PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 6

: (a) Find an example of a function f : R — R such that | f(y) — f(z)| < |y — «| for all z,y € R with = # y, but
f has no fixed point in R.

Solution: Define f : R — R by f(x) = « + g(z) where g : R — R is any differential function with g(z) > 0 and
—1<g¢'(z) <0forall z € R (for example, g(z) = 1 (Va2 +1—2) or g(z) = 5 — L tan~' z). Given z <y, by
the Mean Value Theorem we can choose ¢ with z < ¢ <y such that g(y) — g(z) = ¢'(c)(y — x) and then

[F () = f(@)] = [(y —2) + ( o) =]y —2)+g Oy —2)|=1+g )y —z) <(y—2)
since —1 < ¢'(¢) < 0. But f has no fixed points because for all z € R we have f(z) = x + g(x) > z, since
g(x) > 0.
(b) The polynomial p(z) = z® — 3z + 1 has a unique root in [0, 3]. Approximate this root using the Banach
Fixed Point Theorem as follows: Let f(z) = $(z® 4+ 1). Show that f : [0,3] — [0, 3] is a contraction map
whose unique fixed point is the desired root of p. Approximate the root by using a calculator to find x5 where
2o =0 and z,41 = f(zn).

Solution: We have f’(z) = z2. Since f'(z) > 0 for x > 0, it follows that f is (strictly) increasing for z > 0,
and since f(0) = % and f(3 )=§We have f: [0,3] — [% 3] c o, ] Let z,y € [0, 3]. By the Mean Value
Theorem we can choose t between = and y so that fl@)—fly) = @) (z —y). Slnce t is between z and y,
we have 0 < ¢ < § hence 0 < ? < 1, that is 0 < f/(t) < . Thus |f(z) — f(y)| = [f/(O)||lz —y| < |z —y|
so that f is a contraction map with contraction constant ¢ = i. Using a calculator, we find that xqg = 0,
r1 = 0.333333, x2 = 0.345679, 3 = 0.347102, x4 =2 0.347273 and x5 =2 0.347294.

We remark that Newton’s Method for finding this root (which many students will have seen) amounts to
plz) _ 22°-1

P@) ~ 31
faster than the sequence we found above (because, letting a be the root that we are approximating, when we

repeatedly apply f on smaller intervals the contraction constant approaches f/(a) = a? = 0.12 but p is a factor
of ¢’ so when we repeatedly apply g the contraction constant approaches ¢'(a) = 0).
We also remark that the exact value of the root that we are approximating is a = 2sin § = 2sin(10°).

finding the fixed point of the contraction map g(z) = x — and the resulting sequence converges



2: (a) Define F': C[0,1] — C[0,1] by F(f)(z) :/ f(t) dt. Show that F is not a contraction map but F?=FoF is.
0
Solution: Note that F and F? are linear maps on the normed linear space C[0,1]. When f is the constant
function f(x) =1 we have F(f)(x) = x so that |F(f)| =1=|fll., and so F' is not a contraction. When
f€Cl0,1] and F(f) = g we have
x x x
sl =| [ swa] < [CIsfar < [T15lt=1fl0

T T T ., )
/ g(t)dt\s/o sl dr< [ Wltdi= 1)
1

so that |[F2(f)]l = [IF(9)llee < 3/|f]lo, and so F? is a contraction map with contraction constant ¢ = 3.

loo

|F(g)(x)] =

(b) Use the Banach Fixed Point Theorem to show that there exists a unique function f € C[0,1] such that
f@) =z +/ £ F()dt for all z € [0,1].
0

Solution: Define F : C[0,1] — C[0,1] by F(f)(z) = x—i—/ t f(t)dt. Note that F' is a contraction map because
0
for f,g € C[0,1] we have

P - o) = |(a+ [eswar) = (o4 [Ceatoar) =] [ el - o) ar

x
s/ If = gllotdt =3 f = gll.. a2
0

so that |F(f) — F(g9)|l. < %[If —gll.- By the Banach Fixed-Point Theorem, F has a unique fixed point

f €CJ0,1], so there is a unique function f € C[0, 1] such that f(z) =« —|—/ t f(t)dt for all z € [0, 1].
0



3: Solve the differential equation ¥’ = 1 + 2%y with y(0) = 0 in the interval [—1, 1] using the following method:
Define F': C[-1,1] — C[-1,1] by F(f)(z) =z + / t2f(t)dt. Show that F is a contraction map (using the

0
supremum norm) whose unique fixed point is the desired solution. Express the solution as a power series by
finding a formula for f,(z) where fo(z) =0 and fr4+1(x) = F(fn)(x).

Solution: For f,g € C[-1,1] and z € [—1, 1] we have

IF(f)(z) - Flg)(@)| = |z + / 2F()dt - — / tzg@)dtH / £2(f(t) - g(t)) dt].

When 0 < z <1 we have
]/ t2(f(t)g(t))dt‘§/ AU — g0l dt < [ 215~ gldt = 127 1 ~ gl < 117 ~ gl
0 0 0

and when —1 < z < 0 we have

T 0 0
‘/O t2(f(t) - 9(t)) dt’ S/ t2|f(t)—g(t)|dt§/ 1 f = gl dt = —32°|f = glleo < 31If = glloo-

x

Since |F(f)(@) = Fg)()] < 311/ — gl for all & € [, 1,1], it follows that [[F(f) = F(g)lloe < 311/ = glloc:
and so F' is a contraction map. Since F' is a contraction map on C[—1, 1], which is a complete metric space, it
follows from the Banach Fixed Point Theorem that F' has a unique fixed point f.

If y = f(z) is a solution to the given differential equation, so we have f'(x) = 1+z2f(z) for all z € [—1,1]
with f(0) = 0, then by changing the variable to ¢ and integrating from 0 to = (using the Fundamental Theorem
of Calculus) we obtain

f(z) :/ f'(t) dt:/ 1+t2f(t)dt::c+/ t2f(t)dt = F(f)(x)
0 0 0
so that f = F(f), which means that f is a fixed point of F. If, on the other hand, f is a fixed point of F,
which means that f(z) = F(f)(z) =« +/ t2f(t) dt for all x € [~1, 1], then taking x = 0 gives f(0) = 0, and

0
differentiating on both sides gives f/(x) = 1 + 22 f(z), so that y = f(x) is a solution to the given differential
equation. Thus the solutions to the given differential equation (if there are any) are equal to the fixed points
of F. Since F has a unique fixed point f, the given differential equation has a unique solution y = f(z).
Finally, let us find a formula for f,(z) where fo(z) =0 and f,,+1 = F(f,). We have

fo(x):()
f1($)=33+/xt2-0dt:x

0

x
fg(x):x—i—/o 2 tdt=a+ it

x
fa(x) = er/O Pz + ) dt =z + 12t + =l
Let n > 3 and suppose, inductively, that

_ 1.4 1.7 110 . 1 3n—2
fol@) =2+ 32% + 5o’ + e+ I710.. @G- T :

Then

xr
frs1(z) =2+ /O e+t T+ + 74_7_“%3%2) 3n=2) dt

_ 1,4 1.7 110, ... 1 3n+1
=r+ 3t + 550t et Tt G e ¢

as required. The proof of the Banach Fixed Point Theorem shows that the fixed point is f(z) = lim f,(z),

n—oo
so we have

o0 o0 n
fl@)=z+32* + 352" + e+ = 2 1.4-7....1-(371—2) 22 = Z 3,1:” (131/3) 2

n=1 n=1 n
We remark that you can obtain the same solution more easily simply by substituting y = ao + a1 + asz?® + - - -
with ag = y(0) = 0 into the differential equation (differentiating term by term) to obtain a recursion formula
for the coefficients a,. This assignment problem is not providing you with a better method for solving this
particular differential equation, it is intended to illustrate Banach’s Fixed Point Theorem and its proof.




4: (a) Let A= { Z Sre@)gr(y) | n € ZF, fi, gr € C[O, 1]} Show that A is dense in C([0,1] x [0, 1]).

Solution: It is easy to see that A is a subalgebra of C([O, 1] x [0, 1]), and A vanishes nowhere because 1 € A,
and A separates points because € A and y € A (and for z1, z2,y1,y2 € [0,1], if (z1,y1) # (x2,y2) then either
x1 # x5 or Yy # y2). Thus A is dense in C([0,1] x [0,1]) by the Stone-Weierstrass Theorem.

(b) Let A = { > (ag sin(kx) + by, cos(kx)) ‘0 <n€Zagb, € ]R} Show that A is dense in C[0, 7] but A is
k=0
not dense in C[0, 27].

col (k+€ —|—cos( )m)),

and A vanishes nowhere because 1 € A, and A separates points because cosxz € A and cosz is strictly
decreasing on [0,27]. Thus A is dense in C([0,7]) by the Stone-Weierstrass Theorem.

The reason that A is not dense in C[0, 27] is that for every f € A we have f(0) = f(27). When g € C|0, 27]
with ¢(0) # g(2w), for every f € A we have

|9(0) — g(2m)| < [9(0) — £(0) + f(2m) — g(2m)| < [9(0) = F(O)] + | f(2m) — g(2m)| < 2| f — gl

so that |[f — g, > 3|9(0) — g(2m)].

cos(kz) cos(lz) = %



1 1
5: (a) Let f € C[0,1]. Suppose that / f(z)dz = 0 and / 223 f(g)dx = 0 for all n € Zt. Use the

0 0
Stone-Weierstrass Theorem to show that f(z) = 0 for all = € [0, 1].

Solution: Let A = Spaun{lmcm,gclg,:L‘Ql7 . } = {p(a:) =ag+ Y apx'?t3k n e Zt ay € R}. Note that A
k=1

is a subalgebra of C[0,1] (it is closed under scalar multiplication and under addition and multiplication of
polynomials). Also note that A vanishes nowhere because 1 € A, and A separates points because z'°> € A
and x5 is strictly increasing on [0, 1], Thus A is dense in C[0,1] by the Stone-Weierstrass Theorem. Let
f € C[0,1] with fol f(x)dzr = 0 and fol 212530 f(z) dx = 0 for all n € ZT Then we have fol pf = 0 for every
p € A. Since A is dense in C[0,1] we can choose a sequence (p,),>1 in A with p, — f in C[0,1]. Since
pn — f uniformly on [0,1], recall (or verify) that it follows that p,f — f2 uniformly on [0,1] and hence

fol f2 = lim fol pnf = lim 0 =0 (by Uniform Convergence and Integration). Since f is continuous on [0, 1]
n—oo n—oo

and fol f2 =0, it follows that f = 0.

2
(b) Show that there does exist 0 # f € C[—1, 2] such that / x*" f(z)dx = 0 for all 0 < n € Z but there does

-1

2
not exist 0 # f € C[—1, 2] such that / 23 f(x)dr =0 for all 0 < n € Z.

—1
Solution: If f is any continuous function whose restriction to [—1,1] is odd and whose restriction to [1,2] is
zero (such as the function given by f(z) = sin(mz) for —1 <z <1 and f(z) =0 for 1 <z < 2) then we have

2
/ z*" f(z)dx =0 for all 0 < n € Z.

—1

n

Let A= { 3 ek ’ 0<neZcec R}. Note that A is a subalgebra of C[—1, 2] and A vanishes nowhere
k=0

because 1 € A, and A separates points because 23 € A and 23 is strictly increasing on [—1, 2], and so A is dense

2

in C[—1,2] by the Stone-Weierstrass Theorem. Let f € C[—1,2] with / 23 f(x)de = 0 for all 0 < n € Z
1

and note that fflpf = 0 for every p € A. Since A is dense in C[—1, 2] we can choose a sequence (p,)p>1 in

A with p, — f in C[-1,2]. Then p, — f uniformly on [~1,2], so p,f — f2 uniformly on [—1,2], and hence

ffl f?= lim f_21pnf = lim 0= 0. Since f is continuous on [—1,2] and f_21 f? =0, it follows that f = 0.
n—oo

li
n—0o0



6: (a) For n € Z*, define f, : [0,27] — R by fn(z) = (sinz)". Determine whether the set A = { f, |n € Z*} is
equicontinuous.

Solution: We claim that A is not equicontinuous. We need to show that there exists ¢ > 0 such that for
all § > 0 there exist z,y € [0,2n] and there exists n € ZT such that |z — y| < § and |fn(z) — fu(y)| > €
Choose € = % Let 6 > 0. Choose z = 7 and choose y € (0, g) with |z — y| < 0. Note that sinz = 1 and
0 < siny < 1. Since nli_)rr;@(siny)” = 0 we can choose n € ZT such that 0 < (siny)” > 3. Then we have
| fa(z) = fu(y)] =1 — (siny)™ > 3, as required.

(b) Let f:[0,1] x [0,1] — R be continuous. For each y € [0,1] define f, : [0,1] — R by f,(z) = f(z,y). Show
that the set A = {f, |y € [0,1]} is compact in C[0, 1].

Solution: Define F' : [0,1] — C[0,1] by F(y) = f, and note that A = Range(F). We claim that F' is
continuous. Let € > 0. Since f is uniformly continuous on [0, 1] x [0,1], we can choose § > 0 such that for
all x1,y1,2z2,y2 € [0,1], if H(acl,yl) — (xg,y2)||2 < 0 then |f(x17y1) — f(xg,y2)| < e. Let y1,y2 € [0,1] with
ly1 — y2| < 4. For all z € [0,1] we have H(ﬁC,:lﬂ) — (:c,yz)H2 = |y1 — y2| < 4, so ‘f(x,yl) — f(x,yg)’ < €, that
is [ fy () = fy.(@)| < e Since |fy, (@) — fy, ()| < € for all z € [0,1] it follows that || f,, — nyHOC <'¢, that is
| F(y1) — F(yg)HOo < e. Thus F is continuous, as claimed. Since F : [0,1] — CJ0, 1] is continuous and [0,1] is
compact, it follows that A = Range(F') is compact.

(c) Show that the closed unit ball B(0,1) = {f € C[0,1] | [|f||. < 1} cannot be covered by a countable set of
compact sets in C[0, 1].

Solution: We claim that every compact set in C[0, 1] is nowhere dense. Let K be a compact set in C[0, 1]. Since
K is closed, we need to show that K° = (), so we need to show that for every g € K and every € > 0 there
exists f € B(g,¢) with f ¢ K. Let g € K and let € > 0. Since K is compact, it is equicontinuous, so we can
choose § with 0 < 0 < 1 such that for all z,y € [0, 1] and for every f € K, if |y — x| < § then |f(y) ff(x)| <3
Let f = g+ h where h: [0,1] — R is defined by h(z) = £z for 0 < z < £ and h(z) = £ for x > §. Note that
h(0) =0, h(3) = § and ||A|, = 5. We have | f —g||.. = [|h], = . so that f € B(g,e) C C[0,1]. When
z=0and y= 2 we have |y — 2| = § < & and we have

s =|h(y) —h(@)| = |fw) —9(y) — f(@) +g(@)| < [fy) — f@)] + |9(y) — g()| < [fly) — f2)] + §

so that |f(y) — f(x)| > ¢, hence f ¢ K. Thus K° = (), as claimed.

Since every compact set in C[0, 1] is nowhere dense, it follows from the Baire Category Theorem that
every countable union of compact sets has empty interior, and so the closed unit ball cannot be covered by a
countable union of compact sets.



