shows that the open

cover S has no finite subcover T , which again contradicts the fact that A is compact.
Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose

r > 0 so that A ⊆ B(0, r). Let R be the closed rectangle R =
{
x ∈ Rn

∣∣|xk| ≤ r for all k
}

.
Note that B(0, r) ⊆ R since when x = (x1, · · · , xn) ∈ B(0, r), for each index k we have

|xk| =
(
xk

2
)1/2 ≤ ( n∑

i=1

xi
2
)1/2

= |x| < r.

We claim that since A is closed and A ⊆ R and R is compact, it follows that A is compact.
Let S be an open cover of A. Since A is closed, the set Ac is open, and since A ⊆

⋃
S we

have
⋃(

S∪{Ac}
)

= Rn and so the set S∪{Ac} is an open cover of the rectangle R. Since

R is compact, we can choose a finite subset T ⊆
(
S ∪ {Ac}

)
such that R ⊆

⋃
T . Then we

have A ⊆ R ⊆
⋃
T and so A ⊆

⋃(
T \ {Ac}

)
. Thus the open cover S of A does have a

finite subcover, namely the set T \ {Ac}. This proves that A is compact, as required.

3.27 Definition: Let A ⊆ S ⊆ Rn. We say that A is open in S when there exists an
open set U in Rn such that A = S∩U . We say that A is closed in S when its complement
Ac = S \A is open in S.

3.28 Theorem: Let A ⊆ S ⊆ Rn.

(1) A is open in S if and only if for all a ∈ A there exists r > 0 such that B(a, r)∩S ⊆ A.
(2) A is closed in S if and only if there exists a closed set K in Rn such that A = S ∩K.
(3) S is disconnected if and only if S has a nonempty proper subset which is both open
and closed in S.

Proof: I may include a proof later.

23



3.29 Definition: Let 〈an〉n≥p be a sequence in Rm. We say the sequence 〈an〉n≥p is
bounded when

∃R>0 ∀n∈Z≥p |an| ≤ R.
For b ∈ Rm, we say that the sequence 〈an〉n≥p converges to b and write lim

n→∞
an = b (or

an → b) when
∀ε>0 ∃N ∈Z≥p ∀n∈ Z≥p

(
n ≥ N =⇒ |an − b| < ε

)
.

We say the sequence 〈an〉n≥p diverges to ∞ and write lim
n→∞

an =∞ (or an →∞) when

∀R>0 ∃N ∈ Z≥p ∀n∈Z≥p
(
n≥N =⇒ |an| ≥ R

)
.

We say that the sequence 〈an〉n≥p converges when it converges to some point b ∈ Rm

and otherwise we say that it diverges.

3.30 Theorem: Let 〈an〉n≥p be a sequence in Rm, say an =
(
an,1, an,2, · · · , an,m

)
∈ Rm.

(1) 〈an〉n≥p is bounded if and only if 〈an,i〉n≥p is bounded for all indices i.
(2) For b = (b1, · · · , bm) ∈ Rm we have lim

n→∞
an = b if and only if lim

n→∞
an,i = bi for all i.

In particular, if u, v, xn, yn ∈ R and an = xn + i yn, then

lim
n→∞

an = u+ iv ⇐⇒
(

lim
n→∞

xn = u and lim
n→∞

yn = v
)
.

Proof: The proof is left as an exercise.

3.31 Theorem: Let 〈an〉n≥p be a sequence in Rm and let u, v ∈ Rm ∪ {∞}.
(1) If lim

n→∞
an = u and lim

n→∞
an = v then u = v.

(2) If lim
n→∞

an = u and 〈anj 〉j≥q is a subsequence of 〈an〉 then lim
j→∞

anj = u.

(3) If 〈an〉n≥p converges then it is bounded.

Proof: The proof is left as an exercise.

3.32 Theorem: Let c ∈ R, let u, v ∈ Rm, and let 〈an〉 and 〈bn〉 be sequences in Rm with
lim
n→∞

an = u and lim
n→∞

bn = v. Then

(1) lim
n→∞

(can) = cu,

(2) lim
n→∞

(an ± bn) = u± v,

(3) lim
n→∞

(un . vn) = u. v,

(4) if m = 2 so that u, v ∈ C then lim
n→∞

(anbn) = uv, and

(5) if m = 2 so that u, v ∈ C and if v 6= 0 then lim
n→∞

an/bn = u/v.

Proof: The proof is left as an exercise.

3.33 Theorem: (Bolzano-Weierstrass) Every bounded sequence in Rn has a convergent
subsequence.

Proof: I may include a proof later.

3.34 Definition: Let 〈an〉n≥p be a sequence in Rn. We say that 〈an〉 is Cauchy when

∀ε>0 ∃N ∈Z≥p ∀k, `∈Z≥p

(
k, l ≥ N =⇒ |ak − a`| < ε

)
.

3.35 Theorem: (The Completeness of Rn) For every sequence in Rn, the sequence
converges if and only if it is Cauchy.

Proof: I may include a proof later.
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3.36 Definition: Let A ⊆ Rn and let f : A → Rm. When a is a limit point of A and
b ∈ Rm, we say that f(x) converges to b as x tends to a, and we write lim

x→a
f(x) = b

when
∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| < δ =⇒ |f(x)− b| < ε

)
.

When a is a limit point of A, we say that f(x) diverges to ∞ and we write lim
x→a

f(x) =∞
when

∀R>0 ∃δ>0 ∀x∈A
(

0 < |x− a| < δ =⇒ |f(x)| ≥ R
)
.

3.37 Theorem: (Sequential Characterization of Limits) Let A ⊆ Rn, let f : A → Rm,
let a be a limit point of A and let u ∈ Rm ∪ {∞}. Then lim

x→a
f(x) = u if and only if

lim
n→∞

f(xn) = u for every sequence 〈xn〉 in A \ {a} with lim
n→∞

xn = a.

Proof: The proof is left as an exercise.

3.38 Corollary: Let A ⊆ Rn and let f : A → Rm, let a be a limit point of A, let
b = (b1, b2, · · · , bm) ∈ Rn and say f(x) =

(
f1(x), · · · , fm(x)

)
∈ Rm for each x ∈ A so that

fi : A→ R for each i. Then lim
x→a

f(x) = b if and only if lim
x→a

fi(x) = bi for all i.

Proof: The proof is left as an exercise.

3.39 Corollary: Let A ⊆ Rm, let f : A → Rm, let a be a limit point of A, and let
u, v ∈ Rm ∪ {∞}. If lim

x→a
= u and lim

x→a
= v then u = v.

Proof: The proof is left as an exercise.

3.40 Corollary: Let A ⊆ Rn, let f, g : A→ Rm, let a be a limit point of A, let u, v ∈ Rm

and suppose that lim
x→a

f(x) = u and lim
x→a

g(x) = v. Then

(1) lim
x→a

c f(x) = cu,

(2) lim
x→a

f(x) + g(x) = uv,

(3) lim
x→a

f(x). g(x) = u. v,

(4) if m = 2 so that u, v ∈ C then lim
x→a

f(x)g(x) = uv, and

(5) if m = 2 so that u, v ∈ C and if v 6= 0 then lim
x→a

f(x)/g(x) = u/v.

Proof: The proof is left as an exercise.
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3.41 Definition: Let A ⊆ Rn, let B ⊆ Rm, and let f : A → B. For a ∈ A, we say that
f is continuous at a when

∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
.

We say that f is continuous (in A) when f is continuous at a for every a ∈ A. We say
that f is uniformly continuous in A when

∀ε>0 ∃δ>0 ∀a∈A ∀x∈A
(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
.

3.42 Theorem: Let A ⊆ Rn, let f : A→ Rn, and let a ∈ A. Then

(1) if a is not a limit point of A then f is continuous at a, and
(2) if a is a limit point of A then f is continuous at a if and only if lim

x→a
f(x) = f(a).

Proof: The proof is left as an exercise.

3.43 Theorem: (Sequential Characterization of Continuity) Let A ⊆ Rn, let f : A→ Rn,
and let a ∈ A. Then f is continuous at a if and only if lim

n→∞
f(xn) = f(a) for every sequence

〈xn〉n≥p in A with lim
n→∞

xn = a.

Proof: The proof is left as an exercise.

3.44 Corollary: Let A ⊆ Rn, let f : A → Rm be given by f(x) =
(
f1(x), · · · , fm(x)

)
where fk : A→ R for each k, and let a ∈ A. Then f is continuous at a if and only if each
function fk is continuous at a.

Proof: The proof is left as an exercise.

3.45 Corollary: Let c ∈ R, let A ⊆ Rn, let f, g : A→ Rm, let a ∈ A, and suppose that f
and g are both continuous at a. Then the functions cf , f ± g, and f . g are all continuous
at a, and in the case that m = 2 so that f, g : A→ C the function fg is continuous at a,
and in the case that m = 2 and g(a) 6= 0 the function f/g is continuous at a.

Proof: The proof is left as an exercise.

3.46 Example: Let U = {r ei θ|r > 0, 0 < θ < 2π}. Let θ : U → (0, 2π) be the angle
function. Show that θ is continuous in U .

Solution: Write z = x + i y with x, y ∈ R. For Im (z) > 0, the angle function is given

by the formula θ(x + i y) = cos−1
(
x/
√
x2 + y2

)
. This formula expresses θ(x + i y) using

sums, products, quotients and composites of known continuous functions, and so it must
be continuous, by parts b) and c) of the above theorem. Thus θ(z) is continuous at all
points z with Im (z) > 0.

Similarly, for Re (z) < 0, θ(z) is given by the formula θ(x+i y) = π+tan−1
(
y/x

)
, and

for Im (z) < 0 we have θ(x+ i y) = 2π − cos−1
(
x/
√
x2 + y2

)
. These are both continuous

and so θ(z) is continuous for all z ∈ U .

3.47 Example: As an excercise, show that for the angle function θ : C∗ → [0, 2π) and
for a > 0, the limit lim

z→a
θ(z) does not exist, so θ : C∗ → [0, 2π) is not continuous in C∗.

In fact it is impossible to choose θ(z) ∈ R so that θ : C∗ → R is continuous in C∗. As in
the previous example, we must restrict the domain to make the angle function continuous.
Indeed, for any α ∈ R, if we restrict the domain to Uα = {r ei θ|r > 0, α < θ < α + 2π}
and choose θ(z) with α < θ(z) < α+ 2π then θ : Uα → (α, α+ 2π) will be continuous.
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3.48 Note: We have found formulas for the real and imaginary parts of the identity
f(z) = z, the exponential f(z) = ez, the trigonometric functions, and the hyperbolic
functions. These formulas reveal that they are all continuous in their domains. Also,
any branch of the logarithm log z = ln |z| + i θ(z) is continuous provided that θ(z) is
chosen to be continuous. The inverse trigonometric and inverse hyperbolic functions can
all be expressed in terms of the logarithm, and so they are also continuous provided that
θ(z) is chosen to be continuous. Any complex function which can be expressed using sums,
products, quotients and composites of the above functions will be continuous in its domain.

3.49 Theorem: (Topological Characterization of Continuity) Let A ⊆ Rn, let B ⊆ Rm,
and let f : A→ B.

(1) f is continuous if and only if f−1(U) is open in A for every open set U in B.
(2) f is continuous if and only if f−1(K) is closed in A for every closed set K in B.

3.50 Exercise: Show that the set U =
{

(x, y) ∈ R2
∣∣y > x2

}
is open in R2.

3.51 Theorem: (Properties of Continuous Functions) Let A ⊆ Rn, let B ⊆ Rm, and let
f : A→ B be continuous.

(1) If A is bounded then f(A) is bounded.
(2) If A is connected then f(A) is connected.
(3) If A is compact then f(A) is compact.
(4) If A is compact the f is uniformly continuous on A.
(5) If A is compact and m = 1 then f(x) attains its maximum and minimum values on A.

3.52 Definition: Let A ⊆ Rn and let a, b ∈ A. A (continuous) path from a to b in A
is a continuous function f : [0, 1] → A with f(0) = a and f(1) = b. We say that A is
path-connected when for every a, b ∈ A there exists a continuous path from a to b in A.

3.53 Theorem: Let A ⊆ Rn. If A is path-connected then A is connected.

Proof: I may include a proof later.

3.54 Exercise: Show that for a ∈ Rn and r > 0, the set B(a, r) is connected.

.
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Chapter 4. Derivatives

4.1 Note: From now on, we shall always use the letter U to denote an open set.

4.2 Definition: Recall that for a function f : U ⊆ R→ R we define

f ′(a) = lim
x→a

f(x)− f(a)

x− a

provided the limit exists, and then we say that f is differentiable at x = a and f ′(a)
is called the (real) derivative of f at a. Equivalently, we see that f is differentiable at

x = a if there exists a real number f ′(a) such that lim
x→a

∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ = 0. This last

condition can be rewritten as lim
x→a

|R(x)|
|x− a|

= 0, where R(x) = f(x)−
(
f(a) + f ′(a)(x− a)

)
.

In this way we obtain a definition which applies to functions f : U ⊆ Rn → Rm.
A function f : U ⊆ Rn → Rm is differentiable at x = a if there exists an m × n

matrix Df(a) such that lim
x→a

|R(x)|
|x− a|

= 0, where R(x) = f(x) −
(
f(a) + Df(a)(x − a)

)
.

The matrix Df(a) is called the (real) derivative matrix of f at x = a. We say that
f : U ⊆ Rn → Rm is differentiable in U if it is differentiable at every point a ∈ U .

For a map f : U ⊆ Rn → R, the jth partial derivative of f is given by

fxj (a) =
∂f

∂xj
(a) = g′(0) ,

if it exists, where g(t) = f(a+ t ej) with ej denoting the jth standard basis vector in Rn.
We now recall (without proof) some theorems from vector calculus.

4.3 Theorem: Let f : U ⊆ Rn → Rm, and let fi be the components of f so that
f(x) =

(
f1(x), · · · fm(x)

)
. Then if f is differentiable at x = a then the partial derivatives

∂fi
∂xj

all exist and

Df(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)

...
...

...
∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)


4.4 Theorem: If f : U ⊆ Rn → Rm is C1 in U , which means that the partial derivatives
∂fi
∂xj

all exist and are continuous in U , then f is differentiable in U .

4.5 Theorem: If f : U ⊆ Rn → Rm is differentiable at a then f is continuous at a.

4.6 Theorem: If f, g : U ⊆ Rn → Rm are both differentiable at x = a, then
(a) D(c f)(a) = cDf(a) where c ∈ R.
(b) D(f ± g)(a) = Df(a)±Dg(a).
(c) (The Product Rule) If m = 1 then D(fg)(a) = Df(a)g(a) + f(a)Dg(a).
(d) (The Quotient Rule) If m = 1 then D(f/g)(a) =

(
Df(a)g(a)− f(a)D(a)

)
/g2(a).
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4.7 Theorem: (The Chain Rule) If f : U ⊆ Rn → Rm is differentiable at a, and
g : V ⊆ Rm → Rl is differentiable at f(a) then h(x) = g(f(x)) is differentiable at a and
h′(a) = g′(f(a))f ′(a).

4.8 Theorem: (The Inverse Function Theorem) If f : U ⊆ Rn → Rm is C1 in U and
Df(a) is invertible, then we can restrict the domain of f to some open set V ⊆ U with
a ∈ V so that f is invertible, g = f−1 is C1, and Dg

(
f(x)

)
= Df(x)−1.

4.9 Definition: For a differentiable map f : U ⊆ R→ Rn given by f(t) =

 x1(t)
...

xn(t)

, we

have

Df(t) = f ′(t) =

 x1
′(t)
...

xn
′(t)

 .

The vector Df(a) = f ′(a) is the tangent vector to the curve x = f(t) at the point f(a).
In particular, for a differentiable map f : U ⊆ C→ C given by f(t) = z(t) = x(t) + i y(t),
we have

Df(t) = z′(t) = x′(t) + i y′(t) .

4.10 Definition: For a differentiable map f : U ⊆ Rn → R we have

Df(x) =
(

∂f
∂x1

(x) ∂f
∂x2

(x) . . . ∂f
∂xn

(x)
)
.

We define the gradient of f at a to be ∇f = Df(x)T . Given a point a ∈ U and a vector
v ∈ Rn, we define the directional derivativeDvf(a) of f at a with respect to v as follows.
Choose any curve α : R→ U with α(0) = a and α′(0) = v, and set β(t) = f(α(t)). By the
chain rule, we have β′(t) = Df(α(t))α′(t) and so β′(0) = Df(a)v = ∇f(a). v. We define

Dvf(a) = β′(0) = Df(a)v = ∇f(a). v .
Notice that the gradient ∇f(a) is perpendicular to the level set f(x) = f(a). To see this,
choose any curve x(t) with x(0) = a and with f(x(t)) = f(a) (so that x(t) lies in the
level set). Then by the chain rule we have Df(x(t))x′(t) = 0, and setting t = 0 gives
Df(a)x′(0) = 0 or equivalently ∇f(a).x′(a) = 0. Thus ∇f(a) is perpendicular to x′(0).

4.11 Example: Given a differentiable map f : U ⊆ Rn → Rm, notice that the ith row of
the matrix Df(a) is equal to Dfi(a) = ∇fi(a)T , where fi is the ith component of f . So
the ith row is perpendicular to the level set fi(x) = fi(a).

4.12 Example: For a differentiable map f : U ⊆ Rn → Rm, we denote the jth column
of the matrix Df(a) by fxj (a)

(
or by ∂f

∂xj

)
, so we have

fxj (a) =
∂f

∂xj
(a) =


∂f1
∂xj

...
∂fm
∂xj

 .

Notice that this is equal to the tangent vector to the curve β(t) = f(a+ t ej), where ej is
the jth standard basis vector; indeed if α(t) = a+ t ej so α(0) = a and α′(0) = ej , and if
β(t) = f

(
α(t)

)
, then by the Chain Rule we have β′(t) = Df

(
α(t)

)
α′(t) so β′(0) = Df(a) ej ,

which is the jth column of Df(a).
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4.13 Example: For a differentiable map f : U ⊆ C → C given by w(z) = u(z) + i v(z)
with z = x+ i y, we have

Df(a) =

(
ux(a) uy(a)
vx(a) vy(a)

)
.

The columns fx =

(
ux
vx

)
and fy =

(
uy
vy

)
are the tangent vectors to the curves f(a+t) and

f(a+i t) respectively, and the rows Du = (ux uy ) and Dv = ( vx vy ) are perpendicular
to the level curves u = u(a) and v = v(b) respectively.

4.14 Example: Let f be the polar coordinates map (x, y) = f(r, θ) = (r cos θ, r sin θ).
Then

Df(r, θ) =

(
xr xθ
yr yθ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
.

At (r, θ) = (2, π6 ), we have (x, y) = f(2, π6 ) = (
√

3, 1) and Df(2, π6 ) =

(√
3/2 −1

1/2
√

3

)
.

Below on the left, is a picture showing the images of the lines r = 0, 1, 2 and θ = 0, π6 ,
π
3 ,

π
2

(the images are circles and rays), and the tangent vectors fr =

(√
3/2
−1/2

)
and fθ =

(
−1√

3

)
are shown at the point (x, y) = (

√
3, 1). On the right, there is a picture showing the

level curves x = 0, 1,
√

3 and y = 0, 1,
√

3 (they are multiples of r = sec θ and r = csc θ),
and the gradient vectors Dx =

( √
3
2 −1

)
and Dy = ( 1

2

√
3 ) are shown at the point

(r, θ) = (2, π6 ) draw This map f is not 1 : 1 so it does not have an inverse, but since the
matrix Df(2, π6 ) is invertible, we know that we can make f invertible by restricting its
domain. If g = f−1 near the point (r, θ) = (2, π3 ), then we have

Dg(
√

3, 1) =

(√
3/2 −1

1/2
√

3

)−1
=

1

2

( √
3 1

−1/2
√

3/2

)
.

This can also be verified by finding an explicit formula for g, for example if we restrict the
domain of f to r > 0, −π2 < θ < π

2 then (r, θ) = g(x, y) =
(√

x2 + y2 , tan−1(y/x)
)
.

4.15 Note: We now wish to interpret the real derivative matrix Df of a map of the form
f : U ⊆ C→ C in terms of complex numbers.
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4.16 Note: A real 2× 2 matrix A corresponds to two complex numbers in the following

two ways. Let A =

(
a b
c d

)
, and write z = x+ i y with x, y ∈ R. Then we have

Az = A

(
x
y

)
=

(
a
c

)
x+

(
b
d

)
y

= (a+ i c)x+ (b+ i d)y

= (a+ ic)
z + z

2
+ (b+ i d)

z − z
2i

= 1
2

(
(a+ d) + i (c− b)

)
z = 1

2

(
(a− d) + i (c+ b)

)
z

.

Thus we have A

(
x
y

)
= px + qy = uz + vz where p and q are the columns of A, that is

p = a+ i c and q = b+ i d, and u and v are given by u = 1
2

(
(a+ d) + i (c− b)

)
= 1

2 (p− i q)
and v = 1

2

(
(a− d) + i (c+ b)

)
= 1

2 (p+ i q). Note also that p = u+ v and q = i (u− v).
Conversely, given u = α+ i β and v = γ + i δ, with α, β, γ, δ ∈ R, we have

u z = (α+ i β)(x+ i y) = (αx− βy) + i (βx+ αy) =

(
α −β
β α

)(
x
y

)
vz = (γ + i δ)(x− i y) = (γx+ δy) + i (δx− γy) =

(
γ δ
δ −γ

)(
x
y

)

and so u z + v z = Az where A =

(
α −β
β α

)
+

(
γ δ
δ −γ

)
.

4.17 Definition: For a map f : U ⊆ C→ C given by f(z) = u(z)+i v(z) with z = x+i y,

wich is differentiable at a ∈ U so that Df(a) =

(
ux(a) uy(a)
vx(a) vy(a)

)
, we define

fx(a) = ux(a) + i vx(a) = fz(a) + fz(a)

fy(a) = uy(a) + i vy(a) = i (fz(a)− fz(a))

fz(a) = 1
2 (fx(a)− i fy(a)) = 1

2

(
(ux(a) + vy(a)) + i (vx(a)− uy(a))

)
fz(a) = 1

2 (fx(a) + i fy(a)) = 1
2

(
(ux(a)− vy(a)) + i (uy(a)− vx(a))

)
.

Note that if fz(a) = α+ i β and fz(a) = γ + i δ with α, β, γ, δ ∈ R then

Df(a) =

(
α −β
β α

)
+

(
γ δ
δ −γ

)
.

When w = f(z), other notations for these include

fx = ∂f
∂x = wx = ∂w

∂x

fy = ∂f
∂y = wy = ∂w

∂y

fz = ∂f
∂z = ∂f = wz = ∂w

∂z = ∂w

fz = ∂f
∂z = ∂f = wz = ∂w

∂z = ∂w .
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4.18 Note: For f : U ⊆ C→ C with a ∈ U , then from the above note and definition, we
see that

f is differentiable at a
⇐⇒ there exists a real 2× 2 matrix Df(a) such that

lim
z→a

|R(z)|
|z − a|

= 0, where R(z) = f(z)−
(
f(a) +Df(a)(z − a)

)
⇐⇒ there exist two complex numbers fx(a) and fy(a) such that

lim
z→a

|R(z)|
|z − a|

= 0, where R(z) = f(z)−
(
f(a) +fx(a)Re (z−a) +fy(a)Im (z−a)

)
⇐⇒ there exist two complex numbers fz(a) and fz(a) such that

lim
z→a

|R(z)|
|z − a|

= 0, where R(z) = f(z)−
(
f(a) + fz(a)(z − a) + fz(z − a)

)
.

4.19 Example: Show that ∂z
∂z = ∂z

∂z = 1, ∂z
∂z = ∂z

∂z = 0, and ∂a
∂z = ∂a

∂z = 0, where a ∈ C.

Solution: If f(z) = z, then we have f(x+ i y) = u(x, y) + i v(x, y), where u(x, y) = x and

v(x, y) = y. So Df =

(
ux uy
vx vy

)
=

(
1 0
0 1

)
, fx = ux + i vx = 1, fy = uy + i vy = i,

fz = 1
2 (f + x− i fy) = 1 and fz = 1

2 (fx − i fy) = 0.

If f(z) = z, then we have u(x, y) = x and v(x, y) = −y. So Df =

(
1 0
0 −1

)
, fx = 1,

fy = −i, fz = 0 and fz = 1.
If f(z) = a ∈ C then u(x, y) = Re (a) and v(x, y) = Im (a). So Df = 0 and hence

fx = fy = fz = fz = 0.

4.20 Theorem: Let f : U ⊆ C→ C be differentiable in U . For α = x, y, z or z we have
(a) (cf)α = c fα
(b) (f ± g)α = fα ± fα
(c) (The Product Rule) (fg)α = fαg + fgα
(d) (The Quotient Rule) (f/g)α = (fαg − fgα)/g2, when g 6= 0

Proof: We prove the product rule, and leave the other parts as an exercise. We write
f = u+i v and g = s+i t where u, v, s and t are real-valued. Then fg = (us−vt)+i (ut+vs).
The Product Rule in Theorem 4.6 applies to the functions u, v, s and t, so we have

(fg)x = (us− vt)x + i (ut+ vs)x

= (uxs+ usx − vxt− vtx) + i (uxt+ utx + vxs+ vsx)

= (ux + i vx)(s+ i t) + (u+ i v)(sx + i tx)

= fxg + fgx

Similarly, (fg)y = fyg + fgy. Then, using this result, we have

(fg)z = 1
2

(
(fg)x − i (fg)y

)
= 1

2

(
(fxg + fgx)− i (fyg + fgy)

)
= 1

2 (fx − i fy) g + f 1
2 (gx − i gy)

= fzg + fgz ,

and similarly, (fg)z = fzg + f gz.
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4.21 Theorem: For f : U ⊆ C → C, define f : U → C by f(z) = f(z). Then we have
fz = fz and fz = fz.

Proof: Write f = u+i v with u and v real-valued. Then f = u−i v so Df =

(
ux uy
−vx −vy

)
and hence fx = ux − i vx = fx and fy = uy − i vy = fy. So we have

fz = 1
2 (fx − i fy) = 1

2 (fx − i fy) = 1
2 (fx + i fy) = fz ,

and similarly, fz = fz.

4.22 Theorem: (The Chain Rule) Suppose f : U → V ⊆ C and g : V → C are both
differentiable, and let h(z) = g(f(z)). Then h is differentiable, and if we write w = f(z)
and q = g(w), then (

qz qz
qz qz

)
=

(
qw qw
qw qw

)(
wz wz
wz wz

)
.

Equivalently, we have
∂q

∂z
=

∂q

∂w

∂w

∂z
+
∂q

∂w

∂w

∂z
and

∂q

∂z
=

∂q

∂w

∂w

∂z
+
∂q

∂w

∂w

∂z
.

Proof: Write z = x+ i y, f(z) = w = u+ i v and g(w) = q = s+ i t. Then

qz = 1
2

(
(sx + ty) + i (tx − sy)

)
= 1

2

(
(suux + svvx + tuuy + tvvy) + i (tuux + tvvx − suuy − svvy)

)
.

On the other hand

qwwz + qwwz = qwwz + qwwz

= 1
2

(
(su + tv) + i (tu − sv)

)
1
2

(
(ux + vy) + i (vx − uy)

)
+ 1

2

(
(su − tv) + i (tu + sv)

)
1
2

(
(ux − vy)− i (vx + uy)

)
.

Expanding and simplifying this last expression shows that qz = qwwz + qwwz. Similarly,
we can show that qz = qwwz + qwwz.

4.23 Example: Let f(z) = z2 + 3zz. Find fz and fz.

Solution: We solve this using two methods. First, by Example 4.19 and Theorem 4.20, we
can calculate ∂f

∂z and ∂f
∂z using all the same rules that we use to find partial derivatives of

real functions of two real variables. We have fz = 2z + 3z and fz = 3z.
Our second solution is to express f in terms of real variables, and then use Definition

4.17. We have f(z) = f(x+ i y) = (x+ i y)2 + 3(x+ i y)(x− i y) = (4x2 + 2y2) + i (2xy),

and so Df =

(
8x 4y
2y 2x

)
. Thus we have fx = 8x+ i 2y and fy = 4y + i 2x, and so

fz = 1
2 (fx − i fy) = 1

2 (8x+ i 2y − i 4y + 2x) = 5x− i y = 5 z+z2 − i
z−z
2i = 2z + 3z

fz = 1
2 (fx + i fy) = 1

2 (8x+ i 2y + i 4y − 2x) = 3x+ i 3y = 3z .
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4.24 Example: Let f(z) =
(z + z)z

2 + zz
. Find fz(1 + i) and fz(1 + i).

Solution: By the Product and Quotient rules, we have

∂f

∂z
=

(z + (z + z))(2 + zz)− (z + z)zz

(2 + zz)2
, so

∂f

∂z
(1 + i) =

(3 + i)(4)− (2)(2)

(4)2
=

2 + i

4

and
∂f

∂z
=

(z)(2 + zz)− (z + z)z2

(2 + zz)2
, so

∂f

∂z
(1 + i) =

(1 + i)(4)− (2)(2i)

(4)2
=

1

4
.

4.25 Example: Let w = f(z) = iz + z, let q = g(w) = w2 − w, and let h(z) = g(f(z)).
Find hz(1 + 2i) and hz(1 + 2i).

Solution: We provide three solutions to this problem. Our first solution uses the Chain
Rule in theorem 4.22. We have

(hz hz ) = ( gw gw )

(
fz fz
fz fz

)
= ( 2w −1 )

(
i 1
1 −i

)
= ( 2wi− 1 2w + i ) .

When z = 1 + 2i we have w = f(z) = i(1 + 2i) + (1 − 2i) = −1 − i and so we obtain
hz = 2wi− 1 = 2(−1− i) i− 1 = 1− 2i and hz = 2w + i = 2(−1− i) + i = −2− i.

Our second solution is to expand the composite g(f(z)) so that we can avoid using
the Chain Rule. We have h(z) = g(f(z)) = (iz+z)2−(−iz+z) = −z2 +2izz+z2 + i z−z.
Thus we have hz = −2z + 2iz − 1 so hz(1 + 2i) = −2(1 + 2i) + 2i(1− 2i)− 1 = 1− 2i and
we have hz = 2iz + 2z + i so hz = 2i(1 + 2i) + 2(1− 2i) + i = −2− i.

The third solution is to express f , g and h in terms of real variables. Write z = x+ i y,
w = f(z) = u + i v and q = h(z) = s + i t. Then f(x + i y) = i(x + i y) + (x − i y) =
(x − y) + i (x − y) so u = x − y and v = x − y, and g(u + i v) = (u + i v)2 − (u − i v) =
(u2 − v2 − u) + i (2uv− v) so s = u2 − v2 − u and t = 2uv+ v. By the Chain Rule for real
variables,(

sx sy
tx ty

)
=

(
2u− 1 −2v

2v 2u+ 1

)(
1 −1
1 −1

)
=

(
2u− 2v − 1 −2u+ 2v + 1
2u+ 2v + 1 −2u− 2v − 1

)
so hz = 1

2

(
(2u−2v−1)+(−2u−2v−1)

)
+ i

2

(
(2u+2v+1)−(−2u+2v+1)

)
= (−2v−1)+i (2u)

and hz = 1
2

(
(2u−2v−1)−(−2u−2v−1)

)
+ i

2

(
(2u+2v+1)+(−2u+2v+1)

)
= 2u+i (2v+1).

When z = 1 + 2i, we have w = f(z) = i(1 + 2i) + (1 − 2i) = −1 − i, so u = v = −1 and
hence hz(1 + 2i) = (−2v − 1) + i (2u) = 1− 2i and hz(1 + 2i) = 2u+ i (2v + 1) = −2− i.
4.26 Definition: Let f : U ⊆ C→ C. We define

f ′(a) = lim
z→a

f(z)− f(a)

z − a
provided that the limit exists, and in this case we say that f is holomorphic at z = a
and thet f ′(a) is the derivative of f at a. Equivalently, we say that f is holomorphic at
z = a if there exists a complex number f ′(a) such that

lim
z→a

|S(z)|
|z − a|

= 0 ,

where S(z) = f(z) −
(
f(a) + f ′(a)(z − a)

)
. We say that f is holomorphic in U if it is

holomorphic at every point in U . When w = f(z) we also write f ′ = df
dz = w′ = dw

dz .
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4.27 Definition: For f : U ⊆ C→ C we define

f×(a) = lim
z→a

f(z)− f(a)

z − a

provided the limit exists, and if so we say that f is conjugate-holomorphic at z = a.
Equivalently, f is conjugate-holomorphic at a if there exists a complex number f×(a) such

that lim
z→a

|T (z)|
|z − a|

= 0 where T (z) = f(z)−
(
f(a) + f×(a)(z − a)

)
.

4.28 Theorem: Let f : U ⊆ C→ C and let a ∈ U .
(a) f is holomorphic at a

⇐⇒ f is differentiable at a and fz(a) = 0.
⇐⇒ f is differentiable at a and ux(a) = vy(a) and uy(a) = −vx(a)

⇐⇒ f is differentiable at a and Df(a) is of the form Df(a) =

(
α −β
β α

)
.

In this case we have f ′(a) = fz(a) = ux + i vx = α+ i β.
(b) f is conjugate-holomorphic at a

⇐⇒ f is differentiable at a and fz(a) = 0.
⇐⇒ f is differentiable at a and ux(a) = −vy(a) and uy(a) = vx(a)

⇐⇒ f is differentiable at a and Df(a) is of the form Df(a) =

(
γ δ
δ −γ

)
.

In this case we have f×(a) = fz(a) = ux + i vx = γ + i δ.

Proof: This follows immediately from Definition 4.17, Note 4.18 and Definitions 4.26, 4.27.

4.29 Definition: The two differential equations ux = vy and uy = −vx are called the
Cauchy-Riemann equations. Note that if f : U ⊆ C → C is C1 in U , then it is
differentiable in U , and if f also satisfies the Cauchy-Riemann equations in U , then it is
holomorphic in U .

4.30 Example: Let f(z) = z2 + 2|z|2. Determine where f is holomorphic and where it is
conjugate-holomorphic.

Solution: We have f(z) = z2 + 2zz, so fz = 2z + 2z = 4Re (z), and fz = 2z. Thus
f is conjugate-holomorphic when fz = 4Re (z) = 0, that is along the y-axis, and f is
holomorphic when fz = z = 0, that is at the origin.

4.31 Theorem: If f : U ⊆ C→ C is holomorphic (or conjugate-holomorphic) at a then
f is continuous at a.

Proof: We have lim
z→a

(
f(z)− f(a)

)
= lim
z→a

(
f(z)− f(a)

z − a
(z − a)

)
= f ′(a) · 0 = 0.

4.32 Theorem: If f, g : U ⊆ C→ C are both be holomorphic at a, then
(a) (cf)′(a) = c f ′(a)
(b) (f ± g)′(a) = f ′(a)± g′(a)
(c) (fg)′(a) = f ′(a)g(a) + f(a)g′(a)

(d)

(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)
, provided g(a) 6= 0.

Similar results hold when f and g are both conjugate-holomorphic.

Proof: This follows immediately from Theorem 4.20.
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4.33 Theorem: (The Chain Rule) Let f, h : U ⊆ C→ V ⊆ C and let g, k : V → C with
f and g holomorphic and h and k conjugate-holomorphic. Then
(a) g ◦ f is holomorphic with (g ◦ f)′(z) = g′(f(z))f ′(z).
(b) k ◦ f is conjugate-holomorphic with (h ◦ f)×(z) = h×(f(z))f ′(z).
(c) g ◦ h is conjugate-homorphic with (f ◦ h)×(z) = f ′(h(z))h×(z).
(d) k ◦ h is holomorphic with (k ◦ h)′(z) = k×(h(z))h×(z).

Proof: These all follows from the Chain Rule in Theorem 4.22. We prove part (a). Write
w = f(z) and q = g(w). Since f and g are holomorphic, we have ∂w

∂z = 0 and ∂q
∂w = 0. So

by the Chain Rule in Theorem 4.22 , we have ∂q
∂z = ∂q

∂w
∂w
∂z + ∂q

∂w
∂w
∂z = 0, which shows that

g ◦ f is holomorphic, and ∂q
∂z = ∂q

∂w
∂w
∂z + ∂q

∂w
∂w
∂z = ∂q

∂w
∂w
∂z .

4.34 Theorem: (The Inverse Function Theorem) If f : U ⊆ C → C is holomorphic in
U and f ′(a) 6= 0 then we can make f invertible by restricting its domain, and then the
inverse function g = f−1 will be holomorphic near f(a) with g′(f(z)) = 1/f ′(z). A similar
result holds when f is conjugate-holomorphic.

Proof: We give a proof which uses the Inverse Function for real functions, under the
additional assumption that f ′(z) is continuous in U (we shall prove later that when f is
holomorphic in U , its derivative is also holomorphic, and hence continuous). Suppose that
f is holomorphic in U with f ′(z) = α(z) + i β(z), where α and β are continuous, and that

f ′(a) 6= 0. Then we have Df =

(
α −β
β α

)
, and ux = vy = α and uy = −vx = β. Since

α and β are continuous in U , f is C1 in U . Also, since f ′(a) = α(a) + i β(a) 6= 0 we have∣∣Df(a)
∣∣ = α(a)2 +β(a)2 6= 0, so Df(a) is invertible. By the Inverse Function Theorem 4.8,

we can restrict the domain of f so that it becomes invertible and has a C1 inverse g with
Dg(f(z)) = Df(z)−1. Note that

Dg
(
f(z)

)
=

(
α(z) −β(z)
β(z) α(z)

)−1
=

(
α(z)

α2(z)+β2(z)
β(z)

α2(z)+β2(z)
−β(z)

α2(z)+β2(z)
α(z)

α2(z)+β2(z)

)
.

Since g is C1 in U and satisfies the Cauchy-Riemann Equations in U , it is holomorphic in
U , and we have

g′
(
f(z)

)
=

α(z)

α2(z) + β2(z)
+ i

−β(z)

α2(z) + β2(z)
=

1

f ′(z)
.

4.35 Theorem: The maps zn, n ∈ Z, the exponential map ez, the trigonometric fuctions
and the hyperbolic functions are all holomorphic in their domains. Also, any continuous
branch of the logarithm log z, (with an open domain) is holomorphic. We have
(a) (zn)′ = n zn−1, where n ∈ Z.
(b) (ez)′ = ez.
(c) (sin z)′ = cos z, (cos z)′ = − sin z, (tan z)′ = sec2 z.
(d) (sinh z)′ = cosh z, (cosh z)′ = sinh z, (tanh z)′ = sech2z.

(e) (log z)′ =
1

z
for any branch of log z.
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Proof: For Part (a), let f(z) = zn, 0 < n ∈ Z. Then we have

f ′(z) = lim
w→z

wn − zn

w − z
= lim
w→z

(
wn−1 + wn−2z + · · ·+ w zn−2 + zn−1

)
= n zn−1 .

For f(z) = zn with n < 0, say n = −m, we have f(z) = 1
zm , so by the Quotient Rule

f ′(z) =
−mzm−1

z2m
= −mz−m−1 = n zn−1 .

For Part (b), let f(z) = ez and write z = x+ i y and f(z) = u(z) + i v(z). Then

f(z) = ex+i y = ex cos y + i ex sin y , Df =

(
ux uy
vx vy

)
=

(
ex cos y −ex sin y
ex sin y ex cos y

)
,

and we see that f is holomorphic in C with f ′(z) = ex cos y + i ex sin y = ez.
For part (c), we only derive the formula for the derivative of sin z, but we do this in

two ways. One way is to let f(z) = sin z and write z = x + i y and f(z) = u(z) + i v(z).
Then we have

f(z) = sinx cosh y + i cosx sinh y , Df =

(
ux uy
vx vy

)
=

(
cosx cosh y sinx sinh y
− sinx sinh y cosx cosh y

)
and so f is holomorphic in C and f ′(z) = cosx cosh y − i sinx sinh y = cos(z).

Another way is to apply Part (b) and the differentiation rules in Theorem 4.32 b) to
the definition of sin z. Indeed

(sin z)′ =
1

2i
(eiz − e−iz)′ =

1

2i
(ieiz + ie−iz) =

1

2
(eiz + e−iz) = cos z .

We leave the other formulas in Parts (c) and (d) as an exercise.
For Part (e), let f(z) = log z and write z = x + i y and f(z) = u(z) + i v(z). Then

since log(z) = ln |z|+ i θ(z), we have u(x+ i y) = ln
√
x2 + y2 = 1

2 ln(x2 + y2) and

v(x+ i y) = θ(x+ i y) =



tan−1
y

x
+ 2π k , if x > 0

cos−1
x√

x2 + y2
+ 2π k , if y > 0

tan−1
y

x
+ π + 2π k , if x < 0

− cos−1
x√

x2 + y2
+ 2π k , if y < 0 .

Verify that using any one of the four formulas for v(x+ i y) = θ(x+ i y) gives

Df =

(
ux uy
vx vy

)
=

( x
x2+y2

y
x2+y2

−y
x2+y2

x
x2+y2

)
and so f is holomorphic with f ′(z) = x

x2+y2 − i
y

x2+y2 = 1
z .
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4.36 Example: The two above theorems show that elementary complex functions can be
differentiated much like the real elementary functions. For example, let f(z) = (z3esin z)5,
then f ′(z) = 5(z3esin z)4(3z2esin z + z3esin z cos z).

4.37 Example: Let f(z) = z2 − 2z + 3. Then f ′(z) = 2z − 2 and we have f(2) = 3 and
f ′(2) = 2. Since f ′(2) 6= 0, we can restrict the domain of f so that it is invertible. Let g
be the inverse function. Find g′(3).

Solution: By the Inverse Function Theorem, we have g′(3) =
1

f ′(2)
=

1

2
.

4.38 Example: Find a formula for the derivative of one branch of zw, where w ∈ C.

Solution: Let zw = exp(w log z), where log z is a branch of the logarithm. Then

(zw)′ = exp(w log z)
w

z
=
w zw

z
.

Notice that this is similar to the familiar formula (zw) = w zw−1; the familiar formula has
the disadvantage that it does not specify which branch of zw−1 we should use.

4.39 Example: Let f(z) = sin
(
z2 + (1 + i)z

)
. Find fz and fz.

Solution: We have f(z) = w(v(u(z))), where u(z) = z2 + (1 + i)z, v(u) = sinu and
w(v) = v. Note that uz = 2z, uz = (1 + i), vu = cosu, vu = 0, wv = 0 and wv = 1. By
the Chain Rule, vz = vuuz + vuuz = 2z cosu and also vz = vuuz + vuuz = (1 + i) cosu.
Using the Chain Rule again, we have wz = wvvz +wvvz = vz = vz = (1− i)cosu and also

wz = wvvz+wvvz = vz = vz = 2z cosu. Thus fz = (1− i)cosu = (1− i)cos
(
z2 + (1 + i)z

)
and fz = 2z cosu = 2z cos

(
z2 + (1 + i)z

)
.

An alternate solution is to note that for z = x+ i y we have

ez = ex−i y = ex(cos y − i sin y) = ez ,

and so from the definition of sin z we also have sin(z) = sin z. Thus f(z) = sin
(
z2+(1−i)z

)
and so fz(z) = (1− i) cos

(
z2 + (1− i)z

)
and fz(z) = 2z cos

(
z2 + (1− i)z

)
.
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Chapter 5. Conformal Maps

5.1 Note: Later on we shall see that every holomorphic function is C∞, which means that
all partial derivatives of all orders exist (and are continuous). For this chapter we shall
assume that all functions are C2, which means that all the second order partial derivatives
of f (namely uxx, uxy, uyx, uyy, vxx, vxy, vyx and vyy) exist and are continuous. We shall
also use the fact that for C2 functions, we always have uxy = uyx and vxy = vyx.

5.2 Definition: A map f : U ⊆ Rn → Rn is said to preserve orientation at x = a
when |Df(a)| > 0, and it is said to reverse orientation at a if |Df(a)| < 0.

5.3 Note: Let f : U ⊆ C → C. If f is holomorphic at z = a and f ′(a) 6= 0 then f

preserves orientation at a, since |Df(a)| = det

(
α −β
β α

)
= α2 + β2 > 0. On the other

hand, if f is conjugate-holomorphic at a with f×(a) 6= 0 then f reverses orientation at a

since |Df(a)| = det

(
γ δ
δ −γ

)
= −(γ2 + δ2) < 0.

5.4 Definition: A map f : U ⊆ Rn → Rn is called an isometry when it preserves
distance, that is if |f(x)− f(y)| = |x− y| for all x, y ∈ Rn. Using some linear algebra, one
can show that f is an isometry if and only if f is of the form f(x) = Ax+b for some vector
b ∈ Rn and some orthogonal n× n matrix A (A is orthogonal means that ATA = I).

5.5 Note: Since the 2 × 2 orthogonal matrices are the matrices either of the form(
cos θ − sin θ
sin θ cos θ

)
or of the form

(
cos θ sin θ
sin θ − cos θ

)
, we see that the isometries in R2 are

the maps f which are either of the form f(z) = az + b or of the form f(z) = az + b for
some a, b ∈ C with |a| = 1.

5.6 Definition: A map f : U ⊆ Rn → Rn is called a similarity of scaling factor k > 0
when it scales distances by a factor of k, that is if |f(x)−f(y)| = k|x−y| for all x, y ∈ Rn.
It is not hard to see that f is a similarity of scaling factor k if and only if 1

kf is an isometry.

5.7 Note: A map f : U ⊆ C → C is a similarity of scaling factor k > 0 if and only if f
is either of the form f(z) = az + b or of the form f(z) = az + b for some a, b ∈ C with
|a| = k.

5.8 Note: Let f : U ⊆ Rn → Rm be differentiable at a. Given a vector v ∈ Rn,
choose a curve α(t) with α(0) = a and α′(0) = v. The image of α under f is the curve
β(t) = f

(
α(t)

)
. By the Chain Rule, we have β′(0) = Df(α(0))α′(0) = Df(a)v, so we say

that f sends the vector v at a to the vector w = Df(a)v at f(a).

5.9 Definition: A map f : U ⊆ Rn → Rm is called conformal at a when it preserves
angles between curves at a, or to be precise, f is conformal at a when

(Df v) · (Df w)

|Df v| |Df v|
=

v · w
|v| |w|

for all vectors v, w ∈ Rn. We say f is conformal in U when it is conformal at every a ∈ U .
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5.10 Note: Using linear algebra, one can show that f is conformal at a if and only if
Df(a)TDf(a) = k I for some k > 0. We shall show only that the latter implies the former;
suppose that DfTDf = k I with k > 0. Then

(Df v) · (Df w) = (Df v)T (Df w) = vTDfTDf w = vT k I w = k vTw = k v · w

and in particular |Df v| =
√

(Df v) · (Df v) =
√
k |v|, and similarly |Df w| =

√
k |w|. It

follows that f is conformal; f behaves locally like a similarity of scaling factor
√
k.

5.11 Example: The steriographic projection from the unit sphere, with the north
pole removed, to the complex plane is the map φ which sends the point (x, y, z) on the
sphere to the point of intersection (u, v) of the line through (x, y, z) and the plane z = 0.
Find a formula for φ and φ−1, and show that stereographic projection is conformal.

Solution: The line through (0, 0, 1) and (x, y, z) is given by (0, 0, 1) + t(x, y, z − 1), t ∈ R.
The point of intersection of this line with the plane z = 0 occurs when 1+t(z−1) = 0, that
is when t = 1/(1−z). The point of intersection is (0, 0, 1)+ 1

1−z (x, y, z−1) = ( x
1−z ,

y
1−z , 0),

so we have

(u, v) = φ(x, y, z) =

(
x

1− z
,

y

1− z

)
.

Given (u, v) on the other hand, the line through (0, 0, 1) and (u, v) is given by α(t) =
(0, 0, 1) + t(u, v,−1) = (tu, tv, 1− t). The point of intersection with the unit sphere occurs
when |α(t)| = 1, so we need (tu)2 + (tv)2 + (1− t)2 = 1, that is t2u2 + t2v2−2t+ t2 = 0, or
t (tu2 + tv2 + t− 2) = 0. The point of intersection occurs when t = 2

u2+v2+1 , so we obtain
the formula

(x, y, z) = φ−1(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

Now let us show that φ−1 is conformal. We have

Dφ−1 =

xu xv
yu yv
zu zv

 =
2

(u2 + v2 + 1)2

−u2 + v2 + 1 −2uv
−2uv u2 − v2 + 1

2u 2v


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and a quick calculation yields

(Dφ−1)T (Dφ−1) =
4

(u2 + v2 + 1)2

(
1 0
0 1

)
Note that near the point (u, v), φ−1 behaves like a similarity of scaling factor 2/(u2+v2+1).

5.12 Theorem: Let f : U ⊆ C→ C.
(a) f is conformal at a if and only if either f is holomorphic at a with f ′(a) 6= 0, in which
case f preserves orientation, or f is conjugate-holomorhic at a with f×(a) 6= 0, in which
case f reverses orientation.
(b) If U is connected, then f is conformal in U if and only if either f is homorphic in U with
f ′(z) 6= 0 for all z ∈ U , in which case f preserves orientation, or f is conjugate-holomorphic
in U with f×(z) 6= 0 for all z ∈ U , in which case f reverses orientation.

Proof: To prove part (a), note that f is conformal at a if and ony if Df(a) is a positive scalar
multiple of an orthogonal matrix. Since the 2× 2 orthogonal matrices are the matrices of

the form

(
cos θ − sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ − cos θ

)
, we see that f is conformal if and only if

Df =

(
α −β
β α

)
or Df =

(
γ δ
δ −γ

)
for some α, β or γ, δ ∈ R not both equal to zero.

Part (b) involves a subtle point: if f is conformal in U then how do we know that f
cannot be holomorphic at some points a ∈ U and conjugate-holomorphic at other points?
It is for this reason that we must assume that U is connected. Since we have assumed that
all functions in this chapter are C2 we know that ux, uy, vx and vy are all continuous and
so |Df | = uxvy − uyvx is also continuous. At each point a ∈ U we have |Df(a)| 6= 0, so
|Df | is a continuous map from U to R∗. Since U is connected, we know that |Df |(U) is
also connected and lies in R∗. This implies that either |Df(a)| > 0 for all a or |Df(a)| < 0
for all a.

5.13 Note: If f : U ⊆ C → C is holomorphic at a with f(a) = b and f ′(a) = r ei θ,
where r > 0, then by the definition of the (complex) derivative, for z near a we have
f(z) ∼= f(a) + f ′(a)(z − a) = b + reiθ(z − a). This shows that locally, f behaves like the
following similarity: translate by −a, rotate by θ, scale by r, then translate by b.

5.14 Example: Let f(z) = z2. Then f is holomorphic in C and f ′(z) = 2z so f ′(z) 6= 0
in C∗. Hence f(z) = z2 is conformal in C∗ and preserves orientation. Verify directly that
f preserves the oriented angle from α(t) = i+ t to β(t) = i+ (1 + i) t.

Solution: We have α(0) = β(0) = i, α′(0) = 1 =

(
1
0

)
and β′(0) = 1 + i =

(
1
1

)
, so the

angle from α′(0) to β′(0) is π
4 . The images are γ(t) = f(α(t)) = (i+t)2 = (t2−1)+i 2t (this

is the parabola u = 1
4v

2 − 1) and δ(t) = f(β(t)) = (i+ (1 + i)t)2 = −(1 + 2t) + i (2t+ 2t2)
(check that this is the parabola v = 1

2u
2 − 1

2 ). Note that γ(0) = δ(0) = −1, so the two

parabolas intersect at −1. We have γ′(t) = 2t + 2i so γ′(0) = 2i =

(
0
2

)
and we have

δ′(t) = −2 + i (4t+ 2) so δ′(0) = −2 + 2i =

(
−2
2

)
. So the angle from γ′(0) to δ′(0) is π

4 .

Notice also that α and β meet at i, and we have f(i) = −1 and f ′(i) = 2i = 2ei π/2.
So near z = i, f can be approximated as follows: translate by −i, rotate by π

2 , scale by 2,
then translate by −1. Indeed, this is precisely what happens to the tangent vectors.
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5.15 Definition: Let u : U ⊆ C→ C. The (2 dimensional) Laplacian is the differential
operator ∇2 given by

∇2u = uxx + uyy .

The map u is called harmonic in U when it is C2 and satisfies Laplace’s equation

∇2u = 0 .

5.16 Note: There are several functions from physics which satisfy Laplace’s equation.
Steady state temperature (in a homogeneous medium), electrostatic potential (in a vacc-
ume) and the velocity potential for a steady flow of fluid (irrotational and indecompressible)
al satisfy Laplace’s equation.

5.17 Example: As an exercise, you should check that the map u(x, y, z) =
−1√

x2 + y2 + z2

satisfies the 3 dimensional Laplace equation uxx + uyy + uzz = 0, but that the map

u(x, y) = − 1√
x2 + y2

does not satisfy the 2 dimensional Laplace equation. The first map

u represents the electic potential surrounding a point charge in R3, but the second map u
does not represent the potential which surrounds a long straight wire. On the other hand,
you can check that the map u(x, y) = ln

√
x2 + y2 does satisfy the 2 dimensional Laplace

equation, and this map u does represent the potential surrounding a wire.

5.18 Theorem: If f(z) = u(z) + i v(z) is holomorphic (or conjugate-holomorphic) in U
then u and v are both harmonic functions. When f = u+ i v is holomorphic, we say that
v is the harmonic conjugate of u.

Proof: The Cauchy-Riemann equations ux = vy and uy = −vx imply that

uxx = (ux)x = (vy)x = vyx = vxy = (vx)y = (−uy)y = −uyy

and likewise vxx = −uyx = −uxy = −vyy.

5.19 Example: Let f(z) = ez. Verify that u is harmonic, where u = Re (f).

Solution: Since ex+i y = ex(cos y + i siny), we have u(x+ i y) = ex cos y. So ux = ex cos y
and uxx = ex cos y, while uy = −ex sin y and uyy = −ex cos y = −uxx.
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5.20 Example: Let f(z) = z3. Verify that u is harmonic, where u = Re (f).

Solution: We have f(x+ i y) = (x+ i y)3 = (x3 − 3xy2) + i (3x2y − y3) so u = x3 − 3xy2.
We have ux = 3x2 − 3y2 so uxx = 6x and uy = 3x2 − 6xy and so vyy = −6x = −uxx.

5.21 Note: There is a partial converse to the above note which says that for certain
sets U , for example when U is convex, if u is harmonic in U then there exists a harmonic
function v such that the map f = u + i v is holomorphic in U . The following example
shows how to find v.

5.22 Example: Let u = 2x2 + 3xy − 2y2. Check that u is harmonic in C, and find a
harmonic conjugate v.

Solution: We have ux = 4x + 3y, uxx = 4, uy = 3x − 4y and uyy = −4 = −uxx, so u
is harmonic. To find v such that u + i v is holomorphic, we need to find v such that the
Cauchy-Riemann equations ux = vy and uy = −vx are satisfied. To get vy = ux = 4x+ 3y
we must take v =

∫
4x + 3y dy = 4xy + 3

2y
2 + c(x). Then we have vx = 4y + c′(x). To

get vx = −uy = 4y − 3x we need to have c′(x) = −3x, so we choose c(x) = − 3
2x

2. In this
way we obtain v = 4xy+ 3

2 (y2−x2). The function f = u+ i v should be holomorphic, and
indeed you can check that f(z) =

(
2− 3

2 i
)
z2.

5.23 Example: A long strip of heat conducting material is modelled by the set

S = {x+ i y|0 < y < 1} .
Find the steady state temperature u(x+i y) at each point in the strip given that the bottom
edge is held at a constant temperature of a◦ and the top edge is held at b◦. Describe the
isotherms, that is the curves of constant temperature.

Solution: We must find a map u : S → R which is continuous on S and harmonic in S
such that u(x, 0) = a and u(x, 1) = b for all x. We can take

u(x+ i y) = a+ (b− a)y .

It is easy to see that u is harmonic, indeed uxx = uyy = 0. Also notice that u is the
imaginary part of the holomorphic map f(z) = a i + (b − a)z. The isotherm u = c is the
horizontal line c = a+ (b− a)y, or y = c−a

b−a .

5.24 Theorem: If u : U ⊆ C→ R is harmonic and if f : V ⊆ C→ U ⊆ C is holomorphic
then u ◦ f is harmonic.

Proof: Write x+ i y = f(s+ i t), u = u(x+ i y), and v = u ◦ f . The chain rule gives

vs = uxxs + uyys vt = uxxt + uyyt .

Using the chain rule and the product rule, we obtain

vss = (uxxxs + uxyys)xs + uxxss + (uyxxs + uyyys)ys + uyyss

vtt = (uxxxt + uxyyt)xt + uxxtt + (uyxxt + uyyyt)yt + uyytt

Adding these, using the fact that uxy = uyx we obtain

vss+vtt = uxx(xs
2+xy

2)+uyy(ys
2+yt

2)+uxy(2xsys+2xtyt)+ux(xss+ytt)+uy(yss+ytt) .

Since f is holomorphic, the Cauchy-Riemann equations xs = yt and xt = −ys imply that
(ys

2 + yt
2) = (xs

2 +xt
2) and that (2xsys + 2xtyt) = 0 and that x and y are each harmonic

so that (xss + xtt) = 0 and (yss + ytt) = 0. So we are left with

vss + vtt = (uxx + uyy)(xs
2 + xy

2) .

Finally, since u is harmonic, we have (uxx + utt) = 0 and hence vss + vtt = 0.
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5.25 Note: We shall now consider problems of the following kind: given an open set
U ⊆ C, find a harmonic function u : U → R which satisfies some given condition on the
boundary ∂U ; this kind of problem is called a boundary value problem. We solved
an easy boundary value problem in example 5.23, in which the open set was the strip
S = {x+ i y|0 < y < 1}. The above theorem allows us to use a solution to one boundary
value problem on a set U to obtain a solution to another problem on a set V by mapping
the set U to the set V using a holomorphic map.

5.26 Example: The upper half-plane H = {x + i y|y > 0} is a model for a large heat
conducting plate. Find the steady state temperature v(z) at each point in the plate if the
temperature along the bottom edge is held at a◦ for x > 0 and b◦ for x < 0. Also, describe
the isotherms.

Solution: Notice that we can map the strip S = {x + i y|0 < y < 1} (which appeared in
the example 5.23) to the half-plane H = {x + i y|y > 0} using the map f(z) = eπ z. The
bottom edge of S is mapped to the positive x-axis, and the top edge of S is mapped to the
negative x-axis. To map H back to S we use the inverse map g(z) = 1

π log z, where log z
is the branch of the logarithm given by log z = ln |z|+ iθ(z) where 0 ≤ θ(z) ≤ π.

From example 5.23, the map u(z) = Im (a i+ (b−a)z) is harmonic in the strip S with
u = a when y = 0 and u = b when y = 1. To solve our problem in H, we take v = u ◦ g.
To be explicit, we take

v(z) = Im

(
a i+

b− a
π

log z

)
= a+

b− a
π

θ(z) ,

where 0 ≤ θ(z) ≤ π. The isotherm u = c is the ray c = a+ b−a
π θ(z) or θ(z) = c−a

b−a π.

5.27 Example: Find the steady state temperature u(z) inside a circular plate modelled
by the disc U = D(0, 1), given that the top half of the boundary is held at a◦ = 1◦ and the
bottom half is held at b◦ = 5◦. In particular, find the temperature at the point 1

2 i. Also
describe the isotherm u = 2.

Solution: The map f1(z) =
z + 1

2
maps the discD(0, 1) to the discD( 1

2 ,
1
2 ), and it sends the

top half of the boundary of the first disc to the top half of the boundary of the second. The

map f2(z) =
1

z
maps the disc D( 1

2 ,
1
2 ) to the half-plane H1 = {x+ i y|x > 1}, and it maps

the top half of the boundary of the disc to the bottom half {1 + i y|y < 0} of the boundary
of H1. The map f3(z) = z−1 translates the half-plane H1 to H0 = {x+i y|x > 0}. Finally
the map f4(z) = i z rotates H0 to the half-plane H = {x+ i y|y > 0} sending the bottom
half of the boundary of H0 to the right half {x > 0} of the boundary of H. So we can use
our solution v(z) from the previous example to obtain the solution u = v ◦ f4 ◦ f3 ◦ f2 ◦ f1.

To be explicit, we have f2(f1(z)) =
2

1 + z
and f3(f2(f1(z))) =

(
2

1 + z
− 1

)
=

(
1− z
1 + z

)
and f4(f3(f2(f1(z)))) = i

(
1− z
1 + z

)
, so our solution is

u(z) = a+
b− a
π

θ

(
i

1− z
1 + z

)
= 1 +

4

π
θ

(
i

1− z
1 + z

)
,

where 0 ≤ θ
(
i 1−z
1+z

)
≤ π. Since θ(i 1−z

1+z ) = θ( 1−z
1+z ) + π

2 , we have

u(z) = 3 +
4

π
θ

(
1− z
1 + z

)
,
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where −π2 ≤ θ
(
1−z
1+z

)
≤ π

2 . In particular, the temperature at 1
2 i is

u( 1
2 i) = 3 + 4

π θ
( 1− 1

2 i

1+ 1
2 i

)
= 3 + 4

π θ
(
3−4i
5

)
= 3 + 4

π tan−1
(
− 4

3

) ∼= 1.82◦ .

To find the isotherm u = 2, we recall that the corresponding isotherm v = c = 2 in
example 5.26 was the ray θ(z) = c−a

b−a π = 2−1
5−1 π = π

4 . This ray is rotated by f4
−1(z) = −iz

to the ray θ(z) = −π4 , then translated by f3
−1 = z+1 to the ray θ(z−1) = −π4 , this ray is

the portion below the x-axis of the line whose nearest point to the origin is 1
2 (1 + i) and so

it is mapped by f2
−1(z) = 1/z to the portion above the x-axis of the circle with diameter

0, 2
1+i = 1− i, that is the circle |z− 1−i

2 | =
√
2
2 , and finally this arc is translated and scaled

by the map f1
−1(z) = 2z − 1 to the portion above the x-axis of the circle |z + i| =

√
2.

Thus the isotherm u = 2 is the arc |z + i| =
√

2, z ∈ D(0, 1).

We also remark that θ( 1−z
1+z ) = Im

(
log( 1−z

1+z )
)

= −2 Im (tanh−1 z).

f1(z) = z+1
2 f2(z) = 1/z f4(f3(z)) = i(z − 1)

5.28 Example: Find the steady state temperature u(z) in the plate shaped like the semi-
infinite strip U = {x + i y| − 1 < x < 1, y > 0} given that the temperature along the
bottom edge and the right edge is held at a◦ = 10◦ and the temperature along the left
edge of the boundary is held at b◦ = 40◦. Also, find the temperature at z = i.

Solution: The map f1(z) = π
2 z widens the strip U by a factor of π

2 , and then the map
f2(z) = sin z sends the strip to the half plane H = {x + i y|y > 0}. The left edge of the
boundary of U is mapped to the portion of the real axis with x < −1. Lastly, the map
f3(z) = z + 1 sends H to itself and it sends the portion of the real axis with x < −1
to the portion with x < 0. We can again use our solution v(z) from example 5.26 to
obtain the solution to this problem. We take u = u ◦ f3 ◦ f2 ◦ f1. To be explicit, we have
f3(f2(f1(z))) = 1 + sin π

2 z and so

u(z) = a+
b− a
π

θ
(
1 + sin(π2 z)

)
= 10 +

30

π
θ
(
1 + sin(π2 z)

)
,

where 0 ≤ θ
(
1 + sin(π2 z)

)
≤ π. In particular, we have

u(i) = 10 + 30
π θ
(
1 + sin(i π2 )

)
= 10 + 30

π θ
(
1 + i sinh π

2

)
= 10 + 30

π tan−1
(

sinh π
2

) ∼= 21.1◦ .

5.29 Example: Find the steady state temperature v(z) at each point on a plate modelled
by the half-plane H = {x + i y|y > 0} given that the temperature along the boundary is
held constant at a◦ for x > 1, b◦ for −1 < x < 1 and at c◦ for x < −1.
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Solution: We can use the fact that the sum of two harmonic maps will also be harmonic.
We use the solution from example 5.26 to get one harmonic map v1 in H with v1 = a along
the portion of the x-axis with x > 1 and v1 = b along the portion with x < 1, and we get
another harmonic map v2 in H with v2 = 0 along the portion of the x-axis with x > 1 and
v2 = c − b along the portion with x < −1. Then we add them to get v = v1 + v2. To be

explicit, v1(z) = a+
b− a
π

θ(z − 1) and v2(z) =
c− b
π

θ(z + 1) and so

v(z) = a+
b− a
π

θ(z − 1) +
c− b
π

θ(z + 1) ,

where 0 ≤ θ(z − 1), θ(z + 1) ≤ π.

5.30 Example: Find the steady-state temperature u(z) in the semi-circular plate mod-
elled by U = {x+ i y|x2 + y2 < 1, y < 0} given that the temperature along the boundary
is held constant at a◦ = 5◦ when y = 0 and x > 0, and at b◦ = 10◦ when y = −

√
1− x2

and at c◦ = 20◦ when y = 0 and x < 0. In particular, find the temperature at z = − 1
2 i.

Solution: The map f1 = 1/z sends U to the region V above the x-axis and outside the unit
circle V = {x + i y|x2 + y2 > 1, y > 0}. Then f2(z) = log z, the branch of the logarithm
with 0 ≤ θ ≤ π, maps V to the semi-infinite strip W = {x + i y|x > 0, 0 < y < π}.
We rotate the strip by 90◦ using f3(z) = i z then shift it to the right by π

2 using the
map f4(z) = z + π

2 (so that its base is centred at the origin), and then we use the map
f5(z) = sin z to map the strip to the half-plane H = {x+ i y|y > 0}. The portions of the
boundary which are to be held constant at a◦, b◦ and c◦ are mapped to the portions of the
x-axis with x > 1, −1 < x < 1 and x < −1 respectively, so we can use our solution v(z)
from the previous example. Our solution is u = v ◦ f5 ◦ . . . ◦ f1. To be explicit, we have
f5(f4(f3(z))) = sin(i z + π

2 ) = cos(i z) = cosh z, and f5(f4(f3(f2(z)))) = cosh(log z) =

elog z + e− log z

2
=
z + 1

z

2
, and so (f5 ◦ . . . ◦ f1)(z) =

1
z + z

2
=

1 + z2

2z
. Our solution is

u(z) = a+
b− a
π

θ

(
1 + z2

2z
− 1

)
+
c− b
π

θ

(
1 + z2

2z
+ 1

)
= 5 +

5

π
θ

(
1 + z2

2z
− 1

)
+

10

π
θ

(
1 + z2

2z
+ 1

)
.

In particular, u(−i/2) = 5+ 5
π θ
( 3/4
−i −1

)
+ 10

π θ
( 3/4
−i +1

)
= 5+ 5

π θ
(
−1+i 3

4

)
+ 10

π θ(1+i 3
4

)
=

5 + 5
π

(
π − tan−1 3

4

)
+ 10

π tan−1 3
4 = 10 + 5

π tan−1 3
4
∼= 11.0◦.

f1(z) = 1/z f2(z) = log z f4(f3(z)) = iz + π
2
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5.31 Note: All of the above examples can be re-worded so that they are asking us to find
the electrostatic potential in a certain region given that the voltage along the boundary is
held constant. If u is the electrostatic potential in a region, then the electric field E is
defined by

E = −∇u .

If f is holomorphic and u = Re (f) and v = Im (f), then we have ∇u = ux + i uy = fz and
∇v = vx + i vy = −uy + i ux = i(ux + i uy) = i∇u = i fz.

5.32 Example: Find the electostatic potential and the electric field at each point inside
a long hollow metal cylinder, with unit radius, made up of two semi-cylindrical pieces
separated by thin strips of insulating material, with one piece held at a potential of 1 Volt,
and the other at 5 Volts. In particular, find the electrostatic potential and the electric field
at points along the centre of the cylinder.

Solution: The cross-section of the cylinder is modelled by the unit disc U = D(0, 1). As in

example 5.27, the electric potential is u(z) = 3 + 4
π θ
(

1−z
1+z

)
. Note that u = Re (f), where

f(z) = 3− 4
π i log

(
1−z
1+z

)
. The electric field is E = −∇u = −fz = 4

π i
1+z
1−z

−2
(1+z)2 = 8 i

π(1−z2) .

In particular, we have u(0) = 3 and E(0) = 8
π i.

5.33 Example: Find all solutions v(z) to Laplace’s equation in C∗ such that v(r ei θ) =
f(r) for some function f (the solution will model the electrostatic potential at each point
around a long charged rod).

Solution: The exponential function maps C onto C∗. If v(z) is harmonic in C∗ then
u(z) = v(ez) will be harmonic in C. If v is of the form v(r ei θ) = f(r) then we have
u(x + i y) = v(exeiy) = f(ex). Since u is independent of y, Laplace’s equation becomes
uxx = 0, and the only solutions are of the form u(x+ i y) = ax+ b = Re (az + b) for some
a, b ∈ R. Thus we have v(z) = u(log z) = Re (a log z + b) = a ln |z|+ b.

5.34 Example: Find the electrostatic potential v(z) and the electric field E(z) at each
point inside a long grounded cylinder, of unit radius, which encloses a charged wire centred
inside the cylinder.

Solution: We look for a harmonic map v(z) defined on the punctured disc U = D∗(0, 1)
with v(z) = 0 when |z| = 1. From the previous example, we can take v(z) = a ln |z|. The
constant a depends on the charge per unit length and on the choice of units. In fact

v(z) = −2kq ln |z| ,

where q is the charge on the rod in coulombs per meter and k ∼= 9 × 109 N m2

C2 . Since

v = Re (f), where f(z) = −2kq log(z), we have E(z) = −fz = 2kq/z.
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5.35 Example: A charged wire at x = 0, y = 1 lies inside the region in space given by
y > 0, and the boundary of the region is grounded. Find the potential u(z) at each point
in the region and around the wire.

Solution: Let U be the punctured half-plane U = {z|Im z > 0, z 6= i}. The map f1(z) =
z + i maps U to the set V = {z|Im z > 1, z 6= 2i}, the map f2(z) = 1/z maps V to the
punctured disc W = D∗(− 1

2 i,
1
2 ), and the map f3(z) = 2z + i maps W to the punctured

disc D∗(0, 1). So our solution is u = v ◦ f3 ◦ f2 ◦ f1 where v(z) = −2kq ln |z| is the solution
from the previous example. Check that

u(z) = −2kq ln

∣∣∣∣z − iz + i

∣∣∣∣ .
f1(z) = z + i f2(z) = 1/z f3(z) = 2z + i

5.36 Note: The velocity field F of a flow (of perfect fluid) and the velocity potential v
are related (like the electric field and electric potential) by

F = −∇v .

5.37 Example: Find the velocity potential v(z) of the constant flow with velocity field
F (x+ i y) = c in the upper half plane H = {x+ i y|y > 0}.

Solution: We must have F = −∇v so we need c = −(vx+i vy), that is vx = −c and vy = 0.
Since vy = 0, v is independent of y, and since vx = −c we have

v = −c x = Re (−c z) .

We could add a constant to this solution.

5.38 Example: Use the previous example to find the velocity potential for the region
U = {x+ i y|x2 + y2 > 1, y > 0} given that as z →∞ the flow tends to the constant flow
F = k. Also, determine the speed of the flow near z = i, that is, at the top of the bump.

Solution: As in example 5.32, the map f(z) = cosh(log z) = 1
2 (z + 1/z) sends the region

U to the upper half-plane H = {x+ i y|y > 0}. We use the potential v from the previous
example, and we take u(z) = v(f(z)) = Re g(z), where g(z) = − c

2 (z + 1/z). The velocity
field is F = −gz = c

2 (1− 1/z2). As z → ∞ we have F (z) → c/2 so we must take c = 2k.
Thus our solution is

v(z) = Re
(
− k(z + z−1)

)
, F (z) = k(1− 1/z2) .

We have F (i) = 2k, so the velocity at the top of the bump is twice the velocity at ∞.
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Chapter 6. Integration

6.1 Definition: Let I be an interval in R (I could be open, closed or half-open). Say
I = 〈a, b

〉
where a, b ∈ R ∪ {±∞} with a < b and where 〈 and 〉 denote either open or

closed brackets depending on whether a and b are open or closed endpoints of I. A function
f : I → C is called piecewise continuous when there exist points si ∈ R ∪ {±∞} with
a = s0 < s1 < · · · < sn = b and there exist continuous functions

g1 : 〈s0, s1]→ C , gi : [si−1si]→ C for 1 < i < n , and gn : [sn−1, sn〉 → C

such that f(t) = g(t) for all t ∈ (si−1, si). A function f : I → C is called piecewise C1
when f is differentiable and f ′ is piecewise continuous on I.

6.2 Definition: Let f : I ⊆ R → C be piecewise continuous, where I is an interval, let
u(t) = Re f(t) and v(t) = Im f(t), and let t1, t2 ∈ I. We define the integral of f from t1
to t2 to be ∫ t2

t1

f =

∫ t2

t1

f(t) dt :=

∫ t2

t1

u(t) dt + i

∫ t2

t1

v(t) dt .

6.3 Remark: It is also possible to define the definite integral as a limit of Riemann sums,
but we shall not do this here.

6.4 Example: Let f(t) = ei t for t ∈ R. For θ ∈ R, find

∫ θ

0

α(t) dt.

Solution: We have∫ θ

0

f(t) dt =

∫ θ

0

(
cos t+ i sin t

)
dt =

∫ θ

0

cos t dt+ i

∫ θ

0

sin t dt

=
[

sin t
]θ
0

+ i
[
− cos t

]θ
0

= sin θ + i (1− cos θ) = i− i ei θ .

Note that as θ varies, this traces out the circle centered at i of radius 1.

6.5 Theorem: (Linearity) If f, g : I ⊆ R → C are piecewise continuous, where I is an
interval with t1, t2 ∈ I, and c ∈ C then∫ t2

t1

c f = c

∫ t2

t1

f and

∫ t2

t1

(f + g) =

∫ t2

t1

f +

∫ t2

t1

g .

Proof: This follows from Linearity for real-valued functions.

6.6 Theorem: (Decomposition) If f : I ⊆ R→ C is piecewise continuous, where I is an
interval with t1, t2, t3, · · · , tn ∈ I then∫ tn

t1

f =

∫ t2

t1

f +

∫ t3

t2

f + · · ·+
∫ tn

tn−1

f .

Proof: This follows from the Decomposition Theorem for real-valued functions.
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6.7 Theorem: (Change of Parameter) Let s : I ⊆ R → R be piecewise C1 (this means
that s = s(t) is continuous and s′(t) is piecewise continuous) where I is an interval, let
J = s(I), which is also an interval, let f : J ⊆ R → R be piecewise continuous, and let
t1, t2 ∈ I. Then ∫ t2

t1

f(s(t))s′(t) dt =

∫ s(t2)

s(t1)

f(s) ds .

Proof: This follows from the Change of Variables Theorem for real-valued functions.

6.8 Theorem: (Estimation) Let f : [t1, t2] ⊂ R→ C be piecewise continuous. Then∣∣∣∣∫ t2

t1

f(t) dt

∣∣∣∣ ≤ ∫ t2

t1

|f(t)| dt .

Proof: Write

∫ t2

t1

f(t) dt in polar coordinates as

∫ t2

t1

f(t) dt =

∣∣∣∣∫ t2

t1

f(t) dt

∣∣∣∣ ei θ. Then

∣∣∣∣∫ t2

t1

f(t) dt

∣∣∣∣ = e−i θ
∫ t2

t1

f(t) dt =

∫ t2

t1

e−i θf(t) dt =

∣∣∣∣Re

∫ t2

t1

(
e−iθf(t)

)
dt

∣∣∣∣ ,
where the last equality holds since for r ≥ 0 we have r = |Re (r)|. We can then use the
Estimation Theorem for real-valued functions to obtain∣∣∣∣Re

∫ t2

t1

(
e−iθf(t)

)
dt

∣∣∣∣ =

∣∣∣∣∫ t2

t1

Re
(
e−iθf(t)

)
dt

∣∣∣∣ ≤ ∫ t2

t1

∣∣Re
(
ei θf(t)

)∣∣ dt ≤ ∫ t2

t1

∣∣f(t)
∣∣ dt ,

since |Re (ei θf(t))| ≤ |eiθf(t)| = |f(t)|.

6.9 Theorem: (The Fundamental Theorem of Calculus) Let f, g : I ⊆ R→ C where I is
an interval with t1, t2 ∈ I, f is piecewise continuous, g is differentiable, and g′ = f . Then∫ t2

t1

f(t) dt = g(t2)− g(t1) .

Proof: Let u(t) = Re g(t) and v(t) = Im g(t) so that g(t) = u(t) + i v(t) and f(t) = g′(t) =
u′(t)+i v′(t). Then, using the Fundamental Theorem of Calculus for real-valued functions,
we have ∫ t2

t1

f(t) dt =

∫ t2

t1

u′(t) + i v′(t) dt =

∫ t2

t1

u′(t) dt + i

∫ t2

t1

v′(t) dt

=
(
u(t2)− u(t1)

)
+ i
(
v(t2)− v(t1)

)
= g(t2)− g(t1) .

6.10 Example: With the help of the Fundamental Theorem of Calculus, we can find the
integral of example 6.4 as follows∫ θ

0

ei t dt =
[
− i ei t

]θ
t=0

= −i ei θ + i .

6.11 Definition: Let a, b ∈ U ⊆ C. A path (or curve) from a to b in U is a piecewise
C1 function α : [t1, t2] ⊆ R→ U with α(t1) = a and α(t2) = b. In the case that a = b, we
say that α is a loop at a in U .
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6.12 Example: For a, b ∈ C, the path

α(t) = a+ (b− a) t , for 0 ≤ t ≤ 1

traces the line segment from a to b.

6.13 Example: For a ∈ C and 0 < r ∈ R, the loop

α(t) = a+ r ei t , for 0 ≤ t ≤ 2π

traces the circle of radius r centered at a.

6.14 Definition: The arclength of a path α : [t1, t2]→ U ⊆ C is given by

L(α) =

∫ t2

t1

|α′(t)| dt .

We remark that the arclength L(α) exists and is finite, since α′ is piecewise continuous.

6.15 Example: Find the arclength of the path α(t) = t2 + i t3, 0 ≤ t ≤ 1.

Solution: We have

L(α) =

∫ 1

0

|α′(t)| dt =

∫ 1

0

|2t+ i 3t2| dt =

∫ 1

0

√
4t2 + 9t4 dt

=

∫ 1

0

t
√

4 + 9t2 dt =

∫ 13

4

1
18

√
u du

=

[
1
27u
√
u

]13
4

= 1
27

(
13
√

13− 8
)
.

6.16 Definition: Given a path α : [t1, t2]→ U ⊆ C and a continuous function f : U → C
we define the path integral of f along α to be∫

α

f =

∫
α

f(z) dz :=

∫ t2

t1

f(α(t))α′(t) dt .

6.17 Remark: It is possible to define the path integral as a limit of Riemann sums, but
we shall not do this here.

6.18 Remark: The complex path integral is related to real path integrals in the following
way. Write z = α(t) = x(t) + i y(t) and f(z) = u(z) + i v(z) with x, y, u, v ∈ R. Then∫

α

f(z) dz =

∫ t2

t1

f(α(t))α′(t) dt =

∫ t2

t1

(
u(α(t)) + i v(α(t))

)(
x′(t) + i y′(t)

)
dt

=

∫ t2

t1

u(α(t))x′(t)− v(α(t))y′(t) dt+ i

∫ t2

t1

v(α(t))x′(t) + u(α(t))y′(t) dt

=

∫
α

(u dx− v dy) + i

∫
α

(v dx+ u dy) .

This can easily be remembered by defining dz = dx+ i dy and then writing∫
α

f(z) dz =

∫
α

(u+ i v)(dx+ i dy) =

∫
α

(u dx− v dy) + i

∫
α

(v dx+ u dy) .

In a similar way we could define the path integral

∫
α

f(z) dz, where dz = dx− i dy
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6.19 Example: Find

∫
α

c where a, b, c ∈ C and α(t) = a+ (b− a) t for 0 ≤ t ≤ 1.

Solution: We have∫
α

c dz =

∫ 1

0

c α′(t) dt =

∫ 1

0

c (b− a) dt =
[
c (b− a) t

]1
t=0

= c (b− a) .

6.20 Example: Find

∫
α

z2 dz where α(t) = 2 + (−1 + i) t for 0 ≤ t ≤ 1.

Solution: We have∫
α

z2 dz =

∫ 1

0

(
α(t)

)2
α′(t) dt =

∫ 1

0

(
2 + (−1 + i) t

)2
(−1 + i) dt

=
[
1
3

(
2 + (−1 + i) t

)3]1
0

= 1
3

(
(1 + i)3 − 23

)
= 1

3 (−2 + 2i− 8) = − 10
3 + 2

3 i .

6.21 Theorem: (Linearity) Let α be a path in U ⊆ C let f, g : U → C be continuous,
and let c ∈ C. Then ∫

α

c f = c

∫
α

f and

∫
α

(f + g) =

∫
α

f +

∫
α

g .

Proof: This follows from the Linearity Theorem 6.5.

6.22 Theorem: (Decomposition) Let α : [t1, t2] → U ⊆ C be a path, let n be a positive
integer, let t1 = s0 < s1 < s2 < · · · < sn = t1, for each i = 1, 2, · · · , n, let αi be the
restriction of α to the interval [si−1, si], and let f : U → C be continuous. Then∫

α

f =

∫
α1

f +

∫
α2

f + · · ·+
∫
αn

f .

Proof: This follows from the Decomposition Theorem 6.6.

6.23 Definition: For a path α : [t1, t2]→ U ⊂ C, we define the inverse path α−1 by

α−1(t) = α(t1 + t2 − t) , for t1 ≤ t ≤ t2 .

Note that α−1 has the same image as α, but it traces this image in the opposite direction
with α−1(t1) = α(t2) and α−1(t2) = α(t1).

6.24 Theorem: (Change of Direction) Let α : [t1, t2] → U ⊆ C be a path, and let
f : U → C be continuous. Then ∫

α−1

f = −
∫
α

f .

Proof: This theorem is a special case of the following more general theorem.
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6.25 Theorem: (Change of Parameter) Let s : [t1, t2] ⊂ R → [s1, s2] ⊂ R be invertible
and piecewise C1. Note that s must be monotonic, and if s is increasing then we have
s1 = s(t1) and s2 = s(t2), while if s is decreasing then we have s1 = s(t2) and s2 = s(t1).
Let α : [s1, s2] → U ⊆ C be a path, let β(t) = α(s(t)) for t1 ≤ t ≤ t2, and let f : U → C
be continuous. Then ∫

β

f(z) dz = ±
∫
α

f(z) dz ,

where we use + when s is increasing and we use − when s is decreasing.

Proof: Since β(t) = α(s(t)), the Chain Rule gives β′(t) = α′(s(t))s′(t), and so∫
β

f =

∫ t2

t1

f(β(t))β′(t) dt =

∫ t2

t1

f(α(s(t)))α′(s(t))s′(t) dt =

∫ s(t2)

s(t1)

f(α(s))α′(s) ds

by the Change of Parameter Theorem 6.7. When s is increasing, the integral on the right

is equal to

∫ s2

s1

f(α(s))α′(s) ds =

∫
α

f , but when s is decreasing, the integral on the right

is equal to

∫ s1

s2

f(α(s))α′(s) ds = −
∫ s2

s1

f(α(s))α′(s) ds = −
∫
α

f .

6.26 Remark: We use the Decomposition Theorem, the Change of Direction Theorem
and the Change of Parameter Theorem implicitly when we join two or more paths together
to form a single path or loop. For example, let a, b ∈ U ⊆ C, let f : U → C be continuous,
let α and β be two paths from a to b in U , and let γ be a loop which follows α then β−1.
Then no matter how we choose to parametrize γ, we have∫

γ

f =

∫
α

f −
∫
β

f .

This fact makes it unnecessary to find an explicit formula for γ(t), such as the following:
if α : [t1, t2]→ U and β : [t3, t4]→ U , then one specific parametrization for a loop γ which
follows α then β−1 is given by

γ(t) =

{
α(t) , t1 ≤ t ≤ t2

β(t2 + t4 − t) , t2 ≤ t ≤ t2 + t4 − t3 .

6.27 Theorem: (Estimation) Let α : [t1, t2] → U ⊆ C be a path, let L = L(α), and let
M = max

z=α(t)

∣∣f(z)
∣∣. Then

∣∣∣ ∫
α

f(z) dz
∣∣∣ ≤ ∫ t2

t1

∣∣f(α(t))α′(t)
∣∣ dt ≤ML .

Proof: This follows from the Estimation Theorem 6.8.

6.28 Definition: Let f, g : U ⊆ C→ C. If g′(z) = f(z) for all z ∈ U then we write

g =

∫
f

and we say that g is an antiderivative of f in U .
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6.29 Note: Note that since complex functions have the same derivative formulas as
real functions, they also have the same antiderivative formulas. For example, we can use
Integration by Parts or the Substitution Rule to find an antiderivative.

6.30 Example: Find an antiderivative for f(z) = z3 ez
2

.

Solution: Make the substitution w = z2, dw = 2z dz, then use Integration by Parts with
u = 1

2w, du = 1
2dw, v = ew and dv = ew dw to get∫
z3 ez

2

dz =

∫
1
2w e

w dw = 1
2w e

w −
∫

1
2e
w dw = 1

2w e
w − 1

2e
w

= 1
2 (w − 1) ew = 1

2

(
z2 − 1

)
ez

2

.

6.31 Note: Let U ⊆ C be a non-empty connected open set. If V ⊂ U is non-empty
and open, and U \ V is also open, then we must have V = U since otherwise U would be
separated by the open sets V and U \ V .

6.32 Theorem: Let U ⊆ C be a non-empty connected open set. Let f, g : U → C be
holomorphic with f ′ = g′ in U . Then there is a constant c ∈ C such that f = g + c in U .

Proof: Let a ∈ U , let c = f(a)− g(a), let h = f − g, and let

V =
{
z ∈ U

∣∣f(z) = g(z) + c
}

=
{
z ∈ U

∣∣h(z) = c
}
.

We must show that V = U . By the above note, we can do this by showing that V is
non-empty and that both V and U \ V are open. The set V is clearly non-empty since
a ∈ V . To see that V \U is open, note that V = h−1(c) so we have U \V = h−1

(
C \ {c}

)
.

Since h is continuous and C \ {c} is open, the set h−1
(
C \ {c}

)
is open by Theorem 3.29.

It remains to show that V is open.
Let w ∈ V , so we have h(w) = c, and choose r > 0 so that D(w, r) ⊆ U . We claim

that D(w, r) ⊆ V . Let z ∈ D(w, r). We must show that f(z) = g(z) + c, or equivalently
that h(z) = c. Note that since f ′ = g′ and h = f − g we have h′ = 0. Let p be the
point with Re (p) = Re (z) and Im (p) = Im (w). Let u = Re (h) and v = Im (h) so that
h = u+ i v. On the horizontal line through w, given by α(t) = w + t for t ∈ R, we have

d

dt
u
(
α(t)

)
+ i

d

dt
v
(
α(t)

)
=

d

dt
h(α(t)

)
= h′

(
α(t)

)
α′(t) = 0.

Since d
dtu
(
α(t)

)
= 0 and d

dtv
(
α(t)

)
= 0, it follows that the real-valued functions u

(
α(t)

)
and v

(
α(t)

)
are both constant and so h

(
α(t)

)
is constant. In particular, h(p) = h(w) = c.

A similar argument involving the vertical line through p, which is given by β(t) = p + it
for t ∈ R, shows that h(z) = h(p) = c.

6.33 Example: Let Uα =
{
r ei θ|r > 0, α < θ < α + 2π

}
, and let f(z) = 1/z. Then the

antiderivatives of f in Uα are the maps of the form g(z) = log z+c where log z = |z|+i θ(z)
with α < θ(z) < α + 2π. However, f(z) does not have an antiderivative in C∗ because
none of the maps g(z) can be extended continuously to C∗.
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6.34 Theorem: (The Fundamental Theorem of Calculus) Let α : [t1, t2] → U ⊆ C be a
path in U , and let f, g : U → C with f continuous and g holomorphic with g′ = f in U .
Then ∫

α

f =
[
g(z)

]α(t2)
α(t1)

= g(α(t2))− g(α(t1)) .

In particular, if α is a loop then ∫
α

f = 0 .

Proof: Let h(t) = g(α(t)). By the Chain Rule, h′(t) = Dg(α(t))α′(t) = g′(α(t))α′(t), and
so by the Fundamental Theorem of Calculus 6.9, we have∫
α

f =

∫
α

g′ =

∫ t2

t1

g′(α(t))α′(t) dt =

∫ t2

t1

h′(t) dt = h(t2)− h(t1) = g(α(t2))− g(α(t1)) .

When α is a loop we have α(t1) = α(t2), so g(α(t1)) = g(α(t2)), and hence

∫
α

f = 0.

6.35 Example: Using the Fundamental Theorem of Calculus, we can solve example 6.20
as follows ∫

α

z2 dz =
[
1
3 z

3
]α(1)
α(0)

=
[
1
3 z

3
]1+i
2

= 1
3

(
(−2 + 2i)− (8)

)
= − 10

3 + 2
3 i .

6.36 Example: Find

∫
α

z3 ez
2

dz where α(t) = 1 + 2 ei t, 2π
3 ≤ t ≤ π.

Solution: Since α
(
2π
3

)
=
√

3 i and α(π) = −1, by the Fundamental Theorem of Calculus,
using the antiderivative calculated in example 6.30, we have∫

α

z3 ez
2

dz =
[
1
2 (z2 − 1) ez

2
]−1
√
3 i

= 0− 1
2 (−4)e−3 = 2

e3 .

6.37 Example: Find

∫
α

sin3 z sec2 z dz where α(t) = i+ ei t for −π2 ≤ t ≤
π
2 .

Solution: We make the substitution u = cos z, du = − sin z dz to get∫
sin3 z sec2 z dz =

∫
sin3 z dz

cos2 z
=

∫
(1− cos2 z) sin z dz

cos2 z
=

∫
−1− u2

u2
du

=

∫
1− 1

u2 du = u+ 1
u = cos z + sec z ,

and so ∫
α

sin3 z sec2 z dz =
[

cos z + sec z
]α(π/2)
α(−π/2)

=
[

cos z + sec z
]2i
0

=
(
e2+e−2

2 + 2
e2+e−2

)
− (1 + 1) = e4+1

2e2 + 2e2

e4+1 − 2 .
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6.38 Definition: For a path α : [t1, t2] → U ⊆ C and a point a ∈ C which does not
lie on the path α, we define the winding number η(α, a) of α about a as follows. We
write α(t) = a + r(t)ei θ(t) where r(t) = |α(t) − a| and θ(t) is chosen continuously with
0 ≤ θ(t1) < 2π (it can be shown that the map θ(t) exists and is uniquely determined), and
then we set

η(α, a) =
θ(t2)− θ(t1)

2π
.

If α is a loop then we have α(t1) = α(t2) and so ei θ(t1) = ei θ(t2) and hence θ(t2) − θ(t1)
will be a multiple of 2π. Thus for a loop α, we have η(α, a) ∈ Z.

6.39 Example: It is not hard to find the winding number η(α, a) from a picture of the
path α. For example, for α and a as shown below, we can choose values t = si (as shown).
Then θ(s0) ∼= π

4 , and then θ(t) increases (since we move counterclockwise around a) with
θ(s1) = π

4 , θ(s2) = π, θ(s3) = 3π
2 , θ(s4) = 2π and θ(s5) = 5π

2 , and then θ(t) reaches its
maximum at θ(s6) ∼= 11π

4 and begins to decrease (since we now begin moving clockwise
around a) with θ(s7) = 5π

2 , θ(s8) = 2π and finally θ(s9) ∼= 7π
4 . Thus we have

η(α, a) =
θ(s9)− θ(s0)

2π
∼=

7π
4 −

π
4

2π
= 3

4 .

a

6.40 Example: If α is the pretzel curve α(t) = r(t)ei θ(t), where r(t) = (2 + cos 3t) and
θ(t) = 2t with 0 ≤ t ≤ 2π (as shown below), then the winding number of α about 0

is η(α, 0) = θ(2π)−θ(0)
2π = 4π−0

2π = 2. The winding number about other points is hard to
compute from the given formula for α, but is easy to find using a sketch of the curve. For
example we have η(α, 2) = η(α, 2ei 2π/3) = η(α, 2ei 4π/3) = 1 and η(α, 4) = 0.
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6.41 Theorem: (Winding Number) For the path α(t) = a+ r(t)ei θ(t) with r(t) > 0 and
t1 ≤ t ≤ tt, we have∫

α

dz

z − a
= ln

r(t2)

r(t1)
+ 2π i η(α, a) =

[
ln |z − a|

]α(t2)
α(t1)

+ 2π i η(α, a) .

In particular, when α is a loop we have r(t1) = r(t2) so

2π i η(α, a) =

∫
α

dz

z − a
Proof: We have∫

α

dz

z − a
=

∫ t2

t1

α′(t)

α(t)− a
dt =

∫ t2

t1

r′ei θ + i r θ′ei θ

r ei θ
dt =

∫ t2

t1

r′

r
dt+ i

∫ t2

t1

θ′ dt

=
[

ln r(t)
]t2
t1

+ i
[
θ(t)

]t2
t1

= ln r(t2)− ln r(t1) + i
(
θ(t2)− θ(t1)

)
= ln

r(t2)

r(t1)
+ 2π i η(α, a) .

6.42 Example: Find

∫
α

5z + 2

z2(z + 1)2
dz where α(t) =

(
1 + 3

8 t
)
ei πt for 0 ≤ t ≤ 8

3 .

Solution: First we sketch the path α by making a table of values and plotting points on a
polar grid.

t θ = π t r = 1 + 3
8 t

0 0 1
1/3 π/3 9/8
2/3 2π/3 5/4
1 π 11/8

4/3 4π/3 3/2
5/3 5π/3 13/8
2 2π 7/4

7/3 7π/3 15/8
8/3 8π/3 2

Notice that α(0) = 1 and α
(
8
3

)
= −1 +

√
3 i. Now we decompose the function

5z + 2

z2(z + 1)2

into partial fractions. In order to get
A

z
+
B

z2
+

C

z + 1
+

D

(z + 1)2
=

5z + 2

z2(z + 1)2
we need

Az(z+1)2+B(z+1)2+Cz2(z+1)+Dz2 = 5z+2 . Equate coefficients to get the equations
A+C = 0, 2A+B+C +D = 0, A+ 2B = 5 and B = 2. Solve these to get A = 1, B = 2,
C = −1 and D = −3. Using the Winding Number Theorem, we have∫

α

5z + 2

z2(z + 1)2
dz =

∫
α

1

z
+

2

z2
− 1

z + 1
− 3

(z + 1)2
dz

= ln 2
1 + 2π i η(α, 0)−

[
2
z

]−1+√3 i

1
− ln

√
3
2 − 2π i η(α,−1) +

[
3
z+1

]−1+√3 i

1

= ln 2 + 2π i 4
3 −

2
−1+

√
3 i

+ 2− ln
√
3
2 − 2π i 5

4 + 3
−1+

√
3 i
− 3

2

= ln 2 + 8π
3 i+ 1

2 (1 +
√

3 i) + 2− ln
√
3
2 −

5π
2 i− 3

4 (1 +
√

3 i)− 3
2

=
(

ln 4√
3

+ 1
4

)
−
(
π
6 −

√
3
4

)
i .
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Chapter 7. Cauchy’s Integral Formulas

7.1 Remark: Let U ⊆ C be open, and let α be a path which runs counterclockwise
around the boundary of a closed convex set E ⊂ U . Recall that Green’s theorem (for real
path integrals) states that if u, v : U → R are C1 maps, then∫

α

u dx+ v dy =

∫ ∫
E

(vx − uy) dx dy .

Let f : U → C be holomorphic, and let u = Re (f) and v = Im (f). If we suppose that u
and v are C1, then Green’s Theorem and the Cauchy-Riemann equations imply that∫

α

f(z) dz =

∫
α

(u+ i v)(dx+ i dy) =

∫
α

u dx− v dy + i

∫
α

v dx+ u dy

=

∫ ∫
E

(−vx − uy)dx dy + i

∫ ∫
E

(ux − vy)dx dy = 0 .

We shall now prove a series of theorems which generalize this result (which is known as
Cauchy’s Theorem) and which do not require the assumption that u and v are C1.
Indeed, we shall be able to show that every holomorphic map is C∞.

7.2 Lemma: Let K0 ⊇ K1 ⊇ K2 ⊇ · · · be non-empty compact sets. Then
∞⋂
n=0

Kn 6= ∅.

Proof: Suppose, for a contradiction, that
∞⋂
n=0

Kn = ∅. For n ∈ Z+, let Un = Kn
c. Note

that each Un is open and U1 ⊆ U2 ⊆ U3 ⊆ · · ·. We have ∅ = K0 ∩
∞⋂
n=1

Kn = K0 ∩
( ∞⋃
n=1

Un

)c
and so K0 ⊆

∞⋃
n=1

Un. Thus
{
U1, U2, U3, · · ·

}
is an open cover of K0. Since K0 is compact,

we can choose a finite subcover, say K0 ⊆ Un1
∪ Un2

∪ · · · ∪ Unl with n1 < n2 < · · · < nl.
Since Un1

⊆ Un2
⊆ · · · ⊆ Unl we have K0 ⊆ Unl . But then K0 ∩ Unl

c = ∅, that is
K0 ∩Knl = ∅, and this is not possible since ∅ 6= Knl ⊆ K0.

7.3 Theorem: (Cauchy’s Theorem in a Triangle) Suppose that f : U ⊆ C → C is
holomorphic in U . Let ∆ be a closed solid triangle in U and let α be a loop which goes

once around the boundary of the triangle. Then

∫
α

f = 0.

Proof: Let I =
∣∣∫
α
f
∣∣ and set I0 = I, ∆0 = ∆, α0 = α and L0 = L(α). Divide ∆ into four

similar triangles ∆01, ∆02, ∆03 and ∆04, let α01, . . . , α04 be loops around these triangles,

and let I0j =
∣∣∣∫α0j

f
∣∣∣ for j = 1, 2, 3, 4. Choose k so that I0k is the largest of these, and

then set I1 = I0k, ∆1 = ∆0k, α1 = α0k and L1 = L(α1). Since the triangles ∆0j are half
as big as ∆0 we have L0 = 2L1. Also, since I1 ≥ I0j for all j, we have

I0 =

∣∣∣∣∫
α0

f

∣∣∣∣ =

∣∣∣∣∣∣
4∑
j=1

∫
α0j

f

∣∣∣∣∣∣ ≤
4∑
j=1

∣∣∣∣∣
∫
α0j

f

∣∣∣∣∣ =

n∑
j=1

I0j ≤ 4I1 .
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Next we subdivide ∆1 into four similar triangles ∆11, ∆12, ∆13 and ∆14, and repeat the
procedure. In this way we obtain a sequence of similar triangles ∆0 ⊃ ∆1 ⊃ . . . with a loop
αk around each triangle, and we have I0 ≤ 4I1 ≤ 42I2 ≤ . . . and L0 = 2L1 = 22L2 = . . .,

where Ik =
∣∣∣∫αk f ∣∣∣ and Lk = L(αk). By the above lemma, we can choose a point a which

lies in all of the compact sets ∆k.
Now let ε > 0. Since f is holomorphic at a, we can choose δ so that for |z − a| < δ

we have
∣∣f(z)−

(
f(a) + f ′(a)(z − a)

)∣∣ ≤ ε|z − a|. Choose N so that for n ≥ N we have
∆n ⊂ D(a, δ), and note that for all z ∈ ∆n we have |z − a| ≤ Ln. So for z ∈ ∆n we
have |z − a| < δ which implies

∣∣f(z)−
(
f(a) + f ′(a)(z − a)

)∣∣ ≤ ε|z − a| < εLn. Since

f(a) + f ′(a)(z − a) has an antiderivative, namely f(a) z + f ′(a)
(
1
2z

2 − az
)
, we know that∫

αn
f(a) + f ′(a)(z − a) dz = 0 so we have

∫
α
f(z) dz =

∫
α
f(z)−

(
f(a) + f ′(a)(z − a)

)
dz.

Writing Mn = max
z=α(t)

(
f(z)− (f(a) + f ′(a)(z − a)

)
< εLn, the Estimation Theorem gives

In =

∣∣∣∣ ∫
αn

f(z) dz

∣∣∣∣ =

∣∣∣∣ ∫
αn

f(z)−
(
f(a) + f ′(a)(z − a)

)
dz

∣∣∣∣ ≤MnLn ≤ ε Ln2 = ε
L0

2

4n
.

Thus I0 ≤ 4nIn ≤ εL0
2. Since ε was arbitrary, we must have I0 = 0.

7.4 Theorem: (Cauchy’s Theorem in a Convex Region) Suppose that f : U ⊆ C → C
is holomorphic in U , where U is open and convex. Then f has an antiderivative in U .

Consequently,

∫
α

f = 0 for all loops α in U .

Proof: Choose any point a ∈ U . For each z ∈ U set g(z) =

∫
α

f where α is the line

segment from a to z (that is α(t) = a+ (z − a) t , 0 ≤ t ≤ 1). We claim that g′(z) = f(z)
for all z ∈ U . Indeed, given h ∈ C (small enough so that z + h ∈ U) we let β be the
line segment from z to z + h and we let γ be the line segment from z + h to a, so by the
definition of g we have g(z+h) =

∫
γ−1 f = −

∫
γ
f , and by Cauchy’s Theorem in a Triangle

we have
∫
α
f +

∫
β
f +

∫
γ
f = 0, and so∣∣∣∣f(z)− g(z + h)− g(z)

h

∣∣∣∣ =

∣∣∣∣f(z) +
1

h

(∫
α

f(w) dw +

∫
γ

f(w) dw
)∣∣∣∣

=

∣∣∣∣f(z)− 1

h

∫
β

f(w) dw

∣∣∣∣
=

∣∣∣∣ 1h
∫
β

f(z) dw − 1

h

∫
β

f(w) dw

∣∣∣∣
=

∣∣∣∣ 1h
∫
β

f(z)− f(w) dw

∣∣∣∣
≤ max
w=β(t)

∣∣f(z)− f(w)
∣∣ .

As h→ 0 we have w = β(t)→ z and so |f(z)− f(w)| → 0, since f is continuous.

59



7.5 Definition: Let α, β : [t1, t2] → U ⊆ C be paths with α(t1) = β(t1) = a and
α(t2) = β(t2) = b. A path-homotopy (or deformation of paths) from α to β in U is a
continuous map F : [t1, t2]× [0, 1]→ U such that F (t, 0) = α(t) and F (t, 1) = β(t) for all
t, and also F (t1, s) = a and F (t2, s) = b for all s. If such a homotopy exists, then we say
that α is (path)-homotopic to β in U and we write α ∼= β in U . Note that for each fixed
s ∈ [0, 1], the map Fs(t) := F (t, s) is a continuous curve from a to b.

F

a

α

β b

7.6 Example: In a convex set U ⊆ C we can find a path-homotopy between any two
paths α, β : [t1, t2]→ U with α(t1) = β(t1) and α(t2) = β(t2). Indeed, we can take

F (t, s) = α(t) + s
(
β(t)− α(t)

)
.

7.7 Theorem: (Cauchy’s Theorem for Paths) If f : U ⊆ C → C is holomorphic and α

and β are homotopic paths in U then

∫
α

f =

∫
β

f .

Proof: Say α, β : [p, q] → U . Choose a path-homotopy F : [p, q] × [0, 1] → U from α to
β in U . Choose partitions p = t0 < t1 < . . . tk = q and 0 = s1 < s2 < . . . sl = 1 with
the property that for each i, j the image F

(
[ti−1, ti]× [sj−1, sj ]

)
is contained in a convex

set which lies in U . (To prove that such partitions can be found, you must use the fact
that [p, q]× [0, 1] is compact). For each i and j, let αi be the restriction of α to [ti−1, ti],
let βi be the restriction of β to [ti−1, ti], let ai be the line segment from α(ti−1) to α(ti),
let bi be the line segment from β(ti−1) to β(ti), and let γij be the polygonal loop around
the polygon with vertices at F (ti−1, sj−1), F (ti, sj−1), F (ti, sj) and F (ti−1, sj). Then by
Cauchy’s Theorem for convex sets, we have∫

αi

f =

∫
ai

f ,

∫
βi

f =

∫
bi

f and

∫
γij

f = 0 .

When we consider all of the paths ai
−1, bi and γij , every line segment occurs twice, once

in each direction, and so the path integrals all cancel with each other to give

0 =
∑
i

∫
bi

f −
∑
i

∫
ai

f +
∑
i,j

∫
γij

f

=
∑
i

∫
βi

f −
∑
i

∫
αi

f

=

∫
β

f −
∫
α

f
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7.8 Example: Let α, β : [0, π]→ C∗ be given by α(t) = ei t and β(t) = e−i t. Show that
α and β are not homotopic in C∗.

Solution: Let f(z) = 1/z. Then f is holomorphic in C∗ and we have
∫
α
f = i π and∫

β
f = −i π. Since

∫
α
f 6=

∫
β
f we know that α is not homotopic to β.

7.9 Definition: Let α, β : [t1, t2] → U ⊆ C be loops in U . A loop-homotopy (or
deformation of loops) from α to β in U is a continuous map F : [t1, t2]× [0, 1]→ U such
that F (t, 0) = α(t) and F (t, 1) = β(t) for all t and F (t1, s) = F (t2, s) for all s. If such a
homotopy exists, we say that α is (loop)-homotopic to β in U and we write α ∼ β in U .

β

F
α

7.10 Example: In a convex set U ⊆ C, any two loops are homotopic. Indeed, given loops
α, β : [t1, t2]→ U we can take F (t, s) = α(t) + s

(
β(t)− α(t)

)
.

7.11 Theorem: (Cauchy’s Theorem for Loops) If f : U ⊆ C→ C is holomorphic and α

and β are homotopic loops in U , then

∫
α

f =

∫
β

f .

Proof: The proof is the same as the proof of Cauchy’s Theorem for Paths.

7.12 Example: Let α, β : [t1, t2] → C∗ be loops. Show that if η(α, 0) 6= η(β, 0) then α
and β are not homotopic in C∗.

Solution: Let f(z) = 1/z. Then f is holomorphic and we have
∫
α
f = 2π i η(α, 0) and∫

β
f = 2π i η(β, 0), so if η(α, 0) 6= η(β, 0) then α and β cannot be homotopic in C∗.

7.13 Definition: A set U ⊂ C is called simply connected when U is connected and
any two loops α, β : [t1, t2] → U are homotopic in U . Roughly speaking, a connected set
will be simply connected if it doesn’t have any holes in it.

7.14 Example: Any convex set is simply connected, but C∗ is not.

7.15 Theorem: (Cauchy’s Theorem in a Simply Connected Region) If U ⊆ C is a simply

connected open set and if f : U → C is holomorphic, then

∫
α

f = 0 for every loop α in U .

Proof: Since U is simply connected, any loop α : [t1, t2] → U will be homotopic to the

constant loop κ given by κ(t) = α(t1) for all t, so

∫
α

f =

∫
κ

f =

∫ t2

t1

f(α(a))κ′(t) dt = 0

since κ′(t) = 0.
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7.16 Theorem: (Cauchy’s Integral Formulas) Let U ⊆ C be a convex open set, let a ∈ U ,
let f be holomorphic in U and let α be a loop in U \ {a}. Then

(a) 2π i η(α, a) f(a) =

∫
α

f(z)

z − a
dz .

(b) All the derivatives f (n)(a) exist, and 2π i η(α, a) f (n)(a) = n!

∫
α

f(z)

(z − a)n+1
dz .

Proof: First we prove part (a). For any ε > 0, let αε denote the path αε(t) = a+ε(α(t)−a).
Note that α ∼ αε in U \{a}, indeed a homotopy is given by F (t, s) = α(t)+s(αε(t)−α(t)).

Also note that the map
f(z)− f(a)

z − a
is holomorphic in U \ {a}. So we have∣∣∣∣ ∫

α

f(z)

z − a
dz − 2π i η(α, a) f(a)

∣∣∣∣ =

∣∣∣∣∫
α

f(z)

z − a
dz −

∫
α

f(a)

z − a
dz

∣∣∣∣
=

∣∣∣∣∫
α

f(z)− f(a)

z − a
dz

∣∣∣∣ =

∣∣∣∣∫
αε

f(z)− f(a)

z − a
dz

∣∣∣∣ ≤Mε L(αε) ,

where Mε = max
z=αε(t)

∣∣∣∣f(z)− f(a)

z − a

∣∣∣∣. As ε→ 0 we have
f(z)− f(a)

z − a
→ f ′(a) so Mε → |f ′(a)|,

and also L(αε) = ε L(α)→ 0

We prove part (b) inductively. Suppose 2π i η(α, a) f (n)(a) = n!

∫
α

f(z)

(z − a)n+1
dz.

Then we have

2π i η(α, a)

(
f (n)(a+ h)− f (n)(a)

h

)
=
n!

h

∫
α

f(z)

(z − (a+ h))n+1
− f(z)

(z − a)n+1
dz

=
n!

h

∫
α

f(z)

(
1

(z − (a+ h))n+1
− 1

(z − a)n+1

)
dz

=
(n+ 1)!

h

∫
α

f(z)

∫
λ

1

(z − w)n+2
dw dz ,

where λ is the line segment from a to a+ h. So we have

L :=

∣∣∣∣2π i η(α, a)
f (n)(a+ h)− f (n)(a)

h
− (n+ 1)!

∫
α

f(z)

(z − a)n+2
dz

∣∣∣∣
=

∣∣∣∣ (n+ 1)!

h

(∫
α

f(z)

∫
λ

1

(z − w)n+2
dw dz − h

∫
α

f(z)

(z − a)n+2

)
dz

∣∣∣∣
=

∣∣∣∣ (n+ 1)!

h

∫
α

f(z)

(∫
λ

1

(z − w)n+2
dw − h 1

(z − a)n+2

)
dz

∣∣∣∣
=

∣∣∣∣ (n+ 1)!

h

∫
α

f(z)

∫
λ

1

(z − w)n+2
− 1

(z − a)n+2
dw dz

∣∣∣∣
=

∣∣∣∣ (n+ 2)!

h

∫
α

f(z)

∫
λ

∫
τ

1

(z − u)n+3
du dw dz

∣∣∣∣ ,
where τ is the line segment from a to w. Choose r > 0 so that D(a, 2r) ⊆ U \ Image (α),
and let |h| < r. For w ∈ Image (λ) and u ∈ Image (τ) we have w between a and a+h, and

u between a and w, so u ∈ D(a, r), and so we have |z − u| ≥ r hence
1

|z − u|
≤ 1

r
. By the

Estimation Theorem, L ≤ (n+ 2)!

|h|
L(α) max

z=α(t)
|f(z)| |h| |h| 1

rn+3
→ 0 as |h| → 0.
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7.17 Example: Let α(t) = 2 ei t for 0 ≤ t ≤ 2π and let f(z) =
z + 1

z2 + 1
. Find

∫
α

f(z) dz.

Solution: We shall find the integral in several ways. First, we shall use partial fractions. To

write
z + 1

z2 + 1
=

z + 1

(z + i)(z − i)
in the form

A

z + i
+

B

z − i
we need A(z− i)+B(z+ i) = z+1

for all z. Setting z = i gives B(2i) = i + 1 so B =
i+ 1

2i
=
i− 1

2
. Setting z = −i gives

A(−2i) = −i+ 1 so A =
−i+ 1

−2i
=

1 + i

2
. And so we have∫

α

z + 1

z2 + 1
dz =

1 + i

2

∫
α

dz

z + i
+

1− i
2

∫
α

dz

z − i
=

1 + i

2
2π i η(α,−i) +

1− i
2

2π i η(α, i)

=
1 + i

2
2π i+

1− i
2

2π i = π (i− 1) + π (i+ 1) = 2π i .

Now we shall find the integral again by immitating the proof of Cauchy’s integral
formula. Notice that f is holomorphic except at z = ±i. Let α1 be the loop around the
top half of the circle, and let α2 be the loop around the bottom half, to be explicit, we

take α1(t) =

{
2 ei t for 0 ≤ t ≤ π
2
π t− 3 for π ≤ t ≤ 2π

and α2(t) =

{
1− 2

π t for 0 ≤ t ≤ π
2 ei π for π ≤ t ≤ 2π

and then we

will have
∫
α
f =

∫
α1
f +

∫
α2
f . Next we deform the paths α1 and α2 into the circular paths

σ1 and σ2, where σ1(t) = i+ r ei t and σ2(t) = −i+ r ei t for 0 ≤ t ≤ 2π, where 0 < r < 1.
We have∫

α1

f =

∫
σ1

f =

∫ 2π

0

f(σ1(t))σ1
′(t) dt =

∫ 2π

0

1 + i+ r ei t

−1 + 2i reit + r2ei 2t + 1
i reit dt

→
∫ 2π

0

1 + i

2
dt = π(1− i) as r → 0 ,

and we have∫
α2

f =

∫
σ2

f =

∫ 2π

0

f(σ2(t))σ2
′(t) dt =

∫ 2π

0

1− i+ r eit

−2i reit + r2ei 2t
i reit dt

−→
∫ 2π

0

1− i
−2

dt = π (i− 1) as r → 0 .

Thus

∫
α

f = 2π i.

Finally, we shall compute the integral a third time using Cauchy’s formula. Taking
α1 and α2 as above, we have∫

α1

f =

∫
α1

(z + 1)/(z + i)

z − i
dz =

∫
α1

F (z)

z − i
dz = 2π i F (i) = 2π i

i+ 1

2i
= π(i+ 1) ,

where F (z) = (z + 1)/(z + i), and∫
α2

f =

∫
α2

(z + 1)/(z − i)
z + i

dz =

∫
α2

G(z)

z + i
dz = 2π iG(−i) = 2π i

1− i
−2i

= π (i− 1) ,

where G(z) = (z + 1)/(z − i). Again we obtain

∫
α

f = 2π i.
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7.18 Example: Let α(t) = 2 ei t for 0 ≤ t ≤ 2π, and let f(z) =
ez

z2 − 1
. Find

∫
α
f .

Solution: Of the three methods we used above, only the third works easily here. Notice
that f is holomorphic except at z = ±1. Let α1 be the loop around the right half of the
circle, and let α2 be the loop around the left half, so we have

∫
α
f =

∫
α1
f +

∫
α2
f . Then

we have ∫
α1

f =

∫
α1

ez/(z + 1)

z − 1
dz =

∫
α1

F (z)

z − 1
dz = 2π i F (1) = 2π i

e

2
= i π e ,

and ∫
α2

f =

∫
α2

ez/(z − 1)

z + 1
dz =

∫
α2

G(z)

z + 1
dz = 2π iG(−1) = 2π i

e−1

−2
= −iπe−1 .

So the integral of f over α is equal to i π
(
e− 1

e

)
.

7.19 Example: Let α(t) = 2 eit for 0 ≤ t ≤ 2π and let f(z) =
z + 1

z3(z − 1)2
. Find

∫
α

f .

Solution: We shall solve this integral using two methods. First we use partial fractions.

To write f in the form
z + 1

z3(z − 1)2
=
A

z
+
B

z2
+
C

z3
+

D

z − 1
+

E

(z − 1)2
we need to have

Az2(z − 1)2 + Bz(z − 1)2 + C(z − 1)2 + Dz3(z − 1) + Ez3 = z + 1 for all z. Equating
coefficients gives fives 5 equations: A + D = 0, −2A + B −D + E = 0, A− 2B + C = 0,
B − 2C = 1 and C = 1. Solving these gives A = 5, B = 3, C = 1, D = −5 and E = 2. So∫

α

f =

∫
α

5

z
+

3

z2
+

1

z3
− 5

z − 1
+

2

(z − 1)2
dz

= 2π i
(
5η(α, 0)− 5η(α, 1)

)
= 2π i(5− 5) = 0 .

Now we compute the integral again using Cauchy’s formulas. Notice that f is holo-
morphic except at z = 0, 1. Let α1 be the loop around the portion of the circle which lies
to the right of the line y = 1

2 and let α0 be the loop around the portion to the left of y = 1
2 ,

so that
∫
α
f =

∫
α1
f +

∫
α0
f . We have∫

α0

f =

∫
α0

(z + 1)/z3

(z − 1)2
dz =

∫
α0

F (z)

z3
dz =

2π i

2!
F ′′(0) .

From F (z) =
z + 1

(z − 1)3
, we calculate F ′(z) =

−z − 3

(z − 1)3
and F ′′(z) =

2z + 10

(z − 1)4
to get

F ′′(0) = 10, so we have

∫
α1

f = 10π i. Also,

∫
α1

f =

∫
α1

(z + 1)/z3

(z − 1)2
dz =

∫
α1

G(z)

(z − 1)2
dz =

2π i

1!
G′(1) .

FromG(z) =
z + 1

z3
we findG′(z) =

−2z − 3

z4
to getG′(1) = −5, so we have

∫
α2

f = −10π i.

Again we obtain

∫
α

f = 0.
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7.20 Note: If α(t) = ei t for 0 ≤ t ≤ 2π, then sin t = 1
2i

(
ei t − e−i t

)
= 1

2i

(
α(t)− 1

α(t)

)
and cos t = 1

2

(
ei t + e−i t

)
= 1

2

(
α(t) + 1

α(t)

)
, and α′(t) = i ei t = iα(t). It follows that∫ 2π

0

f(sin t, cos, t) dt =

∫
α

f
(

1
2i

(
z − 1

z

)
, 12
(
z + 1

z

)) 1

iz
dz .

Sometimes we can use this equality to solve a real integral involving trigonometric (or
hyperbolic) functions, by converting it to a path integral.

7.21 Example: Find

∫ π

0

dt

2 + cos t
.

Solution: Let α(t) = ei t for 0 ≤ t ≤ 2π. Then∫ π

0

dt

2 + cos t
=

1

2

∫ 2π

0

dt

2 + cos t
=

1

2

∫
α

1
i z dz

2 + 1
2

(
z + 1

z

) =

∫
α

−i dz
z2 + 4z + 1

=

∫
α

−i dz(
z − (−2 +

√
3)
) (
z − (−2−

√
3)
) =

∫
α

F (z) dz

z − (−2 +
√

3)

= 2π i F (−2 +
√

3) = 2π i −i
2
√
3

= π√
3
,

where F (z) =
−i

z − (−2−
√

3)
.

7.22 Example: Find

∫ 2π

0

dt

3 + sin2 t
.

Solution: Let α(t) = ei t for 0 ≤ t ≤ 2π. Then∫ 2π

0

dt

3 + sin2 t
=

∫
α

1
iz dz

3− 1
4

(
z − 1

z

)2 =

∫
α

4i z dz

−12z2 + (z4 − 2z2 + 1)
=

∫
α

4i z dz

z4 − 14z2 + 1

=

∫
α

4i z dz(
z − (2 +

√
3)
) (
z + (2 +

√
3)
) (
z − (2−

√
3)
) (
z + (2−

√
3)
)

Let α1 be the loop around the right side of the unit circle and let α2 be the loop around
the left side so that 2−

√
3 lies inside α1 and −2 +

√
3 lies inside α2. Then for

F (z) =
4i z(

z − (2 +
√

3)
) (
z + (2 +

√
3)
) (
z + (2−

√
3)
) and

G(z) =
4i z(

z − (2 +
√

3)
) (
z + (2 +

√
3)
) (
z − (2−

√
3)
) ,

we have ∫ 2π

0

dt

3 + sin2 t
=

∫
α1

F (z) dz

z − (2−
√

3)
+

∫
α2

G(z)

z + (2−
√

3)

= 2π i
(
F (2−

√
3) +H(−2 +

√
3)
)

= 2π i

(
(4i)(2−

√
3)

((−2
√

3)(4)(4− 2
√

3)
+

(4i)(−2 +
√

3)

(−4)(2
√

3)(−4 + 2
√

3)

)
= −π

(
1

−2
√
3

+ 1
−2
√
3

)
= π√

3
.
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7.23 Note: Sometimes we can solve an improper real integral of the form

∫ ∞
0

u(x) dx by

finding a complex-valued function f(z) of a complex variable, whose real (or imaginary)
part extends u(x), and then integrating f(z) around a large loop which follows the positive
x-axis, for example the loop which follows the line λ(t) = t for −R ≤ t ≤ R, then the
semicircle σ(t) = Rei t for 0 ≤ t ≤ π, where R is some large positive real number.

σ

−R λ R

7.24 Example: Find I =

∫ ∞
0

dx

x4 + 1
.

Solution: Let γ be the loop which follows the line λ(t) = t for −R ≤ t ≤ R then the
semicircle σ(t) = ei t for 0 ≤ t ≤ π. Then∫

γ

dz

z4 + 1
=

∫
λ

dz

z4 + 1
+

∫
σ

dz

z4 + 1
.

We have∫
γ

dz

z4 + 1
=

∫
γ

dz(
z − ei π/4

) (
z + ei π/4

) (
z − ei 3π/4

) (
z + ei 3π/4

)
=

∫
γ1

F (z) dz

z − ei π/4
+

∫
γ2

G(z) dz

z − ei 3π/4
= 2π i

(
F
(
ei π/4

)
+G

(
ei 3π/4

))
= 2π i

(
1

(2eiπ/4)(
√

2)(
√

2 i)
+

1

(−
√

2)(
√

2 i)(2ei 3π/4)

)
= π

2

((
1√
2
− 1√

2
i
)

+
(

1√
2

+ 1√
2
i
))

= π√
2
,

where γ1 is a loop around the right half of γ, and γ2 is a loop around the left half of γ, so
that ei π/4 lies inside γ1 and ei 3π/4 lies inside γ2, and F (z) and G(z) are as expected. Also∫

λ

dz

z4 + 1
=

∫ R

t=−R

dt

t4 + 1
−→ 2I as R→∞

and ∣∣∣∣∫
σ

dz

z4 + 1

∣∣∣∣ =

∣∣∣∣∫ π

t=0

iR ei t dt

(Rei t)4 + 1

∣∣∣∣ ≤ ∫ π

t=0

∣∣∣∣ iR ei t

R4ei 4t + 1

∣∣∣∣ dt
≤
∫ π

t=0

Rdt

R4 − 1
=

πR

R4 − 1
−→ 0 as R→∞ .

Since
π√
2

=

∫
γ

dz

z4 + 1
=

∫
λ

dz

z4 + 1
+

∫
σ

dz

z4 + 1
−→ 2I + 0 as R→∞ ,

it follows that I = π
2
√
2
.
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7.25 Example: Find I =

∫ ∞
0

dx

(x2 + 1)3
.

Solution: Let λ, σ and γ be as in the previous example. Then∫
γ

dz

(z2 + 1)3
=

∫
γ

dz

(z − i)3(z + i)3
=

∫
γ

F (z) dz

(z − i)3
= 2π i

F ′′(i)

2!
=

π i

(2i)5
= 3π

8

where F (z) = 1/(z + i)3, so F ′(z) = −3/(z + i)4 and F ′′(z) = 12/(z + i)5. Also,∫
λ

dz

(z2 + 1)3
=

∫ R

t=−R

dt

(t2 + 1)3
−→ as R→∞

and∣∣∣∣∫
σ

dz

(z2 + 1)2

∣∣∣∣ =

∣∣∣∣∣
∫ π

t=0

iR ei t dt(
(Rei t)2 + 1

)3
∣∣∣∣∣ ≤

∫ π

0

Rdt

(R2 − 1)3
=

πR

(R2 − 1)3
−→ 0 as R→∞

Since

3π
8 =

∫
γ

dz

(z2 + 1)3
=

∫
λ

dz

(z2 + 1)3
+

∫
σ

dz

(z2 + 1)3
−→ 2I + 0 as R→∞ ,

it follows that I = 3π
16 .

7.26 Example: Find I =

∫ ∞
0

dx

x3 + 1
.

Solution: Note that z3 + 1 = (z + 1)
(
z − ei π/3

) (
z − e−i π/3

)
. Let γ be the loop which

follows the line λ then the arc σ then the line µ−1, where λ(t) = t for 0 ≤ t ≤ R,
σ(t) = Rei t for 0 ≤ t ≤ 2π

3 , and µ(t) = t ei 2π/3 for 0 ≤ t ≤ R, so that the point eiπ/3 lies

inside the loop γ. Then for F (z) = 1/
(
(z + 1)(z − e−i π/3)

)
we have∫

γ

dz

z3 + 1
=

∫
γ

F (z)

z − ei π/3
= 2π i F

(
ei π/3

)
=

2π i(
3
2 +

√
3
2 i
)
(
√

3 i)
=

2π

3
(√

3
2 + 1

2 i
) = 2π

3 e−i pi/6 .

Also, we have ∫
λ

dz

z3 + 1
=

∫ R

t=0

dt

t3 + 1
−→ I as R→∞ ,∫

µ

dz

z3 + 1
=

∫ R

t=0

ei 2π/3 dt

t3 + 1
−→ ei 2π/3 I as R→∞ ,

and ∣∣∣∣∫
σ

dz

z3 + 1

∣∣∣∣ =

∣∣∣∣∫ π

0

i R ei t dt

(Rei t)3 + 1

∣∣∣∣ ≤ ∫ π

0

Rdt

R3 − 1
=

π R

R3 − 1
−→ 0 as R→∞ .

Since

2π
3 e−i π/6 =

∫
γ

dz

z3 + 1
=

∫
λ

dz

z3 + 1
+

∫
σ

dz

z3 + 1
−
∫
µ

dz

z3 + 1
−→ I − ei 2π/3I as R→∞ ,

it follows that 2π
3 e−iπ/6 =

(
1− ei 2π/3

)
I =

(
3
2 −

√
3
2 i
)
I =
√

3 e−iπ/6 I. Thus I = 2π
3
√
3
.
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7.27 Example: Find I =

∫ ∞
0

cosx

x2 + 1
dx.

Solution: Write I =

∫ ∞
0

cosx

x2 + 1
dx. Let f(z) =

ei z

z2 + 1
=

ei z

(z − i)(z + i)
, let F (z) =

ei z

z + i
,

and let α be the loop that follows the line λ given by λ(t) = t for −R ≤ t ≤ R, then the
semicircle σ given by σ(t) = Rei t for 0 ≤ t ≤ π. Then

∫
α
f =

∫
λ
f +

∫
σ
f and we have∫

α

f =

∫
α

F (z) dz

z − i
= 2π i F (i) = 2π i · e

−1

2i
= π

e ,∫
λ

f =

∫ R

−R

ei t dt

t2 + 1
=

∫ R

−R

cos t

t2 + 1
dt+ i

∫ R

−R

sin t

t2 + 1
dt −→ 2I as R→∞ , and∣∣∣∣∫

σ

f

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

ei Re
it

i Rei t

(Reit)2 + 1
dt

∣∣∣∣∣ ≤
∫ π

0

Rdt

R2 − 1
=

π R

R2 − 1
−→ 0 as R→∞ ,

since
∣∣ei Reit∣∣ =

∣∣ei(R cos t+i R sin t)
∣∣ =

∣∣e−R sin t+i R cos t
∣∣ = e−R sin t ≤ 1 for 0 ≤ t ≤ π. It

folows that 2I = π
e , so I = π

2e .

7.28 Example: Find I =

∫ ∞
0

sinx

x
dx.

Solution: Write I =

∫ ∞
0

sinx

x
dx. Let f(z) =

ei z

z
, and let α be the loop which follows

first the line λ given by λ(t) = t for r < t < R, then the large semicircle σ given by
σ(t) = Rei t for 0 ≤ t ≤ R, then the line κ−1 where κ(t) = −t for r ≤ t ≤ R, and then the
small semicircle ρ−1 where ρ(t) = r ei t for 0 ≤ t ≤ π. Then

∫
α
f =

∫
λ
f +

∫
σ
f −

∫
κ
f −

∫
ρ
f

and we have ∫
α

f = 0 ,∫
λ

f =

∫ R

r

ei t

t
dt =

∫ R

r

cos t

t
dt+ i

∫ R

r

sin t

t
dt ,∫

κ

f = −
∫ R

r

e−i t

t
dt = −

∫ R

r

cos t

t
dt+ i

∫ R

r

sin t

t
dt ,∫

λ

f −
∫
κ

f = 2i

∫ R

r

sin t

t
dt −→ 2i I as r → 0 and R→∞ ,∣∣∣∣∫

σ

f

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

eiRe
it

i Reit

Reit
dt

∣∣∣∣∣ ≤
∫ π

0

e−R sin t dt = 2

∫ π/2

0

e−R sin t dt

≤ 2

∫ π/2

0

e−(2R/π)t dt =
[
− π

Re
−(2R/π)t

]π/2
0

= π
R

(
1− e−R

)
≤ π

R

−→ 0 as R→∞ , and∫
ρ

f =

∫ π

0

ei re
it

i reit

r ei t
dt =

∫ π

0

i e−r sin t+i r cos t dt −→ iπ as r → 0 ,

where we used the fact that ei Re
it

= e−R sin t+i R cos t and ei re
it

= e−r sin t+i r cos t. It follows
that 2i I − iπ = 0, so I = π

2 .
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7.29 Example: Find I =

∫ ∞
0

lnx

x2 + 1
dx.

Solution: Write I =

∫ ∞
0

lnx

x2 + 1
dx. Let f(z) =

log z

z2 + 1
and let F (z) =

log z

z + i
, where log z

is the branch of the logarithm given by log z = ln |z| + i θ(z) with −π2 < θ(z) < 3π
2 , and

let α be the loop which follows first the line λ given by λ(t) = t for r < t < R, then the
large semicircle σ given by σ(t) = Rei t for 0 ≤ t ≤ R, then the line κ−1 where κ(t) = −t
for r ≤ t ≤ R, and then the small semicircle ρ−1 where ρ(t) = r ei t for 0 ≤ t ≤ π. Then∫
α
f =

∫
λ
f +

∫
σ
f −

∫
κ
f −

∫
ρ
f and we have

∫
α

f =

∫
α

F (z) dz

z − i
= 2π i F (i) = 2π i

i π2
2i

= i π
2

2 ,∫
λ

f =

∫ R

r

ln t

t2 + 1
dt −→ I as r → 0 and R→∞ ,∫

κ

f = −
∫ R

r

ln t+ i π

t2 + 1
dt = −

∫ R

r

ln t

t2 + 1
dt− i

∫ R

r

π dt

t2 + 1

−→ −(I + i J) as r → 0 and R→∞ , where J =

∫ ∞
0

π dx

x2 + 1
,∣∣∣∣∫

σ

f

∣∣∣∣ =

∣∣∣∣∫ π

0

(lnR+ i t) i Reit dt

(Reit)2 + 1
dt

∣∣∣∣ ≤ ∫ π

0

(lnR+ π)R

R2 − 1
dt =

π(lnR+ π)R

R2 − 1

−→ 0 as R→∞ , and∣∣∣∣∫
ρ

f

∣∣∣∣ =

∣∣∣∣∫ π

0

(ln r + i t) i reit

(reit)2 + 1
dt

∣∣∣∣ ≤ ∫ π

0

(ln r + π)r

1− r2
dt =

π(ln r + π)r

1− r2

−→ 0 as r → 0 .

It follows that I + i J = i π
2

2 so I = 0. Incidentally, we also find that J = π2

2 .

7.30 Example: Find I =

∫ ∞
0

lnx

(x2 + 1)3
dx.

Solution: Write I =

∫ ∞
0

lnx dx

(x2 + 1)3
and J =

∫ ∞
0

π dx

(x2 + 1)3
. Let f(z) =

log z

(z2 + 1)3
and

F (z) =
log z

(z + i)3
, where log z is the branch of the logarithm given by log z = ln |z|+ i θ(z)

with −π2 < θ(z) < 3π
2 . Note that

F ′(z) =
1
z (z + i)3 − 3(log z)(z + i)2

(z + i)6
=

(z + i)− 3z log z

z(z + i)4
, and

F ′′(z) =
(1− 3 log z − 3)(z)(z + i)4 −

(
(z + i)− 3z log z

)(
(z + i)4 + 4z(z + i)3

)
z2(z + i)8

= − (2 + 3 log z)(z)(z + i) + (z + i− 3z log z)(5z + i)

z2(z + i)5
.
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Let α, λ, σ, κ and ρ be as in the previous two examples. Then∫
α

f = 2π i
F ′′(i)

2!
= −π i ·

(
2 + i 3π

2

)
(i)(2i) +

(
2i+ 3π

2

)
(6i)

−(2i)5
= · · · = −π2 + i 3π2

16 ,∫
λ

f =

∫ R

r

ln t dt

(t2 + 1)3
−→ I as r → 0 and R→∞ ,∫

κ

f = −
∫ R

r

ln t+ i π

(t2 + 1)3
dt −→ −I − i J as r → 0 and R→∞ ,∣∣∣∣∫

σ

f

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

(lnR+ i t) i Reit(
(Reit)2 + 1

)3 dt

∣∣∣∣∣ ≤ π(lnR+ π)R

(R2 − 1)3
dt −→ 0 as R→∞ , and

∣∣∣∣∫
ρ

f

∣∣∣∣ =

∣∣∣∣∣
∫ π

0

(ln r + i t) i reit(
(reit)2 + 1

)3 dt

∣∣∣∣∣ ≤ π(ln r + π)r

(1− r2)3
−→ 0 as r → 0 .

It follows that 2I + i J = −π2 + i 3π2

16 , and so I = −π4 . We also find that J = 3π2

16 .

7.31 Theorem: (Morera’s Theorem) Let f : U ⊆ C → C be continuous. Suppose that∫
α
f = 0 for every loop α in U . Then f is holomorphic in U .

Proof: Let a ∈ U . Choose r > 0 so that D(a, r) ⊆ U . Since D(a, r) is convex, the proof
of Cauchy’s Theorem in a Convex Set shows that f has an antiderivative g in D(a, r)
(indeed, g may be defined by g(z) =

∫
λ
f where λ is any path from a to z in U). Since

g is holomorphic in D(a, r), f = g′ is also holomorphic in D(a, r) by Cauchy’s Integral
Formula.

7.32 Theorem: (Liouville’s Theorem) If f : C→ C is holomorphic and bounded, then f
is constant.

Proof: Suppose that f is holomorphic in C with |f(z)| ≤M for all z. Let a and b be any
two distinct points in C. Let α(t) = a+ r|b− a|eit for 0 ≤ t ≤ 2π, where r > 1. Then∣∣f(a)− f(b)

∣∣ =

∣∣∣∣ 1

2π i

∫
α

f(z)

z − a
− f(z)

z − b
dz

∣∣∣∣
=

1

2π

∣∣∣∣∫
α

f(z)
a− b

(z − a)(z − b)
dz

∣∣∣∣
≤ 1

2π
2π r|b− a|M |b− a| 1

r|b− a|
1

(r − 1)|b− a|

=
M

r − 1
→ 0 as r →∞ .

7.33 Theorem: (The Fundamental Theorem of Algebra) Every non-constant polynomial
has a root in C.

Proof: Suppose, for a contradiction, that p is a non-constant polynomial with no roots.
Since p is a non-constant polynomial, we have p(z)→∞ as z →∞, and so we can choose
R large enough that when |z| ≥ R we have |p(z)| ≥ 1 and so 1/|p(z)| ≤ 1. Note that since p
has no roots, 1/p is holomorphic in C. In particular, 1/p is continuous in D(0, R) and so it
attains its maximum value. Since 1/p is bounded in D(0, R) and |1/p| ≤ 1 outside D(0, R),
we know that 1/p is bounded in C. By Liouville’s Theorem, 1/p must be a constant. But
this implies that p is constant, giving the desired contradiction.
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Chapter 8. Power Series

8.1 Definition: A sequence of complex numbers is a function f :{k, k+1, k+2 . . .} → C
where k ∈ Z. We usually write f(n) as an and we denote the sequence f by {an}n≥k or
simply by {an}. For a ∈ C, we say that the sequence {an} converges to a, and we write

lim
n→∞

an = a
(

or we write an → a
)

when for all ε > 0 there exists N ∈ Z such that n ≥ N ⇒ an ∈ D(a, ε). If the sequence
converges to some a ∈ C, then we say it converges, otherwise we say it diverges. We
say that the sequence {an} diverges to ∞, and write

lim
n→∞

an =∞
(
or an →∞

)
when for all R > 0 there exists N ∈ Z such that n ≥ N ⇒ an /∈ D(0, R).

8.2 Example: If an = 1/n then an → 0. If bn = 2 +
(
1
2 (1 + i)

)n
then bn → 2. If

cn = (1 + i)n then cn →∞. If dn = in then {dn} diverges.

8.3 Theorem: Let an = xn + i yn and let a = x + i y ∈ C. Then an → a if and only if
xn → x and yn → y.

Proof: Suppose first that an → a. Note that (xn− x) = Re (an− a) so |xn− x| ≤ |an− a|.
So given ε > 0 we choose N ∈ Z so that n ≥ N ⇒ |an − a| < ε, and then for n ≥ N
we have |xn − x| ≤ |an − a| < ε. This shows that xn → x. Similarly, we can show
that yn → y. Conversely, suppose that xn → x and that yn → y. By the triangle
inequality we have |an − a| ≤ |xn − x| + |yn − y|. So given ε > 0 we choose N ∈ Z
so that n ≥ N ⇒

(
|xn − x| < 1

2ε and |yn − y| < 1
2ε
)
. Then for n ≥ N we will have

|an − a| ≤ |xn − x|+ |yn − y| < ε. This shows that an → a.

8.4 Theorem: Let {an} and {bn} be sequences with an → a and bn → b and let c ∈ C.
Then
(a) (c an)→ c a
(b) (an ± bn)→ a± b
(c) (anbn)→ ab
(d) (an/bn)→ a/b, provided that b 6= 0 (and hence bn 6= 0 for large n)
(e) |an| → |a|
All parts except (c) and (d) hold for sequences in Rn.

Proof: We shall only prove part (c) (the proofs of the other parts are similar). We write
an = xn + i yn, a = x + i y, bn = un + i vn and b = u + i v. We suppose that an → a
and bn → b so that by Theorem 8.3 we have xn → x, yn → y, un → u and vn → v.
We have anbn = (xn + i yn)(un + i vn) = (xnun − ynvn) + i (xnvn + ynun). From our
knowlege of sequences of real numbers, we know that (xnun − ynvn)→ xu− yv and that
(xnvn + ynun)→ xv − yu. By Theorem 8.3 again, we see that

anbn = (xnun − ynvn) + i (xnvn + ynun)→ (xu− yv) + i (xv + yu) = ab .
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8.5 Definition: We write
∞∑
n=k

an
(

or simply
∑
an
)

to denote the sequence {sl} where

sl =
l∑

n=k

an. This kind of sequence is called a series, and the finite sums sl are called the

partial sums. We say the series
∑
an converges or diverges according to whether the

sequence {sl} converges or diverges. We also write
∞∑
n=k

an to denote the limit of {sl}, if

it exists, and we call the limit the sum of the series. If sl → s then we write
∞∑
n=k

an = s.

The series
∑
an is said to converge absolutely when the series

∑
|an| converges.

8.6 Theorem: (Linearity) Suppose that
∑
an and

∑
bn converge and let c ∈ C. Then

∞∑
n=k

c an = c
∞∑
n=k

an and
∞∑
n=k

(an + bn) =
∞∑
n=k

an +
∞∑
n=k

bn .

Proof: This is immediate from Theorem 8.4.

8.7 Theorem: (Convergence Tests) Let
∑
an be a series. Then

(a) If
∑
an converges then |an| → 0.

(b) If
∑
|an| converges then

∑
an converges and

∣∣∣∣ ∞∑
n=k

an

∣∣∣∣ ≤ ∞∑
n=k

|an|.

(c) (The Ratio Test)

(i) If lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1 then
∑
|an| converges.

(ii) If ∃N ∈ Z s.t. n ≥ N ⇒
∣∣∣an+1

an

∣∣∣ ≥ 1 then |an| 6→ 0 and so
∑
an diverges.

(d) (The Root Test)

(i) If lim
n→∞

n
√
|an| < 1 then

∑
|an| converges.

(ii) If ∃N ∈ Z s.t. n ≥ N ⇒ n
√
|an| ≥ 1 then |an| 6→ 0 and so

∑
an diverges.

Proof: We shall only prove the ratio test here. Suppose first that lim
n→∞

∣∣∣an+1

an

∣∣∣ = p < 1.

Choose r with p < r < 1. Choose N such that for n ≥ N we have
∣∣∣an+1

an

∣∣∣ ≤ r. Then

we have |aN+1| ≤ r|aN |, aN+2 ≤ r|aN+1| ≤ r2|aN |, |aN+3| ≤ r|aN+2| ≤ r3|aN | and so
on, and so |an| ≤ rn−N |aN | for all n ≥ N . Since 0 < r < 1, the real-valius geometric
series

∑
|aN |rn−N converges, and so

∑
|an| converges by the comparison test for series of

positive real numbers.
On the other hand, if we suppose that there exists N ∈ Z such that for n ≥ N we

have an 6= 0 and
∣∣∣an+1

an

∣∣∣ ≥ 1 then we have |aN | ≤ |aN+1| ≤ |aN+2| ≤ · · · and so |an| 6→ 0.

8.8 Example: The sum
∞∑
n=0

1

(n+ i)2
converges by part (b) since for n ≥ 2 we have

|n+ i| ≥ n− 1 so

∣∣∣∣ 1

(n+ i)2

∣∣∣∣ ≤ 1

(n− 1)2
, and we know that

∑ 1

(n− 1)2
converges.
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8.9 Definition: A power series centred at a ∈ C is a series of the form
∞∑
n=0

cn(z−a)n,

with cn ∈ C where, by convention, we take (z−a)0 = 1. A power series is a series for each
value of z ∈ C. It will converge for some values of z and diverge for others.

8.10 Example: The geometric series
∞∑
n=0

zn = 1 + z+ z2 + · · · is a power series centred at

a = 0. Its partial sums are given by sl =
l∑

n=0
zn =

1− zl+1

1− z
. For |z| < 1 we have zl → 0 as

l → ∞ and so sl →
1

1− z
hence

∞∑
n=0

zn =
1

1− z
. On the other hand, for |z| ≥ 1 we have

|zn| ≥ 1 for all n so |zn| 6→ 0 and hence
∞∑
n=0

zn diverges.

8.11 Theorem: Let
∞∑
n=0

cn(z − a)n be a power series.

(a) There exists a number R with 0 ≤ R ≤ ∞, called the radius of convergence of the
power series, such that

(i) if |z − a| < R then
∑
cn(z − a)n converges absolutely.

(ii) if |z − a| > R then |cn(z − a)n| 6→ 0 and so
∑
cn(z − a)n diverges.

(b) The power series
∑
n cn(z − a)n−1 has the same radius of convergence R.

(c) When R > 0 then the function f defined by f(z) =
∞∑
n=0

cn(z − a)n for z ∈ D(a,R) is

holomorphic with f ′(z) =
∞∑
n=1

n cn(z − a)n−1 and

∫
f(z) dz =

∞∑
n=0

1

n+ 1
cn(z − a)n+1.

(d) When R > 0, the above function f(z) has derivatives of all orders and the coefficients

cn are given by cn =
f (n)(a)

n!
, so we have f(z) =

∞∑
n=0

f (n)(a)

n!
(z − a)n.

(e) When R > 0, if
∑
bn(z−a)n =

∑
cn(z−a)n for all z ∈ D(a,R) then bn = cn for all n.

Proof: We shall give the proof in the case that a = 0.

To prove part (a), we shall show that if
∞∑
n=0

cnw
n converges, where w ∈ C

then
∞∑
n=0

cnz
n converges absolutely for all z with |z| < |w|. Fix w ∈ C, suppose that∑

cnw
n converges, and let z ∈ C with |z| < |w|. Since

∑
cnw

n converges, we know that
|cnwn| → 0 as n → ∞ and so we can choose M > 0 so that M ≥ |cnwn| for all n. Then
we have

|cnzn| =
∣∣∣cnwn zn

wn

∣∣∣ = |cnwn|
∣∣∣ zn
wn

∣∣∣ ≤M ∣∣∣ z
w

∣∣∣n .
Since

∣∣ z
w

∣∣ < 1, the series
∑
M
∣∣ z
w

∣∣ converges and hence the series
∑
|cnzn| converges too

by the comparison test (for series of positive real terms). The radius of convergence is
R = sup

{
|w|
∣∣w ∈ C,

∑
cnw

n converges
}

. If R =∞ then the series converges for all z.
Next we prove part (b). Let R be the radius of convergence of the series

∑
cnz

n and
let S be the radius of convergence of the series

∑
n cnz

n−1. First we show that R ≥ S.
If S 6= 0 then let z be any point with |z| < S. Then by part (a), the series

∑
|n cnzn−1|

converges, and so
∑
|cnzn−1| =

∑
1
n |n cnz

n−1| also converges by comparison, and hence∑
|cnzn| = |z|

∑
|cnzn−1| also converges. This implies that R ≥ |z|. Since z was arbitrary,

we have R ≥ S.
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It is a bit harder to show that R ≤ S. If R 6= 0 then let z be any point with
0 < |z| < R. Choose ρ > 0 with |z| < ρ < R. We have |n cnzn−1| = n

|z|
(
|z|/ρ

)n|cnρn|. The

series (of positive real terms)
∑
n
(
|z|/ρ

)n
converges by the Ratio Test, so we know that

n
(
|z|/ρ

)n → 0 and hence we can choose M > 0 so that M ≥ n
(
|z|/ρ

)n
for all n. Then

we have |n cnzn−1| ≤ M
|z| |cnρ

n|. Since ρ < R we know that the series
∑
|cnρn| converges,

so the series
∑

M
|z| |cnρ

n| = M
|z|
∑
|cnρn| also converges, and hence the series

∑
|n cnzn−1|

also converges by comparison. Thus S ≥ |z|, and since z was arbitrary, S ≥ R.

Now we prove part (c). Let f(z) =
∞∑
n=0

cnz
n and let g(z) =

∞∑
n=1

n cnz
n−1 for all

z ∈ D(0, R). We claim that f ′(z) = g(z). Given z ∈ D(0, R) choose r > 0 with |z| < r < R.
Then for |w| < r we have

∣∣∣∣f(w)− f(z)

w − z
− g(z)

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

cnw
n −

∞∑
n=0

cnz
n

w − z
−
∞∑
n=0

n cnz
n−1

∣∣∣∣∣
=

∣∣∣∣ ∞∑
n=1

cn(wn − zn)

w − z
−
∞∑
n=1

n cnz
n−1
∣∣∣∣ =

∣∣∣∣ ∞∑
n=2

cn

(wn − zn
w − z

− n zn−1
)∣∣∣∣

=

∣∣∣∣ ∞∑
n=2

cn

(
wn−1 + wn−2z + · · ·+ w zn−2 + zn−1 − n zn−1

)∣∣∣∣
=

∣∣∣∣ ∞∑
n=2

cn(w − z)
(
wn−2 + 2wn−3z + 3wn−4z2 + · · ·+ (n− 1)zn−2

)∣∣∣∣
≤
∞∑
n=2

|cn||w − z|
(
|w|n−2 + 2 |w|n−3|z|+ · · ·+ (n− 1)|z|n−2

)
≤
∞∑
n=2

|cn||w − z|
(
1 + 2 + · · ·+ (n− 1)

)
rn−2

=
|w − z|

2

∞∑
n=2

n(n− 1) |cn| rn−2 .

But notice that by part (b), the series
∑
cnz

n,
∑
n cnz

n−1 and
∑
n(n−1) cnz

n−2 all have
the same radius of convergence R and so since r < R we know that

∑
n(n − 1)|cn| rn−2

converges. Thus |w−z| 12
∑
n(n−1)|cn|rn−2 → 0 as w → z. This proves that f ′(z) = g(z).

To complete the proof of part (c), note that by part (b) the power series
∑

1
n+1cnz

n+1

has the same radius of convergence R, and by our above proof that f ′ = g, the function h

defined by h(z) =
∞∑
n=0

1
n+1cnz

n+1 is holomorphic in D(a,R) with h′ = f .

Part (d) follows from part (c). Indeed, if f(z) = c0+c1z+c2z
2+c3z

3+· · · then we have
f ′(z) = c1 +2 c2z+3 c3z

2 +4 c4z
3 + · · ·, f ′′(z) = 2 ·1 c2 +3 ·2 c3z+4 ·3 c4z2 +5 ·4 c5z3 + · · ·

and f ′′′(z) = 3 · 2 · 1 c3 + 4 · 3 · 2 c4z + 5 · 4 · 3 c5z2 + · · · and so on, and we have f(0) = c0,
f ′(0) = 1 c1, f ′′(0) = 2! c2, f ′′′(0) = 3! c3 and so on. Using induction you can show that
f (n)(0) = n! cn.

Finally, note that part (e) follows immediately from part (d).
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8.12 Theorem: (Taylor’s Theorem) If f(z) is holomorphic in D(a,R) and 0 < r < R ≤ ∞
then

f(z) =

∞∑
n=0

cn(z − a)n where cn =
f (n)(a)

n!
=

1

2πi

∫
σ

f(z)

(z − a)n+1
dz ,

and where σ is the circle σ(t) = a+ r ei t with 0 ≤ t ≤ 2π.

Proof: We give the proof in the case that a = 0. Fix z ∈ D(0, R) and choose r with
|z| < r < R. Then by Cauchy’s integral formula,

f(z) =
1

2π i

∫
σ

f(w)

w − z
dw

=
1

2π i

∫
σ

f(w)
1

w

1

1− (z/w)
dw

=
1

2π i

∫
σ

f(w)
1

w

(
1 +

z

w
+
( z
w

)2
+ · · ·+

( z
w

)N−1
+

(z/w)N

1− (z/w)

)
dw

=

N−1∑
n=0

1

2π i

∫
σ

f(w)

wn+1
zn dw +

1

2π i

∫
σ

f(w)(z/w)N

w − z
dw

=
N−1∑
n=0

f (n)(0)

n!
zn +RN ,

where RN =
1

2π i

∫
σ

f(w)(z/w)N

w − z
dw. Setting M = max

w=σ(t)
|f(w)|, the estimation theorem

gives |RN | ≤
1

2π

M(|z|/r)N

(r − |z|)
2πr. Since |z| < r, we have RN → 0 as N →∞

8.13 Example: The elementary complex functions have the same derivative formulas as
their real counterparts, and so they have the same Taylor series centred at the origin (or
centred at any real number). For all z ∈ C we have

ez =

∞∑
n=0

zn

n!

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
cos z =

∞∑
n=0

(−1)n
z2n

(2n)!

sinh z =
∞∑
n=0

z2n+1

(2n+ 1)!
cosh z =

∞∑
n=0

z2n

(2n)!

For |z| < 1 we have

1

1− z
=
∞∑
n=0

zn
1

1 + z
=
∞∑
n=0

(−1)n zn
1

1 + z2
=
∞∑
n=0

(−1)n z2n

When |z| < 1, the principal branch of logarithm and inverse tangent are given by

log(1− z) = −
∞∑
n=1

zn

n
log(1 + z) =

∞∑
n=1

(−1)n+1 z
n

n

tan−1(z) =
∞∑
n=0

(−1)n
z2n+1

2n+ 1
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For |z| < 1 and for a ∈ R, the principal branch of (1 + z)a is given by

(1 + z)a =
∞∑
n=0

(a
n

)
zn = 1 + a z +

a(a− 1)

2!
z2 +

a(a− 1)(a− 2)

3!
z3 + · · ·

This last power series is called the Binomial series.

8.14 Note: We should point out two important differences between Taylor series of com-
plex functions and Taylor series of real functions. The first difference is that holomorphic
functions are always equal to their Taylor series. This is not the case for real C∞ functions.

The standard example is the real function f(x) =

{
e−1/x2 , x 6=0
0 , x=0 . This function is C∞ at

x = 0, but all its derivatives vanish so its Taylor series is equal to 0. The second difference
we would like to mention is that a real function might be C∞ in a large interval while
its Taylor series might converge only in a small interval, but notice that if a function is
holomorphic in an open disc, then its Taylor series will converge in the entire disc. An
example which illustrates this difference is the real function f(x) = 1/(1 + x2). This func-
tion is C∞ for all x, but its Taylor series only converges for |x| < 1. The reason for this is
that when we extend f to the complex numbers, so f(z) = 1/(1 + z2), then we find that

f(z) =
1

(z − i)(z + i)
so that f is holomorphic in C \ {±i}. The radius of convergence is

equal to 1 because the disc D(0, 1) is the largest disc (centred at 0) which can be contained
in the domain of f(z).

8.15 Note: If f and g are both holomorphic at a then The product fg will also be
holomorphic at a. The coefficients of the Taylor series of fg at a are given by (fg)(n)(a)/n!,
and so they can be computed, using the product rule, from the coefficients of the Taylor
series for f and for g. One can show that the Taylor series at a for fg is obtained from the
Taylor series at a of f and of g by multiplying the power series together as if they were
polynomials. We have( ∞∑

n=0

an(z − a)n

)( ∞∑
n=0

bn(z − a)n

)
=

∞∑
n=0

(
n∑
i=0

aibn−i

)
zn

Also, if f and g are holomorphic at a and g(a) 6= 0, then we can solve the equation
hg = f for h to obtain the Taylor series of h = f/g centred at a from the Taylor series of
f and of g. This is equivalent to calculating f/g using long division as if the power series
were polynomials.

Also, if f is holomorphic at a and g is holomorphic at b = f(a) then the composite
g ◦ f is holomorphic at a and hence has a Taylor series centred at a. Using the chain rule,
one can show that the Taylor series for g◦f at a can be computed by composing the Taylor
series of g at b with that of f at a as if the power series were polynomials.
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8.16 Example: Find the Taylor series at 0 for f(z) =
1

(1− z)2
.

Solution: We give several solutions. But first we note that since f(z) is holomorphic in
C \ {1}, we know that the Taylor series at 0 converges in D(0, 1).

For our first solution, we calculate the derivatives: f(z) = (1−z)−2, f ′(z) = 2(1−z)−3,
f ′′(z) = 3!(1− z)−4, and so on. So f(0) = 1, f ′(0) = 2, f ′′(0) = 3 and so on. Thus

f(z) = f(0) +
f ′(0)

1!
z +

f ′′(0)

2!
z2 +

f ′′′(0)

3!
z3 + · · · = 1 + 2z + 3z2 + 4z3 + · · ·

Our second solution uses the Binomial series:

f(z) = (1− z)−2 = 1 +
−2

1!
(−z)1 +

(−2)(−3)

2!
(−z)2 +

(−2)(−3)(−4)

3!
(−z)3 + · · ·

= 1 + 2z + 3z2 + · · ·

Our third solution is to differentiate both sides of
1

1− z
= 1 + z + z2 + z3 + · · · to obtain

f(z) = 0 + 1 + 2z + 3z2 + · · ·

Our fourth solution is to mutiply the Taylor series for
1

1− z
by itself as if it was a poly-

nomial to obtain

f(z) = (1 + z + z2 + z3 + · · ·)(1 + z + z2 + z3 + · · ·)
= 1 + (1 + 1)z + (1 + 1 + 1)z2 + (1 + 1 + 1 + 1)z3 + · · ·
= 1 + 2z + 3z2 + 4z3 + · · ·

8.17 Example: Find the Taylor series for f(z) = ez/(1− z).

Solution: We have f(z) = ez 1
1−z =

( ∞∑
n=0

1
n!z

n
)( ∞∑

n=0
zn
)

=
∞∑
n=0

( n∑
i=0

1
n!

)
zn. We can write

out the first few terms: f(z) = 1 + 2z + 5
2z

2 + 8
3z

3 + 65
24z

4 + · · ·.

8.18 Example: Find the first few terms of the Taylor series about 0 for f(z) = tan z.

Solution: We have tan z =
sin z

cos z
. We can use long division:

z + 1
3z

3 + 2
15z

5 + · · ·

1− 1
2z

2 + 1
24z

4 + · · ·
)
z − 1

6z
3 + 1

120z
5 − · · ·

z − 1
2z

3 + 1
24z

5 − · · ·
1
3z

3 − 1
30z

5 + · · ·
1
3z

3 − 1
6z

5 + · · ·
2
15z

5 + · · ·

We find that f(z) = z+ 1
3z

3 + 2
15z

5 + · · ·. We can also easily find the radius of convergence.
Since cos z = 0 ⇐⇒ z = π

2 + π k for some k ∈ Z, we know that f(z) is holomorphic for
z 6= π

2 + π k, so the radius of convergence is R = π
2 .
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8.19 Example: Find the Taylor series centred at 2i for f(z) =
1

z
.

Solution: f(z) =
1

z
=

1

z − 2i+ 2i
=

1

2i

1

1 + z−2i
2i

= − i
2

1

1− i(z−2i)
2

= − i
2

∞∑
n=0

( i(z − 2i)

2

)n
=
∞∑
n=0

−
( i

2

)n+1

(z − 2i)n. The disc of convergence is D(2i, 2).

8.20 Theorem: (The Local Identity Theorem) Let f and g be holomorphic in the disc
D(a, r). Let {an} be a sequence in D∗(a, r) with an → a. If f(an) = g(an) for all n then
f(z) = g(z) for all z ∈ D(a, r).

Proof: Suppose that f(an) = g(an) for all n. Let h = f − g. Then h(an) = 0 for all n.
Since h is continuous at a, we have h(a) = 0. Since its holomorphic it is equal to its

Taylor series h(z) =
∞∑
n=0

cn(z − a)n. We want to show that all the coefficients cn are zero.

Suppose not, and say m is the smallest integer such that cm 6= 0. Let k(z) = h(z)(z−a)−m

Then we have k(z) = cm + cm+1(z − a) + cm+2(z − a)m+2 + · · ·, so k(z) is holomorphic
in D(a, r) and k(a) = cm 6= 0. Since k(z) is continuous with k(a) 6= 0, we can find
s > 0 such that k(z) 6= 0 for all z ∈ D(a, s). But since (z − a)m 6= 0 in D∗(a, s) and
since h(z) = k(z)(z − a)m, this would imply that h(z) 6= 0 in D∗(a, s). This gives us a
contradiction since we assumed that h(an) = 0 for all n.

8.21 Theorem: (The Identity Theorem) Let U ⊆ C be a connected open set. Let
f, g : U → C be holomorphic in U . Let A =

{
z ∈ U

∣∣f(z) = g(z)
}

. Suppose that A has a
limit point in U . Then f(z) = g(z) for all z ∈ U .

Proof: Let h = f − g so that h is holomorphic in U and A = h−1(0) =
{
z ∈ U

∣∣h(z) = 0
}

.
We must show that h(z) = 0 for all z ∈ U , or equivalently that A = U . Let V be the set
of all limit points of A which lie in U . Note that V 6= ∅ since A has a limit point in U .
Note that V ⊆ A since for a ∈ U , if a /∈ A, that is if h(a) 6= 0, then since h is continuous,
we can choose r > 0 so that h(z) 6= 0 for all z ∈ D(a, r), and we see that a is not a limit
point of A, that is a /∈ V . Note that U \ V is open since if a ∈ U \ V , that is if a is not a
limit point of A, then we can choose r > 0 so that D∗(a, r) is disjoint from A, and we see
that each z ∈ D(a, r) is not a limit point of A so we have D(a, r) ⊆ U \ V . Finally note
that V is open because given a ∈ V we can choose r > 0 so that D(a, r) ⊆ U and then,
by the Local Identity Theorem, we have h(z) = 0 for all z ∈ D(a, r) so that D(a, r) ⊆ V .
It follows that V = U (otherwise the open sets V and U \ V would separate U) and hence
A = U (since V ⊆ A).

8.22 Lemma: Let f be holomorphic with |f | constant in the disc D(a, r). Then f is
constant.

Proof: Say |f(z)| = c for all z ∈ D(a, r). Let u = Re (f) and v = Im (f) so that f = u+ iv.
Then we have u2 + v2 = c2. Differentiate with respect to x and to y to get the two
equations uux + v vx = 0 and uuy + v vy = 0. The Cauchy Riemann Equations then
give uux − v uy = 0 and v ux + uuy = 0. Eliminating uy from these two equations gives
(u2 + v2)ux = 0, that is c2ux = 0. Eliminating ux gives c2uy = 0. If c = 0 then we have
|f(z)| = c = 0 so f(z) = 0 for all z ∈ D(a, r). If c 6= 0 then we obtain ux = 0 and uy = 0
for all x+ iy ∈ D(a, r), and hence f is constant.
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8.23 Theorem: (The Local Maximum Modulus Theorem) Let f be holomorphic in the
disc D(a, r). Suppose that

∣∣f(z)
∣∣ ≤ ∣∣f(a)

∣∣ for all z ∈ D(a, r). Then f is constant.

Proof: Fix s with 0 < s < r. Let σ(t) = a + s ei t for 0 ≤ t ≤ 2π. By Cauchy’s Integral
Formula, we have

f(a) =
1

2π i

∫
σ

f(z)

z − a
dz =

1

2π i

∫ 2π

0

f(a+ s ei t) i s ei t

s ei t
dt =

1

2π

∫ 2π

0

f(a+ s ei t) dt .

Since |f(z)| ≤ |f(a)| for all z ∈ D(a, r), the Estimation Theorem gives

∣∣f(a)
∣∣ ≤ 1

2π

∫ 2π

0

∣∣f(a+ s ei t)
∣∣ dt ≤ ∣∣f(a)

∣∣
and so we must have |f(a)| = 1

2π

∫ 2π

0

∣∣f(a+ s ei t)
∣∣ dt. It follows that

∫ 2π

0

(∣∣f(a)
∣∣− ∣∣f(a+ s ei t)

∣∣)dt = 0 .

Since the integrand is continuous and non-negative, it must be identically zero so we have∣∣f(a + s ei t)
∣∣ =

∣∣f(a)
∣∣ for all t, that is |f(z)| = |f(a)| for all z with |z − a| = s. Since s

was fixed but arbitrary, we have |f(z)| = |f(a)| for all z ∈ D(a, r). By the above lemma,
it follows that f is constant.

8.24 Theorem: (The Maximum Modulus Theorem) Let U ⊆ C be a bounded connected
open set. Let f : U → C be holomorphic in U and continuous on U . Then |f | attains its
maximum on ∂U .

Proof: Since |f | is continuous on U and U is compact, |f | attains its maximum on U . Since
U = U ∪ ∂U , |f | attains its maximum either on ∂U or on U . Consider the case that |f |
attains its maximum at a point a ∈ U . Choose r > 0 small enough so that D(a, r) ⊆ U . By
the Local Maximum Modulus Theorem, f is constant in D(a, r). By the Identity Theorem,
f is constant in U . Since f is constant in U and continuous on U , it is constant on U .
Since f is constant, it attains its maximum at all points, including points in ∂U .
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Chapter 9. Laurent Series and Residues

9.1 Note: We have studied power series. We are also interested in series of the form

∞∑
n=−∞

cn(z − a)n =
−1∑

n=−∞
cn(z − a)n +

∞∑
n=0

cn(z − a)nc =
∞∑
n=1

c−nw
n +

∞∑
n=0

cn(z − a)n .

where we have written w = 1/(z− a). If the first series has radius of convergence 1/R and
the second has radius of convergence S, then the first converges when |w| < 1/R, that is
when |z − a| > R, and the second converges for |z − a| < S. They both converge in the
annulus A =

{
z ∈ C

∣∣R < |z−a| < S
}

. The next theorem shows that every function which
is holomorphic in an annulus can be expressed as a series of this form.

9.2 Theorem: (Laurent’s Theorem) Let 0 ≤ R < ρ < S ≤ ∞ and let a ∈ C. Suppose
that f is holomorphic in the annulus A =

{
z ∈ C

∣∣R < |z − a| < S
}

. Then for all z ∈ A,

f(z) =
∞∑

n=−∞
cn(z − a)n where cn =

1

2πi

∫
σ

f(z)

(z − a)n+1
dz ,

where σ is the circle σ(t) = a+ ρ ei t with 0 ≤ t ≤ 2π. In particular, we have

c−1 =
1

2πi

∫
σ

f(z) dz .

Proof: To simplify notation, we take a = 0, so A = {z|R < |z| < S}. For z ∈ A pick r and
s so that R < r < |z| < s < S. Again to simplify notation, suppose that Im (z) > 0. Let
α be the loop in A which follows the semicircle counterclockwise from s to −s, then the
line segment from −s to −r, then the semicircle clockwise from −r to r, and then the line
segment from r to s. Let β be the loop which follows the line segment from s to r, then
the semicircle clockwise from r to −r, then the line segment from −r to −s, and then the
semicircle counterclockwise from −s to s.

α

0

β

z

Since η(α, z) = 1 and η(β, z) = 0, Cauchy’s theorem tells us that

∫
α

f(w)

w − z
dw = 2πi f(z)

and

∫
β

f(w)

w − z
dw = 0. Also, since the integrals along the line segments cancel, we have
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∫
α

f(w)

w − z
dw+

∫
β

f(w)

w − z
dw =

∫
σs

f(w)

w − z
dw−

∫
σr

f(w)

w − z
dw, where σr and σs are the circles

σr(t) = r ei t and σs(t) = s ei t for 0 ≤ t ≤ 2π. So we have

f(z) =
1

2πi

(∫
σs

f(w)
1

w − z
dw −

∫
σr

f(w)
1

w − z
dw

)
=

1

2πi

(∫
σs

f(w)
1

w

1

1− z
w

dw −
∫
σr

f(w)
−1

z

1

1− w
z

dw

)
=

1

2πi

(∫
σs

f(w)
∞∑
n=0

zn

wn+1
dw +

∫
σr

f(w)
∞∑
m=0

wm

zm+1
dw

)

=
1

2πi

( ∞∑
n=0

∫
σs

f(w) zn

wn+1
dw +

∞∑
m=0

∫
σr

f(w)wm

zm+1
dw

)

=
1

2πi

( ∞∑
n=0

(∫
σ

f(w)

wn+1
dw
)
zn +

−1∑
n=−∞

(∫
σ

f(w)

wn+1
dw
)
zn

)

=
1

2πi

∞∑
n=−∞

(∫
σ

f(w)

wn+1
dw

)
zn

In the second last equlity, we replaced m by −n− 1, and we used the fact that each of the
loops σs and σr is homotopic to σ in A. The interchange of summation and integration in
the third equality should be justified. We can justify it as follows. For any positive integer
N we have∫

σs

f(w)
1

w

∞∑
n=0

( z
w

)n
dw =

∫
σs

f(w)
1

w

(N−1∑
n=0

( z
w

)n
+

(z/w)N

1− (z/w)

)
dw

=
N−1∑
n=0

∫
σs

f(w)
1

w

zn

wn
dw +

∫
σs

f(w)
1

w

(z/w)N

1− (z/w)
dw

As N → ∞ the first term tends to the infinite sum
∞∑
n=0

∫
σs

f(w)
zn

wn+1
dw and the second

term may be estimated using the Estimation Theorem:∣∣∣∣∫
σs

f(w)
(z/w)N

w − z
dw

∣∣∣∣ ≤ max
|w|=s

∣∣f(w)
∣∣ (|z|/s)N

(s− |z|)
2πs→ 0

as N →∞ since (|z|/s) < 1.
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9.3 Example: Let f(z) =
1

z(z2 + 4)
. Note that f is holomorphic except at z = 0 and

z = ±2i. In particular, f is holomorphic in the annulus A = {z|0 < |z| < 2} and in the
annulus B = {z|2 < |z| <∞} and also in the annulus C = {z|0 < |z − 2i| < 2}. Find the
Laurent series of f(z) in A and in B and in C. Also, use the Laurent series to find the
path integrals

∫
α
f ,
∫
β
f and

∫
γ
f , where α, β and γ are the circles α(t) = ei t, β(t) = 3 ei t

and γ(t) = 2i+ ei t for 0 ≤ t ≤ 2π.

Solution: We have f(z) =
1

4z

1

1 + (z/2)2
=

1

4z

∞∑
n=0

(−1)n
(z

2

)2n
=
∞∑
n=0

(−1)n

4n+1
z2n−1. This

is the Laurent series for f in A. Since the coefficient of z−1 in this series is c−1 = 1
4 , we

have

∫
α

f = 2πi c−1 =
1

2
π i.

Also, we have f(z) =
1

z3
1

1 + (2/z)2
=

1

z3

∞∑
n=0

(−1)n
(2

z

)2n
=

∞∑
n=0

(−1)n4n z−2n−3. This

is the Laurent series for f in B. Since the coefficient of z−1 is c−1 = 0, we have

∫
β

f = 0.

In the third annulus we write

f(z) =
1

z − 2i

1

z + 2i

1

z
=

1

z − 2i

1

(z − 2i) + 4i

1

(z − 2i) + 2i

=
1

z − 2i

1

4i

1

1 + z−2i
4i

1

2i

1

1 + z−2i
2i

= −1

8

1

z − 2i

∞∑
n=0

(−1)n
(
z − 2i

4i

)n ∞∑
n=0

(−1)n
(
z − 2i

2i

)n

= −1

8

1

z − 2i

∞∑
n=0

 n∑
j=0

(−1)j

(4i)j
(−1)n−j

(2i)n−j

 (z − 2i)n

= −1

8

∞∑
n=0

 n∑
j=0

(−1)n

in2n+j

 (z − 2i)n−1

= −1

8

∞∑
n=0

in

2n

 n∑
j=0

1

2j

 (z − 2i)n−1

= −1

8

∞∑
n=0

in(2n+1 − 1)

22n
(z − 2i)n−1

This is the Laurent series in C. The coefficient of (z − 2i)−1 is c−1 = − 1
8 so

∫
γ

f = − 1
4πi.

9.4 Note: It should be remarked that all three of the path integrals in the above example
are easy to compute using Cauchy’s integral formula. In the following example, however,
its easier to use the Laurent series to find the path integral.
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9.5 Definition: When f is holomorphic in an open set U which contains the punctured
disc D∗(a,R), and f is undefined at a, we say that f has an isolated singularity at a.
We define the multiplicity of f at a, denoted by m(f, a), as follows. Say the Laurent
series of f in D∗(a,R) is given by

f(z) =
∞∑

n=−∞
cn(z − a)n .

If cn = 0 for all n ∈ Z so that f is identically zero in D∗(a,R), then we define m(f, a) =∞.
If for all N ∈ Z there exists n < N with cn 6= 0 then we define m(f, a) = −∞. Otherwise,
we define m(f, a) be the smallest integer m such that cm 6= 0.

Let m = m(f, a). When m = −∞ we say that f has an essential singularity at a.
When m < 0 we say that f has a pole at a of order |m|. A pole of order 1 is also called
a simple pole. When m ≥ 0 we say that f has a removable singularity at a, and in this
case we shall extend f so that it is holomorphic in the disc D(a, r) by setting f(a) = c0.
If m > 0 then we say that f has a zero at a of order m. A zero of order 1 is also called a
simple zero. In any of these cases, we define the residue of f at a to be Res (f, a) = c−1.
If σ is the circle σ(t) = a+ r ei t for 0 ≤ t ≤ 2π where 0 < r < R then we have

Res (f, a) = c−1 =
1

2πi

∫
σ

f(z) dz

9.6 Note: If f has a removable singularity at a, then of course we have lim
z→a

f(z) = c0.

If f has a pole at a then its not hard to show that lim
z→a

f(z) = ∞. If f has an essential

singularity at a, then the limit lim
z→a

f(z) does not exist, and in fact there is a (dificult)

theorem called Picard’s Theorem which states that for all ε > 0 the image f
(
D∗(a, ε)

)
is

either equal to C or to C \ {p} for some point p.

9.7 Definition: Let A ⊆ C (or A ⊆ Rn). We say that an element a ∈ A is an isolated
point of A when there exists r > 0 such that D∗(a, r) ⊆ C \A. We say that A is discrete
when every point in A is isolated.

9.8 Example: The set of zeros of the function f(z) = sin 1
z is the set A =

{
1
kπ

∣∣0 6= k ∈ Z
}

,
which is discrete. The set of zeros and singularities of f(z) = sin 1

z is the set A∪{0}, which
is not discrete. The set of poles of the function g(z) = 1/ sin 1

z is the above discrete set A,
and g also has an unisolated singularity at the point {0}, so the set of all singularities of
g(z) is the non-discrete set A ∪ {0}.

9.9 Example: When f is holomorphic in an open set U , unless f is identically zero in
some connected component of U , the set of zeros of f is discrete by the Identity Theorem.

9.10 Definition: We say that f is meromorphic in the open set U when there exists a
discrete set A ⊆ U such that U \ A is open and f : U \ A → C is holomorphic in U \ A
and has a pole at each point a ∈ A. We remark that such a map f can be extended to a
holomorphic map f : U → Ĉ by setting f(a) =∞ for each a ∈ A.
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9.11 Theorem: (The Residue Theorem) Let U ⊆ C be an open set, let A ⊆ U be a
discrete set such that U \A is open, and let f : U \A→ C be holomorphic in U \A. Let
α be a loop in U \ A which is homotopic in U to a constant loop. Then there are finitely
many points a ∈ A for which η(α, a) 6= 0 and we have∫

α

f(z) dz = 2πi
∑
a∈A

η(α, a) Res (f, a) .

Proof: Say α : [u, v] → C. Let F : [u, v] × [0, 1] → U be a homotopy from α to a
constant loop κ in U . Since [u, v] × [0, 1] is compact and F is continuous, the image
Image (F ) = F

(
[u, v]× [0, 1]

)
is compact. For each a ∈ Image (F ) let Ua = D(a, ra) where

if a ∈ A then ra > 0 is such that D∗(a, ra) ⊆ U \ A and if a /∈ A then ra > 0 is such that
D(a, ra) ⊆ U \ A. Since Image (F ) is compact, the open cover U =

{
Ua
∣∣a ∈ Image (F )

}
must have a finite subcover. Since each a ∈ A is contained in a unique element of U
(namely the set Ua), it follows that there are only finitely many elements in A∩ Image (F ).
But notice that when a /∈ Image (F ), the homotopy F takes values in U \ {a} and so F is

a homotopy from α to κ in U \ {a} so that η(α, a) =
1

2πi

∫
α

dz

z − a
=

∫
κ

dz

z − a
= 0. Thus

there are only finitely many points a ∈ A for which η(α, a) 6= 0. Let B be the finite set

B =
{
a ∈ A

∣∣η(α, a) 6= 0
}
.

Choose R > 0 so that for every b ∈ B we have D∗(b, R) ⊆ U \A. Inside each of these
punctured discs, f is equal to the sum of its Laurent series. For fixed b ∈ B, write

f(z) =
∞∑

n=−∞
cn(z − b)n = pb(z) + hb(z) , where

pb =

−1∑
n=−∞

cn(z − b)n and hb =

∞∑
n=0

cn(z − b)n

(pb is called the principal part, and hb is called the holomorphic part, of f at b). Note
that Res (f, b) = c−1 = Res (pb, b). Also note that hb is holomorphic in the disc D(b, R)
(not just the punctured disc) and that pb is holomorphic in all of C \ {b}. Now we let

g(z) = f(z)−
∑
b∈B

pb(z) .

Although f was only holomorphic in U \A, the map g is holomorphic in all of U , indeed in
D∗(b, R) we have g(z) = f(z)−pb(z)−

∑
a6=b

pa(z) = hb(z)−
∑
a6=b

pa(z). Since α is homotopic

to a constant loop in U , we have

0 =

∫
α

g(z) dz =

∫
α

f(z)−
∑
b∈B

pb(z) dz =

∫
α

f(z) dz −
∑
b∈B

∫
α

pb(z) dz

=

∫
α

f(z) dz −
∑
b∈B

2πi η(α, b) Res (f, b)) .
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9.12 Note: We describe two situations in which it is easy to calculate Res (f, a). Suppose

first that f(z) =
g(z)

(z − a)n+1
where g(z) is holomorphic in an open set U containing a. Let

σ be a circle in U centred at a. Then Cauchy’s Integral Formula gives

Res (f, a) =
1

2πi

∫
σ

g(z)

(z − a)n+1
dz =

g(n)(a)

n!
.

Suppose next that f(z) =
g(z)

h(z)
where g and h are holomorphic in an open set U containing

a with h(a) = 0 and h′(a) 6= 0. Then we can write h(z) = (z−a)k(z) with k(a) = h′(a) 6= 0.
Note that k(z) 6= 0 in a small disc D(a, r) and g(z)/k(z) is holomorphic in this disc. We

have f(z) =
g(z)/k(z)

(z − a)
with g(z)/k(z) holomorphic in D(a, r) so if σ is a circle in D(a, r)

centred at a then

Res (f, a) =
1

2πi

∫
σ

g(z)/h(z)

z − a
dz =

g(a)

k(a)
=

g(a)

h′(a)
.

9.13 Example: Let α be a loop in D(0, 3) with η(α, 0)=3, η(α, π2 )=−1 and η(α,−π2 )=1,

and let f(z) =
(z + 1) ez

z cos z
. Find

∫
α

f(z) dz.

Solution: Notice that f is holomorphic in C except at z = 0 and z = π
2 + kπ for k ∈ Z.

In particular, f is holomorphic in D(0, 3) except at z = 0 and z = ±π2 . So by the Residue
Theorem, ∫

α

f(z) dz = 2πi
(

3 Res (f, 0)− Res (f, π2 ) + Res (f,−π2 )
)
.

To find Res (f, 0), note that we can write f(z) = g(z)
/
z where g(z) = (z + 1) ez/ cos z

(which is holomorphic at 0) so by the first part of the above note

Res (f, 0) = g(0) = 1 .

To find Res
(
f, π2

)
and Res

(
f,−π2

)
, note that we can write f(z) = g(z)/h(z) where now

g(z) = (z + 1)ez/z (which is holomorphic at ±π2 ) and h(z) = cos z (which has a simple
zero at ±π2 ). By the second part of the above note, we have

Res
(
f, π2

)
=

g
(
π
2

)
h′
(
π
2

) =

(
π
2 + 1

)
eπ/2

/
π
2

− sin π
2

= −
(
1 + 2

π

)
eπ/2 , and

Res
(
f,−π2

)
=

g
(
− π

2

)
h′
(
− π

2

) =

(
−π2 + 1

)
e−π/2

/ (
−π2
)

− sin
(
−π2
) =

(
1− 2

π

)
e−π/2 .

Thus we obtain ∫
α

f(z) dz = 2πi
(
3 + (1 + 2

π )eπ/2 + (1− 2
π )e−π/2

)
.
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9.14 Example: Find

∫
|z|=4

dz

z4 sinh z
.

Solution: Let f(z) =
1

z4 sinh z
. Since sinh z = 0 when z = kπi, k ∈ Z we see that f is

holomorphic except at z = kπi. Note that the loop |z| = 4 surrounds the singularities at
0 and ±iπ, so we need to find the residue of f at these points. To find Res (f,±iπ), write
f = g/h with g(z) = 1/z4 and h(z) = sinh z. Then

Res (f,±i) =
g(±i)
h′(±i)

=
1/π4

cosh(±iπ)
=

1/π4

cos(±π)
= − 1

π4 .

To find Res (f, 0), we find the first few terms of the Laurent series for f in the annulus

A =
{
z ∈ C

∣∣0 < |z| < π
}

. We have f(z) =
1

z4
1

sinh z
=

1

z4
1

z(1 + 1
6z

2 + 1
120z

4 + · · ·)
. We

use long division:

1− 1
6z

2 + 7
360z

4 + · · ·

1 + 1
6z

2 + 1
120z

4 + · · ·
)

1 + 0 z2 + 0 z4 + · · ·
1 + 1

6z
2 + 1

120z
4 + · · ·

− 1
6z

2 − 1
120z

4 + · · ·
− 1

6z
2 − 1

36z
4 + · · ·

7
360z

5 + · · ·
We find that f(z) = z−5 − 1

6z
−3 + 7

360z
−1 + · · · so that

Res (f, 0) = c−1 = 7
360 .

Thus ∫
|z|=4

f = 2πi
(

Res (f, 0) + Res (f, iπ) + Res (f,−iπ)
)

= 2πi
(

7
360 −

2
π4

)
.

9.15 Theorem: (Zeros and Poles) Let f be meromorphic in U . Let A be the set of all
zeros and poles of f in U . Let α be a loop in U \A which is homotopic in U to a constant
loop. Then ∫

α

f ′(z)

f(z)
dz =

∑
a∈A

2πi η(α, a)m(f, a) .

Proof: Note that the function f ′/f is holomorphic in U \ A. Let a ∈ A, let m = m(f, a)
and choose R > 0 so that D∗(0, R) ⊆ U \A. Then for z ∈ D∗(0, R) we have

f(z) =
∞∑
n=m

cn(z − a)n = (z − a)mg(z) where g(z) =
∞∑
n=0

cm+n(z − a)n.

Note that g is holomorphic in D(0, R) with g(a) = cm 6= 0. Choose r with 0 < r < R so
that g(z) 6= 0 for all z ∈ D(a, r). Then for all z ∈ D(a, r), g′/g is holomorphic at z and

f ′(z)

f(z)
=
m(z − a)m−1g(z) + (z − a)mg′(z)

(z − a)mg(z)
=

m

z − a
+
g′(z)

g(z)
.

Thus f ′/f has a simple pole at a with Res (f ′/f, a) = m = m(f, a). This holds for every
a ∈ A, so by the Residue Theorem,∫

α

f ′(z)

f(z)
dz = 2π i

∑
a∈A

η(α, a) Res (f ′/f, a) = 2π i
∑
a∈A

η(α, a)m(f, a).
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9.16 Theorem: (Rouché’s Theorem) Let f and g be holomorphic in U . Let α be a loop
in U . Suppose that

∣∣f(z)− g(z)
∣∣ < ∣∣f(z)

∣∣ for all z ∈ Image (α). Then∑
a∈A

η(α, a)m(f, a) =
∑
b∈B

η(α, a)m(g, b)

where A is the set of zeros of f in U and B is the set of zeros of g in U .

Proof: For each s ∈ [0, 1], define ks : U → C by ks(z) = f(z) + s
(
g(z) − f(z)

)
. For

all z ∈ Image (α), since |g(z) − f(z)| < |f(z) we have |f(z)| > 0 and we have g(z) ∈
D
(
f(z), |f(z)|

)
. Since D

(
f(z), |f(z)|

)
is convex, it follows that the line segment from f(z)

to g(z) is contained in D
(
f(z), |f(z)|

)
and hence that ks(z) 6= 0 for all s ∈ [0, 1] and all

z ∈ Image (α). Define ` : [0, 1]→ Z by

`(s) =
1

2π i

∫
α

ks
′(z)

ks(z)
dz =

1

2π i

∫
α

f ′(z) + s
(
g′(z)− f ′(z)

)
f(z) +

(
g(z)− f(z)

) dz.

Note that `(s) does take values in Z by the Zeros and Poles Theorem. We shall show below
that `(z) is continuous. Since ` is continuous and takes values in Z, it is constant in [0, 1]
and so, by the Zeros and Poles Theorem,∑

a∈A
η(α, a)m(f, a) = `(0) = `(1) =

∑
b∈B

η(α, b)m(f, b),

as required. To show that ` is continuous, let h = g− f and note that for s1, s2 ∈ [0, 1] we
have ∣∣`(s1)− `(s2)

∣∣ =

∣∣∣∣ 1

2π i

∫
α

f ′ + s1h
′

f + s1h
− f ′ + s2h

′

f + s2h

∣∣∣∣
=

∣∣∣∣ 1

2π i

∫
α

(f ′ + s1h
′)(f + s2h)− (f ′ + s2h)(f + s1h)

(f + s1h)(f + s2h)

∣∣∣∣
=

∣∣∣∣ 1

2π i

∫
α

(s1 − s2)(h′f − f ′h)

(f + s1h)(f + s2h)

∣∣∣∣
≤ 1

2π
· |s1 − s2|M

m2
· Length(α) −→ 0 as s1 → s2,

where M = max
z=α(t)

∣∣h′(z)f(z)− f ′(z)h(z)
∣∣ and m = min s ∈ [0, 1], z = α(t)

∣∣f(z) + sh(z)
∣∣.

9.17 Example: Let f(z) = z5 + 15z + 1. Show that f has exactly 4 zeros (counted with
multiplicity) inside the annulus A =

{
z ∈ C

∣∣ 3
2 < z < 2

}
.

Solution: Let g(z) = 15z and h(z) = z5. When |z| = 3
2 we have

|f(z)− g(z)| = |z5 + 1| ≤ |z|5 + 1 = 243
32 + 1 < 45

2 = 15|z| = |g(z)|

so, by Rouché s Theorem, f has the same number of zeros inside the circle |z| = 3
2 as the

function g(z) = 15z, namely 1 zero. When |z| = 2, we have

|f(z)− h(z)| = |15z + 1| ≤ 15|z|+ 1 = 31 < 32 = |z|5 = |h(z)|

so, by Rouché s Theorem, f has the same number of zeros inside the circle |z| = 2 as the
function h(z) = z5, namely 5 zeros.
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9.18 Lemma: Let f be holomorphic in the open set U and suppose that f has a zero of
multiplicity m at a ∈ U . Choose R > 0 so that D(a,R) ⊆ U and f(z) 6= 0 in D∗(a,R),
and let 0 < r < R. Let δ = min

|z−a|=r
|f(z)| and note that δ > 0. Then for all w ∈ D(0, δ),

the function g(z) = f(z)− w has exactly m zeros (counted with multiplicity) in D(a, r).

Proof: Let w ∈ D(0, δ) and let g(z) = f(z)− w. Then for all z with |z − a| = r we have

|f(z)− g(z)| = |w| < δ ≤ |f(z)|

so, by Rouché s Theorem, g has the same number of zeros as f in D(a, r).

9.19 Theorem: (The Conformal Mapping Theorem) Let f : U ⊆ C→ C be holomorphic
and injective. Then f ′(z) 6= 0 for all z ∈ U , so f is conformal.

Proof: Suppose, for a contradiction, that a ∈ U and f ′(a) = 0. Let g(z) = f(z) − f(a)
and note that g′(z) = f ′(z) so we have g(a) = 0 and g′(a) = 0 so that g has a zero of
multiplicity m ≥ 2 at a. Choose R > 0 so that D(a,R) ⊆ U and g′(z) 6= 0 in D∗(a,R).
Let 0 < r < R and let δ = min

|z−a|=r
|g(z)| > 0. Choose w ∈ C with 0 < |w| < δ, let

h(z) = g(z) − w = f(z) − f(a) − w, and note that h′(z) = g′(z) = f ′(z). By the above
lemma, h has m ≥ 2 zeros inside the circle |z − a| = r. Since h(a) = −w 6= 0 and
h′(z) = g′(z) 6= 0 in D∗(a,R), it follows that h has exactly m distinct zeros, each of
multiplicity 1, in D∗(a, r). Choose u, v ∈ D∗(a, r) with u 6= v such that h(u) = h(v) = 0.
Then

f(u) = h(u) + f(a) + w = f(a) + w = h(v) + f(a) + w = f(v)

which contradicts the fact that f is injective.

9.20 Theorem: (The Open Mapping Theorem) Let f : U ⊆ C→ C be holomorphic and
non-constant. Then f(U) is open.

Proof: Let b ∈ f(U), and choose a ∈ U so that f(a) = b. Let g(z) = f(z)−b and note that
g(a) = 0. Choose R > 0 so that D(a,R) ⊆ U and g(z) 6= 0 in D∗(a,R). Let 0 < r < R and
let δ = min

|z−a|=r
|g(z)|. We claim that D(b, δ) ⊆ f(U). Let w ∈ D(b, δ). Let v = w − b and

note that |v| < δ. By the above lemma, the function h(z) = g(z)− v has at least one zero
in D(a, r). Choose u ∈ D(a, r) so that h(u) = 0. Then f(u) = g(u) + b = h(u) + v + b =
v + b = w.
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9.21 Theorem: (The Inverse Function Theorem) Let f : U ⊆ C → C be holomorphic
with f ′(a) 6= 0 where a ∈ U . Then there exists r > 0 such that the restriction of f to
D(a, r) is invertible, and its inverse g = f−1 is holomorphic with

g′(w) =
1

f ′
(
g(w)

)
for all w ∈ f

(
D(a, r)

)
Proof: Let h(z) = f(z)− f(a). Since h(a) = 0 and h′(a) = f ′(a) 6= 0, h has a simple zero
at a. Choose R > 0 so that D(a,R) ⊆ U and h(z) 6= 0 in D∗(a,R). Let 0 < s < R and let
δ = min

|z−a|=s
|h(z)|. We claim that for every w ∈ D(f(a), δ) there exists a unique u ∈ D(a, s)

such that f(u) = w. Let w ∈ D
(
f(a), δ

)
. Let v = w − f(a) and note that |v| < δ. By the

above lemma, the function k(z) = h(z)−v has exactly 1 simple zero in D(a, s). Thus there
is a unique u ∈ D(a, s) such that 0 = k(u) = h(u)−v =

(
f(u)−f(a)

)
−(w−f(a)

)
= f(u)−w

hence there is a unique u ∈ D(a, s) such that f(u) = w, as claimed. It follows that if we
choose r > 0 so that D(a, r) ⊆ f−1

(
D(f(a), δ)

)
then the restriction of f to D(a, r) is

invertible. Let g = f−1 be the inverse of the restriction of f to D(a, r).
Let z ∈ D(a, r) and let w = f(z) so that z = g(w). By the Conformal Mapping

Theorem, we know that f ′
(
g(w)

)
f ′(z) 6= 0. By the Open Mapping Theorem, we know

that g is continuous. For v ∈ f
(
D(a, r)

)
, as v → w with v 6= w, we have g(v)→ g(w) with

g(v) 6= g(w) since g is continuous and injective, and so

g(v)− g(w)

v − w
=

g(v)− g(w)

f
(
g(v)

)
− f

(
g(w)

) −→ 1

f ′
(
g(w)

) .
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