
PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 5

1: (a) Prove Theorem 5.18: let X be a metric space (or topological space) and prove that the path components of
X are path connected, and that every path connected subset of X is contained in one of the path components.

Solution: The path components of X are path connected since, for a ∈ X, if x ∈ [a] and y ∈ [a] then we have
x ∼ a and y ∼ a, and hence x ∼ y (since ∼ is an equivalence relation). We claim that every path connected
subset of X is contained in one of the path components. Let P ⊆ X be path connected. Let p ∈ P . Choose
a ∈ X such that p ∈ [a] =

{
x∈x

∣∣x∼a}. We claim that P ⊆ [a]. Let x ∈ P . Since p ∈ [a] we have p ∼ a so
[p] = [a]. Since x ∈ P and p ∈ P and P is path connected, we have x ∼ p. Since x ∼ p we have x ∈ [p] = [a].
Thus P ⊆ [a], as claimed.

(b) Let X be a metric space and let A,B ⊆ X with A ⊆ B ⊆ A. Show that if A is connected then so is B.

Solution: Suppose that B is disconnected. Choose open sets U and V in X which separate B, that is with
U ∩B 6= ∅, V ∩B 6= ∅, U ∩ V = ∅ and B ⊆ U ∪ V . We claim that U and V also separate A, and hence A is
disconnected. We have U ∩ V = ∅ and A ⊆ B ⊆ U ∪ V so it suffices to show that U ∩A 6= ∅ and V ∩A 6= ∅.
Suppose, for a contradiction, that U ∩ A = ∅. Then A ⊆ U c = X \ A. Since U is open, it follows that U c

is closed. Since U c is a closed set which contains A, it follows that A ⊆ U c (since A is the intersection of
all closed sets which contain A). Thus B ⊆ A ⊆ U c and hence U ∩B = ∅, giving the desired contradiction.
Thus U ∩A 6= ∅. Similarly V ∩A 6= ∅, and so U and V separate A, as claimed.

(c) Let X be a metric space. Show that the connected components of X are closed.

Solution: This follows from Part (b): if C is a component of X then C is connected, hence C is connected,
hence C is contained in one of the components of X, hence C = C.



2: For each of the following sets A in Rn (using its standard metric), determine whether A is complete, whether
A is compact, and whether A is connected.

(a) A =
{
x ∈ R3

∣∣∣ ‖x‖ = n−1
n2 for some n ∈ Z+

}
.

Solution: Let (an)n≥1 be the sequence given by an = n−1
n2 . Note that a1 = 0, a2 = 1

4 and a3 = 2
9 , and an is

strictly decreasing for n ≥ 2 because when n ≥ 2 we have

an − an+1 = n−1
n2 − n

(n+1)2 = (n−1)(n+1)2−n3

n2(n+1)2 = n2−n−1
n2(n+1)2 = n(n−1)−1

n2(n+1)2 ≥
1·2−1

n2(n+1)2 = 1
n2(n+1)2 > 0,

and lim
n→∞

an = lim
n→∞

n−1
n2 = 0. Because a1 = 0 and a2 = 1

4 and (an) is decreasing for n ≥ 2, it follows that

max{an|n ∈ Z+} = a2 = 1
4 . Thus A is bounded with A ⊆ B

(
0, 1
)
, because when x ∈ A we have ‖x‖ = an

for some n hence ‖x‖ ≤ a2 = 1
4 . We claim that A is closed. For x ∈ R3, we have

x ∈ A ⇐⇒ ‖x‖ ∈ {an |n∈Z+} ⇐⇒ ‖x‖ ∈ {a2, a3, a4, · · ·} ∪ {0}

and so

x ∈ Ac = R3 \A ⇐⇒ ‖x‖ /∈ {a2, a3, a4, · · ·} ∪ {0} ⇐⇒ ‖x‖ ∈
∞⋃
n=1

In

where I1 = (a2,∞) and In = (an+1, an) for n ≥ 2. Thus

Ac =
∞⋃
n=1

Un where Un =
{
x ∈ R3

∣∣ ‖x‖ ∈ In}.
Note that each set Un is open in R3 because each set In is open in R (indeed In is an open interval) and the

function f : R3 → R given by f(x) = ‖x‖ =
(
x1

2 + x2
2 + x3

2
)1/2

is continuous (indeed every elementary

function is continuous), and we have Un =
{
x ∈ R3

∣∣ f(x) ∈ In
}

= f−1(In). Since each set Un is open,

it follows that Ac =
∞⋃
n=1

Un is open, and hence A is closed. Since R3 is complete and A is closed in R3,

A is complete. Since A is closed and bounded in R3, A is compact. But A is not connected because, for
r ∈ (a2, a1) =

(
2
9 ,

1
4

)
, the open sets U =

{
x ∈ R3

∣∣ ‖x‖ < r
}

and V =
{
x ∈ R3

∣∣ ‖x‖ > r
}

separate A.

(b) Let A =
{

(u, v, w, x, y, z) ∈ R6
∣∣∣ rank

(
u v w
x y z

)
< 2
}

.

Solution: Note that we have rank

(
u v w
x y z

)
= 2 if and only if some pair of columns is linearly independent

if and only if one of the three 2× 2 submatrices

(
u v
x y

)
,

(
u w
x z

)
and

(
v w
y z

)
is invertible if and only

if one of the three determinants uy − vx, uz − wx and vz − wy is non-zero. Thus we have

rank

(
u v w
x y z

)
< 2 ⇐⇒

(
uy − vx = 0 and uz − wx = 0 and vz − wy = 0

)
and hence

A = f−1
(
{0}
)
∩ g−1

(
{0}
)
∩ h−1

(
{0}
)

where f, g, h : R6 → R are given by

f(u, v, w, x, y, z) = uy − vx ,
g(u, v, w, x, y, z) = uz − wx ,
h(u, v, w, x, y, z) = vz − wy .

Since f , g and h are continuous (they are polynomials) and {0} is closed in R, it follows that the sets f−1
(
{0}
)
,

g−1
(
{0}
)

and h−1
(
{0}
)

are all closed, and hence the set A is closed. Since R6 is complete and A is closed
in R6, it follows that A is complete. On the other hand, A is not bounded because for e1 = (1, 0, 0, 0, 0, 0)
we have re1 ∈ A for all r ∈ R and ‖re1‖ = |r|. Since A is not bounded, it is not compact. Finally, note that
A is path connected (hence connected) because for all p = (u, v, w, x, y, z) ∈ A, the map α : [0, 1]→ A given
by α(t) = tp is a path from 0 to p in A (α takes values in A because the matrices corresponding to tp all
have rank 0 or 1) so we have p ∼ 0, and hence for all p, q ∈ A we have p ∼ 0 and q ∼ 0 hence p ∼ q.



3: For each of the following sets A, determine whether A is complete and whether A is compact.

(a) A =
{
a = (ak)k≥1 ∈ R∞

∣∣∣ ‖a‖∞ ≤ 1
}
⊆ R∞ ⊆ `∞(R), using the metric d∞.

Solution: We claim that A is not closed in `∞ (using the metric d∞). Let (xn)n≥1 be the sequence in R∞

given by xn =
n∑
k=1

1
k ek =

(
1
1 ,

1
2 ,

1
3 , · · · ,

1
n , 0, 0, · · ·

)
. Note that for every n ∈ Z+ we have ‖xn‖∞ = 1 so that

xn ∈ A, and so (xn)n≥1 is a sequence in A. Also note that xn → a in `∞ where a = (ak)k≥1 ∈ `∞ is given
by ak = 1

k for all k ∈ Z+, that is a =
(
1
1 ,

1
2 ,

1
3 , · · ·

)
, indeed we have∥∥a− xn∥∥∞ =

∥∥(0, 0, · · · , 0, 1
n+1 ,

1
n+2 ,

1
n+3 , · · ·

)∥∥
∞ = 1

n+1 −→ 0 as n→∞.

But notice that a /∈ R∞, so a /∈ A. Since (xn)≥1 is a sequence in A with xn → ∞ in `∞, but a /∈ A, it
follows that A is not closed in `∞. Since `∞ is complete and A is not closed in `∞, it follows that A is not
complete. Since A is not closed in `∞, it follows that A is not compact in `∞ and hence A is not compact
(in R∞ or in itself).

(b) A =
{
a = (ak)k≥1 ∈ `1(R)

∣∣∣ ∞∑
k=1

ak = 0
}
⊆ `1(R), using the metric d1.

Solution: We claim that A is closed. We provide two proofs. For the first proof, let (xn)n≥1 be a sequence
in A xn → a in `1. Write xn = (xn,k)k≥1 and a = (ak)k≥1. Let ε > 0. Since xn → a in `1, we can choose

` ∈ Z+ such that ‖x` − a‖1 < ε
2 , that is

∞∑
k=1

|x`,k − ak| < ε
2 . Since x` ∈ A we have

∞∑
k=1

x`,k = 0 so we can

choose m ∈ Z+ such that k ≥ m =⇒
∣∣∣ m∑
k=1

x`,k

∣∣∣ < ε
2 . Then for k ≥ m we have

∣∣∣ m∑
k=1

ak

∣∣∣ =
∣∣∣ m∑
k=1

(ak − x`,k + x`,k)
∣∣∣ ≤ m∑

k=1

|ak − x`,k|+
m∑
k=1

|x`,k| ≤
∞∑
k=1

|ak − x`,k|+
m∑
k=1

|x`,k| < ε
2 + ε

2 = ε.

This proves that
∞∑
k=1

ak = 0 so that a ∈ A, and so A is closed, as claimed.

For the second proof, note that A is a subspace of `1. Define S : `1 → R by S(a) =
∞∑
k=1

ak. Note that S

is linear (and S is well-defined because absolute convergence implies convergence) with Null(S) = S. Note

that S is continuous because when a ∈ `1 with ‖a‖ ≤ 1 we have
∣∣S(a)

∣∣ =
∣∣∣ ∞∑
k=1

ak

∣∣∣ ≤ ∞∑
k=1

|ak| = ‖a‖1 ≤ 1.

Also not that A = S−1
(
{0}
)
. Since S is continuous and {0} is closed in `1, it follows that A = S−1

(
{0}
)

is
closed in `1.

Since `1 is complete (using the metric d1) and A is closed in `1, it follows that A is complete. On the

other hand, note that A is not bounded because for a =
2n∑
k=1

(−1)kek = (−1, 1,−1, 1, · · · ,−1, 1, 0, 0, · · ·), we

have a ∈ A with ‖a‖1 = 2n, and hence A is not compact.

(c) A =
{
f ∈ C([0, 1],R)

∣∣∣ |f(x)| ≤ 1
x for all x ∈ (0, 1)

}
⊆ C([0, 1],R), using the metric d∞.

Solution: We claim that A is closed in C[0, 1] (using the supremum metric d∞). Let f ∈ Ac = C[0, 1] \ A.
Choose a ∈ (0, 1) such that

∣∣f(a)
∣∣ > 1

a . Let r =
∣∣f(a)

∣∣− 1
a and note that r > 0. We claim that B(f, r) ⊆ Ac.

Let g ∈ B(f, r), that is let g ∈ C[0, 1] with ‖g − f‖∞ ≤ 1. Since |f(a)| ≤
∣∣f(a)− g(a)

∣∣+
∣∣g(a)

∣∣, we have

|f(a)| − |g(a)| ≤
∣∣f(a)− g(a)

∣∣ ≤ ‖f − g‖∞ < r =
∣∣f(a)

∣∣− 1
a

and hence
∣∣g(a)

∣∣ > 1
a , so that g ∈ Ac. Thus B(f, r) ⊆ Ac, showing that Ac is open, hence A is closed, as

claimed. Since C[0, 1] is complete and A is closed in C[0, 1], it follows that A is complete.
On the other hand, A is not bounded because given r > 0 we can define f : [0, 1]→ R by f(x) = r for

0 ≤ x ≤ 1
r and f(x) = 1

x for 1
r ≤ x ≤ 1 and then we have f ∈ A with ‖f‖∞ = r. Since A is not bounded, it

is not compact.



4: The theorems about connectedness in the lecture notes are stated for metric spaces. They also apply, more
generally, to topological spaces with minor alterations in the proofs, with a slight change in Definition 5.1.
Let X be a topological space and let P ⊆ X. For sets A,B ⊆ X (not necessarily open sets), we say that A
and B separate P in X when

A ∩ P 6= ∅ , B ∩ P 6= ∅ , A ∩B = B ∩A = ∅ , P ⊆ A ∪B .

Recall that we say that P is connected when P is not equal to the union of two disjoint nonempty open
subsets U, V ⊆ P (or equivalently when the only subsets of P which are both open and closed in P are the
sets ∅ and P ), and otherwise we say that P is disconnected.

(a) Let X be a topological space and let A ⊆ P ⊆ X. Let A = ClX(A) be the closure of A in X and let
ClP (A) be the closure of A in P . Show that ClP (A) = ClX(A) ∩ P .

Solution: Since A is closed in X it follows that A ∩ P is closed in P . Since A ⊆ A and A ⊆ P we have
A ⊆ A ∩ P . Since A ∩ P is closed in P and A ⊆ A ∩ P , it follows from the definition of ClP (A) that
ClP (A) ⊆ A ∩ P .

Let F be any closed set in P with A ⊆ F . Choose a closed set K in X such that F = K ∩ P . Since K
is closed in X and A ⊆ K we have A ⊆ K. Thus A∩ P ⊆ K ∩ P = F . Since A∩ P ⊆ F for every closed set
F in P which contains A, it follows, from the definition of ClP (A), that A ∩ P ⊆ ClP (A).

(b) Let X be a topological space and let P ⊆ X. Show that P is disconnected if and only if there exist sets
A,B ⊆ X which separate P in X, as defined above.

Solution: Suppose that P is disconnected, say P = U ∪V where U and V are nonempty disjoint open subsets
of P . Since U is closed in P we have U = ClP (U) = ClX(U)∩P = U ∩P . Since V ⊆ P we have V = V ∩P
so V ∩ U = V ∩ P ∩ U = V ∩ U = ∅. Similarly, we have U ∩ V = ∅, and so we can take A = U and B = V
and then A and B separate P .

Suppose, conversely, that there exist sets, say A,B ⊆ X, which separate P in X. Let U = A ∩ P and
V = B∩P , and note that U 6= ∅, V 6= ∅, P = U ∪V and we have U ∩V = ∅ (because U ∩V ⊆ A∩B = ∅) and
V ∩U = ∅. We claim that U and V are open in P (and hence P is the union of two nonempty disjoint open
subsets). Since U ∩ V = ∅ we also have U ∩ ClP (V ) = ∅. Since P = U ∪ V we also have P = U ∪ ClP (V ).
Thus P is the disjoint union of U and ClP (V ). Since ClP (V ) is closed in P , its complement U = P \ClP (V )
is open in P . Similarly V is open in P , as claimed.

(c) Let X be a metric space and let P ⊆ X. Show that there exist sets A,B ⊆ X which separate P , as
defined above, if and only if there exist open sets U, V ⊆ X which separate P as in Definition 5.1, that is

U ∩ P 6= ∅ , V ∩ P 6= ∅ , U ∩ P = ∅ , P ⊆ U ∪ V .

Solution: Suppose there exist open sets, say U, V ⊆ X, such that U ∩ P 6= ∅, V ∩ P 6= ∅, U ∩ V = ∅, and
P ⊆ U ∪V . Since U ∩V = ∅, we have V ⊆ U c (where U c = X \V ) and hence also V ⊆ U c (by the definition
of V , since U c is closed in X). Similarly, we have V ∩ U = ∅, so we can take A = U and B = V and then A
and B separate P , as defined above.

Suppose there exist sets, say A,B ⊆ X, which separate P as defined above, that is A∩P 6= ∅, B∩P 6= ∅,
A ∩ B = B ∩ A = ∅ and P ⊆ A ∪ B. For each a ∈ A, since A ∩ B = ∅ so that A ⊆ B

c
, which is open,

we can choose ra > 0 so that B(a, 2ra) ⊆ B
c
, that is B(a, 2ra) ∩ B = ∅. Similarly, for each b ∈ B we can

choose sb > 0 such that B(b, 2sb) ∩ A = ∅. Let U =
⋃
a∈AB(a, ra) and let V =

⋃
b∈B B(b, sb). Then U and

V are open in X with A ⊆ U and B ⊆ V so that U ∩ P 6= ∅ and V ∩ P 6= ∅ and P ⊆ U ∪ V . We claim that
U ∩ V = ∅. Suppose, for a contradiction, that U ∩ V 6= ∅, say p ∈ U ∩ V . Since p ∈ U =

⋃
a∈AB(a, ra), we

can choose a ∈ A such that p ∈ B(a, ra). Likewise, we can choose b ∈ B such that p ∈ B(b, sb). Say ra ≤ sb
(the case sb ≤ ra is similar). Then we have d(a, b) ≤ d(a, p)+d(p, b) < ra+sb ≤ 2sb and hence a ∈ B(b, 2sb).
But this contradicts our choice of sb.



6: (a) Prove Theorem 5.37: let X and Y be metric spaces and let f : X → Y . Show that if X is compact and
f is continuous then f is uniformly continuous.

Solution: Suppose that X is compact and f is continuous. Let ε > 0. Given a ∈ X, since f is continuous
at a we can chose δa > 0 such that for all x ∈ X, if d(x, a) < 2δa then d(f(x), f(a)) < ε

2 . Note that the set{
B(a, δa)

∣∣ a ∈ X} is an open cover ofX. SinceX is compact we can choose a finite subcover, so we can choose

finitely many points a1, a2, · · · , an ∈ X such that X =
n⋃
k=1

B(ak, δak). Choose δ = min{δa1 , δa2 , · · · , δan}.

Let x, y ∈ X with d(x, y) < δ. Choose an index k such that x ∈ B(ak, δak). Since d(x, ak) < δak and
d(x, y) < δ ≤ δak , we have d(y, ak) < 2δak (by the Triangle Inequality) and hence d(f(y), f(ak)) < ε

2 . Since
d(x, ak) < δ ≤ δak < 2δak we also have d(f(x), f(ak)) < ε

2 . Since d(f(x), f(ak)) < ε
2 and d(f(y), f(ak)) < ε

2 ,
it follows, again from the Triangle Inequality, that d(f(x), f(y)) < ε.

(b) Let X be a metric space. Show that if X is compact then X must be separable.

Solution: Suppose that X is compact. By Theorem 5.39, X is totally bounded, so for each n ∈ Z+, we can
cover X with finitely many open balls of radius 1

n . For each n ∈ Z+, choose an,1, an,2, · · · , an,`n ∈ X such

that X =
`n⋃
k=1

B
(
an,k,

1
n

)
. Let A =

{
an,k

∣∣n ∈ Z+, 1 ≤ k ≤ `n
}

and note that A is finite or countable. We

claim that A is dense in X. It suffices to show that for all x ∈ X and all ε > 0 there exists a ∈ A such that

d(x, a) < ε. Let x ∈ X and let ε > 0. Choose n ∈ Z+ such that 1
n < ε. Since X =

`n⋃
k=1

B
(
an,k,

1
n

)
we can

choose k with 1 ≤ k ≤ `n such that x ∈ B
(
an,k,

1
n

)
. Then we have an,k ∈ A and d(x, an,k) < 1

n < ε, as
required.

(c) Let U be a non-trivial finite-dimensional vector space over R. Show that there does not exist a norm on
U which makes U compact, but there does exist a metric on U which makes U compact.

Solution: Let ‖ ‖ be any norm on U . Choose 0 6= u ∈ U . Since u 6= 0 we have ‖u‖ > 0 and so lim
t→∞

‖tu‖ =

lim
t→∞

t‖u‖ = ∞, and hence U is not bounded. Since U is not bounded, it cannot be compact. On the other

hand, let us show that U can be given a metric to make it compact. Note that since U is finite dimensional

we have |U | = 2ℵ0 . Indeed if {u1, · · · , un} is a basis for U then the map F : Rn → U given by F (t) =
n∑
k=1

tkuk

is bijective, so we have |U | = |Rn| = (2ℵ0)n = 2ℵ0·n and, using various properties of cardinal arithmetic, note
that 2ℵ0 = 2ℵ0·1 ≤ 2ℵ0·n ≤ 2ℵ0·ℵ0 = 2ℵ0 so that 2ℵ0·n = 2ℵ0 by the Cantor-Schröder- Bernstein Theorem.
Since |U | = 2ℵ0 =

∣∣[0, 1]
∣∣, we can choose any bijective map g : U → [0, 1] and then give U the metric which

makes g an isometry from U to the compact metric space [0, 1] (using its standard topology). That is, we
define the metric d on U by d(x, y) =

∣∣g(x) − g(y)
∣∣. It is easy to check that d is a metric and that g is an

isometry. Since g is an isometry it is a homeomorphism, and since g−1 is continuous and [0, 1] is compact,
it follows that U is compact.



7: (a) Define a metric on R by d(x, y) = |x−y|
1+|x−y| (you do not need to prove that d is a metric). Show that (R, d)

is bounded but not totally bounded (hence not compact).

Solution: Note that (R, d) is bounded, indeed we have B(0, 1) = R because for all x ∈ R we have

d(x, 0) = |x|
|x|+1 <

|x|+1
|x|+1 = 1.

We claim that (R, d) is not uniformly bounded, indeed we claim that, using this metric d, R cannot be
covered by finitely many open balls of radius 1

4 . Let A ⊆ X be any subset such that X =
⋃
a∈A

B
(
a, 14

)
. For

each n ∈ Z+, choose an ∈ A such that n ∈ B
(
an,

1
4

)
. Note that

n ∈ B
(
an,

1
4

)
=⇒ d(n, an) < 1

4 =⇒ |n−an|
|n−an|+1 <

1
4 =⇒ 4|n− an| < |n− an|+ 1

=⇒ 3|n− an| < 1 =⇒ |n− an| < 1
3 =⇒ an ∈

(
n− 1

3 , n+ 1
3

)
.

Since the intervals
(
n − 1

3 , n + 1
3

)
are disjoint, it follows that the map f : Z+ → A given by f(n) = an is

injective, so we have |A| ≥ ℵ0 hence A is infinite.

(b) Let X = 2Z
+

be the space of binary sequences (xk)k≥1 with each xk ∈ {0, 1}. Define a metric on X by

d(x, y) =
∞∑
k=1

|xk−yk|
2k

(you do not need to prove that d is a metric). Show that X is complete and totally

bounded (hence compact).

Solution: Let (xn)n≥1 be a Cauchy sequence inX. Each xn is a binary sequence, say xn = (xn,k)k≥1 with each
xn,k ∈ {0, 1}. We claim that for each ` ∈ Z+, the sequence (xn,`)n≥1 is eventually costant (hence convergent).
Let ` ∈ Z+. Since (xn)n≥1 is Cauchy in X, we can choose N ∈ Z+ such that for all n,m ≥ N we have

d(xn, xm) < 1
2`

, that is
∞∑
k=1

|xn,k−xm,k|
2k

< 1
2`

. Then for all n ≥ N we have
|xn,`−xN,`|

2`
≤
∞∑
k=1

|xn,k−xN,k|
2k

< 1
2`

so

that |xn,`−xN,`| < 1. Since xn,`, xN,` ∈ {0, 1} it follows that xn,` = xN,`, thus the binary sequence (xn,`)n≥1
is evenually constant, as claimed. For each ` ∈ Z+, let b` = lim

nto∞
an,` and note that each b` ∈ {0, 1} since

the sequence (xn,`)n≥1 is eventually constant.
We claim that lim

n→∞
xn = b in X. Choose ` ∈ Z+ such that 1

2`
< ε. Let ε > 0. since each sequence

(xn, k)n≥1 is eventually constant, we can choose N ∈ Z+ such that xn,k = xN,k = bk for all n ≥ N and all
1 ≤ k ≤ `. Then for all n ≥ N we have

d(xn, b) =
∞∑
k=1

|xn,k−bk|
2k

=
∞∑

k=`+1

|xn,k−bk|
2k

≤
∞∑

k=`+1

1
2k

= 1
2`
< ε.

Thus lim
n→∞

xn = b in X, as claimed, and so X is complete.

We claim that X is totally bounded. Let ε > 0. Choose ` ∈ Z+ such that 1
2`
< ε. Let A ⊆ X be the set

of all binary sequences of the form a = (a1, a2, · · · , a`, 0, 0, 0, · · ·), and note that A is finite, indeed |A| = 2`.
Given x ∈ X we can choose a ∈ A such that (x1, x2, · · · , x`) = (a1, a2, · · · , a`) and then we have

d(x, a) =
∞∑
k=1

|xk−ak|
2k

=
∞∑

k=`+1

|xk−ak|
2k

≤
∞∑

k=`+1

1
2k

= 1
2`
< ε

so that x ∈ B(a, ε), This shows that X =
⋃
a∈A

B(a, ε) and so X is totally bounded.



8: (a) Let B = B(0, 1) =
{
x ∈ `2(R)

∣∣ ||x||2 ≤ 1
}
⊆ `2(R). Show that B is not compact in (`2(R), d2).

Solution: Let E = {e1, e2, e3, · · ·}, let U0 = `2 \ E, let Un = B(en, 1) =
{
x ∈ `2

∣∣||x− en||2 < 1
}

for n ∈ Z+.

and let U =
{
U0, U1, U2, · · ·}. Note that E is closed (because for all k 6= ` we have ||ek− e`||2 =

√
2, so every

Cauchy sequence in E is eventually constant) and so U0 is open, and so U is an open cover of B. But U has
no finite subcover, indeed U has no proper subcover, because the point 0 ∈ B only lies in the set U0 and for
each k ∈ Z+, the point ek ∈ B only lies in the set Uk (when n ∈ Z+ with n 6= k we have ||ek − en||2 =

√
2

so ek /∈ B(en, 1) = Un).

(b) Let rk ≥ 0 for all k ∈ Z+, and let S =
{
x ∈ `2(R)

∣∣ |xk| ≤ rk for all k ∈ Z+
}
⊆ `2(R). Show that S is

compact in (`2(R), d2) if and only if
∞∑
k=1

rk
2 converges in R.

Solution: If
∞∑
k=1

rk
2 = ∞. then S is unbounded because sn =

n∑
k=1

rkek ∈ S and ||sn||2 =
n∑
k=1

rk
2 −→ ∞

as n → ∞, and hence S is not compact. Suppose that
∞∑
k=1

rk
2 < ∞. We claim that every sequence in S

has a convergent subsequence whose limit lies in S. Let {xn}n≥1 be a sequence in S, say xn =
∞∑
k=1

xn,kek

with |xn,k| ≤ rk for all n, k. Since xn,1 ∈ [−r1, r1] for all n, we can choose m1 < m2 < m3 < · · · so that
the sequence {xmn,1}n≥1 converges in R, say to c1 ∈ [−r1, r1]. Denote the subsequence {xmn}n≥1 of {xn}

in `2 by {x1n} so we have x1n =
∞∑
k=1

x1n,kek with x1n,k = xmn,k. Note that x1n,k ∈ [−rk, rk] for all n, k and

lim
n→∞

x1n,1 = c1 ∈ [−r1, r1]. Since x1n,2 ∈ [−r2, r2] for all n, we can re-choose m1 < m2 < m3 < · · · so that the

sequence {x1mn,2}n≥1 converges in R, say to c2 ∈ [−r2, r2]. Denote the subsequence {x1mn
}n≥1 of {x1n} in `2 by

{x2n} so we have x2n =
∞∑
k=1

x2n,kek with x2n,k = x1mn,k
. Note that x2n,k ∈ [−rk, rk] for all n, k and lim

n→∞
x2n,1 = c1

and lim
n→∞

x2n,2 = c2. Repeat this procedure to obtain successive subsequences {xmn }n≥1 in `2 for each m ∈ Z+

given by xmn =
∞∑
k=1

xmn,kek with |xmn,k| ≤ rk for all m,n, k such that lim
n→∞

xmn,k = ck ∈ [−rk, rk] in R for all

k ≤ m. Let {yn} be the diagonal sequence yn = xnn =
∞∑
k=1

xnn,kek, and note that {yn} is a subsequence of the

original sequence {xn}. We claim that y → c in `2 where c =
∞∑
k=1

ckek. Let ε > 0. Since
∞∑
k=1

rk
2 < ∞, we

can choose m ∈ Z+ so that
∞∑

k=m+1

rk
2 < ε2

8 . Since lim
n→∞

xmn,k = ck for all k ≤ m, we can choose N ∈ Z+ with

N ≥ m so that for all n ≥ N we have
∣∣xmn,k − ck∣∣ < ε2

2m for all k ≤ m. Note that when m′ ≥ m, {xm′

n } is a

subsequence of {xmn } so for each n ∈ Z+ we have xm
′

n = xmn′ for some n′ ≥ n. In particular, when n ≥ N we
have yn = xnn = xmn′ for some n′ ≥ n, and so

||yn − c||22 =
∞∑
k=1

|yn,k − ck|2 =
m∑
k=1

|yn,k − ck|2 +
∞∑

k=m+1

|yn,k − ck|2

≤
m∑
k=1

|xmn′,k − ck|+
∞∑

k=m+1

(2rk)2 ≤ m · ε
2

2m + 4 · ε
2

8 = ε2

hence ||yn − c||2 < ε. Since every sequence in S has a subsequence which converges to an element in S, it
follows that S is compact (by Theorem 5.39).


