

PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 6

1: (a) Find an example of a function $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $|f(y) - f(x)| < |y - x|$ for all $x, y \in \mathbb{R}$ with $x \neq y$, but f has no fixed point in \mathbb{R} .

Solution: Define $f : \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) = x + g(x)$ where $g : \mathbb{R} \rightarrow \mathbb{R}$ is any differential function with $g(x) > 0$ and $-1 < g'(x) < 0$ for all $x \in \mathbb{R}$ (for example, $g(x) = \frac{1}{4}(\sqrt{x^2 + 1} - x)$ or $g(x) = \frac{1}{2} - \frac{1}{\pi} \tan^{-1} x$). Given $x < y$, by the Mean Value Theorem we can choose c with $x \leq c \leq y$ such that $g(y) - g(x) = g'(c)(y - x)$ and then

$$|f(y) - f(x)| = |(y - x) + (g(y) - g(x))| = |(y - x) + g'(c)(y - x)| = (1 + g'(c))(y - x) < (y - x)$$

since $-1 < g'(c) < 0$. But f has no fixed points because for all $x \in \mathbb{R}$ we have $f(x) = x + g(x) > x$, since $g(x) > 0$.

(b) The polynomial $p(x) = x^3 - 3x + 1$ has a unique root in $[0, \frac{1}{2}]$. Approximate this root using the Banach Fixed Point Theorem as follows: Let $f(x) = \frac{1}{3}(x^3 + 1)$. Show that $f : [0, \frac{1}{2}] \rightarrow [0, \frac{1}{2}]$ is a contraction map whose unique fixed point is the desired root of p . Approximate the root by using a calculator to find x_5 where $x_0 = 0$ and $x_{n+1} = f(x_n)$.

Solution: We have $f'(x) = x^2$. Since $f'(x) > 0$ for $x > 0$, it follows that f is (strictly) increasing for $x \geq 0$, and since $f(0) = \frac{1}{3}$ and $f(\frac{1}{2}) = \frac{3}{8}$ we have $f : [0, \frac{1}{2}] \rightarrow [\frac{1}{3}, \frac{3}{8}] \subseteq [0, \frac{1}{2}]$. Let $x, y \in [0, \frac{1}{2}]$. By the Mean Value Theorem we can choose t between x and y so that $f(x) - f(y) = f'(t)(x - y)$. Since t is between x and y , we have $0 \leq t \leq \frac{1}{2}$ hence $0 \leq t^2 \leq \frac{1}{4}$, that is $0 \leq f'(t) \leq \frac{1}{4}$. Thus $|f(x) - f(y)| = |f'(t)| |x - y| \leq \frac{1}{4} |x - y|$ so that f is a contraction map with contraction constant $c = \frac{1}{4}$. Using a calculator, we find that $x_0 = 0$, $x_1 \cong 0.333333$, $x_2 \cong 0.345679$, $x_3 \cong 0.347102$, $x_4 \cong 0.347273$ and $x_5 \cong 0.347294$.

We remark that Newton's Method for finding this root (which many students will have seen) amounts to finding the fixed point of the contraction map $g(x) = x - \frac{p(x)}{p'(x)} = \frac{2x^3 - 1}{3(x^2 - 1)}$, and the resulting sequence converges faster than the sequence we found above (because, letting a be the root that we are approximating, when we repeatedly apply f on smaller intervals the contraction constant approaches $f'(a) = a^2 \cong 0.12$ but p is a factor of g' so when we repeatedly apply g the contraction constant approaches $g'(a) = 0$).

We also remark that the exact value of the root that we are approximating is $a = 2 \sin \frac{\pi}{9} = 2 \sin(10^\circ)$.

2: (a) Define $F: \mathcal{C}[0, 1] \rightarrow \mathcal{C}[0, 1]$ by $F(f)(x) = \int_0^x f(t) dt$. Show that F is not a contraction map but $F^2 = F \circ F$ is.

Solution: Note that F and F^2 are linear maps on the normed linear space $\mathcal{C}[0, 1]$. When f is the constant function $f(x) = 1$ we have $F(f)(x) = x$ so that $\|F(f)\|_\infty = 1 = \|f\|_\infty$, and so F is not a contraction. When $f \in \mathcal{C}[0, 1]$ and $F(f) = g$ we have

$$\begin{aligned} |g(x)| &= \left| \int_0^x f(t) dt \right| \leq \int_0^x |f(t)| dt \leq \int_0^x \|f\|_\infty dt = \|f\|_\infty x \\ |F(g)(x)| &= \left| \int_0^x g(t) dt \right| \leq \int_0^x |g(t)| dt \leq \int_0^x \|f\|_\infty t dt = \frac{1}{2} \|f\|_\infty x^2 \end{aligned}$$

so that $\|F^2(f)\|_\infty = \|F(g)\|_\infty \leq \frac{1}{2} \|f\|_\infty$, and so F^2 is a contraction map with contraction constant $c = \frac{1}{2}$.

(b) Use the Banach Fixed Point Theorem to show that there exists a unique function $f \in \mathcal{C}[0, 1]$ such that $f(x) = x + \int_0^x t f(t) dt$ for all $x \in [0, 1]$.

Solution: Define $F: \mathcal{C}[0, 1] \rightarrow \mathcal{C}[0, 1]$ by $F(f)(x) = x + \int_0^x t f(t) dt$. Note that F is a contraction map because for $f, g \in \mathcal{C}[0, 1]$ we have

$$\begin{aligned} |F(f)(x) - F(g)(x)| &= \left| \left(x + \int_0^x t f(t) dt \right) - \left(x + \int_0^x t g(t) dt \right) \right| = \left| \int_0^x t (f(t) - g(t)) dt \right| \\ &\leq \int_0^x \|f - g\|_\infty t dt = \frac{1}{2} \|f - g\|_\infty x^2 \end{aligned}$$

so that $\|F(f) - F(g)\|_\infty \leq \frac{1}{2} \|f - g\|_\infty$. By the Banach Fixed-Point Theorem, F has a unique fixed point $f \in \mathcal{C}[0, 1]$, so there is a unique function $f \in \mathcal{C}[0, 1]$ such that $f(x) = x + \int_0^x t f(t) dt$ for all $x \in [0, 1]$.

3: Solve the differential equation $y' = 1 + x^2y$ with $y(0) = 0$ in the interval $[-1, 1]$ using the following method:

Define $F : \mathcal{C}[-1, 1] \rightarrow \mathcal{C}[-1, 1]$ by $F(f)(x) = x + \int_0^x t^2 f(t) dt$. Show that F is a contraction map (using the supremum norm) whose unique fixed point is the desired solution. Express the solution as a power series by finding a formula for $f_n(x)$ where $f_0(x) = 0$ and $f_{n+1}(x) = F(f_n)(x)$.

Solution: For $f, g \in \mathcal{C}[-1, 1]$ and $x \in [-1, 1]$ we have

$$|F(f)(x) - F(g)(x)| = \left| x + \int_0^x t^2 f(t) dt - x - \int_0^x t^2 g(t) dt \right| = \left| \int_0^x t^2 (f(t) - g(t)) dt \right|.$$

When $0 \leq x \leq 1$ we have

$$\left| \int_0^x t^2 (f(t) - g(t)) dt \right| \leq \int_0^x t^2 |f(t) - g(t)| dt \leq \int_0^x t^2 \|f - g\|_\infty dt = \frac{1}{3}x^3 \|f - g\|_\infty \leq \frac{1}{3} \|f - g\|_\infty$$

and when $-1 \leq x \leq 0$ we have

$$\left| \int_0^x t^2 (f(t) - g(t)) dt \right| \leq \int_x^0 t^2 |f(t) - g(t)| dt \leq \int_x^0 t^2 \|f - g\|_\infty dt = -\frac{1}{3}x^3 \|f - g\|_\infty \leq \frac{1}{3} \|f - g\|_\infty.$$

Since $|F(f)(x) - F(g)(x)| \leq \frac{1}{3} \|f - g\|_\infty$ for all $x \in [-1, 1]$, it follows that $\|F(f) - F(g)\|_\infty \leq \frac{1}{3} \|f - g\|_\infty$, and so F is a contraction map. Since F is a contraction map on $\mathcal{C}[-1, 1]$, which is a complete metric space, it follows from the Banach Fixed Point Theorem that F has a unique fixed point f .

If $y = f(x)$ is a solution to the given differential equation, so we have $f'(x) = 1 + x^2 f(x)$ for all $x \in [-1, 1]$ with $f(0) = 0$, then by changing the variable to t and integrating from 0 to x (using the Fundamental Theorem of Calculus) we obtain

$$f(x) = \int_0^x f'(t) dt = \int_0^x 1 + t^2 f(t) dt = x + \int_0^x t^2 f(t) dt = F(f)(x)$$

so that $f = F(f)$, which means that f is a fixed point of F . If, on the other hand, f is a fixed point of F , which means that $f(x) = F(f)(x) = x + \int_0^x t^2 f(t) dt$ for all $x \in [-1, 1]$, then taking $x = 0$ gives $f(0) = 0$, and differentiating on both sides gives $f'(x) = 1 + x^2 f(x)$, so that $y = f(x)$ is a solution to the given differential equation. Thus the solutions to the given differential equation (if there are any) are equal to the fixed points of F . Since F has a unique fixed point f , the given differential equation has a unique solution $y = f(x)$.

Finally, let us find a formula for $f_n(x)$ where $f_0(x) = 0$ and $f_{n+1} = F(f_n)$. We have

$$\begin{aligned} f_0(x) &= 0 \\ f_1(x) &= x + \int_0^x t^2 \cdot 0 dt = x \\ f_2(x) &= x + \int_0^x t^2 \cdot t dt = x + \frac{1}{4}x^4 \\ f_3(x) &= x + \int_0^x t^2 (x + \frac{1}{4}t^4) dt = x + \frac{1}{4}x^4 + \frac{1}{4 \cdot 7}x^7. \end{aligned}$$

Let $n \geq 3$ and suppose, inductively, that

$$f_n(x) = x + \frac{1}{4}x^4 + \frac{1}{4 \cdot 7}x^7 + \frac{1}{4 \cdot 7 \cdot 10}x^{10} + \cdots + \frac{1}{4 \cdot 7 \cdot 10 \cdots (3n-2)}x^{3n-2}.$$

Then

$$\begin{aligned} f_{n+1}(x) &= x + \int_0^x t^2 \left(t + \frac{1}{4}t^4 + \frac{1}{4 \cdot 7}t^7 + \cdots + \frac{1}{4 \cdot 7 \cdots (3n-2)}t^{3n-2} \right) dt \\ &= x + \frac{1}{4}t^4 + \frac{1}{4 \cdot 7}t^7 + \frac{1}{4 \cdot 7 \cdot 10}t^{10} + \cdots + \frac{1}{4 \cdot 7 \cdots (3n-2)(3n+1)}t^{3n+1} \end{aligned}$$

as required. The proof of the Banach Fixed Point Theorem shows that the fixed point is $f(x) = \lim_{n \rightarrow \infty} f_n(x)$, so we have

$$f(x) = x + \frac{1}{4}x^4 + \frac{1}{4 \cdot 7}x^7 + \frac{1}{4 \cdot 7 \cdot 10}x^{10} + \cdots = \sum_{n=1}^{\infty} \frac{1}{4 \cdot 7 \cdots (3n-2)} x^{3n-2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{3^n n! \left(\frac{-1}{n} \right)^{1/3}} x^{3n-2}.$$

We remark that you can obtain the same solution more easily simply by substituting $y = a_0 + a_1 x + a_2 x^2 + \cdots$ with $a_0 = y(0) = 0$ into the differential equation (differentiating term by term) to obtain a recursion formula for the coefficients a_n . This assignment problem is not providing you with a better method for solving this particular differential equation, it is intended to illustrate Banach's Fixed Point Theorem and its proof.

4: (a) Let $A = \left\{ \sum_{k=1}^n f_k(x)g_k(y) \mid n \in \mathbb{Z}^+, f_k, g_k \in \mathcal{C}[0, 1] \right\}$. Show that A is dense in $\mathcal{C}([0, 1] \times [0, 1])$.

Solution: It is easy to see that A is a subalgebra of $\mathcal{C}([0, 1] \times [0, 1])$, and A vanishes nowhere because $1 \in A$, and A separates points because $x \in A$ and $y \in A$ (and for $x_1, x_2, y_1, y_2 \in [0, 1]$, if $(x_1, y_1) \neq (x_2, y_2)$ then either $x_1 \neq x_2$ or $y_1 \neq y_2$). Thus A is dense in $\mathcal{C}([0, 1] \times [0, 1])$ by the Stone-Weierstrass Theorem.

(b) Let $A = \left\{ \sum_{k=0}^n (a_k \sin(kx) + b_k \cos(kx)) \mid 0 \leq n \in \mathbb{Z}, a_k, b_k \in \mathbb{R} \right\}$. Show that A is dense in $\mathcal{C}[0, \pi]$ but A is not dense in $\mathcal{C}[0, 2\pi]$.

Solution: Note that A is a subalgebra of $\mathcal{C}[0, \pi]$ because

$$\begin{aligned} \sin(kx) \sin(\ell x) &= \frac{1}{2} \left(\cos((k-\ell)x) - \cos((k+\ell)x) \right), \\ \sin(kx) \cos(\ell x) &= \frac{1}{2} \left(\sin((k+\ell)x) + \sin((k-\ell)x) \right), \\ \cos(kx) \sin(\ell x) &= \frac{1}{2} \left(\sin((k+\ell)x) - \sin((k-\ell)x) \right) \text{ and} \\ \cos(kx) \cos(\ell x) &= \frac{1}{2} \left(\cos((k+\ell)x) + \cos((k-\ell)x) \right), \end{aligned}$$

and A vanishes nowhere because $1 \in A$, and A separates points because $\cos x \in A$ and $\cos x$ is strictly decreasing on $[0, 2\pi]$. Thus A is dense in $\mathcal{C}([0, \pi])$ by the Stone-Weierstrass Theorem.

The reason that A is not dense in $\mathcal{C}[0, 2\pi]$ is that for every $f \in A$ we have $f(0) = f(2\pi)$. When $g \in \mathcal{C}[0, 2\pi]$ with $g(0) \neq g(2\pi)$, for every $f \in A$ we have

$$|g(0) - g(2\pi)| \leq |g(0) - f(0) + f(2\pi) - g(2\pi)| \leq |g(0) - f(0)| + |f(2\pi) - g(2\pi)| \leq 2\|f - g\|_\infty$$

so that $\|f - g\|_\infty \geq \frac{1}{2}|g(0) - g(2\pi)|$.

5: (a) Let $f \in \mathcal{C}[0, 1]$. Suppose that $\int_0^1 f(x) dx = 0$ and $\int_0^1 x^{12+3n} f(x) dx = 0$ for all $n \in \mathbb{Z}^+$. Use the Stone-Weierstrass Theorem to show that $f(x) = 0$ for all $x \in [0, 1]$.

Solution: Let $A = \text{Span}\{1, x^{15}, x^{18}, x^{21}, \dots\} = \left\{ p(x) = a_0 + \sum_{k=1}^n a_k x^{12+3k} \mid n \in \mathbb{Z}^+, a_k \in \mathbb{R} \right\}$. Note that A is a subalgebra of $\mathcal{C}[0, 1]$ (it is closed under scalar multiplication and under addition and multiplication of polynomials). Also note that A vanishes nowhere because $1 \in A$, and A separates points because $x^{15} \in A$ and x^{15} is strictly increasing on $[0, 1]$. Thus A is dense in $\mathcal{C}[0, 1]$ by the Stone-Weierstrass Theorem. Let $f \in \mathcal{C}[0, 1]$ with $\int_0^1 f(x) dx = 0$ and $\int_0^1 x^{12+3n} f(x) dx = 0$ for all $n \in \mathbb{Z}^+$. Then we have $\int_0^1 p f = 0$ for every $p \in A$. Since A is dense in $\mathcal{C}[0, 1]$ we can choose a sequence $(p_n)_{n \geq 1}$ in A with $p_n \rightarrow f$ in $\mathcal{C}[0, 1]$. Since $p_n \rightarrow f$ uniformly on $[0, 1]$, recall (or verify) that it follows that $p_n f \rightarrow f^2$ uniformly on $[0, 1]$ and hence $\int_0^1 f^2 = \lim_{n \rightarrow \infty} \int_0^1 p_n f = \lim_{n \rightarrow \infty} 0 = 0$ (by Uniform Convergence and Integration). Since f is continuous on $[0, 1]$ and $\int_0^1 f^2 = 0$, it follows that $f = 0$.

(b) Show that there does exist $0 \neq f \in \mathcal{C}[-1, 2]$ such that $\int_{-1}^2 x^{2n} f(x) dx = 0$ for all $0 \leq n \in \mathbb{Z}$ but there does not exist $0 \neq f \in \mathcal{C}[-1, 2]$ such that $\int_{-1}^2 x^{3n} f(x) dx = 0$ for all $0 \leq n \in \mathbb{Z}$.

Solution: If f is any continuous function whose restriction to $[-1, 1]$ is odd and whose restriction to $[1, 2]$ is zero (such as the function given by $f(x) = \sin(\pi x)$ for $-1 \leq x \leq 1$ and $f(x) = 0$ for $1 \leq x \leq 2$) then we have $\int_{-1}^2 x^{2n} f(x) dx = 0$ for all $0 \leq n \in \mathbb{Z}$.

Let $A = \left\{ \sum_{k=0}^n c_k x^{3k} \mid 0 \leq n \in \mathbb{Z}, c_k \in \mathbb{R} \right\}$. Note that A is a subalgebra of $\mathcal{C}[-1, 2]$ and A vanishes nowhere because $1 \in A$, and A separates points because $x^3 \in A$ and x^3 is strictly increasing on $[-1, 2]$, and so A is dense in $\mathcal{C}[-1, 2]$ by the Stone-Weierstrass Theorem. Let $f \in \mathcal{C}[-1, 2]$ with $\int_{-1}^2 x^{3n} f(x) dx = 0$ for all $0 \leq n \in \mathbb{Z}$ and note that $\int_{-1}^2 p f = 0$ for every $p \in A$. Since A is dense in $\mathcal{C}[-1, 2]$ we can choose a sequence $(p_n)_{n \geq 1}$ in A with $p_n \rightarrow f$ in $\mathcal{C}[-1, 2]$. Then $p_n \rightarrow f$ uniformly on $[-1, 2]$, so $p_n f \rightarrow f^2$ uniformly on $[-1, 2]$, and hence $\int_{-1}^2 f^2 = \lim_{n \rightarrow \infty} \int_{-1}^2 p_n f = \lim_{n \rightarrow \infty} 0 = 0$. Since f is continuous on $[-1, 2]$ and $\int_{-1}^2 f^2 = 0$, it follows that $f = 0$.

6: (a) For $n \in \mathbb{Z}^+$, define $f_n : [0, 2\pi] \rightarrow \mathbb{R}$ by $f_n(x) = (\sin x)^n$. Determine whether the set $A = \{f_n \mid n \in \mathbb{Z}^+\}$ is equicontinuous.

Solution: We claim that A is not equicontinuous. We need to show that there exists $\epsilon > 0$ such that for all $\delta > 0$ there exist $x, y \in [0, 2\pi]$ and there exists $n \in \mathbb{Z}^+$ such that $|x - y| < \delta$ and $|f_n(x) - f_n(y)| \geq \epsilon$. Choose $\epsilon = \frac{1}{2}$. Let $\delta > 0$. Choose $x = \frac{\pi}{2}$ and choose $y \in (0, \frac{\pi}{2})$ with $|x - y| < \delta$. Note that $\sin x = 1$ and $0 < \sin y < 1$. Since $\lim_{n \rightarrow \infty} (\sin y)^n = 0$ we can choose $n \in \mathbb{Z}^+$ such that $0 < (\sin y)^n \geq \frac{1}{2}$. Then we have $|f_n(x) - f_n(y)| = 1 - (\sin y)^n \geq \frac{1}{2}$, as required.

(b) Let $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be continuous. For each $y \in [0, 1]$ define $f_y : [0, 1] \rightarrow \mathbb{R}$ by $f_y(x) = f(x, y)$. Show that the set $A = \{f_y \mid y \in [0, 1]\}$ is compact in $\mathcal{C}[0, 1]$.

Solution: Define $F : [0, 1] \rightarrow \mathcal{C}[0, 1]$ by $F(y) = f_y$ and note that $A = \text{Range}(F)$. We claim that F is continuous. Let $\epsilon > 0$. Since f is uniformly continuous on $[0, 1] \times [0, 1]$, we can choose $\delta > 0$ such that for all $x_1, y_1, x_2, y_2 \in [0, 1]$, if $\|(x_1, y_1) - (x_2, y_2)\|_2 < \delta$ then $|f(x_1, y_1) - f(x_2, y_2)| < \epsilon$. Let $y_1, y_2 \in [0, 1]$ with $|y_1 - y_2| < \delta$. For all $x \in [0, 1]$ we have $\|(x, y_1) - (x, y_2)\|_2 = |y_1 - y_2| < \delta$, so $|f(x, y_1) - f(x, y_2)| < \epsilon$, that is $|f_{y_1}(x) - f_{y_2}(x)| < \epsilon$. Since $|f_{y_1}(x) - f_{y_2}(x)| < \epsilon$ for all $x \in [0, 1]$ it follows that $\|f_{y_1} - f_{y_2}\|_\infty \leq \epsilon$, that is $\|F(y_1) - F(y_2)\|_\infty \leq \epsilon$. Thus F is continuous, as claimed. Since $F : [0, 1] \rightarrow \mathcal{C}[0, 1]$ is continuous and $[0, 1]$ is compact, it follows that $A = \text{Range}(F)$ is compact.

(c) Show that the closed unit ball $\overline{B}(0, 1) = \{f \in \mathcal{C}[0, 1] \mid \|f\|_\infty \leq 1\}$ cannot be covered by a countable set of compact sets in $\mathcal{C}[0, 1]$.

Solution: We claim that every compact set in $\mathcal{C}[0, 1]$ is nowhere dense. Let K be a compact set in $\mathcal{C}[0, 1]$. Since K is closed, we need to show that $K^o = \emptyset$, so we need to show that for every $g \in K$ and every $\epsilon > 0$ there exists $f \in B(g, \epsilon)$ with $f \notin K$. Let $g \in K$ and let $\epsilon > 0$. Since K is compact, it is equicontinuous, so we can choose δ with $0 < \delta < 1$ such that for all $x, y \in [0, 1]$ and for every $f \in K$, if $|y - x| < \delta$ then $|f(y) - f(x)| < \frac{\epsilon}{4}$. Let $f = g + h$ where $h : [0, 1] \rightarrow \mathbb{R}$ is defined by $h(x) = \frac{\epsilon}{\delta}x$ for $0 \leq x \leq \frac{\delta}{2}$ and $h(x) = \frac{\epsilon}{2}$ for $x \geq \frac{\delta}{2}$. Note that $h(0) = 0$, $h(\frac{\delta}{2}) = \frac{\epsilon}{2}$ and $\|h\|_\infty = \frac{\epsilon}{2}$. We have $\|f - g\|_\infty = \|h\|_\infty = \frac{\epsilon}{2}$, so that $f \in B(g, \epsilon) \subseteq \mathcal{C}[0, 1]$. When $x = 0$ and $y = \frac{\delta}{2}$ we have $|y - x| = \frac{\delta}{2} < \delta$ and we have

$$\frac{\epsilon}{2} = |h(y) - h(x)| = |f(y) - g(y) - f(x) + g(x)| \leq |f(y) - f(x)| + |g(y) - g(x)| \leq |f(y) - f(x)| + \frac{\epsilon}{4}$$

so that $|f(y) - f(x)| \geq \frac{\epsilon}{4}$, hence $f \notin K$. Thus $K^o = \emptyset$, as claimed.

Since every compact set in $\mathcal{C}[0, 1]$ is nowhere dense, it follows from the Baire Category Theorem that every countable union of compact sets has empty interior, and so the closed unit ball cannot be covered by a countable union of compact sets.