

1: (a) Show that for $A \subseteq \mathbf{R}$, if A is closed and of measure zero then A is nowhere dense.

Solution: Suppose that A is closed and of measure zero. We must show that $A^\circ = \emptyset$. Suppose, for a contradiction, that $A^\circ \neq \emptyset$. Choose a closed interval $[a, b] \subset A$, where $a < b$. We claim that $\lambda(A) \geq b - a > 0$ so that A is not of measure zero. Let \mathcal{U} be a countable set of open intervals which covers A . Then \mathcal{U} also covers $[a, b]$, which is compact. Choose a finite subcover $\mathcal{V} \subset \mathcal{U}$ of $[a, b]$. Choose an open interval $(a_1, b_1) \in \mathcal{V}$ with $a \in (a_1, b_1)$. If $b_1 > b$ then $[a, b] \subset (a_1, b_1)$. If $b \leq b_1$ then $b_1 \in [a, b]$ but $b_1 \notin (a_1, b_1)$, so we can choose an open interval $(a_2, b_2) \in \mathcal{V}$ with $b_1 \in (a_2, b_2)$. Recursively, we choose intervals $(a_1, b_1), (a_2, b_2), (a_3, b_3), \dots$ so that $a \in (a_1, b_1), b_1 \in (a_2, b_2), b_2 \in (a_3, b_3)$ and so on. Since \mathcal{V} is finite and covers $[a, b]$, eventually we obtain an interval (a_n, b_n) which contains b . Since $a_1 < a$ and $a_{i-1} < b_i$ for $2 \leq i \leq n$ and $b_n > b$, we have

$$\begin{aligned} \sum_{i=1}^n (b_i - a_i) &= (b_1 - a_1) + (b_2 - a_2) + (b_3 - a_3) + \dots + (b_{n-1} - a_{n-1}) + (b_n - a_n) \\ &> (b_1 - a) + (b_2 - b_1) + (b_3 - b_2) + \dots + (b_{n-1} - b_{n-2}) + (b - b_{n-1}) \\ &= b - a \end{aligned}$$

Thus the sum of the lengths of all the intervals in \mathcal{U} is greater than $b - a$. From the definition of outer measure, we have $\lambda(A) \geq b - a > 0$.

(b) Let X and Y be metric spaces and let $f : X \rightarrow Y$. For $\epsilon > 0$ let

$$D_\epsilon = \left\{ a \in X \mid \forall \delta > 0 \exists x, y \in B(a, \delta) \quad d(f(x), f(y)) \geq \epsilon \right\}.$$

Show that the set of points in X at which f is continuous is of type \mathcal{G}_δ by showing that D_ϵ is closed in X for all $\epsilon > 0$ and that $\bigcup_{n=1}^{\infty} D_{1/n} = \left\{ a \in X \mid f \text{ is not continuous at } a \right\}$.

Solution: Let $a \in X \setminus D_\epsilon$. Since $a \notin D_\epsilon$, we can choose $\delta > 0$ so that for all $x, y \in B(a, \delta)$ we have $d(f(x), f(y)) < \epsilon$. We claim that $B(a, \frac{\delta}{2}) \cap D_\epsilon = \emptyset$. Let $b \in B(a, \frac{\delta}{2})$. Then for $x, y \in B(b, \frac{\delta}{2})$ we have $x, y \in B(a, \delta)$ so $d(f(x), f(y)) < \epsilon$. Thus $b \notin D_\epsilon$. It follows that D_ϵ is closed.

Suppose that f is discontinuous at $a \in X$. Choose $\epsilon > 0$ so that $\forall \delta > 0 \exists x \in B(a, \delta) \quad d(f(x), f(a)) \geq \epsilon$. Choose n so that $\frac{1}{n} \leq \epsilon$. Then $\forall \delta > 0 \exists x \in B(a, \delta) \quad d(f(x), f(a)) \geq \frac{1}{n}$. Hence (by taking $y = a$) we have $\forall \delta > 0 \exists x, y \in B(a, \delta) \quad d(f(x), f(y)) \geq \frac{1}{n}$. Thus $a \in D_{1/n}$.

Conversely, let $a \in \bigcup_{n=1}^{\infty} D_{1/n}$. Choose n so that $a \in D_{1/n}$. Let $\epsilon = \frac{1}{2n}$. Let $\delta > 0$. Since $a \in D_{1/n}$, we can choose $x, y \in B(a, \frac{\delta}{2})$ so that $d(f(x), f(y)) \geq \frac{1}{n} = 2\epsilon$. Then either we have $d(f(x), f(a)) \geq \epsilon$ or we have $d(f(y), f(a)) \geq \epsilon$, and so (by taking $z = x$ or $z = y$) we have $\exists z \in B(a, \delta) \quad d(f(z), f(a)) \geq \epsilon$. We have shown that $\exists \epsilon > 0 \forall \delta > 0 \exists z \in B(a, \delta) \quad f(z) \notin B(f(a), \epsilon)$, which means that f is discontinuous at a .

Thus $\bigcup_{n=1}^{\infty} D_{1/n} = \left\{ a \in X \mid f \text{ is not continuous at } a \right\}$, as required, and by taking the complement we see that the set of points in X at which f is continuous is of type \mathcal{G}_δ .

2: Let $\mathcal{G} = \mathcal{G}(\mathbf{R})$ be the set of open sets in \mathbf{R} , and let $\mathcal{F} = \mathcal{F}(\mathbf{R})$ be the set of closed sets in \mathbf{R} .

(a) Show that $\mathcal{F} \subseteq \mathcal{G}_\delta$ (or equivalently, by taking complements, that $\mathcal{G} \subseteq \mathcal{F}_\sigma$).

Solution: Let $\emptyset \neq A \in \mathcal{F}$. Since A is closed, for each $x \in \mathbf{R}$ the function $g_x : A \rightarrow [0, \infty)$ given by $g_x = |x - a|$ attains its minimum value. Define $f : \mathbf{R} \rightarrow [0, \infty)$ by $f(x) = \text{dist}(x, A) = \min \{|x - a| \mid a \in A\}$ and note that $f(x) = 0 \iff x \in A$. Recall (or verify) that f is continuous, and so the set $\{x \in \mathbf{R} \mid f(x) < \frac{1}{n}\} = f^{-1}(\frac{1}{n}, \infty)$ is open for each $n \in \mathbf{Z}^+$. Thus

$$A = \{x \in \mathbf{R} \mid f(x) = 0\} = \bigcap_{n=1}^{\infty} \{x \in \mathbf{R} \mid f(x) < \frac{1}{n}\} \in \mathcal{G}_\delta.$$

(b) Show that $\mathcal{F}_\sigma \neq \mathcal{G}_\delta$.

Solution: Recall that $\mathbf{Q} \in \mathcal{F}_\sigma$ (indeed if $\mathbf{Q} = \{a_1, a_2, \dots\}$ then $\mathbf{Q} = \bigcup_{k=1}^{\infty} \{a_k\}$) and it follows (by taking the complement) that $\mathbf{Q}^c \in \mathcal{G}_\delta$. We claim that $\mathbf{Q}^c \notin \mathcal{F}_\sigma$ (and hence, by taking complements, $\mathbf{Q} \notin \mathcal{G}_\delta$). Suppose, for a contradiction, that $\mathbf{Q}^c \in \mathcal{F}_\sigma$. Let $\mathbf{Q} = \bigcup_{k=1}^{\infty} A_k$ where each A_k is a closed set (which is contained in \mathbf{Q})

and let $\mathbf{Q}^c = \bigcup_{k=1}^{\infty} B_k$ where each B_k is a closed set (which is contained in \mathbf{Q}^c). Then $\mathbf{R} = \mathbf{Q} \cup \mathbf{Q}^c = \bigcup_{n=1}^{\infty} C_n$

where $C_{2k} = A_k$ and $C_{2k-1} = B_k$. For each $n \in \mathbf{Z}^+$, when n is even C_n is contained in \mathbf{Q} and when n is odd C_n is contained in \mathbf{Q}^c and, in either case, it follows that C has an empty interior. Thus \mathbf{R} is a countable union of closed sets with empty interiors, and so \mathbf{R} is first category. We know this is impossible, by the Baire Category Theorem, and so we have obtained the desired contradiction.

(c) Show that $\mathcal{G}_\delta \cup \mathcal{F}_\sigma \neq \mathcal{G}_{\delta\sigma} \cap \mathcal{F}_{\sigma\delta}$.

Solution: Let $a, b \in \mathbf{R}$ with $a < b$. Since $\mathbf{Q} \in \mathcal{F}_\sigma$ and $(a, b) \in \mathcal{G} \subseteq \mathcal{F}_\sigma$, we have $\mathbf{Q} \cap (a, b) \in \mathcal{F}_\sigma$. Since $\mathbf{Q}^c \in \mathcal{G}_\delta$ and $(a, b) \in \mathcal{G} \subseteq \mathcal{G}_\delta$, we have $\mathbf{Q}^c \cap (a, b) \in \mathcal{G}_\delta$. If we had $\mathbf{Q}^c \cap (a, b) \in \mathcal{F}_\sigma$ then we could write each of the sets $\mathbf{Q} \cap (a, b)$ and $\mathbf{Q}^c \cap (a, b)$ as a countable union of closed sets, with each closed set necessarily having empty interior, and then the union $(a, b) = (\mathbf{Q} \cap (a, b)) \cup (\mathbf{Q}^c \cap (a, b))$ would also be a countable union of closed sets with empty interior, and this is not possible by the Baire Category Theorem. Thus $\mathbf{Q}^c \cap (a, b) \notin \mathcal{F}_\sigma$. If we had $\mathbf{Q} \cap (a, b) \in \mathcal{G}_\delta$ then, by taking complements, we would have $\mathbf{Q}^c \cup (a, b)^c \in \mathcal{F}_\sigma$, but then we would also have $\mathbf{Q}^c \cap (a, b) = (\mathbf{Q}^c \cup (a, b)^c) \cap (a, b) \in \mathcal{F}_\sigma$, which is not the case. Thus $\mathbf{Q}^c \cap (a, b) \notin \mathcal{G}_\delta$. To summarize, we have

$$\mathbf{Q} \cap (a, b) \in \mathcal{F}_\sigma, \quad \mathbf{Q} \cap (a, b) \notin \mathcal{G}_\delta, \quad \mathbf{Q}^c \cap (a, b) \in \mathcal{G}_\delta, \quad \mathbf{Q}^c \cap (a, b) \notin \mathcal{F}_\sigma.$$

Let $A = (\mathbf{Q} \cap (-1, 0)) \cup (\mathbf{Q}^c \cap (0, 1))$. Since $\mathbf{Q} \cap (-1, 0) \in \mathcal{F}_\sigma \subseteq \mathcal{G}_{\delta\sigma} \cap \mathcal{F}_{\sigma\delta}$ and $\mathbf{Q}^c \cap (0, 1) \in \mathcal{G}_\delta \subseteq \mathcal{G}_{\delta\sigma} \cap \mathcal{F}_{\sigma\delta}$ we have $A \in \mathcal{G}_{\delta\sigma} \cap \mathcal{F}_{\sigma\delta}$. If we had $A \in \mathcal{G}_\delta$ then we would also have $A \cap (-1, 0) \in \mathcal{G}_\delta$, but $A \cap (-1, 0) = \mathbf{Q} \cap (-1, 0) \notin \mathcal{G}_\delta$. If we had $A \in \mathcal{F}_\sigma$ then we would also have $A \cap (0, 1) \in \mathcal{F}_\sigma$, but $A \cap (0, 1) = \mathbf{Q}^c \cap (0, 1) \notin \mathcal{F}_\sigma$. Since $A \notin \mathcal{G}_\delta$ and $A \notin \mathcal{F}_\sigma$ it follows that $A \notin \mathcal{G}_\delta \cup \mathcal{F}_\sigma$.

3: A function $f : [0, 1] \rightarrow \mathbf{R}$ is called *nowhere monotonic* when it is not monotonic in any interval. Show that the set of all nowhere monotonic continuous functions $f : [0, 1] \rightarrow \mathbf{R}$ is a residual set in $(\mathcal{C}[0, 1], d_\infty)$.

Hint: for $N \in \mathbf{N}$ let

$$A_N = \left\{ \pm f \in \mathcal{C}[0, 1] \mid \exists a \in [0, 1] \ \forall x \in [0, 1] \ |x - a| \leq \frac{1}{N} \implies (f(x) - f(a))(x - a) \geq 0 \right\}.$$

Solution: For $2 \leq N \in \mathbf{N}$, let

$$A_N = \left\{ f \in \mathcal{C}[0, 1] \mid \exists a \in [\frac{1}{N}, 1 - \frac{1}{N}] \ \forall x \in [0, 1] \ |x - a| < \frac{1}{N} \implies (f(x) - f(a))(x - a) \geq 0 \right\}$$

and

$$B_N = \left\{ f \in \mathcal{C}[0, 1] \mid \exists a \in [\frac{1}{N}, 1 - \frac{1}{N}] \ \forall x \in [0, 1] \ |x - a| < \frac{1}{N} \implies (f(x) - f(a))(x - a) \leq 0 \right\}$$

Let $f \in \mathcal{C}[0, 1]$ and suppose that f is increasing in some interval I . Choose $a \in I$ and $1 \leq N \in \mathbf{N}$ so that $(a - \frac{1}{N}, a + \frac{1}{N}) \subset I$. For $a \leq x < a + \frac{1}{N}$ we have $(x - a) \geq 0$ and $(f(x) - f(a)) \geq 0$, and for $a - \frac{1}{N} < x \leq a$ we have $(x - a) \leq 0$ and $(f(x) - f(a)) \geq 0$, so for all $x \in [0, 1]$ with $|x - a| < \frac{1}{N}$ we have $(f(x) - f(a))(x - a) \geq 0$. Thus $f \in A_N$. Similarly, if $f \in \mathcal{C}[0, 1]$ is decreasing in some interval I , then we have $f \in B_N$ for some N . Thus the set of somewhere monotonic functions is contained in $\bigcup_{N=1}^{\infty} (A_N \cup B_N)$, and so it suffices to show that each A_N and each B_N is nowhere dense.

We claim that each A_N is closed in $(\mathcal{C}[0, 1], d_\infty)$. Fix N . Let $\langle f_n \rangle$ be a sequence in A_N which converges uniformly on $[0, 1]$ to the function $f \in \mathcal{C}[0, 1]$. We must show that $f \in A_N$. For each $n \in \mathbf{N}$, choose $a_n \in [0, 1]$ so that $\forall x \in [0, 1] \ |x - a_n| < \frac{1}{N} \implies (f_n(x) - f_n(a_n))(x - a_n) \geq 0$. Choose a subsequence $\langle a_{n_k} \rangle$ of $\langle a_n \rangle$ which converges in $[0, 1]$, and let $a = \lim_{k \rightarrow \infty} a_{n_k} \in [0, 1]$. We claim that

$$\lim_{k \rightarrow \infty} f_{n_k}(a_{n_k}) = f(a).$$

Let $\epsilon > 0$. Since f is continuous at a we can choose $\delta > 0$ so that for all $y \in [0, 1]$ we have $|y - a| < \delta \implies |f(y) - f(a)| < \frac{\epsilon}{2}$, and then since $a_{n_k} \rightarrow a$ and since $f_{n_k} \rightarrow f$ uniformly on $[0, 1]$ we can choose $K \in \mathbf{N}$ so that for $k \in \mathbf{N}$ with $k \geq K$ we have $|a_{n_k} - a| < \delta$ and we have $|f_{n_k}(y) - f(y)| < \frac{\epsilon}{2}$ for all $y \in [0, 1]$. Then for $k \geq K$ we obtain

$$|f_{n_k}(a_{n_k}) - f(a)| \leq |f_{n_k}(a_{n_k}) - f(a_{n_k})| + |f(a_{n_k}) - f(a)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Now, let $x \in [0, 1]$ with $|x - a| < \frac{1}{N}$. Note that for sufficiently large k we have $|x - a_{n_k}| < \frac{1}{N}$; indeed if we choose K so that $k \geq K \implies |a_{n_k} - a| < \frac{1}{N} - |x - a|$, then for $k \geq K$ we have $|x - a_{n_k}| \leq |x - a| + |a - a_{n_k}| < |x - a| + \frac{1}{N} - |x - a| = \frac{1}{N}$. Since we have $(f(x) - f(a_{n_k}))(x - a_{n_k}) \geq 0$ for all k sufficiently large that $|x - a_{n_k}| < \frac{1}{N}$, it follows that

$$(f(x) - f(a))(x - a) = \lim_{k \rightarrow \infty} (f(x) - f_{n_k}(a_{n_k}))(x - a_{n_k}) \geq 0.$$

Thus $f \in A_N$, so we have shown that A_N is closed. Similarly, each B_N is closed.

We claim that each A_N has empty interior. Fix N , let $f \in A_N$, and let $r > 0$. We shall construct $g \in B_\infty(f, r)$ with $g \notin A_N$. Since f is uniformly continuous on $[0, 1]$, we can choose $\delta > 0$ so that for all $x, y \in [0, 1]$ we have $|f(x) - f(y)| < \frac{r}{4}$. Choose ω large enough so that $\frac{2\pi}{\omega} < \min(\frac{1}{N}, \delta)$. Let

$$g(x) = f(x) + \frac{r}{2} \sin(\omega x).$$

Since $|g - f|_\infty = \frac{r}{2}$, we have $g \in B_\infty(f, r)$. Let $a \in [\frac{1}{N}, 1 - \frac{1}{N}]$. If $\sin(\omega a) \geq 0$ then we choose $x \in (a, a + \frac{2\pi}{\omega})$ so that $\sin(\omega x) = -1$, and then we have $(x - a) > 0$ and

$$g(x) - g(a) = (f(x) - f(a)) + \frac{r}{2} (\sin(\omega x) - \sin(\omega a)) \leq \frac{r}{4} - \frac{r}{2} < 0.$$

If $\sin(\omega a) \leq 0$ then we choose $x \in [a - \frac{2\pi}{\omega}, a)$ so that $\sin(\omega x) = 1$, and then we have $(x - a) < 0$ and

$$g(x) - g(a) = (f(x) - f(a)) + \frac{r}{2} (\sin(\omega x) - \sin(\omega a)) \geq -\frac{r}{4} + \frac{r}{2} > 0.$$

In either case we obtain $x \in [0, 1]$ with $|x - a| < \frac{1}{N}$ such that $(g(x) - g(a))(x - a) < 0$. Thus $g \notin A_N$.