

PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 4

1: (a) Let $c_0 = \{a \in \ell_\infty(\mathbb{R}) \mid \lim_{n \rightarrow \infty} a_n = 0\}$. Show that (c_0, d_∞) is separable.

Solution: Recall (from the proof of Theorem 4.7) that \mathbb{Q}^∞ is countable. We claim that \mathbb{Q}^∞ is dense in c_0 . Note that $\mathbb{Q}^\infty \subseteq c_0$ because for $a = (a_n)_{n \geq 1} \in \mathbb{Q}^\infty$, we can choose $m \in \mathbb{Z}^+$ such that $a_n = 0$ for all $n > m$, and hence $\lim_{n \rightarrow \infty} a_n = 0$. Let $x \in c_0$ with $x \notin \mathbb{Q}^\infty$. We must show that x is a limit point of \mathbb{Q}^∞ . Let $r > 0$. Since $\lim_{n \rightarrow \infty} x_n = 0$ we can choose $m \in \mathbb{Z}^+$ such that for all $n \in \mathbb{Z}^+$ with $n \geq m$ we have $|x_n| < \frac{r}{2}$. For each $n \in \mathbb{Z}^+$ with $1 \leq n \leq m$, choose $a_n \in \mathbb{Q}$ with $|x_n - a_n| < \frac{r}{2}$, then let $a = \sum_{n=1}^m a_n e_n = (a_1, a_2, \dots, a_n, 0, 0, \dots) \in \mathbb{Q}^\infty$. Then we have $\|x - a\|_\infty = \sup \{|x_1 - a_1|, |x_2 - a_2|, \dots, |x_n - a_n|, |x_{n+1}|, |x_{n+2}|, \dots\} \leq \frac{r}{2}$ so that $x \in B(a, r)$. And since $a \in \mathbb{Q}^\infty$ and $x \notin \mathbb{Q}^\infty$ so that $x \neq a$, we have $a \in B^*(x, r)$, and so x is a limit point of \mathbb{Q}^∞ , as required.

(b) Show that $(\ell_\infty(\mathbb{C}), d_\infty)$ is complete.

Solution: Let $(a_n)_{n \geq 1}$ be a Cauchy sequence in ℓ_∞ . For each $n \in \mathbb{Z}^+$, a_n is a bounded sequence of complex numbers, say $a_n = (a_{n,k})_{k \geq 1}$. Fix an index $k \in \mathbb{Z}^+$ and let $\epsilon > 0$. Since $(a_n)_{n \geq 1}$ is Cauchy in ℓ_∞ , we can choose $N \in \mathbb{Z}^+$ such that $n, m \geq N \implies \|a_n - a_m\|_\infty < \epsilon$. Then for $n, m \geq N$ we have $|a_{n,j} - a_{m,j}| < \epsilon$ for all $j \in \mathbb{Z}^+$ so, in particular, $|a_{n,k} - a_{m,k}| < \epsilon$. This shows that for each $k \in \mathbb{Z}^+$, the sequence $(a_{n,k})_{n \geq 1}$ is a Cauchy sequence in \mathbb{C} , so it converges. For each $k \in \mathbb{Z}^+$, let $b_k = \lim_{n \rightarrow \infty} a_{n,k} \in \mathbb{C}$, and then let $b = (b_k)_{k \geq 1}$.

We claim that $b \in \ell_\infty$ (that is, the sequence $b = (b_k)_{k \geq 1}$ is bounded in \mathbb{C}). Since $(a_n)_{n \geq 1}$ is Cauchy in ℓ_∞ , it is bounded in ℓ_∞ , so we can choose $M \geq 0$ such that $\|a_n\|_\infty \leq M$ for all indices $n \in \mathbb{Z}^+$. Then for all $k, n \in \mathbb{Z}^+$ we have $|a_{n,k}| \leq \|a_n\|_\infty \leq M$ and hence, for all $k \in \mathbb{Z}^+$, $|b_k| = \left| \lim_{n \rightarrow \infty} a_{n,k} \right| = \lim_{n \rightarrow \infty} |a_{n,k}| \leq M$. Thus the sequence $(b_k)_{k \geq 1}$ is bounded in \mathbb{C} , that is $b \in \ell_\infty$, as claimed.

Finally, we claim that $a_n \rightarrow b$ in ℓ_∞ . Let $\epsilon > 0$. Choose $N \in \mathbb{Z}^+$ so that $n, m \geq N \implies \|a_n - a_m\|_\infty < \epsilon$. Then for $n, m \geq N$ we have $|a_{n,k} - a_{m,k}| < \epsilon$ for all indices $k \in \mathbb{Z}^+$. It follows that for all $n \geq N$ and for all $k \in \mathbb{Z}^+$ we have $|a_{n,k} - b_k| = \lim_{m \rightarrow \infty} |a_{n,k} - a_{m,k}| \leq \epsilon$ and hence, for all $n \geq N$, we have $\|a_n - b\|_\infty \leq \epsilon$. This shows that $a_n \rightarrow b$ in ℓ_∞ , as claimed.

2: (a) Show that $(\ell_2(\mathbb{R}), d_2)$ is separable.

Solution: Recall (from the proof of Theorem 4.7) that \mathbb{Q}^∞ is countable. It is clear that $\mathbb{Q}^\infty \subseteq \ell_2(\mathbb{R})$. We claim \mathbb{Q}^∞ is dense in (ℓ_2, d_2) . Let $b = (b_k)_{k \geq 1} \in \ell_2$ with $b \notin \mathbb{Q}^\infty$. We need to show that b is a limit point of \mathbb{Q}^∞ . Let $r > 0$. Since $\sum_{k=1}^{\infty} |b_k|^2 < \infty$, we can choose $n \in \mathbb{Z}^+$ so that $\sum_{k=n+1}^{\infty} |b_k|^2 < \frac{r^2}{2}$. For each $k \in \mathbb{Z}^+$ with $1 \leq k \leq n$, choose $a_k \in \mathbb{Q}$ so that $|a_k - b_k| < \frac{r^2}{2^{k+1}}$. Let $a = \sum_{k=1}^n a_k e_k = (a_1, a_2, \dots, a_n, 0, 0, \dots) \in \mathbb{Q}^\infty$. We have

$$\|a - b\|_2^2 = \sum_{k=1}^{\infty} |a_k - b_k|^2 = \sum_{k=1}^n |a_k - b_k|^2 + \sum_{k=n+1}^{\infty} |b_k|^2 < \left(\sum_{k=1}^n \frac{r^2}{2^{k+1}} \right) + \frac{r^2}{2} < \left(\sum_{k=1}^{\infty} \frac{r^2}{2^{k+1}} \right) + \frac{r^2}{2} = r^2$$

and hence $\|a - b\|_2 < r$ so that $b \in B(a, r)$. Since $a \in \mathbb{Q}^\infty$ and $b \notin \mathbb{Q}^\infty$, we have $b \in B_2^*(a, r)$ so that b is a limit point of \mathbb{Q}^∞ , as required.

(b) Show that $(\ell_2(\mathbb{C}), d_2)$ is complete.

Solution: Let $(x_n)_{n \geq 1}$ be a Cauchy sequence in (ℓ_2, d_2) , say $x_n = (x_{n,k})_{k \geq 1}$. Note that for each fixed $k \in \mathbb{Z}^+$, the sequence $(x_{n,k})_{n \geq 1}$ is Cauchy; indeed given $\epsilon > 0$ we can choose $N \in \mathbb{Z}^+$ so that for all $n, m \in \mathbb{Z}^+$ we have $n, m \geq N \implies \|x_n - x_m\|_2 < \epsilon$, and then for $n, m \geq N$ we have

$$|x_{n,k} - x_{m,k}| \leq \left(\sum_{i=1}^{\infty} (x_{n,i} - x_{m,i})^2 \right)^{1/2} = \|x_n - x_m\|_2 < \epsilon.$$

Since $(x_{n,k})_{n \geq 1}$ is a Cauchy sequence in \mathbb{R} , and since \mathbb{R} is complete, this sequence converges. Let

$$a = (a_k)_{k \geq 1}, \text{ where } a_k = \lim_{n \rightarrow \infty} x_{n,k}.$$

We claim that $a \in \ell_2$, that is $\sum_{k=1}^{\infty} |a_k|^2 < \infty$. For $K \in \mathbb{Z}^+$ we have

$$\sum_{k=1}^K |a_k|^2 = \sum_{k=1}^K \left| \lim_{n \rightarrow \infty} x_{n,k} \right|^2 = \sum_{k=1}^K \lim_{n \rightarrow \infty} x_{n,k}^2 = \lim_{n \rightarrow \infty} \sum_{k=1}^K x_{n,k}^2 \leq \lim_{n \rightarrow \infty} \sum_{k=1}^{\infty} x_{n,k}^2 = \lim_{n \rightarrow \infty} \|x_n\|_2^2,$$

so it suffices to show that the sequence $(\|x_n\|_2)$ converges in \mathbb{R} . And since $|\|x_n\|_2 - \|x_m\|_2| \leq \|x_n - x_m\|_2$ (by the Triangle Inequality) we see that $(\|x_n\|_2)$ is Cauchy in \mathbb{R} , so it does converge.

Finally, we claim that $x_n \rightarrow a$ in (ℓ_2, d_2) . Let $\epsilon > 0$. Choose $N \in \mathbb{Z}^+$ so that for all $n, m \in \mathbb{Z}^+$ we have

$$n, m \geq N \implies \|x_n - x_m\|_2 < \frac{\epsilon}{2}, \text{ that is } \sum_{k=1}^{\infty} (x_{n,k} - x_{m,k})^2 < \frac{\epsilon^2}{4}.$$

Let $n \in \mathbb{Z}^+$. Then for all $K \in \mathbb{Z}^+$ we have

$$\sum_{k=1}^K (x_{n,k} - a_k)^2 = \sum_{k=1}^K (x_{n,k} - \lim_{m \rightarrow \infty} x_{m,k})^2 = \lim_{m \rightarrow \infty} \sum_{k=1}^K (x_{n,k} - x_{m,k})^2 \leq \lim_{m \rightarrow \infty} \sum_{k=1}^{\infty} (x_{n,k} - x_{m,k})^2 \leq \frac{\epsilon^2}{4}$$

and so

$$\|x_n - a\|_2 = \left(\sum_{k=1}^{\infty} (x_{n,k} - x_{m,k})^2 \right)^{1/2} \leq \frac{\epsilon}{2} < \epsilon.$$

3: (a) Show that $(\mathcal{B}([0, 1], \mathbb{C}), d_\infty)$ is not separable.

Solution: Let A be any dense subset of $\mathcal{B}[0, 1]$. We must show that A is uncountable. For each $n \in \mathbb{Z}^+$, define $f_n : [0, 1] \rightarrow \mathbb{R}$ by $f_n(\frac{1}{n}) = 1$ and $f_n(x) = 0$ for all $x \neq \frac{1}{n}$. Note that each $f_n \in \mathcal{B}[0, 1]$ with $\|f_n\|_\infty = 1$. Let $\{0, 1\}^{\mathbb{Z}^+}$ denote the set of binary sequences $\alpha = (\alpha_1, \alpha_2, \dots)$. For each binary sequence $\alpha \in \{0, 1\}^{\mathbb{Z}^+}$, define $g_\alpha : [0, 1] \rightarrow \mathbb{R}$ by $g_\alpha = \sum_{n=1}^{\infty} \alpha_n f_n$ and note that for any two distinct binary sequences $\alpha \neq \beta$ we have $\|g_\alpha - g_\beta\|_\infty = 1$. Since A is dense in $\mathcal{B}[0, 1]$, for each binary sequence α we can choose $g_\alpha \in A$ such that $\|g_\alpha - f_\alpha\|_\infty < \frac{1}{2}$. Define $F : \{0, 1\}^{\mathbb{Z}^+} \rightarrow A$ by $F(\alpha) = g_\alpha$ (we remark that the Axiom of Choice is used here). Note that F is injective because when $\alpha \neq \beta$ we have

$$1 = \|g_\alpha - g_\beta\|_\infty \leq \|g_\alpha - f_\alpha\|_\infty + \|f_\alpha - f_\beta\|_\infty + \|f_\beta - g_\beta\|_\infty < \frac{1}{2} + \|g_\alpha - f_\alpha\|_\infty + \frac{1}{2}$$

so that $\|g_\alpha - g_\beta\|_\infty > 0$. Since F is injective we have $|A| \geq |\{0, 1\}^{\mathbb{Z}^+}| = 2^{\aleph_0}$, and so A is uncountable.

(b) Show that $(\mathcal{C}([-1, 1], \mathbb{R}), d_1)$ is not complete.

Solution: For each $n \in \mathbb{Z}^+$, define $f_n : [-1, 1] \rightarrow \mathbb{R}$ by $f_n(x) = x^{\frac{1}{2n-1}}$. Note that each f_n is continuous on $[-1, 1]$, and the sequence $(f_n)_{n \geq 1}$ is Cauchy in $(\mathcal{C}([-1, 1], d_1))$ because for $m \geq n \geq N$ we have

$$\begin{aligned} \|f_n - f_m\|_1 &= \int_{x=-1}^1 |f_n(x) - f_m(x)| dx = 2 \int_{x=0}^1 x^{\frac{1}{2m-1}} - x^{\frac{1}{2n-1}} dx \\ &= 2 \left[\frac{2m-1}{2m} x^{\frac{2m+1}{2m-1}} - \frac{2n-1}{2n} x^{\frac{2n+1}{2n-1}} \right]_{x=0}^1 = \frac{2m-1}{m} - \frac{2n-1}{n} = \frac{1}{n} - \frac{1}{m} \leq \frac{1}{N}. \end{aligned}$$

Note that for each $x \in [-1, 1]$ we have $\lim_{n \rightarrow \infty} f_n(x) = g(x)$ in \mathbb{R} where $g(x) = -1$ for $x < 0$, $g(x) = 1$ for $x > 0$ and $g(0) = 0$ (so we have $f_n \rightarrow g$ pointwise on $[-1, 1]$). Suppose, for a contradiction, that $(f_n)_{n \geq 1}$ converges in $\mathcal{C}([-1, 1], d_1)$, and let $h = \lim_{n \rightarrow \infty} f_n$ in $\mathcal{C}([-1, 1], d_1)$. Note that the restriction of h to $[0, 1]$ is continuous. Let $\epsilon > 0$. Choose $n \in \mathbb{Z}^+$ such that $\|f_n - h\|_1 < \frac{\epsilon}{2}$ and also $\frac{1}{2n} < \frac{\epsilon}{2}$. Then

$$\begin{aligned} \int_{x=0}^1 |h(x) - 1| dx &\leq \int_{x=0}^1 |h(x) - f_n(x)| + |f_n(x) - 1| dx \leq \int_{x=-1}^1 |h(x) - f_n(x)| dx + \int_{x=0}^1 |f_n(x) - 1| dx \\ &= \|h - f_n\|_1 + \int_{x=0}^1 1 - x^{\frac{1}{2n-1}} dx = \|h - f_n\|_1 + \frac{1}{2n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Since $\int_{x=0}^1 |h(x) - 1| dx < \epsilon$ for every $\epsilon > 0$, it follows that $\int_{x=0}^1 |h(x) - 1| dx = 0$ and, since the function $h(x) - 1$ is continuous on $[0, 1]$, it follows that $h(x) - 1 = 0$ for all $x \in [0, 1]$. Thus we have $h(x) = 1$ for all $x \in [0, 1]$. A similar argument shows that $h(x) = -1$ for all $x \in [-1, 0]$. But this is not possible since we cannot have $h(0) = 1$ and $h(0) = -1$.

4: (Absolute convergence implies convergence) Let X be a normed linear space. For a sequence $(x_k)_{k \geq 1}$ in X , the n^{th} partial sum of $(x_k)_{k \geq 1}$ is the element $s_n = \sum_{k=1}^n x_k \in X$, the series $\sum_{k=1}^{\infty} x_k$ is, by definition, equal to the sequence of partial sums $(s_n)_{n \geq 1}$, we say the series $\sum_{k=1}^{\infty} x_k$ converges in X when the sequence of partial sums $(s_n)_{n \geq 1}$ converges in X and then the sum of the series (also denoted by $\sum_{k=1}^{\infty} x_k$) is defined to be the limit of the sequence of partial sums in X . Show that X is complete if and only if X has the property that for every sequence $(x_k)_{k \geq 1}$ in X , if $\sum_{k=1}^{\infty} \|x_k\|$ converges in \mathbb{R} then $\sum_{k=1}^{\infty} x_k$ converges in X .

Solution: Suppose that X is complete. Let $(x_k)_{k \geq 1}$ be a sequence in X such that $\sum_{k=1}^{\infty} \|x_k\|$ converges in \mathbb{R} . For each $n \in \mathbb{Z}^+$, let $t_n = \sum_{k=1}^n \|x_k\| \in \mathbb{R}$ and let $s_n = \sum_{k=1}^n x_k \in X$. Let $\epsilon > 0$. Since $\sum_{k=1}^n \|x_k\|$ converges in \mathbb{R} , the sequence $(t_n)_{n \geq 1}$ is Cauchy in \mathbb{R} , so we can choose $N \in \mathbb{Z}^+$ such that for $m > n \geq N$ we have $\sum_{k=n+1}^m \|x_k\| = |t_m - t_n| < \epsilon$. Then for $m > n \geq N$ we have $\|s_m - s_n\| = \left\| \sum_{k=n+1}^m x_k \right\| \leq \sum_{k=n+1}^m \|x_k\| < \epsilon$. This shows that the sequence $(s_n)_{n \geq 1}$ is Cauchy in X , and so it converges in X because X is complete.

Suppose, conversely, that X has the property that for every sequence $(y_k)_{k \geq 1}$ in X , if $\sum_{k=1}^{\infty} \|y_k\|$ converges in \mathbb{R} then $\sum_{k=1}^{\infty} y_k$ converges in X . Let $(x_n)_{n \geq 1}$ be a Cauchy sequence in X . Since $(x_n)_{n \geq 1}$ is Cauchy, we can choose $n_1 \in \mathbb{Z}^+$ such that $k, \ell \geq n_1 \implies \|x_k - x_\ell\| < \frac{1}{2}$, then we can choose $n_2 > n_1$ such that $k, \ell \geq n_2 \implies \|x_k - x_\ell\| < \frac{1}{2^2}$, then we can choose $n_3 > n_2$ so that $k, \ell \geq n_3 \implies \|x_k - x_\ell\| < \frac{1}{2^3}$ and so on, to obtain integers n_k with $1 \leq n_1 < n_2 < n_3 < \dots$ such that $i, j \geq n_k \implies \|x_i - x_j\| < \frac{1}{2^k}$. For each $k \in \mathbb{Z}^+$, let $y_k = x_{n_{k+1}} - x_{n_k}$. Note that

$$\sum_{k=1}^{\infty} \|y_k\| = \sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\| < \sum_{k=1}^{\infty} \frac{1}{2^k} = 1.$$

Since $\sum_{k=1}^{\infty} \|y_k\|$ converges in \mathbb{R} , it follows that $\sum_{k=1}^{\infty} y_k$ converges in X . For each $\ell \in \mathbb{Z}^+$, let s_ℓ be the ℓ^{th} partial sum

$$s_\ell = \sum_{k=1}^{\ell} y_k = \sum_{k=1}^{\ell} (x_{n_{k+1}} - x_{n_k}) = x_{n_{\ell+1}} - x_{n_1}$$

and note that $x_{n_\ell} = s_{\ell-1} + x_{n_1}$ for $\ell \geq 2$. Since the series $\sum_{k=1}^{\infty} y_k$ converges in X , its sequence of partial sums $(s_\ell)_{\ell \geq 1}$ converges in X , and hence the sequence $(x_{n_\ell})_{\ell \geq 1}$ converges in X . Since $(x_n)_{n \geq 1}$ is a Cauchy sequence, and the subsequence $(x_{n_\ell})_{\ell \geq 1}$ converges, it follows that $(x_n)_{n \geq 1}$ converges by Theorem 4.11.

5: Let X be a metric space.

(a) Show that X is complete if and only if every decreasing sequence of closed balls

$$\overline{B}(a_1, r_1) \supseteq \overline{B}(a_2, r_2) \supseteq \overline{B}(a_3, r_3) \supseteq \dots$$

in X with $r_n \rightarrow 0$ has a non-empty intersection.

Solution: Suppose that X is complete. Let $\overline{B}(a_1, r_1) \supseteq \overline{B}(a_2, r_2) \supseteq \overline{B}(a_3, r_3) \supseteq \dots$ be a decreasing sequence of balls in X with $r_n \rightarrow 0$. We claim that (a_n) is Cauchy. Let $\epsilon > 0$. Choose $N \in \mathbb{Z}^+$ so that $r_N \leq \frac{\epsilon}{2}$. For $n, m \in \mathbb{Z}^+$ with $n, m \geq N$ we have $a_n, a_m \in \overline{B}(a_N, r_N)$ so that $d(a_n, a_m) \leq d(a_n, a_N) + d(a_N, a_m) < 2r_N \leq \epsilon$, and so (a_n) is Cauchy as claimed. Since X is complete, (a_n) converges in X . Let $a = \lim_{n \rightarrow \infty} a_n$. Note that

$a \in \bigcap_{n=1}^{\infty} \overline{B}(a_n, r_n)$ since for each $N \in \mathbb{N}$, the sequence (a_n) lies in $\overline{B}(a_N, r_N)$ which is closed in X and hence complete, and so $a = \lim_{n \rightarrow \infty} a_n \in \overline{B}(a_N, r_N)$.

Conversely, suppose that every decreasing sequence of balls $\overline{B}(a_1, r_1) \supseteq \overline{B}(a_2, r_2) \supseteq \overline{B}(a_3, r_3) \supseteq \dots$ with $r_n \rightarrow 0$ has non-empty intersection. Let (a_n) be a Cauchy sequence in X . Choose $n_0 \in \mathbb{Z}^+$ so that for all $n, m \in \mathbb{Z}^+$ we have $n, m \geq n_0 \implies d(a_n, a_m) < \frac{1}{2}$. Having chosen $n_0 < n_1 < \dots < n_{k-1}$, choose $n_k > n_{k-1}$ so that for all $n, m \in \mathbb{Z}^+$ we have $n, m \geq n_k \implies d(a_n, a_m) < \frac{1}{2^{k+1}}$. Note that $\overline{B}(a_{n_k}, \frac{1}{2^k}) \subseteq \overline{B}(a_{n_{k-1}}, \frac{1}{2^{k-1}})$ since

$$d(x, a_{n_k}) \leq \frac{1}{2^k} \implies d(x, a_{n_{k-1}}) \leq d(x, a_{n_{k-1}}) + d(a_{n_{k-1}}, a_{n_k}) < \frac{1}{2^k} + \frac{1}{2^k} = \frac{1}{2^{k-1}}.$$

Since this decreasing sequence of closed balls has non-empty intersection, we can choose $a \in \bigcap_{n=1}^{\infty} \overline{B}(a_{n_k}, \frac{1}{2^k})$.

Note that $a_{n_k} \rightarrow a$ in X since given $\epsilon > 0$ we can choose $K \in \mathbb{Z}^+$ so that $\frac{1}{2^{k-1}} < \epsilon$ and then for $k \geq K$ we have $d(a_{n_k}, a_{n_K}) < \frac{1}{2^{K+1}}$ by the choice of n_K , and we have $a \in \overline{B}(a_{n_K}, \frac{1}{2^K})$ so that $d(a, a_{n_K}) \leq \frac{1}{2^K}$, and so $d(a_{n_k}, a) \leq d(a_{n_k}, a_{n_K}) + d(a_{n_K}, a) < \frac{1}{2^{K+1}} + \frac{1}{2^K} < \frac{1}{2^{k-1}} < \epsilon$. Finally note that since (a_n) is Cauchy and has a convergent subsequence, (a_n) converges (by Theorem 4.11).

(b) Show that the requirement in part (a) that $r_n \rightarrow 0$ is necessary.

Solution: Let $X = \left\{ \frac{1}{2^n} \mid n \in \mathbb{Z}^+ \right\}$. Define $d : X \times X \rightarrow [0, \infty)$ by

$$d(x, y) = \begin{cases} 0 & , \text{ if } x = y \\ 1 + |x - y| & , \text{ if } x \neq y. \end{cases}$$

Then d is clearly positive definite and symmetric, and by considering that cases $x = y = z$, $x = y \neq z$, $x = z \neq y$, $y = z \neq x$ and x, y, z all distinct, we see that d satisfies the triangle equality, so d is a metric on X . Under this metric, X is complete since if a sequence in X is Cauchy, then it must be eventually constant, so it converges. But if we take $a_n = \frac{1}{2^n}$ and $r_n = 1 + \frac{1}{2^n}$, then we have $\overline{B}(a_n, r_n) = \left\{ \frac{1}{2^k} \mid k \geq n-1 \right\}$, so $\overline{B}(a_1, r_1) \supseteq \overline{B}(a_2, r_2) \supseteq \overline{B}(a_3, r_3) \supseteq \dots$ but $\bigcap_{n=1}^{\infty} \overline{B}(a_n, r_n) = \emptyset$.