PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 5

: (a) Prove Theorem 5.18: let X be a metric space (or topological space) and prove that the path components of
X are path connected, and that every path connected subset of X is contained in one of the path components.

Solution: The path components of X are path connected since, for @ € X, if z € [a] and y € [a] then we have
x ~a and y ~ a, and hence 2 ~ y (since ~ is an equivalence relation). We claim that every path connected
subset of X is contained in one of the path components. Let P C X be path connected. Let p € P. Choose
a € X such that p € [a] = {z€x|z~a}. We claim that P C [a]. Let # € P. Since p € [a] we have p ~ a so
[p] = [a]. Since z € P and p € P and P is path connected, we have x ~ p. Since z ~ p we have x € [p] = [a].
Thus P C [a], as claimed.

(b) Let X be a metric space and let A, B C X with A C B C A. Show that if A is connected then so is B.

Solution: Suppose that B is disconnected. Choose open sets U and V in X which separate B, that is with
UNB#0,VNB#0,UNV =0 and BC UUV. We claim that U and V also separate A, and hence A is
disconnected. We have UNV = and A C B C U UV so it suffices to show that UN A # () and VN A # ().
Suppose, for a contradiction, that U N A = (. Then A C U¢ = X \ A. Since U is open, it follows that U®
is closed. Since U¢ is a closed set which contains A, it follows that A C U® (since A is the intersection of
all closed sets which contain A). Thus B C A CU®and hence UNB =, giving the desired contradiction.
Thus U N A # (. Similarly VN A # 0, and so U and V separate A, as claimed.

(¢) Let X be a metric space. Show that the connected components of X are closed.

Solution: This follows from Part (b): if C'is a component of X then C is connected, hence C is connected,
hence C' is contained in one of the components of X, hence C' = C.



2: For each of the following sets A in R™ (using its standard metric), determine whether A is complete, whether
A is compact, and whether A is connected.

(a) A= {sc € R3 ’ |lz|| = %5t for some n € Z*}.

n2

1

Solution: Let (an)n>1 be the sequence given by a,, = ”n—_zl Note that a1 =0, ao = 7 and a3 = %, and a,, is

1
strictly decreasing for n > 2 because when n > 2 we have
_ _n=1_ _n_ _ (n=1m+1)*-n® _ p2-n-1 _ n(n=1)-1 12-1  _ 1 >0
an An+1 = n2 (n+1)2 — n2(n+1)2 T n2(n+1)2 T n2(n+1)2 = n2(nt+1)2 T n2(n+1)2 ’
and lim a, = lim "n_zl = 0. Because a; = 0 and ay = i and (a,) is decreasing for n > 2, it follows that

n—oo n—oo

max{a,|n € Z*} = ay = 1. Thus A is bounded with 4 C B(0,1), because when z € A we have ||z|| = a,
for some n hence ||z|| < az = 1. We claim that A is closed. For 2 € R?, we have

r1€A = |z|| € {an|n€ZT} < |z| € {a2, a3, a4, --} U{0}

and so -
T e A€ :R3\A — ||z|| ¢ {az2,a3,a4,---}U{0} = |z € U I.
n=1

where I} = (ag,o0) and I,, = (an+1,a,) for n > 2. Thus
A®= |J U, where U, ={z eR®||z| €I,}.
n=1

Note that each set U, is open in R? because each set I,, is open in R (indeed I,, is an open interval) and the

function f : R* — R given by f(z) = [|z| = (z1% + z2® + x32)1/2 is continuous (indeed every elementary

function is continuous), and we have U, = {z € R*| f(z) € I,} = f~*(I,). Since each set U, is open,
oo

it follows that A° = (J U, is open, and hence A is closed. Since R? is complete and A is closed in R?,
n=1

A is complete. Since A is closed and bounded in R3, A is compact. But A is not connected because, for
r € (az,a1) = (3, %), the open sets U = {# € R?|[|z]| < r} and V = {z € R*||[z| > r} scparate A.

rank(u v w><2}.
Ty z

Solution: Note that we have rank (Z Z 15) = 2 if and only if some pair of columns is linearly independent

(b) Let A = {(u,v,w,z,y,z) € RS

if and only if one of the three 2 x 2 submatrices (Z z), (Z Z}) and (Z I;) is invertible if and only

if one of the three determinants uy — vx, uz — wx and vz — wy is non-zero. Thus we have
U vow
rank<x y Z><2<:>(uyvx0anduzwxOandvzwyO)

and hence
A= f7H({0}) ng™' ({0}) n AT ({0})
where f,g,h: R® — R are given by
flu,v,w,x,y,2) = uy — vz,
g(u,v,w, x,y,2) = uz — we,

h(u,v,w,x,y,z) = vz —wy.

Since f, g and h are continuous (they are polynomials) and {0} is closed in R, it follows that the sets f ! ({0}),
g7 1({0}) and h='({0}) are all closed, and hence the set A is closed. Since RS is complete and A is closed
in RS, it follows that A is complete. On the other hand, A is not bounded because for e; = (1,0,0,0,0,0)
we have re; € A for all r € R and ||re1|| = |r|. Since A is not bounded, it is not compact. Finally, note that
A is path connected (hence connected) because for all p = (u,v,w,x,y,z) € A, the map « : [0,1] — A given
by «(t) = tp is a path from 0 to p in A (« takes values in A because the matrices corresponding to tp all
have rank 0 or 1) so we have p ~ 0, and hence for all p,q € A we have p ~ 0 and ¢ ~ 0 hence p ~ q.



3: For each of the following sets A, determine whether A is complete and whether A is compact.

(a) A= {a = (ar)k>1 € R ] lafleo < 1} C R C £o(R), using the metric duo
Solution: We claim that A is not closed in o, (using the metric do). Let (z,)n>1 be the sequence in R*>

n
given by z,, = > tex = (1,3, 3,--52,0,0,---). Note that for every n € Z* we have ||z, [« =1 so that
k=1

z, € A, and s0 (2,)n>1 is a sequence in A. Also note that z,, — a in {5, where a = (ag)r>1 € loo is given

by ap = % for all k € Z*, that is a = (%, %7 %7) indeed we have

But notice that a ¢ R™, so a ¢ A. Since (z,)>1 is a sequence in A with x,, — oo in 4y, but a ¢ A, it
follows that A is not closed in fo.. Since £ is complete and A is not closed in £, it follows that A is not
complete. Since A is not closed in £, it follows that A is not compact in ¢, and hence A is not compact
(in R* or in itself).

oo:“(0707"'707n«lﬂvn+2vn+37" N oo =mr — 0asn— oo

(b) A= {a = (ar)k>1 € L1(R) | > ax = 0} C ¢1(R), using the metric d;.
k=1

Solution: We claim that A is closed. We provide two proofs. For the first proof, let (z,),>1 be a sequence
in Az, — ain ¢;. Write z,, = (zpx)k>1 and a = (ag)g>1. Let ¢ > 0. Since x,, — @ in ¢1, we can choose

o0 o0
¢ € Z such that ||z, —all1 < §, that is > |zgr — ax| < §. Since 2, € A we have Y 2 = 0 so we can
k=1 k=1

m
choose m € Z* such that k > m — ‘ > .T&k‘ < ; Then for k£ > m we have
=1

NIE

m m m o0 m
| % x| = | 2 (@ = v+ 20a)| £ 3 Jar = vl + 3 [werl € 3 lax = wenl + 3 wer < 5+ 5 =
k k=1 k=1 k=1 k=1 k=1

1

This proves that > ar = 0 so that a € A, and so A is closed, as claimed.
k=1
For the second proof, note that A is a subspace of ¢1. Define S : ;1 — R by S(a) = Z ay. Note that S
is linear (and S is well-defined because absolute convergence implies convergence) with Null(S ) = S. Note
that S is continuous because when a € £; with [la]| < 1 we have |S(a)| = ‘ > ak‘ < Z lak| = |la]l1 < 1.
k=1 k=1
Also not that A = S~'({0}). Since S is continuous and {0} is closed in /1, it follows that A = S~*({0}) is

closed in /4.
Since ¢; is complete (using the metric di) and A is closed in ¢4, it follows that A is complete. On the

2n

other hand, note that A is not bounded because for a = 3 (—=1)*ey = (-1,1,-1,1,---,—1,1,0,0,---), we
k=1

have a € A with ||lal|; = 2n, and hence A is not compact.

(c) A {f € C([0,1], ‘ |f(z)| < L for all z € (0, 1)} C C([0,1],R), using the metric duo

Solution: We claim that A is closed in C[0, 1] (usmg the supremum metric dy). Let f € A°=C[0,1] \ A.

Choose a € (0,1) such that ’f ’ > L Letr= ‘f ‘ — L and note that 7 > 0. We claim that B(f,r) C A°.

Let g € B(f,r), that is let g € C[0,1] Wlth lg = flloo < 1 Since |f(a)] < ‘f (a)‘ + ’g(a)

[f(@)l = lg(@)] < [f(a) = g(a)| < If = gllos <7 =|f(a)] = 5

and hence ’g(a)| > %, so that g € A°. Thus B(f,r) C A€ showing that A° is open, hence A is closed, as
claimed. Since C[0, 1] is complete and A is closed in C[0, 1], it follows that A is complete.

On the other hand, A is not bounded because given r > 0 we can define f : [0,1] = R by f(z) = r for
0<z<land f(z)=1forl<ax<1and then we have f € A with || f||c = 7. Since A is not bounded, it
is not compact.



4: The theorems about connectedness in the lecture notes are stated for metric spaces. They also apply, more
generally, to topological spaces with minor alterations in the proofs, with a slight change in Definition 5.1.
Let X be a topological space and let P C X. For sets A, B C X (not necessarily open sets), we say that A
and B separate P in X when

ANP#(0, BNP#0, ANB=BNA=0, PCAUB.

Recall that we say that P is connected when P is not equal to the union of two disjoint nonempty open
subsets U,V C P (or equivalently when the only subsets of P which are both open and closed in P are the
sets § and P), and otherwise we say that P is disconnected.

(a) Let X be a topological space and let A C P C X. Let A = Clx(A) be the closure of A in X and let
Clp(A) be the closure of A in P. Show that Clp(A) = Clx(A)N P.

Solution: Since A is closed in X it follows that AN P is closed in P. Since A C A and A C P we have
A C AN P. Since ANP is closed in P and A C AN P, it follows from the definition of Clp(A) that
Clp(A) CANP.

Let F' be any closed set in P with A C F'. Choose a closed set K in X such that FF = K N P. Since K
is closed in X and A C K we have A C K. Thus ANPC KNP =F. Since ANP C F for every closed set
F in P which contains A, it follows, from the definition of Clp(A), that AN P C Clp(A).

(b) Let X be a topological space and let P C X. Show that P is disconnected if and only if there exist sets
A, B C X which separate P in X, as defined above.

Solution: Suppose that P is disconnected, say P = UUV where U and V are nonempty disjoint open subsets
of P. Since U is closed in P we have U = Clp(U) = Clx (U)NP =UNP. Since VC Pwe have V=V NP
soVNU=VNPNU=VNU = 0. Similarly, we have U NV = (), and so we can take A =U and B =V
and then A and B separate P.

Suppose, conversely, that there exist sets, say A, B C X, which separate P in X. Let U = AN P and
V = BN P, and note that U # 0, V # (), P = UUV and we have UNV = ) (because UNV C ANB = ()) and
VNU = (. We claim that U and V are open in P (and hence P is the union of two nonempty disjoint open
subsets). Since U NV = () we also have U N Clp(V) = (). Since P = U UV we also have P = U U Clp(V).
Thus P is the disjoint union of U and Clp(V'). Since Clp(V) is closed in P, its complement U = P\ Clp(V)
is open in P. Similarly V is open in P, as claimed.

(¢) Let X be a metric space and let P C X. Show that there exist sets A, B C X which separate P, as
defined above, if and only if there exist open sets U, V' C X which separate P as in Definition 5.1, that is

UNP#Q,VNP#O),UNnP=0, PCUUV.

Solution: Suppose there exist open sets, say U,V C X, such that UNP # 0, VNP #Q, UNV =0, and
P CUUV. Since UNV = (), we have V C U® (where U¢ = X \ V) and hence also V C U¢ (by the definition
of V, since U¢ is closed in X). Similarly, we have VN U = (), so we can take A = U and B =V and then A
and B separate P, as defined above.

Suppose there exist sets, say A, B C X, which separate P as defined above, that is ANP # 0, BNP # 0,
ANB=BNA=0and P C AUB. For each a € A, since ANB = () so that A C B°, which is open,
we can choose r, > 0 so that B(a,2r,) C B, that is B(a,2r,) N B = 0. Similarly, for each b € B we can
choose s, > 0 such that B(b,2s,) N A = 0. Let U = J,c4 B(a,rq) and let V = J, o B(b, sp). Then U and
V are open in X with ACU and BCVsothat UNP #@and VNP #( and P CUUV. We claim that
UNV = 0. Suppose, for a contradiction, that UNV # 0, say pc UNV. Since p € U = U, 4 B(a,ra), we
can choose a € A such that p € B(a,r,). Likewise, we can choose b € B such that p € B(b, sp). Say ro < sp
(the case sp < 1, is similar). Then we have d(a,b) < d(a,p)+d(p,b) < rq+ sy < 25, and hence a € B(b, 2sp).
But this contradicts our choice of s.



6: (a) Prove Theorem 5.37: let X and Y be metric spaces and let f: X — Y. Show that if X is compact and

f is continuous then f is uniformly continuous.

Solution: Suppose that X is compact and f is continuous. Let ¢ > 0. Given a € X, since f is continuous
at a we can chose d, > 0 such that for all z € X, if d(z,a) < 20, then d(f(z), f(a)) < §. Note that the set
{B(a, dq) | a € X} is an open cover of X. Since X is compact we can choose a finite subcover, so we can choose

finitely many points a1,as,---,a, € X such that X = U B(ag, 64, ). Choose § = min{da,,d4,, 04, }-

Let z,y € X with d(x,y) < ¢. Choose an index k such that x € B(ag,dq,). Since d(z,ar) < dq, and
d(z,y) < 8§ < b4y, we have d(y, ar) < 204, (by the Triangle Inequality) and hence d(f(y), f(ax)) < §. Since
d(z,a) < 0 < 6q, < 26,4, we also have d(f(z), f(axr)) < §. Since d(f(z), f(ar)) < § and d(f(y), f(ax)) < §,
it follows, again from the Triangle Inequality, that d(f(z), f(y)) < e.

(b) Let X be a metric space. Show that if X is compact then X must be separable.

Solution: Suppose that X is compact. By Theorem 5.39, X is totally bounded, so for each n € Z*, we can
cover X With finitely many open balls of radius % For each n € Z*, choose Gn,1,0n,2," ", 0ne, € X such

that X = U B(angk,L). Let A= {ank|n € ZT,1 <k < £,} and note that A is finite or countable. We
claim that A is dense in X . It suffices to show that for all x € X and all € > 0 there ex1sts a € A such that

d(z,a) < e. Let z € X and let € > 0. Choose n € ZT such that 2 < e. Since X = U B(ank, ) we can
k=1

choose k with 1 < k < /,, such that x € B(anyk, %) Then we have a,; € A and d(z,an ) < % < €, as

required.

(¢) Let U be a non-trivial finite-dimensional vector space over R. Show that there does not exist a norm on
U which makes U compact, but there does exist a metric on U which makes U compact.

Solution: Let || || be any norm on U. Choose 0 # u € U. Since u # 0 we have ||u|| > 0 and so tlim ltul] =
— 00

tlim t||u|| = oo, and hence U is not bounded. Since U is not bounded, it cannot be compact. On the other

xdeel

hand, let us show that U can be given a metric to make it compact. Note that since U is finite dimensional

we have |U| = 2. Indeed if {uy,---,u,} is a basis for U then the map F : R® — U given by F(t) = Y tpux
k=1

is bijective, so we have [U| = |R"?| = (2%0)" = 280 and, using various properties of cardinal arithmetic, note
that 2%0 = 2Ro'l < 9Ron < 9RoRo — 9o gg that 2N = 2% by the Cantor-Schroder- Bernstein Theorem.
Since |U| = 2% = |[0,1]|, we can choose any bijective map g : U — [0,1] and then give U the metric which

makes ¢g an isometry from U to the compact metric space [0, 1] (using its standard topology). That is, we
define the metric d on U by d(z,y) = ’g(aj) - g(y)’ Tt is easy to check that d is a metric and that g is an
isometry. Since g is an isometry it is a homeomorphism, and since g~! is continuous and [0, 1] is compact,
it follows that U is compact.



7: (a) Define a metric on R by d(z,y) = % (you do not need to prove that d is a metric). Show that (R, d)

is bounded but not totally bounded (hence not compact).

Solution: Note that (R, d) is bounded, indeed we have B(0,1) = R because for all z € R we have

— _l=| lz[+1 _
d(z,0) = o7 <Er = L

We claim that (R,d) is not uniformly bounded, indeed we claim that, using this metric d, R cannot be

covered by finitely many open balls of radius i. Let A C X be any subset such that X = |J B(a, i) For
a€A

each n € Z*, choose a,, € A such that n € B(an, i) Note that

n € Blan, §) = d(n,a,) < § = 122

m<i:>4ln—an\<ln—anl+1

=3n—a,|<l=|n—ay|<3:=a,€(n—1,n+1).

Since the intervals (n — %,n + %) are disjoint, it follows that the map f : Z* — A given by f(n) = ay, is
injective, so we have |A| > Ry hence A is infinite.

(b) Let X = 22" be the space of binary sequences (xk)k>1 with each x € {0,1}. Define a metric on X by
oo

d(z,y) = kz—:1 % (you do not need to prove that d is a metric). Show that X is complete and totally

bounded (hence compact).

Solution: Let (x,)n>1 be a Cauchy sequence in X. Each z,, is a binary sequence, say @, = (n i )r>1 with each

Tk € {0,1}. We claim that for each ¢ € ZT, the sequence (z, ¢),>1 is eventually costant (hence convergent).

Let ¢ € Z*. Since (z,,)n>1 is Cauchy in X, we can choose N € Z* such that for all n,m > N we have
oo o0

d(Tp, Tm) < 57, that is kz—:1 W < 57. Then for all n > N we have me;%” < kZ—:1 m’“;%’“l < 57 50

that |z, ¢ —zne¢| < 1. Since ¢, xn,¢ € {0,1} it follows that x,, ¢ = zn ¢, thus the binary sequence (z,, ¢)n>1

is evenually constant, as claimed. For each ¢ € Z%, let b, = ltim an¢ and note that each b, € {0,1} since
nitooo

the sequence (x,,¢)n>1 is eventually constant.
We claim that lim x, = b in X. Choose ¢ € Z™' such that 2—14 < €. Let € > 0. since each sequence
n— 00

(@, k)n>1 is eventually constant, we can choose N € Z% such that Tnk = TN, = b for all n > N and all
1 <k < /. Then for all n > N we have

S Tn s —bil S 1T —bul = 11
d(zn,b) = > "= ) T < Y =g <€
k=1 k=0+1 k=0+1
Thus lim z,, = b in X, as claimed, and so X is complete.
n— o0
We claim that X is totally bounded. Let € > 0. Choose £ € Z* such that 2% < e. Let A C X be the set
of all binary sequences of the form a = (a1, as,- - -, a,0,0,0,---), and note that A is finite, indeed |A| = 2°.
Given z € X we can choose a € A such that (z1,29, -, 2¢) = (a1, a2, -, a;) and then we have
o~ lze—ar] _ So lm—a] o 0
d(z,a) = 3 Gt = 3 AN <N =g <e
k=1 k=0+1 k=041

so that « € B(a,€), This shows that X = |J B(a,¢) and so X is totally bounded.
acA



8: (a) Let B=B(0,1) = {z € &(R) | [|z|]2 < 1} C £2(R). Show that B is not compact in ((2(R),d2).

Solution: Let E = {e1,eq,e3, -}, let Uy =3\ E, let U, = B(en, 1) = {J; c EQ‘HZ‘ —enll2 < 1} for n € Zt.
and let U = {Uy, U1, Us, - -}. Note that E is closed (because for all k # ¢ we have ||ej, — e[| = v/2, so every
Cauchy sequence in FE is eventually constant) and so Uy is open, and so U is an open cover of B. But U has
no finite subcover, indeed U has no proper subcover, because the point 0 € B only lies in the set Uy and for
each k € Z*, the point e, € B only lies in the set U, (when n € Z* with n # k we have ||eg — en|la = V2
so e ¢ Blen, 1) =Up,).

(b) Let r, > 0 for all k € ZT, and let S = {x € £o(R)||zx| < ry for all k € Z+} C £5(R). Show that S is

compact in (/3(R),ds) if and only if Y .2 converges in R.
k=1

[ee] n n
Solution: If 3 742 = oco. then S is unbounded because s, = . rrer € S and ||sy]l2 = Y 72 — oo
k=1 k=1 k=1

o0
as n — 0o, and hence S is not compact. Suppose that > 7,2 < co. We claim that every sequence in S
k=1

oo
has a convergent subsequence whose limit lies in S. Let {x,},>1 be a sequence in S, say x, = > X ke
k=1

with |z, 1| < rg for all n, k. Since x,,1 € [—r1,71] for all n, we can choose m; < mg < mg < --- so that
the sequence {z,, 1}n>1 converges in R, say to ¢1 € [—r1,r1]. Denote the subsequence {x,,, }n>1 of {z,}

o0
in £y by {z,} so we have z, = Y x ep with x) , = 2, . Note that x) , € [—ry, 7] for all n,k and
k=1

lim zl | = ¢ € [~r1,71]. Since x} 5 € [~rg, 73] for all n, we can re-choose m; < my < mz < --- so that the
n—00 ’ ’

sequence {z}, ,}n>1 converges in R, say to ¢c; € [—72,72]. Denote the subsequence {x;,, }n>1 of {z}} in £, by
o0

{22} so we have 22 = > 22, ep with 22 , = 2! . Note that 22 , € [~ry,7%] for all n,k and lim 22 | = ¢;
= : ns : s,

and lim 22 , = cp. Repeat this procedure to obtain successive subsequences {z™},,>1 in 5 for each m € Z+
n—o00 ’ -

oo
given by " = > a',ep with |2, | < 1 for all m,n, k such that lim ') = ¢ € [—rg, 7] in R for all
k=1 ’ ) n—00 ’

o0
k < m. Let {y,, } be the diagonal sequence y, = x5, = »_ x, ;ex, and note that {y,} is a subsequence of the
k=1

o0 o0
original sequence {z,}. We claim that y — c in fo where ¢ = Y cper. Let € > 0. Since Y 72 < oo, we
k=1 k=1

S 2
can choose m € Z* so that > % < <. Since lim ] = ¢ for all k < m, we can choose N € Z* with
k=m+1 n—oo ’
2 ! .
N > m so that for all n > N we have |x:’f,€ — ck.| < 5 for all K < m. Note that when m’ > m, {2} } is a
subsequence of {z!"'} so for each n € Z* we have x;”, = ™ for some n’ > n. In particular, when n > N we
have y, = =) =z, for some n’ > n, and so

2 oo m o0
Hyn —clls = Z ‘yn,k - ck|2 = E |yn,k - Ck|2 + Z |yn,k - Ck|2
k=1 k=1 k=m+1

m oo . .
<> A =kl + >0 (2rk)2§m'—2€m+4-%:62
k=1 ’ k=m+1

hence ||y, — ¢||2 < e. Since every sequence in S has a subsequence which converges to an element in S, it
follows that S is compact (by Theorem 5.39).



