
PMATH 351 Real Analysis, Solutions to the Exercises for Chapter 4

1: (a) Let c0 =
{
a ∈ `∞(R)

∣∣ lim
n→∞

an = 0
}

. Show that (c0, d∞) is separable.

Solution: Recall (from the proof of Theorem 4.7) that Q∞ is countable. We claim that Q∞ is dense in c0.
Note that Q∞ ⊆ c0 because for a = (an)n≥1 ∈ Q∞, we can choosem ∈ Z+ such that an = 0 for all n > m, and
hence lim

n→∞
an = 0. Let x ∈ c0 with x /∈ Q∞. We must show that x is a limit point of Q∞. Let r > 0. Since

lim
n→∞

xn = 0 we can choose m ∈ Z+ such that for all n ∈ Z+ with n ≥ m we have |xn| < r
2 . For each n ∈ Z+

with 1 ≤ n ≤ m, choose an ∈ Q with |xn − an| < r
2 , then let a =

m∑
n=1

anen = (a1, a2, · · · , an, 0, 0, · · ·) ∈ Q∞.

Then we have ‖x− a‖∞ = sup
{
|x1−a1|, |x2−a2|, · · · , |xn−an|, |xn+1|, |xn+2|, · · ·

}
≤ r

2 so that x ∈ B(a, r).
And since a ∈ Q∞ and x /∈ Q∞ so that x 6= a, we have a ∈ B∗(x, r), and so x is a limit point of Q∞, as
required.

(b) Show that (`∞(C), d∞) is complete.

Solution: Let (an)n≥1 be a Cauchy sequence in `∞. For each n ∈ Z+, an is a bounded sequence of complex
numbers, say an = (an,k)k≥1. Fix an index k ∈ Z+ and let ε > 0. Since (an)n≥1 is Cauchy in `∞, we can
choose N ∈ Z+ such that n,m ≥ N =⇒ ‖an − am‖∞ < ε. Then for n,m ≥ N we have |an,j − am,j | < ε for
all j ∈ Z+ so, in particular, |an,k − am,k| < ε. This shows that for each k ∈ Z+, the sequence (an,k)n≥1 is a
Cauchy sequence in C, so it converges. For each k ∈ Z+, let bk = lim

n→∞
an,k ∈ C, and then let b = (bk)k≥1.

We claim that b ∈ `∞ (that is, the sequence b = (bk)k≥1 is bounded in C). Since (an)n≥1 is Cauchy in
`∞, it is bounded in `∞, so we can choose M ≥ 0 such that ‖an‖∞ ≤ M for all indices n ∈ Z+. Then for
all k, n ∈ Z+ we have |an,k| ≤ ‖an‖∞ ≤M and hence, for all k ∈ Z+, |bk| =

∣∣ lim
n→∞

an,k
∣∣ = lim

n→∞
|an,k| ≤M .

Thus the sequence (bk)k≥1 is bounded in C, that is b ∈ `∞, as claimed.

Finally, we claim that an → b in `∞. Let ε > 0. Choose N ∈ Z+ so that n,m ≥ N =⇒ ‖an − am‖∞ < ε.
Then for n,m ≥ N we have |an,k − am,k| < ε for all indices k ∈ Z+. It follows that for all n ≥ N and for all
k ∈ Z+ we have |an,k − bk| = lim

m→∞

∣∣an,k − am,k∣∣ ≤ ε and hence, for all n ≥ N , we have ‖an − b‖∞ ≤ ε. This

shows that an → b in `∞, as claimed.



2: (a) Show that (`2(R), d2) is separable.

Solution: Recall (from the proof of Theorem 4.7) that Q∞ is countable. It is clear that Q∞ ⊆ `2(R). We claim
Q∞ is dense in

(
`2, d2

)
. Let b = (bk)k≥1 ∈ `2 with b /∈ Q∞. We need to show that b is a limit point of Q∞.

Let r > 0. Since
∞∑
k=1

|bk|2 < ∞, we can choose n ∈ Z+ so that
∞∑

k=n+1

|bk|2 < r2

2 . For each k ∈ Z+ with

1 ≤ k ≤ n, choose ak ∈ Q so that |ak − bk| < r2

2k+1 . Let a =
n∑
k=1

akek = (a1, a2, · · · , an, 0, 0, · · ·) ∈ Q∞. We

have

‖a− b‖22 =
∞∑
k=1

|ak − bk|2 =
n∑
k=1

|ak − bk|2 +
∞∑

k=n+1

|bk|2 <
( n∑
k=1

r2

2k+1

)
+ r2

2 <
( ∞∑
k=1

r2

2k+1

)
+ r2

2 = r2

and hence ‖a− b‖2 < r so that b ∈ B(a, r). Since a ∈ Q∞ and b /∈ Q∞, we have b ∈ B∗2(a, r) so that b is a
limit point of Q∞, as required.

(b) Show that
(
`2(C), d2

)
is complete.

Solution: Let (xn)n≥1 be a Cauchy sequence in
(
`2, d2

)
, say xn = (xn,k)k≥1. Note that for each fixed k ∈ Z+,

the sequence (xn,k)n≥1 is Cauchy; indeed given ε > 0 we can choose N ∈ Z+ so that for all n,m ∈ Z+ we
have n,m ≥ N =⇒ ‖xn − xm‖2 < ε, and then for n,m ≥ N we have

|xn,k − xm,k| ≤
( ∞∑
i=1

(xn,i − xm,i)2
)1/2

= ‖xn − xm‖2 < ε .

Since (xn,k)n≥1 is a Cauchy sequence in R, and since R is complete, this sequence converges. Let

a = (ak)k≥1, where ak = lim
n→∞

xn,k .

We claim that a ∈ `2, that is
∞∑
k=1

|ak|2 <∞. For K ∈ Z+ we have

K∑
k=1

|ak|2 =
K∑
k=1

∣∣ lim
n→∞

xn,k
∣∣2 =

K∑
k=1

lim
n→∞

xn,k
2 = lim

n→∞

K∑
k=1

xn,k
2 ≤ lim

n→∞

∞∑
k=1

xn,k
2 = lim

n→∞
‖xn‖

2

2
,

so it suffices to show that the sequence
(
‖xn‖2

)
converges in R. And since

∣∣‖xn‖2 − ‖xm‖2∣∣ ≤ ‖xn − xm‖2
(by the Triangle Inequality) we see that

(
‖xn‖2

)
is Cauchy in R, so it does converge.

Finally, we claim that xn → a in
(
`2, d2

)
. Let ε > 0. Choose N ∈ Z+ so that for all n,m ∈ Z+ we have

n,m ≥ N =⇒
∥∥xn − xm∥∥2 < ε

2 , that is
∞∑
k=1

(xn,k − xm,k)2 < ε2

4 .

Let n ∈ Z+. Then for all K ∈ Z+ we have

K∑
k=1

(xn,k − ak)2 =

K∑
k=1

(
xn,k − lim

m→∞
xm,k

)2
= lim
m→∞

K∑
k=1

(xn,k − xm,k)2 ≤ lim
m→∞

∞∑
k=1

(xn,k − xm,k)2 ≤ ε2

4

and so

‖xn − a‖2 =
( ∞∑
k=1

(xn,k − xm,k)2
)1/2

≤ ε
2 < ε .



3: (a) Show that
(
B([0, 1],C), d∞

)
is not separable.

Solution: Let A be any dense subset of B[0, 1]. We must show that A is uncountable. For each n ∈ Z+,
define fn : [0, 1]→ R by fn

(
1
n

)
= 1 and fn(x) = 0 for all x 6= 1

n . Note that each fn ∈ B[0, 1] with ‖fn‖∞ = 1.

Let {0, 1}Z+

denote the set of binary sequences α = (α1, α2, · · ·). For each binary sequence α ∈ {0, 1}Z+

,

define gα : [0, 1]→ R by gα =
∞∑
n=1

αnfn and note that for any two distinct binary sequences α 6= β we have

‖gα − gβ‖∞ = 1. Since A is dense in B[0, 1], for each binary sequence α we can choose gα ∈ A such that

‖gα − fα‖∞ < 1
2 . Define F : {0, 1}Z+ → A by F (α) = gα (we remark that the Axiom of Choice is used

here). Note that F is injective because when α 6= β we have

1 = ‖gα − gβ‖∞ ≤ ‖gα − fα‖∞ + ‖fα − fβ‖∞ + ‖fβ − gβ‖∞ < 1
2 + ‖gα − gβ‖∞ + 1

2

so that ‖gα − gβ‖∞ > 0. Since F is injective we have |A| ≥
∣∣{0, 1}Z+ ∣∣ = 2ℵ0 , and so A is uncountable.

(b) Show that
(
C([−1, 1],R), d1

)
is not complete.

Solution: For each n ∈ Z+, define fn : [−1, 1] → R by fn(x) = x
1

2n−1 . Note that each fn is continuous on
[−1, 1], and the sequence (fn)n≥1 is Cauchy in

(
C[−1, 1], d1

)
because for m ≥ n ≥ N we have

‖fn − fm‖1 =

∫ 1

x=−1

∣∣fn(x)− fm(x)
∣∣ dx = 2

∫ 1

x=0

x
1

2m−1 − x
1

2n−1 dx

= 2
[
2m−1
2m x

2m+1
2m−1 − 2n−1

2n x
2n+1
2n−1

]1
x=0

= 2m−1
m − 2n−1

n = 1
n −

1
m ≤

1
N .

Note that for each x ∈ [−1, 1] we have lim
n→∞

fn(x) = g(x) in R where g(x) = −1 for x < 0, g(x) = 1 for x > 0

and g(0) = 0
(
so we have fn → g pointwise on [−1, 1]

)
Suppose, for a contradiction, that (fn)n≥1 converges

in C[−1, 1], and let h = lim
n→∞

fn in C[−1, 1]. Note that the restriction of h to [0, 1] is continuous. Let ε > 0.

Choose n ∈ Z+ such that ‖fn − h‖1 <
ε
2 and also 1

2n <
ε
2 . Then∫ 1

x=0

∣∣h(x)− 1
∣∣ dx ≤ ∫ 1

x=0

|h(x)− fn(x)
∣∣+
∣∣fn(x)− 1

∣∣ dx ≤ ∫ 1

x=−1

∣∣h(x)− fn(x)
∣∣ dx+

∫ 1

x=0

∣∣fn(x)− 1
∣∣ dx

= ‖h− fn‖1 +

∫ 1

x=0

1− x
1

2n−1 dx = ‖h− fn‖1 +
1

2n
<
ε

2
+
ε

2
= ε.

Since

∫ 1

x=0

∣∣h(x) − 1
∣∣ dx < ε for every ε > 0, it follows that

∫ 1

x=0

∣∣h(x) − 1
∣∣ dx = 0 and, since the function

h(x)− 1 is continuous on [0, 1], it follows that h(x)− 1 = 0 for all x ∈ [0, 1]. Thus we have h(x) = 1 for all
x ∈ [0, 1]. A similar argument shows that h(x) = −1 for all x ∈ [−1., 0]. But this is not possible since we
cannot have h(0) = 1 and h(0) = −1.



4: (Absolute convergence implies convergence) Let X be a normed linear space. For a sequence (xk)k≥1 in X,

the nth partial sum of (xk)k≥1 is the element sn =
n∑
k=1

xk ∈ X, the series
∞∑
k=1

xk is, by definition, equal to

the sequence of partial sums (sn)n≥1, we say the series
∞∑
k=1

xk converges in X when the sequence of partial

sums (sn)n≥1 converges in X and then the sum of the series
(
also denoted by

∞∑
k=1

xk
)

is defined to be the

limit of the sequence of partial sums in X. Show that X is complete if and only if X has the property that

for every sequence (xk)k≥1 in X, if
∞∑
k=1

‖xk‖ converges in R then
∞∑
k=1

xk converges in X.

Solution: Suppose that X is complete. Let (xk)k≥1 be a sequence in X such that
∞∑
k=1

‖xk‖ converges in R.

For each n ∈ Z+, let tn =
n∑
k=1

‖xk‖ ∈ R and let sn =
n∑
k=1

xk ∈ X. Let ε > 0. Since
n∑
k=1

‖xk‖ converges

in R, the sequence (tn)n≥1 is Cauchy in R, so we can choose N ∈ Z+ such that for m > n ≥ N we have
m∑

k=n+1

‖xk‖ = |tm − tn| < ε. Then for m > n ≥ N we have ‖sm − sn‖ =
∥∥ m∑
k=n+1

xk
∥∥ ≤ m∑

k=n+1

‖xk‖ < ε. This

shows that the sequence (sn)n≥1 is Cauchy in X, and so it converges in X because X is complete.

Suppose, conversely, that X has the property that for every sequence (yk)k≥1 in X, if
∞∑
k=1

‖yk‖ converges

in R then
∞∑
k=1

yk converges in X. Let (xn)n≥1 be a Cauchy sequence in X. Since (xn)n≥1 is Cauchy, we

can choose n1 ∈ Z+ such that k, ` ≥ n1 =⇒ ‖xk − x`‖ < 1
2 , then we can choose n2 > n1 such that

k, ` ≥ n2 =⇒ ‖xk − x`‖ < 1
22 , then we can choose n3 > n2 so that k, ` ≥ n3 =⇒ ‖xk − x`‖ < 1

23 and so on,
to obtain integers nk with 1 ≤ n1 < n2 < n3 < · · · such that i, j ≥ nk =⇒ ‖xi − xj‖ < 1

2k
. For each k ∈ Z+,

let yk = xnk+1
− xnk

. Note that

∞∑
k=1

‖yk‖ =
∞∑
k=1

‖xnk+1
− xnk

‖ <
∞∑
k=1

1
2k

= 1.

Since
∞∑
k=1

‖yk‖ converges in R, it follows that
∞∑
k=1

yk converges in X. For each ` ∈ Z+, let s` be the `th partial

sum

s` =
∑̀
k=1

yk =
∑̀
k=1

(xnk+1
− xnk

) = xn`+1
− xn1

and note that xn`
= s`−1 + xn1

for ` ≥ 2. Since the series
∞∑
k=1

yk converges in X, its sequence of partial

sums (s`)`≥1 converges in X, and hence the sequence
(
xn`

)
`≥1 converges in X. Since (xn)n≥1 is a Cauchy

sequence, and the subsequence (xn`
)`≥1 converges, it follows that (xn)n≥1 converges by Theorem 4.11.



5: Let X be a metric space.

(a) Show that X is complete if and only if every decreasing sequence of closed balls

B(a1, r1) ⊇ B(a2, r2) ⊇ B(a3, r3) ⊇ · · ·

in X with rn → 0 has a non-empty intersection.

Solution: Suppose that X is complete. Let B(a1, r1) ⊇ B(a2, r2) ⊇ B(a3, r3) ⊇ · · · be a decreasing sequence
of balls in X with rn → 0. We claim that (an) is Cauchy. Let ε > 0. Choose N ∈ Z+ so that rN ≤ ε

2 . For
n,m ∈ Z+ with n,m ≥ N we have an, am ∈ B(aN , rN ) so that d(an, am) ≤ d(an, aN )+d(aN , am) < 2rN ≤ ε,
and so (an) is Cauchy as claimed. Since X is complete, (an) converges in X. Let a = lim

n→∞
an. Note that

a ∈
∞⋂
n=1

B(an, rn) since for each N ∈ N, the sequence (an) lies in B(aN , rN ) which is closed in X and hence

complete, and so a lim
n→∞

an ∈ B(aN , rN ).

Conversely, suppose that every decreasing sequence of balls B(a1, r1) ⊇ B(a2, r2) ⊇ B(a3, r3) ⊇ · · · with
rn → 0 has non-empty intersection. Let (an) be a Cauchy sequence in X. Choose n0 ∈ Z+ so that for all
n,m ∈ Z+ we have n,m ≥ n0 =⇒ d(an, am) < 1

2 . Having chosen n0 < n1 < · · · < nk−1, choose nk > nk−1
so that for all n,m ∈ Z+ we have n,m ≥ nk =⇒ d(an, am) < 1

2k+1 . Note that B
(
ank

, 1
2k

)
⊆ B

(
ank−1

, 1
2k−1

)
since

d
(
x, ank

)
≤ 1

2k
=⇒ d

(
x, ank−1

)
≤ d
(
x, ank−1

)
+ d
(
ank1

, ank−1

)
< 1

2k
+ 1

2k
= 1

2k−1 .

Since this decreasing sequence of closed balls has non-empty intersection, we can choose a ∈
∞⋂
n=1

B
(
ank

, 1
2k

)
.

Note that ank
→ a in X since given ε > 0 we can choose K ∈ Z+ so that 1

2k−1 < ε and then for k ≥ K we

have d
(
ank

, anK

)
< 1

2K+1 by the choice of nK , and we have a ∈ B
(
anK

, 1
2K

)
so that d(a, anK

)
≤ 1

2K
, and so

d
(
ank

, a
)
≤ d

(
ank

, anK

)
+ d
(
anK

, a
)
< 1

2K+1 + 1
2K

< 1
2K−1 < ε. Finally note that since (an) is Cauchy and

has a convergent subsequence, (an) converges (by Theorem 4.11).

(b) Show that the requirement in part (a) that rn → 0 is necessary.

Solution: Let X =
{

1
2n

∣∣n ∈ Z+
}

. Define d : X ×X → [0,∞) by

d(x, y) =

{
0 , if x = y

1 + |x− y| , if x 6= y .

Then d is clearly positive definite and symmetric, and by considering that cases x = y = z, x = y 6= z,
x = z 6= y, y = z 6= x and x, y, z all distinct, we see that d satisfies the triangle equality, so d is a metric on
X. Under this metric, X is complete since if a sequence in X is Cauchy, then it must be eventually constant,
so it converges. But if we take an = 1

2n and rn = 1 + 1
2n , then we have B(an, rn) =

{
1
2k

∣∣k ≥ n − 1
}

, so

B(a1, r1) ⊇ B(a2, r2) ⊇ B(a3, r3) ⊇ · · · but
⋂∞
n=1B(an, rn) = ∅.


