
PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 7

1: (a) Show that for A ⊆ R, if A is closed and of measure zero then A is nowhere dense.

Solution: Suppose that A is closed and of measure zero. We must show that A◦ = ∅. Suppose, for a
contradiction, that A◦ 6= ∅. Choose a closed interval [a, b] ⊂ A, where a < b. We claim that λ(A) ≥ b−a > 0
so that A is not of measure zero. Let U be a countable set of open intervals which covers A. Then U also
covers [a, b], which is compact. Choose a finite subcover V ⊂ U of [a, b]. Choose an open interval (a1, b1) ∈ V
with a ∈ (a1, b1). If b1 > b then [a, b] ⊂ (a1, b1). If b ≤ b1 then b1 ∈ [a, b] but b1 /∈ (a1, b1), so we can choose
an open interval (a2, b2) ∈ V with b1 ∈ (a2, b2). Recursively, we choose intervals (a1, b1), (a2, b2), (a3, b3), · · ·
so that a ∈ (a1, b1), b1 ∈ (a2, b2), b2 ∈ (a3, b3) and so on. Since V is finite and covers [a, b], eventually we
obtain an interval (an, bn) which contains b. Since a1 < a and ai−1 < bi for 2 ≤ i ≤ n and bn > b, we have

n∑
i=1

(bi − ai) = (b1 − a1) + (b2 − a2) + (b3 − a3) + · · ·+ (bn−1 − an−1) + (bn − an)

> (b1 − a) + (b2 − b1) + (b3 − b2) + · · ·+ (bn−1 − bn−2) + (b− bn−1)

= b− a

Thus the sum of the lengths of all the intervals in U is greater than b − a. From the definition of outer
measure, we have λ(A) ≥ b− a > 0.

(b) Let X and Y be metric spaces and let f : X → Y . For ε > 0 let

Dε =
{
a ∈ X

∣∣∣∀ δ > 0 ∃x, y ∈ B(a, δ) d
(
f(x), f(y)

)
≥ ε
}
.

Show that the set of points in X at which f is continuous is of type Gδ by showing that Dε is closed in X

for all ε > 0 and that

∞⋃
n=1

D1/n =
{
a ∈ X

∣∣∣ f is not continuous at a
}

.

Solution: Let a ∈ X \ Dε. Since a /∈ Dε, we can choose δ > 0 so that for all x, y ∈ B(a, δ) we have
d
(
f(x), f(y)

)
< ε. We claim that B

(
a, δ2

)
∩ Dε = ∅. Let b ∈ B

(
a, δ2

)
. Then for x, y ∈ B

(
b, δ2
)

we have

x, y ∈ B(a, δ) so d
(
f(x), f(y)

)
< ε. Thus b /∈ Dε. It follows that Dε is closed.

Suppose that f is discontinuous at a ∈ X. Choose ε > 0 so that ∀δ > 0 ∃x ∈ B(a, δ) d
(
f(x), f(a)

)
≥ ε.

Choose n so that 1
n ≤ ε. Then ∀δ > 0 ∃x ∈ B(a, δ) d

(
f(x), f(a)

)
≥ 1

n . Hence (by taking y = a) we have

∀δ > 0 ∃x, y ∈ B(a, δ) d
(
f(x), f(y)

)
≥ 1

n . Thus a ∈ D1/n.

Conversely, let a ∈
∞⋃
n=1

D1/n. Choose n so that a ∈ D1/n. Let ε = 1
2n . Let δ > 0. Since a ∈ D1/n, we

can choose x, y ∈ B
(
a, δ2

)
so that d

(
f(x), f(y)

)
≥ 1

n = 2ε. Then either we have d
(
f(x), f(a)

)
≥ ε or we have

d
(
f(y), f(a) ≥ ε, and so (by taking z = x or z = y) we have ∃z ∈ B(a, δ) d

(
f(z), f(a)

)
≥ ε. We have shown

that ∃ε > 0 ∀δ > 0 ∃z ∈ B(a, δ) f(z) /∈ B
(
f(a), ε

)
, which means that f is discontinuous at a.

Thus

∞⋃
n=1

D1/n =
{
a ∈ X

∣∣∣ f is not continuous at a
}

, as required, and by taking the complement we see

that the set of points in X at which f is continuous is of type Gδ.



2: Let G = G(R) be the set of open sets in R, and let F = F(R) be the set of closed sets in R.

(a) Show that F ⊆ Gδ (or equivalently, by taking complements, that G ⊆ Fσ).

Solution: Let ∅ 6= A ∈ F . Since A is closed, for each x ∈ R the function gx : A→ [0,∞) given by gx = |x−a|
attains its minimum value. Define f : R→ [0,∞) by f(x) = dist(x,A) = min

{
|x− a|

∣∣a ∈ A} and note that

f(x) = 0 ⇐⇒ x ∈ A. Recall (or verify) that f is continuous, and so the set
{
x ∈ R

∣∣f(x) < 1
n

}
= f−1

(
1
n ,∞

)
is open for each n ∈ Z+. Thus

A =
{
x ∈ R

∣∣f(x) = 0
}

=
∞⋂
n=1

{
x ∈ R

∣∣f(x) < 1
n

}
∈ Gδ.

(b) Show that Fσ 6= Gδ.

Solution: Recall that Q ∈ Fσ
(
indeed if Q = {a1, a2, · · ·} then Q =

∞⋃
k=1

{ak}
)

and it follows (by taking the

complement) that Qc ∈ Gδ. We claim that Qc /∈ Fσ (and hence, by taking complements, Q /∈ Gδ). Suppose,

for a contradiction, that Qc ∈ Fσ. Let Q =
∞⋃
k=1

Ak where each Ak is a closed set (which is contained in Q)

and let Qc =
∞⋃
k=1

Bk where each Bk is a closed set (which is contained in Qc). Then R = Q ∪Qc =
∞⋃
n=1

Cn

where C2k = Ak and C2k−1 = Bk. For each n ∈ Z+, when n is even Cn is contained in Q and when n is odd
Cn is contained in Qc and, in either case, it follows that C has an empty interior. Thus R is a countable
union of closed sets with empty interiors, and so R is first category. We know this is impossible, by the
Baire Category Theorem, and so we have obtained the desired contradiction.

(c) Show that Gδ ∪ Fσ 6= Gδσ ∩ Fσδ.
Solution: Let a, b ∈ R with a < b. Since Q ∈ Fσ and (a, b) ∈ G ⊆ Fσ, we have Q∩(a, b) ∈ Fσ. Since Qc ∈ Gδ
and (a, b) ∈ G ⊆ Gδ, we have Qc ∩ (a, b) ∈ Gδ. If we had Qc ∩ (a, b) ∈ Fσ then we could write each of the sets
Q ∩ (a, b) and Qc ∩ (a, b) as a countable union of closed sets, with each closed set necessarily having empty
interior, and then the union (a, b) =

(
Q∩ (a, b)

)
∪
(
Qc∩ (a, b)

)
would also be a countable union of closed sets

with empty interior, and this is not possible by the Baire Category Theorem. Thus Qc ∩ (a, b) /∈ Fσ. If we
had Q ∩ (a, b) ∈ Gδ then, by taking complements, we would have Qc ∪ (a, b)c ∈ Fσ, but then we would also
have Qc ∩ (a, b) =

(
Qc ∪ (a, b)c

)
∩ (a, b) ∈ Fσ, which is not the case. Thus Qc ∩ (a, b) /∈ Gδ. To summarize,

we have
Q ∩ (a, b) ∈ Fσ , Q ∩ (a, b) /∈ Gδ , Qc ∩ (a, b) ∈ Gδ , Qc ∩ (a, b) /∈ Fσ.

Let A =
(
Q∩ (−1, 0)

)
∪
(
Qc ∩ (0, 1)

)
. Since Q∩ (−1, 0) ∈ Fσ ⊆ Gδσ ∩Fσδ and Qc ∩ (0, 1) ∈ Gδ ⊆ Gδσ ∩Fσδ

we have A ∈ Gδσ ∩ Fσδ. If we had A ∈ Gδ then we would also have A ∩ (−1, 0) ∈ Gδ, but A ∩ (−1, 0) =
Q∩(−1, 0) /∈ Gδ. If we had A ∈ Fσ then we would also have A∩(0, 1) ∈ Fσ, but A∩(0, 1) = Qc∩(0, 1) /∈ Fσ.
Since A /∈ Gδ and A /∈ Fσ it follows that A /∈ Gδ ∪ Fσ.



3: A function f : [0, 1] → R is called nowhere monotonic when it is not monotonic in any interval. Show that
the set of all nowhere monotonic continuous functions f : [0, 1]→ R is a residual set in

(
C[0, 1], d∞

)
.

Hint: for N ∈ N let

AN =
{
± f ∈ C[0, 1]

∣∣∣∃a ∈ [0, 1] ∀x ∈ [0, 1] |x− a| ≤ 1
N =⇒

(
f(x)− f(a)

)
(x− a) ≥ 0

}
.

Solution: For 2 ≤ N ∈ N, let

AN =
{
f ∈ C[0, 1]

∣∣∣∃ a ∈ [ 1
N , 1−

1
N

]
∀x ∈ [0, 1] |x− a| < 1

N =⇒
(
f(x)− f(a)

)
(x− a) ≥ 0

}
and

BN =
{
f ∈ C[0, 1]

∣∣∣∃ a ∈ [ 1
N , 1−

1
N

]
∀x ∈ [0, 1] |x− a| < 1

N =⇒
(
f(x)− f(a)

)
(x− a) ≤ 0

}
Let f ∈ C[0, 1] and suppose that f is increasing in some interval I. Choose a ∈ I and 1 ≤ N ∈ N so that(
a− 1

N , a+ 1
N

)
⊂ I. For a ≤ x < a+ 1

N we have (x−a) ≥ 0 and
(
f(x)−f(a)

)
≥ 0, and for a− 1

N < x ≤ a we

have (x, a) ≤ 0 and
(
f(x)−f(a)

)
≥ 0, so for all x ∈ [0, 1] with |x−a| < 1

N we have
(
f(x)−f(a)

)
(x−a) ≥ 0.

Thus f ∈ AN . Similarly, if f ∈ C[0, 1] is decreasing in some interval I, then we have f ∈ BN for some N .
Thus the set of somewhere monotonic functions is contained in

⋃∞
N=1(AN ∪BN ), and so it suffices to show

that each AN and each BN is nowhere dense.
We claim that each AN is closed in

(
C[0, 1], d∞

)
. Fix N . Let 〈fn〉 be a sequence in AN which converges

uniformly on [0, 1] to the function f ∈ C[0, 1]. We must show that f ∈ AN . For each n ∈ N, choose an ∈ [0, 1]
so that ∀x ∈ [0, 1] |x − an| < 1

N =⇒
(
fn(x) − fn(an)

)
(x − an) ≥ 0. Choose a subsequence 〈ank

〉 of 〈an〉
which converges in [0, 1], and let a = lim

k→∞
ank
∈ [0, 1]. We claim that

lim
k→∞

fnk

(
ank

)
= f(a) .

Let ε > 0. Since f is continuous at a we can choose δ > 0 so that for all y ∈ [0, 1] we have |y − a| < δ =⇒∣∣f(y) − f(a)
∣∣ < ε

2 , and then since ank
→ a and since fnk

→ f uniformly on [0, 1] we can choose K ∈ N so

that for k ∈ N with k ≥ K we have
∣∣ank

− a
∣∣ < δ and we have

∣∣fnk
(y) − f(y)

∣∣ < ε
2 for all y ∈ [o, 1]. Then

for k ≥ K we obtain∣∣fnk

(
ank

)
− f(a)

∣∣ ≤ ∣∣fnk

(
ank

)
− f

(
ank

)∣∣+
∣∣f(ank

)
− f(a)

∣∣ < ε
2 + ε

2 = ε .

Now, let x ∈ [0, 1] with |x− a| < 1
N . Note that for sufficiently large k we have

∣∣x− ank

∣∣ < 1
N ; indeed if we

choose K so that k ≥ K =⇒
∣∣ank
−a
∣∣ < 1

N −|x−a|, then for k ≥ K we have
∣∣x−ank

∣∣ ≤ |x−a|+ ∣∣a−ank

∣∣ <
|x − a| + 1

N − |x − a| = 1
N . Since we have

(
f(x) − f(ank

)
)
(x − ank

) ≥ 0 for all k sufficiently lage that
|x− ank

| < 1
N , it follows that(

f(x)− f(a)
)
(x− a) = lim

k→∞

(
f(x)− fnk

(ank
)
)
(x− ank

) ≥ 0 .

Thus f ∈ AN , so we have shown that AN is closed. Similarly, each BN is closed.
We claim that each AN has empty interior. Fix N , let f ∈ AN , and let r > 0. We shall construct

g ∈ B∞(f, r) with g /∈ AN . Since f is uniformly continuous on [0, 1], we can choose δ > 0 so that for all
x, y ∈ [0, 1] we have

∣∣f(x)− f(y)
∣∣ < r

4 . Choose ω large enough so that 2π
ω < min

(
1
N , δ

)
. Let

g(x) = f(x) + r
2 sin(ωx) .

Since |g− f |∞ = r
2 , we have g ∈ B∞(f, r). Let a ∈ [ 1

N , 1−
1
N ]. If sin(ωa) ≥ 0 then we choose x ∈

(
a, a+ 2π

ω

]
so that sin(ωx) = −1, and then we have (x− a) > 0 and

g(x)− g(a) =
(
f(x)− f(a)

)
+ r

2

(
sin(ωx)− sin(ωa)

)
≤ r

4 −
r
2 < 0 .

If sin(ωa) ≤ 0 then we choose x ∈
[
a− 2π

ω , a
)

so that sin(ωx) = 1, and then we have (x− a) < 0 and

g(x)− g(a) =
(
f(x)− f(a)

)
+ r

2

(
sin(ωx)− sin(ωa)

)
≥ − r4 + r

2 > 0 .

In either case we obtain x ∈ [0, 1] with |x− a| < 1
N such that

(
g(x)− g(a)

)
(x− a) < 0. Thus g /∈ AN .


