
PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 6

1: (a) Find an example of a function f : R→ R such that
∣∣f(y)− f(x)

∣∣ < |y− x| for all x, y ∈ R with x 6= y, but
f has no fixed point in R.

Solution: Define f : R→ R by f(x) = x+ g(x) where g : R→ R is any differential function with g(x) > 0 and
−1 < g′(x) < 0 for all x ∈ R

(
for example, g(x) = 1

4

(√
x2 + 1− x

)
or g(x) = 1

2 −
1
π tan−1 x

)
. Given x < y, by

the Mean Value Theorem we can choose c with x ≤ c ≤ y such that g(y)− g(x) = g′(c)(y − x) and then∣∣f(y)− f(x)
∣∣ =

∣∣(y − x) + (g(y)− g(x))
∣∣ =

∣∣(y − x) + g′(c)(y − x)
∣∣ = (1 + g′(c))(y − x) < (y − x)

since −1 < g′(c) < 0. But f has no fixed points because for all x ∈ R we have f(x) = x + g(x) > x, since
g(x) > 0.

(b) The polynomial p(x) = x3 − 3x+ 1 has a unique root in
[
0, 12
]
. Approximate this root using the Banach

Fixed Point Theorem as follows: Let f(x) = 1
3 (x3 + 1). Show that f :

[
0, 12
]
→
[
0, 12
]

is a contraction map
whose unique fixed point is the desired root of p. Approximate the root by using a calculator to find x5 where
x0 = 0 and xn+1 = f(xn).

Solution: We have f ′(x) = x2. Since f ′(x) > 0 for x > 0, it follows that f is (strictly) increasing for x ≥ 0,
and since f(0) = 1

3 and f
(
1
2

)
= 3

8 we have f :
[
0, 12
]
→
[
1
3 ,

3
8

]
⊆
[
0, 12
]
. Let x, y ∈

[
0, 12
]
. By the Mean Value

Theorem we can choose t between x and y so that f(x) − f(y) = f ′(t)(x − y). Since t is between x and y,
we have 0 ≤ t ≤ 1

2 hence 0 ≤ t2 ≤ 1
4 , that is 0 ≤ f ′(t) ≤ 1

4 . Thus
∣∣f(x) − f(y)

∣∣ =
∣∣f ′(t)∣∣ |x − y| ≤ 1

4 |x − y|
so that f is a contraction map with contraction constant c = 1

4 . Using a calculator, we find that x0 = 0,
x1 ∼= 0.333333, x2 ∼= 0.345679, x3 ∼= 0.347102, x4 ∼= 0.347273 and x5 ∼= 0.347294.

We remark that Newton’s Method for finding this root (which many students will have seen) amounts to

finding the fixed point of the contraction map g(x) = x− p(x)
p′(x) = 2x3−1

3(x2−1) , and the resulting sequence converges

faster than the sequence we found above (because, letting a be the root that we are approximating, when we
repeatedly apply f on smaller intervals the contraction constant approaches f ′(a) = a2 ∼= 0.12 but p is a factor
of g′ so when we repeatedly apply g the contraction constant approaches g′(a) = 0).

We also remark that the exact value of the root that we are approximating is a = 2 sin π
9 = 2 sin(10◦).



2: (a) Define F : C[0, 1]→ C[0, 1] by F (f)(x)=

∫ x

0

f(t) dt. Show that F is not a contraction map but F 2 =F◦F is.

Solution: Note that F and F 2 are linear maps on the normed linear space C[0, 1]. When f is the constant
function f(x) = 1 we have F (f)(x) = x so that ‖F (f)‖∞ = 1 = ‖f‖∞, and so F is not a contraction. When
f ∈ C[0, 1] and F (f) = g we have∣∣g(x)

∣∣ =

∣∣∣∣ ∫ x

0

f(t) dt

∣∣∣∣ ≤ ∫ x

0

∣∣f(t)
∣∣ dt ≤ ∫ x

0

‖f‖∞dt = ‖f‖∞x∣∣F (g)(x)
∣∣ =

∣∣∣∣ ∫ x

0

g(t) dt

∣∣∣∣ ≤ ∫ x

0

∣∣g(t)
∣∣ dt ≤ ∫ x

0

‖f‖∞ t dt = 1
2‖f‖∞x

2

so that ‖F 2(f)‖∞ = ‖F (g)‖∞ ≤
1
2‖f‖∞, and so F 2 is a contraction map with contraction constant c = 1

2 .

(b) Use the Banach Fixed Point Theorem to show that there exists a unique function f ∈ C[0, 1] such that

f(x) = x+

∫ x

0

t f(t) dt for all x ∈ [0, 1].

Solution: Define F : C[0, 1]→ C[0, 1] by F (f)(x) = x+

∫ x

0

t f(t) dt. Note that F is a contraction map because

for f, g ∈ C[0, 1] we have∣∣∣F (f)(x)− F (g)(x)
∣∣∣ =

∣∣∣∣(x+

∫ x

0

t f(t) dt

)
−
(
x+

∫ x

0

t g(t) dt

)∣∣∣∣ =

∣∣∣∣ ∫ x

0

t
(
f(t)− g(t)

)
dt

∣∣∣∣
≤
∫ x

0

‖f − g‖∞t dt = 1
2 ‖f − g‖∞ x2

so that ‖F (f)− F (g)‖∞ ≤
1
2‖f − g‖∞. By the Banach Fixed-Point Theorem, F has a unique fixed point

f ∈ C[0, 1], so there is a unique function f ∈ C[0, 1] such that f(x) = x+

∫ x

0

t f(t) dt for all x ∈ [0, 1].



3: Solve the differential equation y′ = 1 + x2y with y(0) = 0 in the interval [−1, 1] using the following method:

Define F : C[−1, 1] → C[−1, 1] by F (f)(x) = x +

∫ x

0

t2f(t) dt. Show that F is a contraction map (using the

supremum norm) whose unique fixed point is the desired solution. Express the solution as a power series by
finding a formula for fn(x) where f0(x) = 0 and fn+1(x) = F (fn)(x).

Solution: For f, g ∈ C[−1, 1] and x ∈ [−1, 1] we have∣∣F (f)(x)− F (g)(x)
∣∣ =

∣∣∣∣x+

∫ x

0

t2f(t) dt− x−
∫ x

0

t2g(t) dt

∣∣∣∣ =

∣∣∣∣ ∫ x

0

t2
(
f(t)− g(t)

)
dt

∣∣∣∣.
When 0 ≤ x ≤ 1 we have∣∣∣∣ ∫ x

0

t2
(
f(t)− g(t)

)
dt

∣∣∣∣ ≤ ∫ x

0

t2
∣∣f(t)− g(t)

∣∣ dt ≤ ∫ x

0

t2‖f − g‖∞ dt = 1
3x

3 ‖f − g‖∞ ≤ 1
3‖f − g‖∞

and when −1 ≤ x ≤ 0 we have∣∣∣∣ ∫ x

0

t2
(
f(t)− g(t)

)
dt

∣∣∣∣ ≤ ∫ 0

x

t2
∣∣f(t)− g(t)

∣∣ dt ≤ ∫ 0

x

t2‖f − g‖∞ dt = − 1
3x

3 ‖f − g‖∞ ≤ 1
3‖f − g‖∞.

Since
∣∣F (f)(x) − F (g)(x)

∣∣ ≤ 1
3‖f − g‖∞ for all x ∈ [−, 1, 1], it follows that ‖F (f) − F (g)‖∞ ≤ 1

3‖f − g‖∞,
and so F is a contraction map. Since F is a contraction map on C[−1, 1], which is a complete metric space, it
follows from the Banach Fixed Point Theorem that F has a unique fixed point f .

If y = f(x) is a solution to the given differential equation, so we have f ′(x) = 1+x2f(x) for all x ∈ [−1, 1]
with f(0) = 0, then by changing the variable to t and integrating from 0 to x (using the Fundamental Theorem
of Calculus) we obtain

f(x) =

∫ x

0

f ′(t) dt =

∫ x

0

1 + t2f(t) dt = x+

∫ x

0

t2f(t) dt = F (f)(x)

so that f = F (f), which means that f is a fixed point of F . If, on the other hand, f is a fixed point of F ,

which means that f(x) = F (f)(x) = x+

∫ x

0

t2f(t) dt for all x ∈ [−1, 1], then taking x = 0 gives f(0) = 0, and

differentiating on both sides gives f ′(x) = 1 + x2f(x), so that y = f(x) is a solution to the given differential
equation. Thus the solutions to the given differential equation (if there are any) are equal to the fixed points
of F . Since F has a unique fixed point f , the given differential equation has a unique solution y = f(x).

Finally, let us find a formula for fn(x) where f0(x) = 0 and fn+1 = F (fn). We have

f0(x) = 0

f1(x) = x+

∫ x

0

t2 · 0 dt = x

f2(x) = x+

∫ x

0

t2 · t dt = x+ 1
4x

4

f3(x) = x+

∫ x

0

t2
(
x+ 1

4 t
4
)
dt = x+ 1

4x
4 + 1

4·7x
7 .

Let n ≥ 3 and suppose, inductively, that

fn(x) = x+ 1
4x

4 + 1
4·7x

7 + 1
4·7·10x

10 + · · ·+ 1
4·7·10·...·(3n−2)x

3n−2 .

Then

fn+1(x) = x+

∫ x

0

t2
(
t+ 1

4 t
4 + 1

4·7 t
7 + · · ·+ 1

4·7·...·(3n−2) t
3n−2) dt

= x+ 1
4 t

4 + 1
4·7x

7 + 1
4·7·10x

10 + · · ·+ 1
4·7·...·(3n−2)(3n+1)x

3n+1

as required. The proof of the Banach Fixed Point Theorem shows that the fixed point is f(x) = lim
n→∞

fn(x),

so we have

f(x) = x+ 1
4x

4 + 1
4·7x

7 + 1
4·7·10x

10 + · · · =
∞∑
n=1

1
1·4·7·...·(3n−2)x

3n−2 =
∞∑
n=1

(−1)n

3nn!
(
−1/3

n

)x3n−2.
We remark that you can obtain the same solution more easily simply by substituting y = a0 +a1x+a2x

2 + · · ·
with a0 = y(0) = 0 into the differential equation (differentiating term by term) to obtain a recursion formula
for the coefficients an. This assignment problem is not providing you with a better method for solving this
particular differential equation, it is intended to illustrate Banach’s Fixed Point Theorem and its proof.



4: (a) Let A =
{ n∑
k=1

fk(x)gk(y)
∣∣n ∈ Z+, fk, gk ∈ C[0, 1]

}
. Show that A is dense in C

(
[0, 1]× [0, 1]

)
.

Solution: It is easy to see that A is a subalgebra of C
(
[0, 1]× [0, 1]

)
, and A vanishes nowhere because 1 ∈ A,

and A separates points because x ∈ A and y ∈ A (and for x1, x2, y1, y2 ∈ [0, 1], if (x1, y1) 6= (x2, y2) then either
x1 6= x2 or y1 6= y2). Thus A is dense in C

(
[0, 1]× [0, 1]

)
by the Stone-Weierstrass Theorem.

(b) Let A =
{ n∑
k=0

(ak sin(kx) + bk cos(kx))
∣∣∣ 0 ≤ n ∈ Z, ak, bk ∈ R

}
. Show that A is dense in C[0, π] but A is

not dense in C[0, 2π].

Solution: Note that A is a subalgebra of C[0, π] because

sin(kx) sin(`x) = 1
2

(
cos
(
(k − `)x

)
− cos

(
(k + `)x

))
,

sin(kx) cos(`x) = 1
2

(
sin
(
(k + `)x

)
+ sin

(
(k − `)x

))
,

cos(kx) sin(`x) = 1
2

(
sin
(
(k + `)x

)
− sin

(
(k − `)x

))
and

cos(kx) cos(`x) = 1
2

(
cos
(
(k + `)x

)
+ cos

(
(k − `)x

))
,

and A vanishes nowhere because 1 ∈ A, and A separates points because cosx ∈ A and cosx is strictly
decreasing on [0, 2π]. Thus A is dense in C

(
[0, π]

)
by the Stone-Weierstrass Theorem.

The reason that A is not dense in C[0, 2π] is that for every f ∈ A we have f(0) = f(2π). When g ∈ C[0, 2π]
with g(0) 6= g(2π), for every f ∈ A we have∣∣g(0)− g(2π)

∣∣ ≤ ∣∣g(0)− f(0) + f(2π)− g(2π)
∣∣ ≤ ∣∣g(0)− f(0)

∣∣+
∣∣f(2π)− g(2π)

∣∣ ≤ 2‖f − g‖∞
so that ‖f − g‖∞ ≥

1
2

∣∣g(0)− g(2π)
∣∣.



5: (a) Let f ∈ C[0, 1]. Suppose that

∫ 1

0

f(x) dx = 0 and

∫ 1

0

x12+3nf(x) dx = 0 for all n ∈ Z+. Use the

Stone-Weierstrass Theorem to show that f(x) = 0 for all x ∈ [0, 1].

Solution: Let A = Span
{

1, x15, x18, x21, · · ·
}

=
{
p(x) = a0 +

n∑
k=1

akx
12+3k

∣∣∣n ∈ Z+, ak ∈ R
}

. Note that A

is a subalgebra of C[0, 1] (it is closed under scalar multiplication and under addition and multiplication of
polynomials). Also note that A vanishes nowhere because 1 ∈ A, and A separates points because x15 ∈ A
and x15 is strictly increasing on [0, 1], Thus A is dense in C[0, 1] by the Stone-Weierstrass Theorem. Let

f ∈ C[0, 1] with
∫ 1

0
f(x) dx = 0 and

∫ 1

0
x12+3nf(x) dx = 0 for all n ∈ Z+ Then we have

∫ 1

0
pf = 0 for every

p ∈ A. Since A is dense in C[0, 1] we can choose a sequence (pn)n≥1 in A with pn → f in C[0, 1]. Since
pn → f uniformly on [0, 1], recall (or verify) that it follows that pnf → f2 uniformly on [0, 1] and hence∫ 1

0
f2 = lim

n→∞

∫ 1

0
pnf = lim

n→∞
0 = 0 (by Uniform Convergence and Integration). Since f is continuous on [0, 1]

and
∫ 1

0
f2 = 0, it follows that f = 0.

(b) Show that there does exist 0 6= f ∈ C[−1, 2] such that

∫ 2

−1
x2nf(x) dx = 0 for all 0 ≤ n ∈ Z but there does

not exist 0 6= f ∈ C[−1, 2] such that

∫ 2

−1
x3nf(x) dx = 0 for all 0 ≤ n ∈ Z.

Solution: If f is any continuous function whose restriction to [−1, 1] is odd and whose restriction to [1, 2] is
zero (such as the function given by f(x) = sin(πx) for −1 ≤ x ≤ 1 and f(x) = 0 for 1 ≤ x ≤ 2) then we have∫ 2

−1
x2nf(x) dx = 0 for all 0 ≤ n ∈ Z.

Let A =
{ n∑
k=0

ckx
3k
∣∣∣ 0 ≤ n ∈ Z, ck ∈ R

}
. Note that A is a subalgebra of C[−1, 2] and A vanishes nowhere

because 1 ∈ A, and A separates points because x3 ∈ A and x3 is strictly increasing on [−1, 2], and so A is dense

in C[−1, 2] by the Stone-Weierstrass Theorem. Let f ∈ C[−1, 2] with

∫ 2

−1
x3nf(x) dx = 0 for all 0 ≤ n ∈ Z

and note that
∫ 2

−1 pf = 0 for every p ∈ A. Since A is dense in C[−1, 2] we can choose a sequence (pn)n≥1 in

A with pn → f in C[−1, 2]. Then pn → f uniformly on [−1, 2], so pnf → f2 uniformly on [−1, 2], and hence∫ 2

−1 f
2 = lim

n→∞

∫ 2

−1 pnf = lim
n→∞

0 = 0. Since f is continuous on [−1, 2] and
∫ 2

−1 f
2 = 0, it follows that f = 0.



6: (a) For n ∈ Z+, define fn : [0, 2π]→ R by fn(x) = (sinx)n. Determine whether the set A =
{
fn
∣∣n ∈ Z+

}
is

equicontinuous.

Solution: We claim that A is not equicontinuous. We need to show that there exists ε > 0 such that for
all δ > 0 there exist x, y ∈ [0, 2π] and there exists n ∈ Z+ such that |x − y| < δ and

∣∣fn(x) − fn(y)
∣∣ ≥ ε.

Choose ε = 1
2 . Let δ > 0. Choose x = π

2 and choose y ∈
(
0, π2

)
with |x − y| < δ. Note that sinx = 1 and

0 < sin y < 1. Since lim
n→∞

(sin y)n = 0 we can choose n ∈ Z+ such that 0 < (sin y)n ≥ 1
2 . Then we have∣∣fn(x)− fn(y)

∣∣ = 1− (sin y)n ≥ 1
2 , as required.

(b) Let f : [0, 1]× [0, 1]→ R be continuous. For each y ∈ [0, 1] define fy : [0, 1]→ R by fy(x) = f(x, y). Show
that the set A =

{
fy
∣∣ y ∈ [0, 1]

}
is compact in C[0, 1].

Solution: Define F : [0, 1] → C[0, 1] by F (y) = fy and note that A = Range(F ). We claim that F is
continuous. Let ε > 0. Since f is uniformly continuous on [0, 1] × [0, 1], we can choose δ > 0 such that for
all x1, y1, x2, y2 ∈ [0, 1], if

∥∥(x1, y1)− (x2, y2)
∥∥
2
< δ then

∣∣f(x1, y1) − f(x2, y2)
∣∣ < ε. Let y1, y2 ∈ [0, 1] with

|y1 − y2| < δ. For all x ∈ [0, 1] we have
∥∥(x, y1)− (x, y2)

∥∥
2

= |y1 − y2| < δ, so
∣∣f(x, y1) − f(x, y2)

∣∣ < ε, that

is
∣∣fy1(x)− fy2(x)

∣∣ < ε. Since
∣∣fy1(x)− fy2(x)

∣∣ < ε for all x ∈ [0, 1] it follows that
∥∥fy1 − fy2∥∥∞ ≤ ε, that is∥∥F (y1)− F (y2)

∥∥
∞ ≤ ε. Thus F is continuous, as claimed. Since F : [0, 1]→ C[0, 1] is continuous and [0, 1] is

compact, it follows that A = Range(F ) is compact.

(c) Show that the closed unit ball B(0, 1) =
{
f ∈ C[0, 1]

∣∣ ‖f‖∞ ≤ 1
}

cannot be covered by a countable set of
compact sets in C[0, 1].

Solution: We claim that every compact set in C[0, 1] is nowhere dense. Let K be a compact set in C[0, 1]. Since
K is closed, we need to show that Ko = ∅, so we need to show that for every g ∈ K and every ε > 0 there
exists f ∈ B(g, ε) with f /∈ K. Let g ∈ K and let ε > 0. Since K is compact, it is equicontinuous, so we can
choose δ with 0 < δ < 1 such that for all x, y ∈ [0, 1] and for every f ∈ K, if |y−x| < δ then

∣∣f(y)−f(x)
∣∣ < ε

4 .

Let f = g + h where h : [0, 1]→ R is defined by h(x) = ε
δ x for 0 ≤ x ≤ δ

2 and h(x) = ε
2 for x ≥ δ

2 . Note that

h(0) = 0, h
(
δ
2

)
= ε

2 and ‖h‖∞ = ε
2 . We have ‖f − g‖∞ = ‖h‖∞ = ε

2 , so that f ∈ B(g, ε) ⊆ C[0, 1]. When

x = 0 and y = δ
2 we have |y − x| = δ

2 < δ and we have

ε
2 =

∣∣h(y)− h(x)
∣∣ =

∣∣f(y)− g(y)− f(x) + g(x)
∣∣ ≤ ∣∣f(y)− f(x)

∣∣+
∣∣g(y)− g(x)

∣∣ ≤ ∣∣f(y)− f(x)
∣∣+ ε

4

so that
∣∣f(y)− f(x)

∣∣ ≥ ε
4 , hence f /∈ K. Thus Ko = ∅, as claimed.

Since every compact set in C[0, 1] is nowhere dense, it follows from the Baire Category Theorem that
every countable union of compact sets has empty interior, and so the closed unit ball cannot be covered by a
countable union of compact sets.


